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Abstract

When single-row deep groove ball bearings with small angular clea-
rance are used in a rotating shaft system, there appear nonlinear spring
characteristics in a restoring force of a shaft. With reference to
nonlinear forced oscillations, almost all the researches reported till now
is on the topic of rectilinear systems. Nonlinear forced oscillations in
a rotating shaft system with gyroscopic moments have unique characte-
ristics. In the first place, we discuss a particular vibration phenomena
at the major critical speed when rotating spring characteristics and
rotating difference in shaft stiffness exist. In such a case, resonance
curves at the major critical speed vary extremely with the change of the
angular position of the unbalance and the unstable region appear. Next
we consider nonlinear forced oscillations in a shaft system with static
nonlinearity. We obtained experimentally various kinds of subharmonic
and summed-and-differential harmonic oscillations. It is clarified that
the occurrence of these oscillations depends on the assembling condition
of the shaft system. Nonlinear forced oscillations are also discussed
theoretically. The representation of nonlinear characteristics in polar
coordinates gives a clear description of the phenomena and aids in the
prediction of the occurrence. It is showed that the experimental results
may clearly explained in the light of this theoretical results.
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General Introduction

During the operation of a rotating machine, the shaft sometimes starts to vibrate
at special rotating speeds. A large number of research papers have been reported
since the paper concerning the dynamics of a rotating shaft was published by Rankine
in 1869. Most early literature is concerned with the resonance phenomena which
appears when the frequency of external excitation has a specific relationship with
the natural frequency of the system. The causes and characteristics of these pheno-
mena have, for the most part, been clarified. Sources of external forces are rotor
unbalances, bearing irregularities, etc.

A rotating shaft system with an unsymmetrical rotor or an unsymmetrical shaft
has also been studied in detail. In this system, unstable regions appeared at the
major critical speeds where the amplitude of whirling oscillation increased exponen-
tially and it became impossible to operate the machine.
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Modern rotating machinery is often capable of operating in a high speed region
beyond the first critical speed. Consequently, other kinds of phenomena, such as
self-excited oscillations and nonlinear oscillations have become serious problems.
Self-excited oscillation resultig from internal friction appears in the post-critical
range and that due to oil film in journal bearings appears when the rotating speed
exceeds twice the major critical speed.

Research on nonlinear oscillations has developed rapidly in the past few decades.
As a result, a large number of theoretical and experimental works on nonlinear
oscillations have been reported. Almost all of these papers were written about
rectilinear systems. Due to the difficulties involved, few papers have been written
about the nonlinear oscillations of rotating shafts. There are various reasons for
the nonlinearity. The common sources of this nonlinearity are oil film in journal
bearings, clearance in ball bearings, magnetic force between the rotor and the stator,
and so on. The shapes of resonance curves for these nonlinear phenomena are diffe-
rent from those of linear systems, and oscillations appear which cannot be observed
in linear systems. The study of the nonlinear oscillations of rotating shafts started
recently and has been slow to develop. One of the authors of this paper, Yamamoto,
reported about subharmonic oscillations of order 1/2 and summed-and-differential
harmonic oscillations of the type [p; +p;] (p: and p; are the natural frequencies
of the system) which were caused by unsymmetrical nonlinear spring characteristics.
He observed these whirling oscillations in a rotating shaft system supported by single-
row deep groove ball bearings.

In this paper, the various kinds of nonlinear forced oscillations which occurred
in a rotating shaft system were studied both experimentally and theoretically. Ex-
periments were conducted using an elastic rotating shaft supported by a single-row
deep groove ball bearing and a self-aligning double-row ball bearing. The following
is an outline of the chapters.

Chapter 1 describes the particular vibration phenomena which occur at the major
critical speed of a shaft system with rotating anisotropies of shaft stiffness and of
unsymmetrical nonlinearity. These anisotropies are induced by irregularities in the
rotating parts of the shaft system and rotate with the shaft with an angular velocity
w. As a result of these spring characteristics, in the neighborhood of the major
critical speed, an unstable region is created or disappears and furthermore resonance
curves of the forced oscillations vary grately with the change of the angular position
of the unbalance. This paper constitutes the first experimental and theoretical
research on the rotating nonlinear spring characteritics of a shaft system.

Chapter 2 clarifies the various nonlinear vibration phenomena which occur in a
rotating shaft with static symmetrical nonlinear spring characteristics. A vertical
shaft system supported by ball bearings was investigated. When the two center lines
of the upper and lower bearings were well aligned and the shaft was situated at the
middle of the angular clearance of the single-row deep groove ball bearing, the elastic
restoring force of the shaft had symmetrical nonlinear spring characteristics. A
subharmonic oscillation of order 1/3 and summed-and-differential harmonic oscillation
of the type [2p:+p;] and [p;+p;+ps] were obtained with this experimental appa-
ratus. Up till now, no papers have been written about these symmetrical forced
oscillations in a rotating shaft system.

In Chapter 3, a theoretical analysis of a rotating shaft system is presented. In
a shaft system having a gyroscopic moment, lateral vibrations of the shaft have a
mode of whirling motion. In theoretical discussions of this whirling motion, the use
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of a-polar coordinate system is advocated for the representation of the nonlinear
spring characteristics. Nonlinear spring characteristics expressed by polar coordi-
nates can then be classified into a component with a constant value and other com-
ponents whose magnitudes vary 1, 2, 3, 4, ... times, respectively, while the shaft
whirls around its equilibrium position. Equations of the resonance curves are derived
theoretically for both subharmonic oscillations and summed-and-differential harmonic
oscillations. " Utilizing the polar coordinate system, it can be easily be anticipated
what kinds of nonlinear forced oscillations can occur. Furthermore, it is demon-
strated that the experimental results of Chapter 2 can be clearly explained in the
light of the theoretical results obtained in this chapter.

Chapter 1. The Particular Vibration Phenomena Due to
Ball Bearings at the Major Critical Speed(??

1. 1. Introduction

- Widely used single-row deep groove ball bearings have so-called “angular clea-
rance(®”. When the center line of the rotating shaft locates within this small
angular clearance, the shaft is supported freely. If it goes out from the angular
clearance, the supporting condition becomes fixed(?). (A) When there is a small
disalignment between the bearing center line and the center line of the inner cylind-
rical surface of the bearing box in which the outer ring of the ball bearing is in-
serted, (B) when the outer ring of the ball bearing is slightly inclined in the bearing
box, (C) when there is a raceway run-out of the outer ring raceway, (D) when the
inner cylindrical surface of a bearing box is not exactly circular and the fit between
the outer ring and the inner surface of the bearing box is loose, etc., the equilibrium
position of the center line of the rotating shaft shifts from the center of the an-
gular clearance. As we already reported(2),(®, this shift of the center line of the
shaft results in nonuniformity of stiffness and anisotropic unsymmetrical nonlinearity
in spring characteristics of the shaft. Consequently, subharmonic oscillations of the
order 1/2, summed-and-differential harmonic oscillations, and forced oscillations of
synchronous backward precession occur in the shaft system(2~(6) As can be seen
by (A)~(D), the direction to which the center line of the shaft shifts from the
center of the angular clearance is fixed in space. It follows therefrom that the
anisotropies of rigidity and of nonlinearity are also fixed in space.

On the other hand, the center line of the shaft also shifts from the center of
the angular clearance, (a) when the shaft has a small pre-curvature, (b) when the
inner ring of the ball bearing is set to the journal a little inclined, (c) when there
is a raceway run-out of the inner ring raceway, (d) when the journal is not exactly
circular and the fit between the inner ring and the journal is loose, etc. Accordingly,
the anisotropies of shaft stiffness and of unsymmetrical nonlinearity appear in the
spring characteristics, and they rotate with the shaft with an angular velocity w, as
seen from (a) ~ (b).

~ These anisotropies of the spring characteristics rotating with the shaft cause
the following phenomena: In the neighborhood of the major critical speed w., an
unstable region¢”’, in which unstable vibrations build up, occurs or disappears as a
function of the angular position of the rotor unbalance. The width of this unstable
region is also dependent on this angular position. Furthermore, the shapes of the
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resonance curves of the forced vibrations caused by the unbalance vary according to
the angular position of the unbalance. This chapter clarifies these particular. vibra-
tion phenomena both analy»tically and experimentally.

1. 2. Equations of motion

‘A rather simple rotating shaft system in which a deflection # and an inclination
of a rotor do not couple with each other is treated. Initially, the equations of
motion of the rotor about its deflection are introduced.

In the preceding section, the anisot-
ropies of stiffness and of nonlinearity
rotating with the shaft are discussed. In 2
order to represent such spring characte- /
ristics, it is convenient to adopt a rotat- AN
ing rectangular coordinate system O—z’ .
¥, which has its origin at the equilibrium z S TSN \{q;f
position of the center of the rotor and >/ SR
rotates with an angular velocity o, as X/ PN NS
shown in Fig. 1. 1. When there is a
directional difference in shaft stiffness,
the #'-direction of the maximum stiffness ]
is obviously perpendicular to the y'- ] @
direction of the minimum stiffness.
Unsymmetrical nonlinearity is generally
expressed in terms of even powers of k3
the coordinates x” and y’, and the second Fig. 1. 1.
power is considered here. Accordingly,
the expression of the potential energy
V becomes as follows:

V=g G AR (R = dR) 3+ o™+ B 4 By iy (L)

where % is the mean spring constant of the shaft, 4% the difference in shaft stiffness,
and f;~f, coefficients of nonlinear terms. The spring forces F,’ and F,’ in the
x’- and y'-directions are represented by

_ov _

Fi=—— = — (Rt AR) 2+ 3157+ 28,2y + B2 %)

(1.2)
= _%: —{(R—dk)y' 430,y +2B,x"y' -+ B,x'?}

respectively, in which the terms underlined are coupling terms between the #’- and
y'-directions. We can neglect them and put f,=8;=0 in Eq. (1. 2), because the
couplings through nonlinear terms are considered small and experimental results
discussed later can be explained almost completely without them. By putting 38;=¢,
3Bs=¢; Eq. (1. 2) becomes

Fl=—{(k+4R)x'+e'x"}, Fj=—{(k—4Rk)y +<\y"?}  (1.3)

In Fig. 1. 1, O—xy is a fixed rectangular coordinate system, M(s’, ¥') is the
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geometrical center of the rotor, G(x4, y;) is the center of gravity of the rotor,
MG=e is the eccentricity of the rotor, and the next relations hold,

xe=x"+e.cos P, y,=y+e-.sinf 1.4

where B is the angle between the direction of the eccentricity and the x’-direction.
When viscous damping forces D,=-—cX, Dy=—cy (c¢: damping coefficient), which
are expressed in the fixed coordinate system, act upon the system, the damping
forces D,’ and D, in the x’'- and y’-directions are expressed as follows:

D\,=—cx'+cwy, Dy=—cy—cwx’ (1.5)

Let the mass of the rotor be m. Then the inertia forces in the x’- and y'-directions
are given by (—mXi+2meyi+mxi 0?) and (—my;—2moxsi+mys w?) respectively
in the rotating coordinate system. By using D’Alembelt’s principle, the following
equations of motion are introduced:

(—mXe+2mwy,+mxyw?)+ (—cx' +cwy) —{(k+4R) %'+, 22} =0
(1.6)
(=my,—2moxy,+my,w®)+(—cy' —cox) —{(k—4k)y' +e, 5"} =0

where 4k, ¢}, ¢;, and ¢ are small quantities. We express the forced vibrations caused
by the eccentricity e, that is, the harmonic solutions of frequency w, as

x=A cos(wt+a)=>b cos wt--a sin wi ]

[ (1.7)
y=A 5in(w[~i—d)2b sin wt--a cos wt J

where
a=Asina, b=Acos«a (1.8)

are functions of time ¢. Since 4k, c, ¢, and ¢; are small, ¢ and b, ¢ and b are small
quantities of the first and the second order respectively. By comparing the relations
x=x" coswi—y' sinwif, y=x' sinwt--y’ coswt with Eq. (1. 7), we get

x'=b, y=a (1.9

Substituting Egs. (1. 4) and (1. 9) into Eq. (1. 6), and neglecting the second or
higher orders of small quantities, we obtain

2mwi=—{maw?—(k+4k) b+ ¢, b*—cwa—mew?cos

} (1.10)

