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Abstract

Introducing the concept of the overall specific heat, a basic equation
for an unsteady heat conduction accompanied by an endothermic solid
reaction was reduced to the form of an ordinary unsteady heat con-
duction equation with variable thermal properties. For crystal trans-
formation and thermal decomposition on which a mass transfer rate
has only a little and limited effect, the method of modelling the relation
between the overall specific heat and temperature was deduced theore-
tically based on the simplified intrinsic reaction kinetics.

A hot wire method was discussed to avoid appreciable errors caused
by an end effect and a thermal-contact resistance and to measure the
thermal conductivities of a reactant and a product solid at elevated
temperatures.

By applying the principles of a differential thermal analysis, a new
measurement method was developed to qualify the thermal conductivity
with reaction. It was shown from the results of the measurements
that the temporary disorder or disintegration of a crystal lattice caused
intrinsically by the reaction had a controlling effect on the thermal
conductivity with reaction and then that the thermal conductivity with
reaction had a smaller value than those in the non-reacting states.

Taking account of the results from the above measurements and
from the precise evaluations of thermal properties, the numerical solu-
tions of the basic equation were presented not only for an one-stage
endothermic solid reaction but also for a two-or a multi-stage reaction,
and the powerful applicabilities of the overall specific heat and the
thermal conductivity with reaction to the engineering problems were
demonstrated experimentally.

1. Introduction

Chemical processes involving a solid reaction have a great need over a wide
range of industrial fields. Not only in a chemical industry but also in other
manufacturing industries like a metallurgical, an iron and steel, an insulating and
refractory material, and a nuclear furnace material industry, a solid reaction is
directly or indirectly involved in a heart core of a sequence of the production steps
in those processes. Recently, also in the area of newly developing technologies
concerning an energy problem and a high-temperature thermal protection problem,
a new need of a solid reaction is rapidly increasing. A reversible endothermic and
exothermic cycle of a solid reaction is offering one of the promising solutions
to a heat recovery or a heat storage problem, and a thermal protector formed out
of an endothermic solid reactant has also been recognized to be one of the qualified
protectors, owing to its high protection ability and the easiness of its control.

For the optimal design and control of those processes, one of the key factors
is to find the conditions under which the processes can be operated thermally effe-
ctively. Especially, in case of an endothermic reaction, the characteristic of heat
transfer in the processes often directly relates to the conditions of the optimal
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design and control. As is well known, in a solid reaction, the overall reaction rate
is usually affected by heat and mass transfer rates as well as by an intrinsic
reaction rate. The general concept of the relationship between the overall reaction
rate and these three rate-affecting parameters is extremely complicated, and an
effect of each parameter differs from each other depending not only on the mode
of reaction but also on the operating conditions employed. Because of such diffi-
culties in the problem, although a number of theoretical approaches have been
reported so far, those involve, if any, some of the key assumptions. One of the
most successful key assumptions in those approaches is the assumption of ‘Pseudo
Steady State’. So long as heat transfer is not concerned, this key assumption would
be highly useful to reduce the mathematical difficulties in the problem in spite of
the unsteadiness of a solid reaction itself. However, in case where heat transfer
is concerned, the assumption of ‘Pseudo Steady State’ is not necessarily valid. This
is principally due to a relatively large heat capacity of a solid concerned. Thus,

for a heat transfer analysis accompanied by a solid reaction, in general, an unsteady
state treatment is essentially required.

The purpose of the present study is to develop a simple and useful mathematical
model for an unsteady heat conduction problem accompanied by an endothermic solid
reaction which would be affected more largely by the heat transfer characteristic
in the processes. The reactions dealt with in the present study are crystal trans-
formation and thermal decomposition, expressed in the forms,

crystal transformation :
A (reactant crystal) = P (product crystal) (D

thermal decomposition :
aA (solid reactant) = pP (product solid) + qQ (product gas or liquid)

As is seen from Equation (1), mass transfer has no effect on crystal transforma-
tion, and only an indirect and limited effect on thermal decomposition. Further,
these reactions usually take place in the distinctive and narrow temperature range
with the relatively large endothermic heat. Therefore, these reactions have also a
suitable characteristic to discuss precisely the relationship between the unsteady
heat conduction and the overall reaction kinetics by applying an appropriate techni-
que to reduce the mathematical difficulties.