2mwb={mw?— (k—4k)}a—c,a?—cob+mew?sin B

1. 3. Harmonic oscillations and stability criteria
Denoting the steady state solutions of harmonic oscillations by @, and &, and

putting @=0, 5:0, a=ay, and b=b, in Eq. (1. 10), we obtain the following equa-
tions :

e bi—moby—mew?cos f=cwa,
(1.1D)

—elyalt+-mo,a,+mew?sin f=cwb,



On the Vibrations of a Shaft with Nonlinear Spring Characteristics 65

where
o, =w?—p*(1+4dk/k), o,=w?—p*(1—4dk/k) (1.12)

are. detunings, and p=+/"Fk/m is the natural frequency of the system. From Eq. (1.
11), a,, bg, hence the stationary amplitude of harmonic oscillation Ao=+/q 25,2
can be determined. '

In order to investigate stability problems of forced vibrations, we transform
Eq. (1. 10) into

db _ moy,a—eha?—cwb+mew®sin f (1.13)
da —mo b+ e b?—cwa—mewtcos B
If we substitute
a=a,+%, b=b,+1 (1.14)
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into Eq. (1.13) and reject all but linear terms for the small deviations & and 7,
we obtain '

dy _ (mo,—2¢ha)é—cwn _ a*s+b¥y
ds  —cwi—(mo,—2e%00)y CKE - d%)

(1.15)

In the stability conditions b6* 4 c*= —2cw< 0 and a*d*—b*c*<0, the former always

holds, so the following equation obtained from the latter represents the stability
condition :

(mo,—2e"by) (moy,—2¢5a,) +c2w? >0 , (1.16)

In Figs. 1. 2~1.5, we show resonance curves in the neighborhood of the resonance
point p=w, which are calculated by Eq. (1.11) for the four cases B=45° 135°,
225°, and 315°. They are the cases in which the eccentricity ¢ is located in the
middle of each of the four quadrants divided by the x’-and »’-axes, as shown in
Fig. 1. 1. 1In general, a, and b, have four values for a given angular velocity o of
the shaft, and we distinguish these by the symbols aos, bos, and Agy=+/42, +5b,2
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(i=1~4). Resonance curves for 4k/k=0.15, ¢;/k=0.40mm"!, e;/k=—0.40mm"1,
¢/vmk =0.02, and ¢=0.02mm are illustrated in Figs. 1. 2~1. 5. Signs of the
coefficients ¢Z, ¢; of nonlinear terms have no substantial effect on vibration characte-
ristics. In Figs. 1. 2~1. 5, resonance curves for the case of ¢;>0 and ¢;<{0 are
shown, because the experiments explained later are performed when ;>0 and ¢;<0,
Signs of ¢; and ¢; are determined easily from measurements of spring characteristics
(e. g. Fig. 1. 13). In Figs. 1. 2~1. 5, solid line and broken line curves mean stable
and unstable vibrations, respectively.

In Figs. 1. 2~1. 5, the ranges of the angular velocity o for which no solid line
curve Ag; exists indicate unstable regions, where unstable vibrations of frequency w
occur and their amplitudes increase exponentially. Unstable regions take place in
Figs. 1. 2, 1. 3, and 1. 4, which show the resonance curves for the cases when the
eccentricity is located in the quadrants T, [, and I, respectively. The unstable
region disappears when the eccentricity is located in quadrant Jy, as shown in Fig.
1. 5. In Fig. 1. 3, where ¢ is located in quadrant ], the widest unstable region
appears. In Fig. 1. 2 (e is located in quadrant 1) and in Fig. 1. 4 (¢ is located in
quadrant J[), the unstable region becomes narrower from the higher speed side and
the lower speed side, respectively. Solid line curves A,y and Ay, cross each other
in Fig. 1. 5. At the point of intersection, both curves have equal amplitudes but
unequal phases.

From Fig. 1. 6, we can understand why the angular position § of the eccentricity
has influence on vibrations, i. e., on the
shapes of the resonance curves, on the
width of the unstable region and on its
location, etc., as shown in Figs. 1. 2~
1. 5. Since only the Agi-curve of the
lower speed side and the Ag;-curve of
the higher speed side are obtained ex-
perimentally, as we will show later, we
are going to investigate them. For
brevity, we consider the case that ¢=0.
From Eq. (1. 11), we can see the fol- Fig. 1. 6. (e'2>>0, ¢'3<0, 1-US, 1-UU,
lowing : When ¢ is located in quadrants I-SU, ¥V-SS)

T and ], sinB is positive, and hence a,

(>0) of the lower speed side lies along

the holizontal line a@,=0, turns at point A, and approaches the straight line mo,—
e;a,=0 asymptotically, like the a;,-curve shown in the figure. When e is located
in quadrants J[ and IV, sinf is negative, and hence @, (<0) approaches the straight
line mo,—¢;a,=0 asymptotically, like the ayq-curve. The by-curve of the higher
speed side becomes the by,- or bg,-curve which approaches the straight line moq—
s;bo=0 asymptotically, according to the sign of cosf, that is, according to whether
¢ is located in quadrants [, I¥ or in quadrants [, l[. The curves which turn are
indicated by the symbol U, and those which do not are indicated by the symbol S.
By considering values of magnification factors, it can be seen that the amplitude 4,
=+/q2+p2 is almost equal to a, on the lower speed side, and to &, on the higher
speed side. Accordingly when ¢ is located in quadrant ], the A,-curve becomes
almost like a;, (U) on the lower speed side and like by, (S) on the higher speed
side, hence a resonance curve of the US-type shown in Fig. 1.2 is formed. When e
is located in quadrant ][, the A,-curve becomes like a;; (U) and b, (U), thus a

Qo, bo

(=
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resonance curve of the UU-type shown in Fig. 1. 3 appears. In the similar way, it
can be concluded that, when e is located in quadrants J[ and [V, resonance curves of
the SU- and SS-types shown in Fig. 1. 4 and Fig. 1. 5 appear. It can be seen obvio-
usly that the UU-type has the widest unstable region, and in cases of the SU- and
US-types, unstable regions become narrower from the lower speed side and the
higher speed side, respectively.

Depending on the signs of the coefficients ¢}, ¢; of the nonlinear terms, the
relation beween the quadrant in which the eccentricity is located and the type of
resonance curve changes as shown in Table 1. 1.

Table 1. 1.

the quadrant in which eccentricity is located

& &y
1 I i v

+ + SS SU Uu UsS
+ — Us 1818 SU SS
- + SU SS UsS uu
- - uu Us SS SU

In the assembling of the experimental apparatus, certain conditions can be achieved
so that the spring characteristics of e;220, ¢; >0 result. When &;==0, ¢; >0, proper-
ties of vibrations change according to whether ¢ is located in [, J (Bf=0°~180°)
or in [, IV (B==180°~360°). In the former case, the resonance curves become as
shown in Fig. 1. 7 (#=90°), and in the latter, they are as in Fig. 1. 8 (8=270°),
where there is a wide unstable region. Resonance curves obtained analytically for
4k/k=0.15, e;/k=0, ¢;/k=0.56mm"?, ¢/+/mk =0.02, and ¢=0. 02 are shown in Figs.
1. 7 and 1. 8. Figure 1. 9 shows in more detail the relation between the angular
position B8 of eccentricity and the unstable region. For example, where, 8 is 225°,
the regions between a and b, ¢ and d are unstable ones. We can see from the figure
that a wide unstable region appears when B=~180°~360°. Incidentally, a narrow
unstable region also exists in the range of w/p ==1.06~1.08.

=90° — Stable T ——stanL
o £ ~=-=={nstable p=210 — Urétagle
£ 1.5 |-ak/k=015, C/Ink =002 7 E 1.5 Far/e=015, c/fmR=0.02
< Ex/R=0,e=002mm yd o £x/B=0, £=0.02mm e
Ey/ =056 mr >0 Aos 477 = | &y /=056 i’ >0 g
*:g’ 1.0 4 - 8 1.0 L Vs <
— Vi =1 g
= L,’/ = g
o \\ = 5 /
205 A 05 e kd
\"-503 << ™. N Aoy
0.7 08 0.9 1.0 11 1.2 1.3 0.7 0.8 0.9 1.0 11 1.2 13
Angular velocity w/p Angular velocity w/p
Fig. 1. 7. Resonance curve (nonlinearity Fig. 1. 8 Resonance curve (nonlinearity

exists only in the »’-direction) exists only in the y'-direction)
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1. 4. Experimental apparatus and experimental results

As shown in Fig. 1. 10, a circular disc R is mounted on a rotating shaft S with
a circular cross section at the position ¢ : b=1 : 4 (¢=140mm, b=560mm). The
diameter of the shaft is 11.98mm, and its length / is 700mm. Dimensions of the
disc are 481.3mm in diameter, 5. 55mm in thickness, and 7. 87kg in weight. The shaft
is supported by a self-aligning double-row ball bearing (#1200) at the upper end, and
by a single-row deep groove ball bearing (#6204) at the lower end. Lateral deflec-
tions of the disc edge in the x- and y-directions are recorded by an optical system,
and rotation marks are made by a small paper P. Since the distance « is not equal
to b and the deflections and the inclinations of the rotor couple with each other in
the rotating shaft system of Fig. 1. 10, it is not such a simple system as the one
treated in the preceding section. However, so far as the problem is confined to
forced vibrations of frequency w, that is, harmonic solutions in the neighborhood
of the major critical speed, the conclutions of the preceding section can be applied
to the system shown in Fig. 1. 10 without any modification.

If there exists an anisotropy of shaft stiffness 4k, the shaft can be considered
a flat one. Consequently, when the nonrotating shaft is hit, two free vibrations with
the frequencies po; and py2, which correspond to the shaft stiffnesses &+ 4k and
k— 4k respectively, occur simultaneously, and a beat phenomenon appears. When it
is hit in the x’-direction or the y’-direction, however, only one free vibration with
the frequency po, or pg; takes place. Performing experiments in such a way, we
can determine the angular positions of the x’- and y’'-directions and the values of
Doy and po,. Experiments are performed for various angular positions @ (Fig. 1.10)
of the rotor. The experimental results are illustrated in Figs. 1.11 and 1.12. In Fig.
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of shaft stiffness (k+dk>, and the y’- Fig. 1. 12.

direction, i. e. that of (k—4k), rotate
with the shaft like a flat shaft, and the
x'-direction is perpendicular to the y'-direction. In Fig. 1.12, values of the natural
frequencies py; and py. in the x'- and y’-directions, respectively, are plottd against
the angular position of the disc #. The frequencies py1, pos, the mean value p,=
(Po1+Do2)/2, and the difference py=(po1—Po2)/2 change with 6. Accordingly, we
can see that not only the rotating anisotropy, but also the anisotropy fixed in space,
caused by (A)~(D) in Section 1. 1, exists. From Fig. 1. 12, the average values of
P and Py, pm and p4, can be obtained, and we have p,~872 rpm and 5,==57.5 rpm.
In the analysis in the preceding section, we assumed that the spring constant %
and the directional difference of the spring constant 4k are constant, and the x'-
and y’-axes rotate with a constant angular velocity @. But as shown by Fig. 1. 12,
for the experimental apparatus, the mean value of the natural frequencies p, and
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the difference of them p, do not take constant values for changes in 6, hence the
spring constant % and the difference 4k are not constant. Consequently, (1) when
the shaft rotates, & and 4k fluctuate periodically with frequencies w, 2w, ... around
the average values k and 4k. Furthermore, since @ deviates from the broken line
by about 15°~20°, as shown in Fig. 1. 11. (2) when the shaft rotates with an
angular velocity o, the x'- and »'-directions rotate with the average angular velocity
w. experiencing a periodic angular acceleration. Coexistence of the anisotropy fixed
in space and the rotating anisotropy results in a change of the static deflection of
the .shaft. Thus, (3) periodic disturbing forces with frequencies 2w, 3w, ..., as well
as w, are exerted on the shaft(®>, From (1) and (2) mentioned above, terms of
parametric excitation, terms representing the fixed anisotropy of stiffness, and terms
of ‘rotating anisotropies rotating with -=#e (7 is an integer) are derived. However,
it can be concluded through: analysis that if we confine the problem to forced
vibrations of frequency w, and if we reject all but linear terms of small quantities,
the derived terms- caused by (1) -and (2), and the disturbing forces of higher
frequencies mentioned in (3) have no connection with our discussions. It follows
that only the terms containing % and 4%, i. e., the average values of %k and 4k, are
concerned with our discussions. Obviously, % and 4% correspond to p, and pg4, the
average values of p, and p,.

We obtained spring characteristics between the moment and the inclination angle
of the disc, as shown in Fig. 1.13. In
the figure, we can see that there also
exist spring characteristics represented

£ 300 by cubes of the coordinates. Since
= | Ipff experiments were performed in the
L dod‘/ range —0.4° ~ +0.4° of inclination
< DPOC angle (Fig. 1. 13), the system can be
é’ 100 r.p‘/ considered approximately as one having
08" 045 02° D’C#’Og e 04" 06° unsymmetrical nonlinear characteris-
4 —t : tics represented by the second power
o"dop 0 nclinsion zngle of the coordinates.
pfpﬂ 100 ' F rom the experimental results sl‘lox\{n
in Figs. 1. 11, 1. 12, and 1. 13, it is
;/Fé# 208 seen that if %2 and 4k are replaced by
k and 4k, the spring characteristics of
our experimental apparatus can be rep-
300 resented by Eq. (1. 3), :which have
Fig. 1. 13. Spring characteristics anisotropies of stiffness and of unsym-

metrical nonlinearity rotating with .

Accordingly, the analytical results
obtained in the preceding section can be applied to our experiments, in so far as we
consider harmonic oscillations of frequency w.

The spring characteristics represented by Figs. 1. 11~1. 13 result in the reso-
nance curves shown in Figs. 1. 14~1. 17, depending on whether the eccentricity of
the rotor is located in quadrant T, [, I, or [V, respectively. Since ¢;>0 and ¢;<{0
hold in our experimental apparatus, Figs. 1. 14, 1. 15, 1. 16, and 1. 17 correspond to
Figs. 1. 2, 1. 3, 1. 4, and 1. 5, respectively. In Figs. 1. 14, 1. 15, and 1. 16, as well as
in Figs. 1. 2, 1. 3, and 1. 4, there exist unstable regions. In Fig. 1. 17, there exists
no unstable region, similar to the one in Fig. 1. 5. In Fig. 1. 17, jump phenomena,
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indicated by arrows, take place. Similar to Fig. 1. 3, the unstable region is the
widest in Fig. 1. 15 and has the range of about 1120 ~ 1500 rpm. The -calculated
value for the major critical speed w, in our experimental apparatus is about 1121.3
rpm when the shaft is supported freely at both ends, and it increases to about
2420. 8rpm when it is supported freely at the upper end and fixed at the lower end.
Accordingly, the unstable region has a width of about 2420.8—1121.3=<1300rpm at its
maximum, but in Fig. 1. 15 its width is about 380rpm, which is about 29% of the
maximum value. In Fig. 1. 14, as in Fig. 1. 2, the unstable region becomes narrower
from the higher speed side, and in Fig. 1. 16, it becomes narrower from the lower
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Fig. 1. 14. Resonance curve (corresponds to Fig. 1. 2., US-type, €'2>0,
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¢’y<0, eccentricity is located in quadrant I)
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speed side in the same way as in Fig. 1. 4. As we see from Figs. 1. 14~1. 17, Ay,
of the lower speed side and Ay, of the higher speed side did not appear in our ex-
periments. The large amplitude resonance curves Aj;, of the lower speed side in
Figs. 1. 14 and 1. 15 are not curves corresponding to Ay, of the lower speed side in
Figs. 1. 2 and 1. 3, but are curves caused by the influence of the symmetrical
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Fig. 1. 17. Resonance curve (corresponds to Fig. 1. 5, SS-type, €0,
¢’y<0, eccentricity is located in quadrant IV)



74 T. Yamamoto and Y. Ishida

nonlinearity of the spring characteristics. It can be said that the experimental
results in Figs. 1. 14~1. 17 agree with the analytical results obtained in the preced-
ing section.

In many experiments performed in the same spring conditions as in Figs. 1. 11~
1. 17, we measured the amplitude 4, and the angle 0 between the top of the vibratory
wave and the rotation mark P for vibratory waves obtained at a lower rotating
speed than the major. critical speed. ... The results are shown in Fig. 1. 18 (a)
where the polar coordinates (A,, &) are adopted. For the U-type in which the
resonance curve Ag; of the lower speed side does not extend to the higher speed
side (Figs. 1. 14 and 1. 15), the symbol A is used, and for the S-type in which Ao,
extends to the higher speed side (Figs. 1. 16 and 1.17), the symbol O is used. After
a number of experiments, it can be seen that symbols A (the U-type) gather in
quadrants | and [, and symbols O (the S-type) gather in quadrants [[ and IV, as
shown in Fig. 1. 18 (2). Similarly, for the vibrations of the higher speed side than
w,, the symbol A is used for an Ay,-curve of the U-type which does not extend to
the lower speed side (Figs. 1. 15 and 1. 16); the symbol O is adopted for that of
the S-type which extends to the lower speed side (Figs. 1. 14 and 1.17). In this way

(a) w<<we ‘ () w>we
Fig. 1. 18. Polar coordinates (Ao, 0)
(€20, €5<0, A+ U-type, O : S-type)

Fig. 1. 18 (b) is obtained, where the symbols O and /\ gather in quadrants [, I,
and quadrants I, IV, respectively. If the magnification factors of «, and be in the
preceding section are equal, the angular position of the top of the vibratory wave
coincides with the direction of the eccentricity when o<w,, and it differs by 180°
when @ >w,. Since in experiments, the magnification factors of «, and b, are
generally not equal, the angular position of the top of the vibratory wave does not
agree with the direction of the eccentricity. It can be concluded, however, that the
direction of the top of a vibratory wave is always located in the quadrant in which
the eccentricity exists. Consequently, Figs. 1. 18 (a) and 1. 18 (b) prove experi-
mentally that when the eccentricity is located in quadrants [, I, W[, and IV, the
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resonance curves take the shapes of Fig. 1. 2 (Fig. 1. 14), Fig: 1.-3. (Fig. 1. 15),
Fig. 1. 4 (Fig. 1. 16), and Fig. 1. 5 (Fig. 1. 17), respectively. i ‘

Depending on small differences in the assembling conditions,.
anisotropy of shaft stiffness 4k and of the coefficients ¢; and ¢; of nonlinear terms
vary. When the values of 4k, ¢; and ¢; become smaller then those of: Figs. 1. 11~
1. 18, the resonance curves for an eccentricity located in quadrant ¥ become as
shown in Fig. 1. 19. Though the resonance curves become steeper they are qualyta
tively the same as those of Figs. 1. 5 and 1. 17.

‘When certain conditions are met in the assembled apparatus, s; vanishes and the
nonlinearity appears only in the y’-direction, where the stiffness is k-4%k, as shown
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in Figs.l. 7 and 1. 8.  Experimental
results for the resonance curves in such
a case are shown in Figs. 1. 20 and L.
21, and they are similar to the analytical
results shown in Figs. 1.7 and 1. 8, res-
pectively. The double resonance curves
in Fig. 1. 20 appeared because the mag-
nitude and the location of the eccent-
ricity varied a little when we experi-
mented later to supplement our experi-
mental data. As shown in Fig. 1. 21, we
could not ascertain the existence of the
stable region b~c in Fig. 1. 8, because
it was dangerous to experiment in this
range. In Fig. 1. 22, the relation between
the direction of the top of a vibratory
wave and the shape of the resonance
curve for the lower speed side is shown.
This figure was obtained through a
number of experiments. For the type of

Fig. 1. 22. Polar coordinates
(Ao, 3), (€220, ¢'5>0,
A : U-type, O : S-type)

Fig. 1. 20 (Fig. 1. 7) the symbol O is used. and for the type of Fig. 1. 21 (Fig. 1.
8) the symbol A is employed. The symbol O and A are divided by the x'-axis
into quadrants [, ] (8=~=0°~180°) and quadrants [[, IV (8=2180°~360°). This fact
obviously agrees with the conclusions obtained analytically in the preceding section.

1. 5. Conclusions

Particular vibration phenomena caused by ball bearings in the neighborhood of
the major critical speed are treated in the present chapter.
(1) When a rotating shaft is supported by single-row deep groove ball bearings,

the anisotropies of shaft stiffness and of

unsymmetrical nonlinearity rotating with

the shaft appear in the spring characteristics, caused by (a)~(d), as noted in section

1. 1.
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(2) 1In such a system, unstable regions appear and disappear, and various shapes
of resonance curves can be observed, both as a function of the angular position of
the eccentricity of the rotor.

(3) When nonlinearities exist in both directions of the maximum and minimum
stiffnesses, four kinds of resonance curves appear depending on the angular position
of eccentricity.

(4) When a nonlinearity does not exist in the direction of the maximum stif-
fness, resonance curves are classified into two kinds.

(5) Such particular vibration phenomena, that is, the appearance and the disap-
pearance of unstable regions and variations in the shapes of resonance curves, caused
by the angular position of eccentricity, can be explained by considering the rotating
anisotropy of stiffness rotating with the shaft and the anisotropy of unsymmetrical
nonlinear spring characteristics, represented by the second power of coordinates,
which also rotates with the shaft.

Chapter II. Oscillations of a Rotating Shaft with Symmetrical
Nonlinear Spring Characteristics(®

2. 1. Introduction

When a single-row deep groove ball bearing is used in a rotating shaft system,
the equilibrium position of a shaft center line deviates from the center of the “an-
gular clearance(®” of the ball bearing provided that the center lines of both bearing
pedestals are not in alignment. Accordingly, unsymmetrical nonlinear characteristics
(represented by even order terms in the polynominals for the restoring forces)
appear more strongly than symmetrical nonlinear characteristics (represented by
odd order terms) in the restoring forces of the shaft. Whirling oscillations such
as subharmonic oscillations of order 1/2, summed-and-differential harmonic oscilla-
tions of the type [p; +p;], etc., take place in such a system. One of the authors has
already reported experimental(®,(4,(8) and theoretical¢®,(19 researches on them.
Since the directional nonuniformity of shaft stiffness (the nonuniformity of linear
terms in the polinominals representing restoring forces for different directions) and
unsymmetrical nonlinear characteristics appear simultaneously, forced oscillations of
synchronous backward precession take place concurrently with nonlinear forced oscil-
lations. These oscillations have been also reported by one of the authors(®.

Through our experiments, it can be pointed out that unsymmetrical nonlinear
characteristics are likely to appear more strongly than symmetrical ones when a
single-row deep groove ball bearing is employed. However, if a vertical shaft
system is assembled carefully to align both center lines of the upper and lower
bearing pedestals, the shaft center line is located at the center of the angular
clearance. Hence symmetrical nonlinear characteristics appear more strongly than
unsymmetrical ones.

In this chapter, it is shown experimentally that various whirling motions due to
symmetrical nonlinear characteristics, i. e. subharmonic oscillations of order 1/3 and
summed-and-differential harmonic oscillations of the types [2p; +p;] and [p; +p;
+p.], take place in a rotating shaft system whose bearing pedestals are aligned
fairly well. These oscillations have not been reported in the previous papers(2),(4,(5,
There are some reports(!D~(15 by one of the authors and other researchers about
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various forced oscillations due to symmetrical nonlinear characteristics in rectilinear
systems, but there exists no report about such oscillations of whirling motion in a
rotating shaft system. Furthermore, it is pointed out in this chapter that the ex-
istence of somewhat strong symmetrical nonlinear characteristics results in the
followings: The rescnance curves in the neighborhoods of the major critical speeds
and those for forced oscillations of synchronous backward precession become those of
the hard spring type with jump phenomena, which have not been reported in the
previous paperst®. The resonance curves of subharmonic oscillations of order 1/2
and of summed-and-differential harmonic oscillations of the type [p; 4+p;], which
are caused by unsymmetrical nonlinear characteristics, are bent more strongly toward
the higher speed side than those in the previous papers¢?,(4,(5), This is due to the
existence of strong symmetrical nonlinear characteristics. Among these unsymmetrical
nonlinear forced oscillations, those being less frequent in occurrence appear only in
the system(2),(#,(5) with strong unsymmetrical nonlinear characteristics and do not
appear in the system of this chapter with weak unsymmetrical ones.

The different representation of nonlinear spring characteristics from those of
a rectilinear system should be adopted for the theoretical analysis of nonlinear
forced oscillations of a rotating shaft, because they are whirling motions in the xy-
plane (Fig. 1.10). A detailed theoretical analysis will be shown in the next chapter.
The experimental results of this chapter can be explained by using the theoretical
results of Chapter If.

2. 2. Experimental apparatus and oscillations expected to occur

The experimental apparatus is the same as those used in the previous chapter
(Fig. 1.10). The dimensions of the experimental apparatus are the same, but the
assembling condition is different.