The mathematical model developed in the present study is called the ‘overall
specific heat’ model. In this model, the endothermic heat of reaction is involved in
the overall specific heat defined in the range of reaction temperature, and the
basic unsteady heat conduction equations are solved as a variable thermal property
problem.

Before solving the basic equations, we need a precise evaluation or measurement
of the thermal properties concerned. In a solid reaction, in general, not only the
change of the macroscopic structural properties of the solid (such as the void
fraction) but also the rearrangement of the micro-crystal structure may take place
in the course of the reaction. Therefore, the thermal properties, especially the
thermal conductivity, may have somewhat big differences between in the pre- and
in the post-reaction states, and at the same time the thermal conductivity during
the period when the reaction is occuring would be expected to differ from those in
the non-reaction states (the pre- and the post-reaction states). A consideration
on those matters also are involved in the present study.
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2. The Concept of Overall Specific Heatl, 2

The basic equation of unsteady heat conduction in a solid particle (assumed to
be a sphere) accompanied by a solid reaction can be, in the general form, written

as
{22 ) (2

where H and k denote a heat of reaction per unit mass and a fraction of reaction
(a conversion), respectively, and the term of (9k/20) corresponds to an intrinsic
reaction rate.

The intrinsic rate expression of an usual solid reaction may be so complicated
as

Gk —fhy 1, 0 3)

where ¢; is a concentration of a gaseous or liquid reactant. On crystal transfor-
mation and thermal decomposition, however, the concentration, ¢y, has only a limited
effect from the above-mentioned reason. Therefore, we may simplify the intrinsic
rate expression of these reactions, assuming a first order-reaction with respect to
a solid reactant, as

OIE) @
Integrating Equation (4), we obtain
k:l—exp[—gf(t)dﬂ] (4)’

Since the temperature in the solid, #, is a function of a reaction time, ¢, we get

k=g (1) (%)

(G5)=¢ ©(55) ®

Substituting Equation (6) into Equation (2), we obtain

Thus

Cey He 1) 0./ 0 0( 55 ) =35 (755 ) @
Putting
Cy(8) =, + Hg () (p1/) ®)

Equation (2) can be reduced to the ordinary form of the unsteady heat conduction
equation in a sphere:
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cron()= )

C»(1) in Equation (9) is the overall specific heat involving the heat of reaction.
Now, we have assumed % to be a function of temperature only. If a temperature-
function, f(#), increases rapidly above a certain temperature characterized by the
reaction, this assumption would be expected to he sufficiently valid.

When we consider a two- or a multi-stage reaction, Equations (2) and (4) are
rewritten as

ot 1 0 ot ok ok
e T )\ 227 )= fﬁ}_ — bt 20 4
Cf’"(ag) = ar< ’ a,,> H““( 90 > HZ“( 30 > @
% £ A-k), Trmf,)A—hy), @"
or when kq, ks, --- have to do with each other, Equation (4)"” becomes
Do filty byl )y S fl, ey oy ) e (B

In such cases, taking account of the complexity of dealing with these equations, the
assumptions of ki;=g,(f), ky=g,(t), -, and of Cp)=cp+H git)(p1/P)+
Hyg;(t)(ps/p) + -+ are considered more practical without an appreciable error.
Hence, we can also apply Equation (9) to the two- or the multi-stage reaction.

Since it is possible to obtain the overall specific heat-temperature relation in
a reasonable way from the overall kinetic data of the reaction or at least based on
a trial-and-error method, we can get the solution of the unsteady heat conduction
problem accompanied by the endothermic solid reaction like crystal transformation
and thermal decomposition from Equation (9) by an appropriate numerical method.
A few typical examples of the overall specific heat-temperature relations are shown
in Fig. 1.