For the natural frequencies of the rotating shaft system shown in Fig. 1. 10, the
following relationships always hold¢16>.

(i) The system has the four natural frequencies p; (i=1~4), and the relation-
ship

Db:1>0:>0>ps >0y 2.1

always holds. py, p, and ps, p, are natural frequencies of modes of forward and
backward precessions, respectively.
(ii) The natural frequency p; has the relationships:

b=/ o, lim py=(1,/1) o (2.2)

(iii) The frequencies p,, ps;, and p, approach certain finite values when w-—>co,
and they never become infinite in the whole range of w=0 ~co.

In Fig. 2.1, the magnitudes of p,~p, of our experimental apparatus are repre-
sented against the angular velocity @ by solid lines. Some of the absolute values of
summations and differences of frequencies, which are necessary for the later discus-
sions, are also illustrated by broken lines.

Among various forced oscillations which are caused by symmetrical nonlinear
characteristics expressed by odd power terms of coordinates, those due to higher
order terms rarely appear. So the terms higher than the third power are negrected.
In the neighborhoods of w where the relationships
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w:3ﬁ1, wzgpg, a):ng)g, and CU:“"3p4 (2.3)

hold, the subharmonic oscillations with the frequencies

w;=1/3w, w,=1/3-0w, w;=-1/3+w, and w,=-1/3-w, (2.4)
appear, respectively. In the neighborhoods of w given by
w:i2pzip;! (Z:;:]; i; ]:17 27 3: 4): (2'5)

the summed-and-differential harmonic oscillations take place, i. e., two oscillations
of the frequencies w; and w; having the relationships

wi=py, wi=D;, w=|20;dw)] (2.6)
appear simultaneously. And in the neighborhoods of
(U:]piipiiplzg (Z:]#I% ia j) k“-:ly 27 37 4)’ (2' 7)

the summed-and-differential harmonic oscillations consisting of three oscillations of
the frequencies w;, wj, and w, having the relationships

W’jipi, (Uj"'::pj, wy==py, a):iwiiwf:{:wk; (2‘ 8>

appear.
The relationship p,> 2w is derived from (ii) because I,/I==2 holds in our ex-
perimental apparatus. It is easily seen from this and (iii) that there is no angular



80 T. Yamamoto and Y. Ishida

velocity w which satisfies Egs. (2.3), (2.5), and (2.7) containing 2;. And similarly
to the case of a rectilinear system(1%,(18) it can be proved that, among summed-
and-differential harmonic oscillations of whirling motion, only those of the summed
type respecting absolute values of natural frequencies can take place in a rotating
shaft system. Consequently, subharmonic and summed-and-differential harmonic
oscillations which are expected to occur in our experimental apparatus are limited
to those which satisfy the relationships :

w=3p;, w=-—3ps, w=-—3py 2.9
w=p,—2Ps w=2Dy—by w=-—DP3—2Dby,
w=2p,—P;, w=—2p3—Dy, w=py—2Ds,
w=py,—Dbs—D. ‘ (2.10—1b)

(2.10—a)

The angular velocities where these oscillations appear are indicated by the abscissas
of the intersection points E, F,, F;, G;~Gg, and G; in Fig. 2.1. We represent

these angular velocities by the symbols w,, @1, @ 1, w344, Wz24y W344, Waz3, @334
3 3 3

wo33, and w,34, respectively. ,

Most forced oscillations due to unsymmetrical nonlinear characteristics are
caused by the second power terms of coordinates. Among these oscillations, those
which are expected to occur are limited to those which satisfy the relationships:

CU::sz, CUC'—‘ZP& CU:‘“ZpLi, (2' 11)
w=py—Dyy @=—Pps—Dy, W=Dy Ps, (2' 12)

for the same reason as before. The angular velocities where these oscillations occur
are given by C, D,, Dy, and H;~H; in Fig. 2. 1. We represent these by w., w_.’,
2 2

w_1, Wyq, W3y, and wys.
2

2. 3. Experimental results

(1) Spring characteristics

The experimental apparatus was assembled carefully to attain good alignment of
center lines of the upper and the lower bearing pedestals. Its spring characteristics
are shown in Figs. 2. 2 and 2. 3.

In Fig. 2. 2, it was examined whether the rotating directional nonuniformity of
shaft stiffness exists as in the previous paper(® or not. When w=0, the natural
frequencies py, and py, in the directions of the maximum and minimum stiffnesses,
respectively, are measured for various angular position & (Fig. 1. 10) of the rotor.

§_800

= 4 » Pos

o2 — === > = =9

"‘5700'0 I | t‘ N A B | Lt ‘0 - )
’ 907 180° 2770 ® 360

Fig. 2. 2. Natural frequencies when o=0
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The former and the latter are indicated by the symbols @ and @, respectively, and
the frequencies which can not be distinguished are shown by the symbols O. From
this figure, it is found that the difference between po; and pos is little and does
not change with 6. Accordingly it can be concluded that the rotating difference of
shaft stiffness does not exist.

The relationships between the moment exerted on the disk and the inclination
angle of the disk for various directions denoted by ¢ are shown in Fig. 2. 3, when
the angular position of the disk is kept at 6=0. In opposition to Fig. 5 in the
previous paper(®, symmetrical nonlinear characteristics appear more strongly than
unsymmetrical nonlinear characteristics. Since all the characteristic curve in Fig.
2. 3 take a similar shape, it can be seen that this symmetrical nonlinear restoring
force characteristics are directionally uniform (isotropic).

Spring characteristics shown in Fig. 2. 4 which were measured after the reas-
sembly differ a little from those in Figs. 2. 2 and 2. 3. Symmetrical nonlinear
characteristics still appear strongly in Fig. 2. 4, but the shape of characteristic curve
changes with the direction ¢, that is, they are directionally nonuniform (anisotropic).
In other words, when the restoring force characteristics, for example, in the x- and
y-directions are represented by ax+B,x°% and ay-+ B,°, respectively, the coefficients
B, and B, are equal in Fig. 2. 3 and unequal in Fig. 2. 4.

Figure 2. 3 and 2. 4 show the characteristic curves of hard spring type. This
is understood because nonlinear characteristics are caused by the angular clearance
of the single-row deep groove ball bearing.
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Fig. 2.3. Spring characteristics (1) Fig. 2. 4. Spring characteristics (1)
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(1) Forced oscillations of whirling motion which are influenced by
symmetrical nonlinear chavacteristics

(T -a) Oscillations whose shapes of resonance curves are influenced

Among the oscillations occurring in the system with characteristics shown in
Fig. 2. 3, only those related to symmetrical nonlinear characteristics are shown in
Fig. 2. 5. The oscillations in the neighborhoods of w;;, ®., and w,; (Fig. 2. 1) can
occur also in the linear systems.
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Fig. 2. 5. Oscillations occurred in a system with isotropic symmetrical -
nonlinear spring characteristics

. The oscillation in the neighborhood of the major critical speed w, where w=p,
holds has a typical resonance curve of a hard spring type, because of symmetrical
nonlinear characteristics. It was accompanied by a jump and a hysteresis phenomena
like that of rectilinear systems. Though the upper branch of the resonance curve
extends further to the higher speed region, the experiment was stopped at about
1350rpm for safety. Hereafter, if the upper branch of a resonance curve ends with
no arrow indicating jump at its highest edge, it implies that the experiment is
‘stopped for the same reason. :

In the neighborhoods of w;,; and wy,, where w=—ps and w=—p, hold, respectl—
vely, forced oscillations of synchronous backward precession of the frequency —w
appear due to the directional nonuniformity of shaft stiffness. Their amplitudes are
proportional to‘thi_s difference(?, which is caused by the directional nonuniformity
of stiffness of pedestals('” and by unsymmetrical nonlinear characteristics due to
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angular clearances of ball bearings‘®. Therefore, comparing with the previous
paper(® for a system where unsymmetrical nonlinear characteristics appeared strongly,
the amplitudes of such oscillations in Fig. 2. 5 are considerably small because the
unsymmetrical nonlinear characteristics appear weakly in this case. The shape of
the resonance curves in the paper(®> were the same as those of a linear system
because symmetrical nonlinear characteristics were weak, but those in this chapter
take the shape of a hard spring type because they are strong. It is similar to the
case of the major critical speed.

In the case of Fig. 2. 4 having anisotropic nonlinear characteristics, almost the
same results as those in Fig. 2. 5 are obtained for w., w1, and wps.

(1 -0 Oscillations whose occurrence is influenced

In Fig. 2. 5, the summed-and-differential harmonic oscillations in the neigh-
borhoods of wyz3 and wg.,, where w=2p,—p; and w=2p,—p, hold, respectively, do
not appear if there is no symmetrical nonlinear characteristics.

In the neighborhood of w,,s in Fig. 2. 5, two oscillations of forward and back-
ward precessions, whose frequencies are w,; (=p,) and ws (==p3), respectwely,
occur simultaneously in the wide range of w>2640rpm.

The frequencies w; and wsz of the summed-and-differential harmonic oscﬂla‘uon
[2p,—ps] are shown in Fig. 2. 6. The points representing the values of ws (=p3)
and ws(==p,;) obtained in experiments are almost on two straight lines passing
through the origin. k

1500
=
21400 |-
3

1300 P

s
1200
1100 i { 1 { i {
2500 2700 2900 3100
100 @ rem

g N
-~ o
- o
3 200 @,

-a00f s Whosph

2 IO 2. 1820 t

=400 : w=3000rpm, o . wg . w3:37 170 (=3)

Fig. 2. 6. Frequencies of the summed-and- Fig. 2. 7. Waves of the summed-and-
differential harmonic oscillation differential harmonic oscil-
of the type [2p2—ps] lation of the type [2p2— p3]

The vibratory waves of the oscillation of the type [2p,—p; | are shown in Fig.
2.7, White vertical lines in the figure are rotation marks recorded at each rotation
of the shaft by using the small paper P shown in Fig. 1. 10. The superimposed
oscillation of a small amplitude is the harmonic component of the frequency w, and
it appears in all the vibratory waves shown in this paper. The waves have a period
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corresponding to the distance between two points marked A. In the interval AA,
the shaft rotates 37 times, the rapid oscillation swings 17 times, and the slow oscil-
lation swings 3 times. Furthermore, from the comparison of the phases in the x-
and y-directions, it can be seen that the rapid one is a forward precession and the
slow one is a backward precession. We represent a forward precession by the sign
plus and a backward precession by the sign minus. Thus we find wiw,:ws=37:17:
(—3) aud w=2wy—w3.

In the neighborhood of w,,, in Fig. 2. 5, the summed-and-differential harmonic
oscillations [2p,—p4] occur in the range of w>4500rpm. The frequencies w, and
w4 are shown in Fig. 2. 8 which are almost on two straight lines passing through
the origin. The vibratory waves are shown in Fig. 2. 9 where w:w;:w,=16:5:(—6)
and w=2w,—w, hold.

4500 4600 4100 4800
W rpm

<

pm, w: wy ws=16:5: (—6)

w=4582r

Fig. 2. 8. Frequencies of the summed-and- Fig. 2. 9. Waves of the summed-and-
dfferential harmonic oscillation of differential harmonic oscillation
the type [2p2—p4] of the type [2p2—p4]

The shapes of both oscillations of the types [2p,—p3] and [2p,—p,] are those
of a hard spring type, as seen in Fig. 2. 5.

In the range of »>2600rpm in Fig. 2. 5, small harmonic oscillation of frequency
w (symbol O @) appear as well as summed-and-differential harmonic oscillation
(symbol (D). Which of the two will take place depends on the initial conditions.

The above-mentioned nonlinear forced oscillations are obtained in the system
having the isotropic symmetrical nonlinear characteristics shown in Fig. 2. 3. In the
system with anisotropic symmetrical nonlinear characteristics of Fig. 2. 4, the follow-
ing oscillations occur in addition to the oscillations of the types [2p,—p3] and
[2p,—p4] shown in Fig. 2. 5. The subharmonic oscillation of order 1/3 of the type
[3p,7, the summed-and-differential harmonic oscillations of the types [p,—2p5] and
CP2—2p,4], and the summed-and-differential harmonic oscillation of the type [p,—
pa—p4] in which three oscillations appear simultaneously. These oscillations shown
in Fig. 2. 10 are due to anisotropic symmetrical nonlinear characteristics, and all
the resonance curves are those of a hard spring type.
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Fig. 2. 10. Oscillations occurring only in a system with anisotropic
symmetrical nonlinear spring characteristics

In the neighborhoods of the angular velocities ws33 and w44, where w=p,—2p;
and w=p,—2p, hold, respectively, the summed-and-differential harmonic oscillations
of fhe-~types [p2—2p;] and [p;—2p,] occur. The former appears in the range of
w-=1860~1940rpm, the latter in the range of w~~4750~4930rpm, and these ranges
are comparatively narrow. The frequencies of these oscillations are shown in Figs.
2.11 and 2.12, which are almost on two straight lines passing through the origin.
The vibratory waves are shown in Figs. 2.13 and 2. 14, where we find the relation-
ships @ wy:ws=40:26:(—7), w=w,—2w; and 0wy :w,;=54:16:(-19), wo=w;—
2wy.

The summed-and-differential harmonic oscillation of the type [pz—ps— P4
shown in Fig. 2.10 occur in the neighborhood of the angular velocity w,s4 where
w=p,—ps—ps holds. It consists of three oscillations with the frequencies w;
(=ps), ws (=p3), and w, (==p,). This oscillation appears in somewhat narrow
range of w==3265~3320rpm. Its frequencies and vibratory waves are shown in Figs.
2.15 and 2.16, respectively. Their general features are similar to those of a recti-
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Fig. 2. 12. Frequencies of the summed-and-
differential harmonic oscillation

of the type [p2—2p4]

Fig. 2. 11. Frequencies of the summed-and-
differential harmonic oscillation
of the type [p2—2p3]
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%O.lsec}é <—
w=1878rpm, w @ wy I w3=40:26: (=7)
Fig. 2. 13. Waves of the summed-and-differential harmonic oscillation
of the type [p2—2p3]

linear system reported in the paper(15,

In the interval AA in Fig. 2. 16, the long 1440

wave with the frequency ws oscillates 7 =

times in a backward precession, the short i

wave of the frequency w, with large 3

amplitude oscillates 43 tims, and it can

be found from the beating change of the 1400

wave with the frequency w, that the 3250 33|00 3350

LR e w—
w=4860rpm, w : wy . wy=54:16: (—19)
Fig. 2. 14. Waves of the summed-and- Fig. 2. 15. Frequencies of the summed-and-
differential harmonic oscil- differential harmonic oscillation
lation of the type [p2—2p4] of the type [ps—ps—p4]
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Fig. 2. 16. Waves of the summed-and-differential harmonic oscillation
of the type [pas—pz—ps]
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wave with the frequency w, is also present and oscillates 50 times in a backward
precession. Since the shaft rotates 100 times in this interval, the relationship 43—
(—=7)—(—50)=100, that is, w=w, —wjz—w, holds.

It is known from Figs. 2.5 and 2.10 that the ranges where the oscillations of
the types [po—2pas], [p2—2p,], and [pz—ps—p4] due to anisotropic symmetrical
nonlinear characteristics occur are fairly narrow when compared with the ranges of
the oscillations of the types [2p,—ps] and [2p,—p,] due to isotropic symmetrical
nonlinear characteristics.

The subharmonic oscillation of order
1/3 of forward precession in the neigh-
borhood of w1 where w=3p, holds has

a resonance curve of a hard spring type
like that of a rectilinear system, as
shown in Fig. 2.10. It occurs in the
comparatively wide range of «>4120
rpm. Its vibratory waves are shown in
Fig. 2.17. The small wave in this figure

is the harmonic component of frequency 0=4330rpm, o I wz=3:1
o as mentioned previously. Fig. 2. 17. Waves of the subharmonic
The oscillations of the types [2p,— oscillation of the type [3pz]

ps7] and [2p,—p,] in Fig. 2.5, occurring
in the system with isotropic symmetrical
nonlinear characteristics, are also found to appear in the system with anisotropic
symmetrical nonlinear characteristics. Their general features in the latter system
are almost the same as those in the former.
‘Through many experiments performed in a wide range of w, no other oscillation
due to symmetrical nonlinear characteristics than those mentioned in ( ] -b) occurred.
The experimental results about the occurrence of the oscillations of Egs. (2.9)
and (2.10) in the previous section are shown in Table 2.1. Considerations about
Table 2.1 are given in the next chapter.

Table 2. 1. Experimental results about the occurrence of various
nonlinear forced oscillations caused by symmetrical
nonlinear spring characteristics '

Kinds | o bharmonic Summed-and-differential harmonic oscillations
oscilla- | oscillations of
g oy Three
Sﬁv—;;?zil; order 1/3 Two oscillations oscillations
gglrai;ég_s \3172&—3133{—3?4 2p2—b3 2152—1741‘@2-2173%1?2*2174% *2P34P4E~1§342P4 p2—D3—by
|
B-1 X X X O O X X X | X X
B-1 O] X X @] @} O O X ; X
!
B-1 Isotropic symmetrical nonlinear spring characteristics (Fig. 4)
B-1 : Anisotropic symmetrical nonlinear spring characteristics (Fig. 5)

O e appearance, X - non-appearance
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(IIT) Forced oscillations of whirling motion which are influenced by
unsymmetrical nonlinear characteristics

(III-a) Oscillations whose occurrence is influenced

Various features of these oscillations for the spring characteristics of Fig. 2.3
are the same as those for Fig. 2.4. In other words, the existence of anisotropy of
symmetrical nonlinear characteristics does not affect them.

Resonance curves of the subharmonic oscillation of order 1/2 of the type [2p,]
and of summed-and-differential harmonic oscillations of the types [ps—ps ], [P2— P4
are shown in Fig. 2.18. Because of strong symmetrical nonlinear characteristics,
their resonance curves become a hard spring type and are bent strongly. The
subharmonic oscillation appears in the wide range of @ ==z2480 ~ 2900 rpm. The
oscillations [ps—ps] and [p,— p4 | appear also in the wide range of w == 1500 ~ 1650
rpm and o =2 2950 ~ 3290 rpm, respectively.
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Bo|oe AT | = et I
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Fig. 2. 18. Oscillations due to unsymmetrical nonlinear spring characteristics

The experimental apparatus of the previous papers(2),(4),(5) are similar to that
of Fig. 1.10. Accordingly, by comparing the results of these previous papers with
those in Fig. 2.18, we can ascertain the effects of the magnitudes of unsymmetrical
and symmetrical nonlinear characteristics to various oscillations caused by unsym-
metrical nonlinear characteristics. The experimental results concerning the appea-
rance of the oscillations of Egs. (2.11) and (2.12) which are expected to occur are
summarized in Table 2.2. From this, we can obtain the following conclusions: The
oscillations with large amplitudes in the previous papers also appear in this experi-
ment. Those with small amplitudes in the previous papers, however, can not occur
in this experiment because of small unsymmetrical nonlinear characteristics. The
resonance curves of the oscillations in this experiment are bent strongly toward the
higher frequency regions and hence they appears in the wide ranges, because of
stronger symmetrical nonlinear characteristics than those in the previous papers.



On the Vibrations of a Shaft with Nonlinear Spring Characteristics 89

Table 2. 2. Experimental results about the occurrence of various
forced oscillations caused by unsymmetrical nonlinear
spring characteristics

Kinds of oscillations |Subharmonic oscillations] Summed-and-differential
of order 1/3 harmonic oscillations

Spring characteristics 2bhs —20h3 1 —2bs | D2—bs3 ! Po—bs | —Pp3s—ba

Appearance or non- N
appearance O A A © O o
A Width of the range of 25, 40, 50, 100,
occurrence (rpm) 150 20, 30 75 100 200 50, 100
Amplitude large | small | small large large small
Appearance or non-
B-1 appearance O S X O @] X
_ Width of the range of
B-1 occurrence (rpm) 420 150, 200 340
A e The case of the previous reports (1), (2), (3), having strong unsymmetrical
nonlinear spring characteristics
B-1 -+ The case of Fig. 4 having strong symmetrical nonlinear spring characteristics
(isotropic)
B-T - The case of Fig.5 having strong symmetrical nonlinear spring characteristics
(anisotropic)

Oreeeee appearance, X e non-appearance, /\---- non-appearance or appearance with
small amplitude depending on assembly

2. 4. Conclusions

(1) When a shaft is supported by single-row deep groove ball bearing, nonlinear
spring characteristics appear in a rotating shaft system. Whether unsymmetrical or
symmetrical nonlinear characteristics appear depends on the degree of shift of the
shaft center line from the center of an “angular clearance” of a ball bearing.

(2) Being different from the case of a rectilinear system, nonlinear spring
characteristics should be considered as two-dimensional distribution in a rotating
shaft system.

(3) Symmetrical nonlinear spring characteristics represented by the third powers
of coordinates can be classified into the isotropic component and the anisotropic
components which change their magnitudes 2 and 4 times while the shaft whirls once.

(4) Inthe system having only the isotropic symmetrical nolninear characteristics,
the summed-and-differential harmonic oscillations of the types [2p,—p3] and [2p,—
b4 occur.

(5) In the system having both the isotropic and anisotropic components of sym-
metrical nonlinear characteristics, the subharmonic oscillation of order 1/3 of the
type [3p,] and the summed-and-differential harmonic oscillations of the types [p,—
2p37, [p2—2p4], [p2—ps—p4] can occur as well as the types [2p,—ps], [2ps— P4l

(6) The subharmonic oscillations of order —1/3 of the types [—3p;7], [—3ps]
and the summed-and-differential harmonic oscillations of the types [—2ps—p,],
[—p3—2p,] do not occur in the experiments performed in this paper.

(7) In the experiments of the above conclusions (4) and (5), jump phenomena
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and hysteresis phenomena, which are induced by the symmetrical nonlinear characte-
ristics, take place in the neighborhoods of the major critical speed and the critical
speeds of synchronous backward precession.

(8) Among oscillations due to unsymmetrical nonlinear characteristics, the
subharmonic oscillation of order 1/2 of the type [2p,] and the summed-and-
differential harmonic oscillations of the types [p:—ps], [P2—p4] occur in the ex-
periments in this chapter. The resonance curves of these oscillations bend severely
to the higher speed side because of the strong symmetrical nonlinear spring
characteristics.

(9) By utilizing the polar coordinate representation of nonlinear spring characte-
ristics, it can be made clear what kinds of nonlinear forced oscillations will occur.

Chapter III. Theoretical Discussions on Vibrations of a Rotating
Shaft with Nonlinear Spring Characteristics*

3. 1. Introduction

When the gyroscopic moment acts on a rotating shaft system, lateral vibrations
of the shaft are not rectilinear vibrations but whirling motions in the plane
perpendicular to the center line of the shaft and passing through the equilibrium
position of the rotor¢16,

Nonlinear spring characteristics of the shaft are usually expressed by the
rectangular coordinate system (¥, y). But it is pointed out in this chapter that, for
the analytical treatment of nonlinear forced oscillations with modes of whirl, it is
advantageous to utilize the polar coordinate system. It is also seen from this
chapter that the adoption of polar coordinates helps clarify the properties of nonlinear
forced oscillations and it allows the prediction of the occurrence of oscillations to
be made. Furthermore, the experimental results of Chapter [ and of the previous
paper( (95 are clearly explained by the theoretical conclusions of this chapter.

Since few oscillations are caused by nonlinear terms of higher than the third
power, only unsymmetrical and symmetrical nonlinear characteristics represented by
the second and third powers, respectively, are considered here.

3. 2. Spring characteristics and equations of motion

Initially, a system with two degrees of freedom where whirling motions take
place is treated. When the rotor is positioned at the middle point of the shaft,
deflections and inclinations of the rotor do not couple each other. Accordingly,
inclination motions of the rotor can be expressed using only the two coordinates 6,
and 6,, the components of the inclination angle # of the rotor in the x- and y-
directions. The potential energy V of the system is given by

V=1/26(6% +6%) + (8306?} +e510%0,+ €120,0% +€030%)
+ (Baol’ A L5105 0, 4 B220%0% +B130.05 + Bos0%) B.1)

where & is the spring constant, eqp(@+5=3) and Bas(a-+b=4) the small coefficients
of the unsymmetrical and symmetrical nonlinear terms, respectively. Adopting the
polar coordinates (8, ¢), i. e., substituting
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f.=0+cos ¢, 0,=0-sin¢ (3.2)
into Eq. (3. 1), we have
V'=1/2:00%+ (ePcosp+cPsin ¢+ P cos 3¢+ <P sin 3¢)°
+ (BO+ P cos 20+ B sin 2¢0-- ¥ cos de -+ BP sin 4¢) h* (3.3)

The number of the coefficients in Eq. (3. 3) is the same as that in Eq. (3. 1) and
the next relationships hold between them.