(a) (b)

Cp(t)
Co(t)

Temp ‘ Temp,
() (d)
’ ’ J—FH—L
Temp, Temp,

Fig. 1. Typical examples of the overall specific heat-temperature relations.
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3. Thermal Conductivity Measurements

3. 1. Thermal Conductivity Measurement in the Non-Reaction States
by a Hot Wire Method®

A hot wire method was employed to measure the thermal conductivities of the
solid materials concerned in the present study in the non-reaction states.

From a given time, an electric current is applied through a thin straight wire,
placed in the homogeneous material of which the thermal conductivity is to be
measured. The electrical heat produced at a constant rate in the wire causes a
cylindrical temperature field in the material. The rise in the surface temperature
of the wire is dependent on the thermal properties of this material. This is the
principle of measuring a thermal conductivity by a hot wire method. The appli-
cability of this method has already been discussed extensively, and it has been
qualified that this method is usually useful for materials of lower thermal conduc-
tivity and is more advantageous than an usual steady state method because the
measurement can be carried out during shorter elapsed time even at elevated
temperatures.?, 9

Such advantages of this method would profit the thermal conductivity measure-
ment concerned. However, in this method, the measured data are sometimes badly
affected by an end effect, but the relation between material dimensions and an end
effect has not been discussed sufficiently.®> Thus the discussion in this section
intends to deduce its relation theoretically and to demonstrate it in the measure-
ment for a standard material.

3. 1. 1. Theoretical Consideration on an End Effect

A thin straight wire, used as an electrical
heater, is immersed along the axis of a cylin-
drical material, as shown in Fig. 2. The outer
surface temperature of the material is maintain-
ed at a given initial temperature, %,, throughout
the measurement. Since the wire is usually very
thin and made of a good thermal conductor, the
radial temperature distribution in the wire is
assumed to be negligibly small. A constant heat r=bi r=a
flow, @y, is produced in the wire. A thermal
contact-resistance may exist at the boundary
between the wire and the material. Thus, the
unsteady temperature profile in the material
would be determined by the following Equation

=l

OO 2 NIRRT

(10) with the boundary conditions (11) through Z={
(14);
£\ 24 1 ot Fig. 2. A coordinate system of a
%%<7%>+~%5—2———~&-%~0~:0 (10) hot wire method.
0=0, 0<r<d, —l<z<l; 1=, (11

00, z==+1; =1, (12)
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r=20; t=t, (13)
o N AN
r=a; M2 ) =her(ta—t) (14)

The unsteady axial temperature profile in the wire is also expressed in the form
of Equation (15) with the initial condition (16).

o, 21% 1o, , Q
. (tu—te) =522 =0 (15)
0:03 —lgz£lv )"w:to (16)

Using the non-dimensional variables of ¥=(t—1¢)/t, tn=w—10)/ts, r*=7/q,
z*=z/q, and r=af/a? the above equations and the boundary conditions are re-
written as follows;

(For the material)

1 8/ otk | 0Pk orF /
P grk\ ar*> ' 0z¥r ot =0 (10)
=0, 0=rk<b/a, —l/a=zvl/a: <=0 (11)"
=20, z¥=-+l/a; t=0 (12)’
rk—b/a; =0 (13)’

1. orf _ ah. e ax ,

rk—=1 y WW '””T”‘(tw ta) (14}

(For the wire)

0% 2h,,a @ Orf | Q, a® _ ,
az*zi ?\w ( t) o, 3 “%'7;0?“0 (15)

c=0, —l/a<z¥<l/a; 1,%=0 (16)’

From Equations (11)’ through (16)’, the Laplace transformation, 7* (1, 0, p), of
the surface temperature, t* (1, 0, r) at the center (#*=1, z¥*=0) of the wire is
obtained as

Tx(1, 0, ) =521 5 ta(- 1y en+ IR, /[ [ HEpPre Y
+~g;p]~F Ji+ Zh{ @n+Dra }2%_%‘0“ an

where FO:IO(UH)KO(Unb/a)”Io(anb/a)KO(o'n),
Fi1=11(0)Ko(0,0/a) +10(0,0/a)K1(0,), and o, =[p-+{(2n-+1)7a/2[}?]1/2