¢P=(3es0+e12)/4, eP=(e21+3e03)/4,
e@=(es0—e12)/4, eP=(en—e0n)/4,
B = (3Bs0+Laz+3B04) /8, r (3.4
BE=(Bio—Bos)/2, BY = (Ba1+Brs) /4,

BE = (Bao—Laz+Bus) /8, BE=(Bs1—F12)/8,

Equation (3. 3) is transformed into

V=1/2:00%+ {cPcos(@¢—¢,) +®cos 3(¢p—¢;)}0°

+{B+pPcos 2(¢—¢,) +BPcos 4(p—¢,)} 6* (3.3a)
where
B9 = /OB, B9 = o/ BB,
(3.5)
pr=tan(e¥/eP),  go=1/3-tan"} (csP/cP),

¢©,=1/2-tan" ' (B?/B?), ¢,=1/4-tan"1(BL/BP).

The potential energy V is illustrated in Fig. 3. 1, in which the paraboloid shown
by the broken line curves is V=V,=1/2-6 (02+03%) of the linear system. The
potential energy of Egs. (3. 1), (3. 3), and (3. 3a), shown by solid line curves deviates
irregularly from V,, because of the nonlinear characteristics. But by adopting
polar coordinates, these characteristics can be classified into regular components as
shown in Figs. 3. 2 and 3. 3. Figures 3. 2 and 3. 3 show the cross section of the
curved surface V with a plane parallel to the 6.,0,-plane, in cases that (1), 3
and f(O, B BH exist, respectively. It is seen that (™, B.™, etc. are coef-
ficients of terms varying their magnitude # times while the angle ¢ changes its
value from 0 to 27, In this paper, these components of nonlinear characteristics
are denoted by the notation N(n)). Only Fig. 3. 3(i) is the case which has no
anisotropy.

Next we consider a system with four degrees of freedom in which the deflection
7 and the inclination of the rotor couple each other. Let the mass of the rotor be
m, the polor and diametral moments of inertia of the rotor be I, and I, respectively,
the deflections and inclination angles of the rotor be x, y and 0, &, the spring
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constants of the shaft be «, 7, and 9,
the static and dynamic unbalances of the
rotor be ¢ and 7, the angle between e
and 7 be B, and the damping coefficients

be ¢g4. Introducing the dimensionless
quantities :

Oy
Fig. 3. 1. The distribution of potential
energy V
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Fig. 3. 2. Unsymmetrical Nonlinear Spring Characteristics
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Fig. 3. 3. Symmetrical Nonlinear Spring Characteristics
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x'=x/+I/m, Y'=y/I]m, e'=e/vI/m,

ch=C11/ am, Ce=Cu/ ol =Cu=Cu/+/al, 5.6
Cu=Cs/ (I a/m), ow'=w/va/m, V=ta/m,
7'=r/(@I]m), o'=om/(al), y=1,/1,

and omitting the prime, we have the following equations of motion represented by
dimensionless quantities

X €%+ Cip0,+ X -+70,+ L+ @, =ew?cos wi

j;+€11j)+6126y+y+ray+¢y+§0y:ew28in wt (3 .
éz’f‘ipwéy”f‘cmx‘%‘ 62262+Tx+8ﬁz+ Doxt+@or=(l,—1)rw?cos(wi-+fF) '

Oy —tpwl,+Co1 Y+ Cozl,+1Y+00,+do, +04, = (l—1)cw?sin(wt-+f)

in which ¢,, ¢,,, etc, and ¢, ¢, etc, are unsymmetrical and symmetrical,
nonlinear terms, respectively. The frequency equation of the system is

f)=A—-p")0+iwp—p*)—7r*=0 3.8)

where p is the natural frequency. Between the four natural frequencies p1,2,3,4,
the following relationships hold:

D1 P10 1 >0 >0>ps > —12>p > — Pao, P1>ipw7
p={1+0) + v A+0) —4(6—71D}/2.

By the linear transformations

3.9

4

4 4 4 .
X = SZ:] Xsa Y= 32:1 (Xs/ps>7 0= ZIKsXS? Oy=— s§ (’CsXs/ps> <3~ 10)

the following equations of motion represented by the normal coordinates X, are
given as follows( :

Rt 02 X= (01— pD) X { S (2T 27)

Ks

st pay—Le g By iy (— Gt 00|

& 7,+@ .
+{#_(_/£%i0§>_#(¢ex+90ex>+—pi(~—y£:-y~)~+?s(gey+@ey)

s

+w(w+z>s>{ 2

cos wi+ (i,— 1)« cos{wt-:—ﬁ)”

(s=1, 2, 3, 4) (3.11)

where
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PR e o S 72,
i T ’ ) (ps_pz><ps”_-p/> (ps‘”pk>
(sxixjxk, i, j, k, s=1, 2, 3, 4) (3.12)

and ¥,, @,, ¥,,, and @,, are the infinite integrals of ¢y, ¢y, ¢oy, and ¢,, respec-
tively.

Since nonlinear terms are limited to no higher than the third order, the
number of nonlinear forced vibrations appearing simultaneously, that is, vibration
components but that of frequency w, must not exceed three. As the solution of Eq.

(3. 11), we have
X,=R.cos(wit-+3,)+ A.cos wi+Bgsin wi, (3.13)

When small quantities are rejected, Eq. (3. 13) leads to

=R (0 +0) + R Gn (0t 4+0) + RGH (0 +3)

* Fl COS = Fz sm

D= Ry G (it -8 ;R G (0,84 0)) e R G (4 0,) (3.14)
+F 0w t$F4§’ér;
(4, j, k=1, 2, 3, 4, ixjxk)
where
g 0 T{0+GE—Dwle—r(l,—1)z cos 3]
1
f(w)
P 7(i,—1)rw?sin
’ f(w)
r (3.19)
F—= wi{—er+1—w? ({,—1)r cos §}
f(w)
F= (1—w?)(@,—Drw?sin B
fw)
and f(w) means [ f(»)Jp-w in Eq. (3. 8).
The potential energy for this system is expressed by
V= { (x%+y%) +r(x0, +y6y)+—'8<0 +6y>+ Zsubcdx ¥°050%
(a+b+c+d-3)
-+ Eﬂabcdxay 0505 (3.16)

a, b, ¢, d=0
(a+b+c+d 4)
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Restoring forces are given by

W oWV p OV p 3V

N 90, "

L (3.17)

By inserting
xX=7Cos¢,, Yy=7%sing,, 0,=0cC0sP,, 0,=0 sin @, (3.18)

into Eq. (3. 16), we get the potential energy V in polar coordinates.

V= {57170 08 (9, — ) +500%)

-+ {[(e;%)c cos @, + el sin ¢, )73+ {eff cos @, -+ el sin ¢,

+enf?cos(2¢, — o)+ el sin (29, — o) }720+ {efz. cos ¢, + e sin ¢,
+eificos (29, — ¢, )+ el sin (29, —¢,) }70%+ (. cos ¢, + e sin ¢,) 67

+ (e§ cos 3¢, + e sin 3¢, )73+ {eD. cos (20, +¢,) + e sin (29, +¢,) }720

+{e@ cos (20, +@,) + e sin (¢, +¢,) 1762+ (8 cos 3¢, + e, sin 3%)03]}

+[[{3§€.’>r4+ B cos (@, —@4) +BRs sin (@, —@y) } 730+ (B8R + 8. cos 2(¢, —@4)

+ P2 sin 2(¢, — @) 7207+ {8 cos (9o — ¢, ) + P sin(pe —¢,) }70°+ 520 ]
+[ (B cos 29, -+ B sin 2¢, )74+ {BF. cos (¢, +@4) + P57 sin (@, +¢4)
+Pat?cos (3¢, —¢4) + Baf? sin (3¢, —¢4) }7°0+ {P. cos 2¢, + B sin 2¢,

+ P27 cos 204 4 457 sin 204} 7207+ {BE. cos (¢ +¢,) +0F sin (¢, +¢,)

+ 812 cos (3¢ — ¢, ) +Bif2 sin (3¢, — ¢, ) }70° + (B cos 2¢, + s sin 2¢,) 0*]
+L (B cos 4, -+ B sin 4@, ) 7'+ {35l cos (B, + o) + P57 sin (3¢, +¢4) }7%0
+ {8 cos 2(¢, +@q) + P2 sin 2(@, +¢4) }7207+ {Af2: cos (3¢, + /)

B, sin 3¢+, 0%+ (B 08 gy -+, sin dg) 10T (3.19)

in which, for instance, the angle ¢,.—¢, is constant and terms containing ¢,—o,,
20, —¢@,, 30,—¢,, 20,49, and 3¢,+ @, are components expressed by N(0), N(1),
N(2), N(3), and N(4), respectively. There exist the following relationships :

853)): = (383000+ 81200)/4, Séé)s = (3€osoo+ 52100)/4;

e, = (820101'“ 50210)/2; effs = (50201+ '32001>/2»
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Eéﬁ):(52010+€11o1—50210)/4,
efte = (1020 T €1002) /2
e8¢ = (e1020 T 0111 €1002) /4,
e = (3eqosot0012) /4,
e&e = (23000 — €1200) /4,
effe = (2010~ 1101 €0210) /4,
effe = (e1030—€o111—€1002) /4,
ese = (0030 —€0012) /4
5o = {3(Brooo+Bosoo) +B2200}/8,
B = (482020+Bozoz‘}'ﬂzooz+ﬁozzo>/4y

T. Yamamoto and Y. Ishida

ess = (eo201+ 51110“‘52001)/4,
effs = (eo102T €0120) /2y

159 = (€o102F €101 €0120) /4
e = (3e003t €0021) /4,

et = (—egs00 T €2100) /4

3) ..

efds = (—egso1ter110+22001) /4,
3)

e =(—¢ep102F 1011+ €0120) /4,
3

€3a)s—(_€ooos+€oom>/4:

ﬁéo): {3(ﬁoo4o+ﬂooo4) +Boozz}/8»

G = {3(183010+ﬂ0301) + (.82101“[‘[31210)}/8,
ﬂgl’)s = {*3(183001“50310) -+ (ﬂzuo‘“@wm)}/&

%‘z))c - (52020'}”130202“(82002 wﬂozzo "“/3)1111)/8, 553)5

82 = {3(Bros0+Bo103) T (Bor21+P1012) /8,
§(3))s :{3<ﬁ1003_—60130) _1” (ﬁlozlﬂﬂOIIZ)}/S!

Eg)c = ((84000 ~“/30400)/27

é%)c = {3<183010 ‘"ﬁoso 1) - (52101 '*.81210) }/8,
§§)s = {3(53001“}‘50310) + (ﬁzuo _J‘~l81201>}/81

Bg{?: (53010_[30301+ﬂ2101“’51210)/&
ﬁg)c = (ﬂzozo “—/30202 ‘31‘182002 “ﬂozzo)/‘l,
éézc): (62020 ‘“ﬁozoz“ﬁzooz "{'lgozzo)/47

e = {3(191030 “‘ﬁolm) —(Po121—PB1012)}/8,
&= {3(60130+ﬂ1003> + (81021 ‘1‘80112)}/8,

1§2= (Broso—Boroa+PBo121—PBr012) /8,
Bt = (Booso—FBo004) /2,
B = (Buooo +Bosoo —B2200) /8,
Bt = (Bso10+PBosor—Pa101—Pi210) /8,

= ({302114‘51120”32011”61102) /8‘

Bﬁg)s :(63100_§‘ﬂ1300)/‘4;
§§Zs): (’“53001—ﬂos1o+£2110+@1201)/8,
g)s - ([3)1120“}‘61102)/4»
Qé?:(ﬂzo11+ﬁozu)/4,
{gzs): (‘“ﬂowo"ﬂloos"f“@lom'{”ﬂonz)/&
ﬁ)s = (60031+B0013)/41

ﬂ%)s - (483100 “‘ﬁlsoo)/&
.Bgi)s - (/33001 “180310 +182110 ”'/31201)/8,
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52: = (Bzo20 T Bozoz —Pzooz — Pozeo—P1111) /8, BEs = (Pao11+Br120—P1102—Fo211) /8,

Bi%e = (Bros0+Poros —Bor21—P1012) /8, s = (Bor30—Pro0s T Bro21—Lo112) /8,
04c—‘<ﬁoo4o"‘tgooo4 Bo022) /8, 18(()?52(‘80031“180013>/8. (3- 20)
where (5% and ef%% represent coefficients of the nonlinear component N(n).

3. 3. A classification of nonlinear forced oscillations

It is proved that, among summed-and-differential harmonic oscillations, only
vibrations with modes of the summed type with respect to the absolute values of
frequencies can take place‘?®. Accordingly, only the vibrations in Table 3.1 can be
expected to occur, because p;,>0, p,>0, p3<0, »,<0 hold.

3. 4. Various nonlinear forced oscillations

Substituting Egs. (3.13) and (3.14) into the right-hand side of Eq. (3.11), we
get the terms of frequency w with the following form:

(Ci—C)cos(wgt+0,) + (S, —S%) sin(wt-+9,)
Since resonance terms should vanish, we have
Cs:C/-H Ss:SIs (S:i, .7: k: Zk\]é‘“\‘l% Z.: j’ k:]-: 2) 37 4). (8' 21)

From Eq. (3.21), equations for resonance curves, backbone curves, frequencies, and
phase angles are derived. In Eq. (3.21), C;, and S; are coefficients which are
obtainable independent of the kind of oscillations, i. e. of the relationships in Table
3.1. After some calculations, C; and S; are given as follows:

Co=[(0i—=0%) —n {2000 R+ 00 R + 0O, RE) — 00 RE+ (BOF?),} IR,
S,=2n,c,m R, (3.22)
(s=i, j, &k, i==j>k, i, j, k=1, 2, 3, 4)
P = 2{4P0 + 2 (k; =+ 1) B + (ri+ 1) 2052 + drese B2z
23ty (10t iey) P54t PP} / ke
(BOF?) =4(4BF / s+ 208 + D) (Fi+ F3) +8(BR. / e+ B2 -+ 285
w315 ) (F1 Fy+ Folfy) + A(BR [ e+ 2B + 4w P (F5+ F5)
+ 8P /s 282 — B8 ) (Fo Fs—F1Fy)

r(3.23)

Ce=C11/KsF2C 15+ K:C oy

C; consists of only coefficients Bas.q, and these are reduced to coefficients of N(0)
by Eq. (3.20) as shown above.

Since C; contains only coefficients of N(0), it is determined solely by N(0)
whether resonance curves belong to the hard or soft spring type.

In Eq. (3.21), C; and S; are derived from the relationships in Table 3. 1.
Consequently, C; and S: vary for the different kinds of oscillations. It is noticed
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Table 3. 1. Classification of Various nonlinear forced oscillations
and the components required for their occurrences

Systems with four degrees of freedom

Necessary
Precessional motion Kinds of oscillations nonlinear
components
L8 =3 appear when ip<{1/3
g Z ® Forward w. b1 (app <1/3) N, N2
g g~ w=3p3
R
g S35 8 Backward ¢ : N(0), N(®)
oot n -
= w 38 w=—3py
o
a
— & w==2p1+ b2 (19<<1/2)
s 2 Forward + Forward ) ) N(0), N(©2)
£ = w==p1+2p2 (1p<ll)
5] E ®
é 2 .g Forward -+ Backward | 0==2p1—p3 (ip<{1/2), 0==2p2— p3* N
= 2 = @ x forward) w=2p1—p4 (p<1/2), w=2ps—p4
> =1 k)
fj g f Forward + Backward | w==p;1—2p3 (ip<{l), w==ps—2p3 NG, N@)
2 |S| B | @x backward) | wbi-2p6 (w<D,  wpo—20s ’
SE: :
==—2p3—p
g %) Backward -+ Backward w; » : 2; N, N@)
.4(_3. 8 ; w==—p3— 4
= T | o
8 215« Forward + Forward | w=s=p1+py—p3 (ip<<1)
© 8| £ F . . N
IR § + Backward | w==p1-+p2—ps (ip<<l)
[ St Q
E % S &ég Forward + Backward | w==pi—p3—ps (ip<<l) N(O), N(2)
g Es + Backward | w==pz—bs— b '
I
2% =2p1 (ip<{1/2)
2 g ; @ Forward w;2p1 G N@©), N
® 2 § 2 ': e
(2] + I3
g.g 2 = T w==—2pD3
oz 58 o Backward N, N3
0 f =—2p
& g n 3 W= 4
=}
Egé S W Forward + Forward | w==p1+ps (ip<{1) N(©0), N(1)
The | S99
8 g b _SE 52 w==p1~p3 ((p<D), w=po—p3
SES | 9LES |Forward + Backward| | . ) N(0), N
S és‘_ﬂ(gg w=p1—ps ({p<ll), w==pz—py
SEERE ek
=30 @ Backward + Backward | w==—p3— by N(0), N3

* This equation means that two oscillations, whose frequencies are w; and w3z and the
relationships w=2wy—w3, wa==p3, wz=ps; hold, appear simultaneously in the neigh-
borhood of the rotating speed w==2p3— p3.
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that, for each kind of oscillation, C; and S; consist of only one component from
among N(0), N(1), N(2), N(3), and N(4), as will be shown later.

When three oscillations occur simultaneously, C; is given by Eq. (3.22) directly.
Putting R,=0 and R;=R;=0 in Eq. (3.22), C; is obtained for the cases in which
two and one oscillations occur, respectively. In the following, we show the concrete
form of Eq. (3.21) for each nonlinear oscillation.

I. Forced oscillations caused by symmetrical nonlinear spring
characteristics

A. Subhaymonic oscillations of order 1/3.
(a) Oscillations of w=3w;==3p; (i=1, 2)

L (F0t— D)~ {pORE+ (BOF )} =R (B9 F) 08 30,1 (B, sin 35)

Zeo=Te((poF) sin 30, (9P cos 30}
(3.24)

(b) Oscillations of w=—3w,;=—3p, (k=3, 4)
(gt =D — (OB R+ (BOF),} =2 {(BF) 10830, + (BF ), sin 35,)
k

2o =R (BOF) sin33,+ (BOF)} ,cos33,)
k

(3.25)

B. Summed-and-differential harmonic oscillations consisting of two
vibrations

(¢) Oscillations of w=2w;+w;==2p;+p; (1, j=1, 2, i>=})

[ (@01 = (P R: +200, 3+ (B°F ) J IR,

_ 2RR;

7.

= {(BPF) 1508 (20,40;) + (B9 F) ' ; sin (20,+0,) }

2

26,0, R, = RRJ{<@<Z>F>,,s1n<28 +8;) — (BPF),; cos (20,4 5,)}

(3.26)

1)~ (09 R+ 209, R+ (BF*) ) IR,

~~~~ {<B(2)F)ZJCOS (20,40,) + (BPF); ; sin (20,+0,)}

250k ‘—‘*gi{ (BPF)sin (20,+0;) — (BPF)', 008 (20,+3,))
i
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(d) Oscillations of w=2w;—w,==2p;—p, (i=1, 2, k=3, 4)

O, Ri+-200,R} + (BOF ).} IR

= 2BEs (g0 F) 008 (20,0, — (BOF )i sin (28, 3,)}

‘L

20,0,R, =2 Rk [(BOF) 1y in (20,—8,) + (BOF ) cos (20,—5,))
(3.27)
[ni<wz~p )~ {09 RE+ 200, R+ (B9F?) 1 IR,
k
{<ﬁ<°>F>mcos (20,—8,) — (BOF)}, sin (20,—3,)}
R . © N N
2c,0,R 11810 (20, —8,) — (BVF ) s cos (20,—0,) }
(e) Oscillations of w=w;—2w;==p;—2p, (i=1, 2, k=3, 4)
B }li (01— p?) — (pOR2 -+ 200, R 1 (BOF?),} IR,
R )
:“";‘{“/f““{(@mF)ikaOS (0;—20,) — (PP F)jusin (9, ~23,)}
2CiwiRi:%{(/3(z)F)m sin (0;—20,) + (B®F ) jucos (0;—20,) }
' (3.28)
[ (ol — b)) — {pOLRI+200,R: + (BOF),} IR,
k
= 2, R’e [(B¥F) 1,008 (3,—20,) — (B9 F ) sin (3,—28,))
2R.R 2 . . ,
2(;&ka/¢:““’:——&“{‘“<[3( )F>ikk S (31“25/:) "“([3( )F)ikaOS<6i_28k)}
k

(f) Oscillations of w=—2w;—w;==—2p; —p, (k, =3, 4, k=)

[ (w1 —0D) — {p0RE+200 R3 -+ (BOF ), IR,
k

ZR R‘ {(BPF) ,,c08(20,+0,) + (BPF), , sin (20,+0,) }

26,0, R,= 21550 RL [(BOF),sin(20,-+0,) — (BOFY} , cos (20,+0,)} (3.29)
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L (wz—ﬁ) {0V R+ 207, Ri+ (BOF),} IR,

=B (g0 R, c08(20,+0) + (BOF), sin(20,+3)
i

2¢,0,R, = fi E((BOF) ,sin (20, 0) — (BOFY, , cos (26, 8)))
1

C. Summed-and-differential harmonic oscillations consisting of
three vibrations
(g) Oscillations of w=w,+w;—w,=p+pos—p, (=3, 4)

Loy (wi— D) — [ RI+ 200 RE- 2000R} + (BOF%).) IRy

2k, Rﬁ{<ﬁ<°>F>mcos<o 488, — (BOF ) ey sin (94 35— 8,))

2,0, R, = 21 Rk{(ﬁ(“’F)m $in (354 8, 8,) + (BOF )iy cos (848, 3,))

Tl (0h 9 — (PR 20 RE+ 200 R+ (BORD ) IR,
2

_ 2R, R&{(5<0>F)12kcos(a 8y —8,) — (BOF) ), sin (8,48, — )]

2(]2(1)21?2:_2&_}_8_
K

1k {(B(O)F)wk sin (0,460, —0,) + (fOF )15, co8(0,+0,—0,)}
2

[ (@i = D) — (o R+ 28R+ 200RE - (101, ) IR,

=2 R2 2RRs (30 F) 5, c08(8,+ 83— 8,) — (BOF )y sin (3 +35—3,)}

ZRR

20,0, R, = 2{ (BOF) 10480 (0,0, —0,) — (BOF) 12408 (91 -+ 02 —0,) }

101

(3.30)

(h) Oscillations of w=w;—ws—w,;=p;—ps—ps (i=1, 2)

§- (= DD — {pP R+ 20BR -+ 20 OR + (BOF) J IR,

_ 2R:R

‘l

ZRR

SR {(BOF ) 134€08 (0, — 03— 0,) — (BPF) ;3 sin (0, — 05— 0,) }

2¢,0,R;= 4{(3(2)F>134 sin (0;—0;—d,) + (ﬁ(z)F)'34COS(5,»—53——34)}




102 T. Yamamoto and Y. Ishida

[ 3 (@i 1) — (o R+ 200R  + 29 R+ (BOF )} IR,
3

2RR“ LT C(BDOFY 13,008 (6,— 8, —0,) — (BPF) sin (8,— 8, —8,) }

e,y Ry = 2RR4{ (BOF) 43,810 (8,— 85— 84) — (BPF) 1108 (8,— 83— 3, }

[ (i 40 — [P RI+200R  + 200 R+ (BOF ), } IR,
4

— R3 2REs (B0 5,08 (8,03 —0,) — (BOF) 080 (8,— s —8,)}

2c4w4R4—2“3{ (BOF) 4 8in (3,— 35— 3,) — (BOFY ssuc08 (3,— 35— 3,) }

(3.31)

In Egs. (3.24)~(3.31), the coefficients n; and pf%, (BDF2); are given by Egs.

(3.12) and (3.23), and other coefficients are

(BOFY ;=5 F, 9@ F, 4 LB Fy @ F
BOFY, =rf8 Fy 68 Byt u® o 08
P, =2{3BF. + Cr;+x;) BF: 4 (10,4 21;) Bos2 + 32 ;8152
7P =2{3PFs + 2wy + 1) B5Ds 4 10 (1 -+ 20 ) Bes?) - 3re e, 015%
P =230+ 2+ 1) B + 1oy (rey 4 26;) B5) + 3w e 365
wy =2{3B2+ (20 re;) B +rey (s 20;) B3 -+ B ;550 }
@, j=1, 2)

BOF) u=&0 Fy 40 Fy+ 838 Fa+ u$0) Fy
BOF) =71 F1 =80 Fot pS Fs =0 F,y
£ =2{1288% +3(2rc,+ 1) BSYs + 21, (1, +20,) P55 4 Brc 1,38 }
75, =2{128%% 43 (2res 4 1) BP: + 21, (1, + 21,) B + 32 1, B
0 =2{3B5 +22r,+ x,) B + 3, (e, + 2r,) B35 + 121 2 1,058, }
W =236 +2(2r, 4 1,) B5s + 3k, (e, + 2,) B8: + 1202 1,050 }
(k, 1=3, 4)

(3.32)

(3.33)
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(BOF) = S0P+ 1P+ SR — w3F,
(BOF) =1, — EGF — i F s — (5 F,
E=2{4PR0 + (ks rj+r) PPe 4 10 eyt 1) B8 2reyre ;55 -+ reyre e, B33 }
=20 (g e — 10) S0 4 2y B — reott 1,3 }
:5913:2{ G -+ (15 ”;)ﬁ(o)*z’%ﬂggz (g w0, K4;) Pise -+ 4":’"}’%&(&2)}
5?3:2{(3%”3 A 200,352 A (reasej — e, — reyre;) Bis }

(¢, 7=1, 2; k=3, 4)

(3.34)

(BOF) =80 P -0t By -0 Py -+ s Py

(BOF) =i By — SR F 5+ piid Fs — S F
E=2{30%% + (ry 1) %+ Bre 3557 - rey ey 1) P53+ ey, 557 - reaspre, 5122
6 = 2{3P8%s + (1) B3 4 BreifB2 - rey (rey - 1) B - e, 352+ repne e, B3 }
LR =2{5% +riffie -+ (ry 1) Bt e, (1 1) P55 - Bre ey 3187 -+ Brcyre e, 355 }
il = 2{ P50 - iP5 - Crey 1) B58% - ey iy 1) B8 + B ey 187 - Sy, 862 }

(i=1, 2; k, =3, 4)

(3.35)

Eq. (3.32) is applied to Egs. (3.24) and (3.26), Eq. (3.33) to Egs. (3.25) and
(3.29), Eq. (3.34) to Egs. (3.27) and (3.30), and Eq. (3.35) to Egs. (3.28) and
(3.3D).

Equations for amplitudes, frequencies, and phase angles can be derived from
Egs. (3.24)~(3.31) by the similar procedure as in the reports (6), (13), (14), and
(15). Since Egs. (3.24)~(3.31) are similar to those in the previous papers, the
shapes of resonance curves are similar to those shown in the previous papers (14)
and (15).

It can easily be proved that for the oscillations of Egs. (3.27) and (3.30) to
occur, the component N(0) is required; for those of Egs. (3.24), (3.26), (3.28), and
(3.31), both N(0) and N(2) are required; and finally, for oscillations of Egs. (3.25)
and (3.29). both N(0) and N(4) are necessary.

I1. Forced oscillations caused by unsymmetrical nonlinear spring
characteristics

A. Subharmonic oscillations of order 1/2
(a) Oscillations of w=2w;=2p; (i=1, 2)
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Gt pD) PP+ (BOF2) ) = (P F) ucos 20+ (F) sin 20,)

¢, :%_{(swp)u sin 20,— (¢OF)’, , cos 20,}
(3.36)

(b) Oscillations of w=—2w,==—~2p, (k=3, 4)

et =D — (B R+ (BOF?) ) = L (9 F) yc08 20,+ (<OF)}, sin 22,)

¢, :%_{ —(e®FY,,sin 20, (ePF), , cos 28,)
k

(3.37)
B. Summed-and-differential harmonic oscillations
(¢) Oscillations of w=wi+ws==p1+ P,
(w51 — (PR +200R 1+ (VF) ) IR,
_R, Wp 5. 8.) - (eDFY. ain (8. 4-0
MW’M‘T{(S )12€08 (3, +03) + (¢ izsin(d,--0,)}
_ Ry I YA 3
2C1fU1R1M”;"‘{5 F)1,8in (0, +05) — (e F)ipc08 (0, -0,) }
‘ (3.38)
[ (03— 53— (#9R3+ 20 RE -+ (BVF )} IR,
2
_ R cby 8, +05) + (W) sin(d,+48
4‘;;{5 )21€08 (31 -+03) + (e )z sin (9, -+02)}
262w2R2:%{<5(1)F)21 sin(8;+8,) — (e F)jcos (8, +0,)}
2
(d) Oscillations of w=w;—w,=p;—p, (=1, 2; k=3, 4)
[ (w3 =01 — (IO R+ 200 RE+ (BVF) IR,
= (OF) ], c08 (0,00 — (<OF) Y sin (0,-,))
20wR~Rk{( OFYY, sin (0, —38,) + (eDF)Y, d,—0o
W= € {psin(d;—0,) + (e ) cos(d;—3d,)}
(3.39)
[ (0t —28) — (PRI 4200, B2+ (BVF?) } IR,




(e)
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105
{(s(“F)”kcos(o —0,) —(eWF) Y/, sin(8,—3,)}
2,,R cOF)Y, sin(8,—3,) — (<DF)7, cos (8,—5,))
Oscillations of o= —w3—w,=—p;—p,
P )——{O(O)R _J_ZO’G)RZ 1 <[9(0)F2> }]R
—H{(ePF) 54008 (050,) + (P F )y sin (05 +6,) ]
26505 Ry = DL {(OF) ,sin (934 8,) — (+OF Yiacos (35+9,))
: (3. 40)
L, (@l = 00) — (PRI 200 R+ (BVF*) 1} R,
4

The coefficients of Eqgs. (3.36)~(3.40) are as follows

26‘4{1)4134w

(OF)Y,

(EJ(l)F) 17

(P07 45008 (05+0,) + (e VF) g sin (05 4-9,) )
4

&, {< OF)58in(03+0,) —

(e®F)jscos(0;+04)}

(eDF) =20, Fy— 6D, Fy 2D, Fy — D, F,
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(OF) y=19, Fy ko, Fy 29, Fy 440, Py
(e®F),, :5(123)1F1-)‘(1?)1F2+V(k3>1F3‘“7(/3)1F4
AP, =4{3e8) + (k) ot + wyere)
o, =4{3ef + (e, +re)) efs s yreiefEi } (3.43)
o) =4{ef) + () e +3epe )
V@ =4{w, + (e, +r,) eBs 3,6 }

(k, 1=3, 4)

Eq. (3.41) is applied to Egs. (3.36) and (3.38), Eq. (3.42) to Eq. (3.39), and Eq.
(3.43) to Egs. (3.37) and (3.40). For oscillations of Egs. (3.36), (3.38), and (3.39)
to occur, both the components N(0) anp N(1) are required; for those of Egs. (3.37)
and (3.40), both N(0) and N(3) are necessary.

Since Egs. (3.36)~(3.40) are similar to those in the papers (10), (14), and
(18), the shapes of resonance curves given by Egs. (3.36)~(3.40) are similar to
those shown in the paper (14).

The required components of nonlinear characteristics for the occurrences of
oscillations are shown in Table 3.1. It can be seen that the isotropic component
N(0) is necessary for all kinds of nonlinear forced oscillations.

3. 5. Comparisons with the experimental vesulls

Since the relationship p;>>ip w=2w holds in the previous chapter (the paper
(8)) and the previous papers (2), (4), (5), the relationships containing p; in Table
3.1 cannot hold and hence oscillations in which p, is concerned cannot take place.
Concequently, oscillations anticipated to occur in the experimental apparatus of the
previous papers are restricted within those shown in Table 3.2.

In the experimental apparatus, nonlinear characteristics are induced by angular
clearances in single-row deep groove ball bearings. In the system treated in the
papers (2), (4) and (5), the equilibrium position of the shaft deviates slightly from
the center of the angular clearance, and in that treated in the previous chapter (the
paper (8)), it located almost at the center of it.  Accordingly, unsymmetrical
nonlinear characteristics appear somewhat predominantly in the former, while sym-
metrical ones appear somewhat predominantly in the latter. Furthermore, in the
previous chapter (the paper (8)), experiments are performed for both case [, where
there is no anisotropy in nonlinear characteristics, and case [, where the anisotropy
exists. It is easily seen that the strong nonlinear components N(3) and N(4) are
not expected.

The experimental results in the previous papers can be easily explained as follows
by the analytical results obtained in the present chapter. (cf. Table 3.2):

(1) In the papers (2), (4), and (5), forced oscillations caused by symmetrical
nonlinear characteristics do not take place because of small N(0).

(ii) In the papers (2), (4), and (5), forced oscillations induced by the the
component N(1) of unsymmetrical nonlinear characteristics which is considered to
be large take place strongly, and oscillations caused by N(3) appear only with small
amplitude or not at all.
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Table 3. 2. Experimental results about the occurrences
of nonlinear forced oscillations

Forced oscillations caused by symmetrical :‘ Forced oscillations caused
. o ! by unsymmetrical
nonlinear characteristics nonlinear characteristics
Kinds of Subharmonic . . Subharmonic | Summed-and-
o Summed-and-differential . differential
oscillations b . dlati oscillations harmonic
llati armonic oscillatio + o
oscillations of order 1/3 1 1iations of order 1/2 oscillations

~3bs | 2h2-D3 | p2-2p3 -2b3-D4 , _, ~2p3 | po-P3i_,
8z | 3, 2bo-bs | bo2bs |—pa-2ps P2HIRE D2 Gy Gy TP

Necigssary N@O) | N | N@O | N | NO N N | N | N | NWO
nonlinear
components! N(2) | N®@) only N(2) N4) N2 N() | N3 | N(L) | N

WE® < | < | x| x| x x o a0 =&
The | I X X @) X X X o] X O X
paper
@ I o P e} O X O O X o) X

O : always occur, X 1 never occur, /\ ¢ not occur or appear with small

amplitudes depending on assembly,
The papers (4), (5), (6) : The systems have large unsymmetrical nonlinear
charcteristics.
The paper (2) : The systems have large symmetrical nonlinear characteristics
1 : isotropic symmetrical nonlinear characteristics
I : anisotropic symmetrical nonlinear characteristics

(iii) In the previous chapter (the paper (8)), all oscillations requiring N(3) do
not appear because of the small unsymmetrical nonlinear characteristics.

(iv) Incase [ of the previous chapter (the paper (8)), oscillations of 2p,—p;
and 2p, —p, needing only the isotropic component N(0) can take place, while oscil-
lations requiring also the anisotropic component N(2) cannot appear.

(v) In case [ of the previous chapter (the paper (8)), in addition to the oscil-
lations requiring only N(0), those needing both N(0) and N(2) take place.

(vi) In both cases | and ], oscillations requiring N(4) which is considered
small cannot appear.

(vii) It can be easily seen from the constitutions of Egs. (3.24)~(3.31) and
(3.36)~(3.40) that the shapes of the resonance curves are similar to those in the
report (14).

(viii) In the previous chapter (the paper (8)) where N(0), and hence the
coefficients p{? are large, all the resonance curves bend strongly. Consequently

i

ranges where oscillations occur are fairly wide.

3. 6. Conclusions

The results obtained in this chapter are summarized as follows:

(1) Representation of nonlinear spring characteristics through polar coordinates
is useful for analytical treatment of the nonlinear forced oscillations of whirling

motions.
(2) By adopting polar coordinates, nonlinear spring characteristics are clas-
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sified into the constant component N(0) and the components N(1), N(2), N(3), N(4),
which change their magnitude 1, 2, 3, 4, ... times, respectively, while the shaft
whirls around its equilibrium position.

(3) The components N(0), N(2), N(4), ..., N(2n), ... (n : a positive integer)
belong to the symmetrical nonlinear characteristics, and the components N(1), N(3),
..., N@n+1), ... belong to the unsymmetrical nonlinear characteristics.

(4) All nonlinear forced oscillations require for their occurrence the isotropic
component N(0).

(5) For all nonlinear forced oscillations, the sign of the coefficient of N(0)
determines whether resonance curves belong to the hard or soft spring type, and
the magnitude of the absolute value of the coefficient of N(0) decides the degree of
bending of the resonance curves.

(6) Occurrences of nonlinear forced oscillations require only N(0), or both
N(0) and one of N(1)~N(n). And the necessary components are different for each
kind of oscillations.

(7) Shapes of resonance curves of nonlinear forced oscillations are similar to
those of rectilinear systems in the paper (14) and (15).

(8) By representing nonlinear spring characteristics by polar coordinates as
proposed in this chapter, the experimental results obtained in the previous chapter
and the previous papers are explained clearly.

(9) By adopting such representations, the relative difficulties of occurrences
of oscillations are easily estimated, and the properties of oscillations can be made
clear.
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