1) Infinite Material
In an infinite material, the transform 7% (b-»00, [-»o0) would be obtained from
Equation (17) by substituting s=co0 and /= oo into the equation as
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2 ] Ko(+v/ p)
TH(b->00, [—ro0) = — 20" 1 el (18
V=T o, B AR (V) A+ BOV KV ) OO
where A=CpuP,/2¢p0 and B=(3/2ah.;) (CpwPw/CpP). Now, if the elapsed time of
the measurement is so large that the limitation, > 1, is valid enough in Equation
(18), T*(b—co, [->c0) may be approximately expanded in ascending series of a
parameter, p, taking account of p<£1;

YWQA%J%%ﬁwu%qul pﬁ4g12&m

2)t, P 2 4
1-24 P
-1 <hz }r0(p> (19)

where In C=0.5722 (the Euler’s constant)

From the inversion theorem of the Laplace transformation, the surface temperature,
ty (oo, oo, 7), becomes

(1—-2B)

500, 00, 7)= +

c

1 |
2 - |

e }—%()(1/:2>J (20)

Again, if the elapsed time, ¢, is so large that the second term of the right side of
Equation (20) also is insignificant in magnitude, the thermal conductivity may be
determined graphically from the slope of the line, by fitting a straight line to the
plot of £} (oo, oo, r) against In (r). To estimate such a critical value of =, the
magnitudes of A and B must be known. A is expressed as ¢p,0n/2¢pp, using the
physical properties of the wire and the material. Generally, the relations of ¢p,<C
¢p and P, >p are valid, and the value of A is likely to be nearly unity. In the
present measurement, a constantan wire and polyethylene were employed as a heater
and a standard material to examine an end effect. In this case, the value of A
becomes 0.84. Then (1—24)=~—1. On the other hand, B is expressed as 1A4/ah.,.
If the thermal contact-resistance, 1/k.,, becomes larger and larger, the B-value
also becomes significant. When the thermal contact-resistance is small and insigni-
ficant, namely B=~=0, the critical value of ¢ becomes, within an error of 1 %

=240 (21)

For the significant value of 1/h.,, the critical value of ¢ may be estimated by
taking account of the time lag by the thermal contact-resistance. This can be
shown by putting r-+7, instead of ¢ in Equation (20);

tﬁ@m,aq&)irfz [}n?_rh41 4%>*“§§%?;Yk1”23>
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If z, is chosen so as to satisfy the equation
27,4+ (1—2B) + (1 —2A4)In(4:*/C) =0 (23)

Equation (22) becomes

2 4z 1 T 1
Zf’ioooo,t:"-QOa[n (1 —2A)In——+ <~—~>}
(oo, ) 07, l ¢ +27 a-2 )lnT* 0] 5 (24)
¥ may be preferably determined by using the relation ¢*=(ry-r3)1/2 deduced from
In(c*®)=(Inr,+Incy)/2, where r, and r, are the elapsed time at the beginning and
the end of the experimental data needed to determine the thermal conductivity.
From Equation (24), the critical value of ¢ becomes, within an error of 1 %,

:>20 or t>20a%/a (25)

From the above result, the surface temperature, f; (oo, oo, r), may be expressed
as

P (o0, o0, 7) =08 1y 4T T0) 26)

4rt, c
The time lag, 7,, may be determined by Equation (23), but is best determined
experimentally. The reciprocal of the derivative with respect to time in Equation
(26) is

If we plot (8f5/80)~! against time, @, again we find a straight line with a slope
(42t,/Qoa?). The axis (3t;/06)~1=0 cuts this straight line at —8,. We do not use
this line to determine A, since by graphical differentiation we get an inadmissible
spread of the points. We use it only to determine #,. Then z, is given as the
non-dimensional representation of &.

2) Semi-infinite Material (a<r<(b, |-—>o0)

Let us consider how large the radius of the material must be to obtain the
thermal conductivity, 2, by the same procedure as that in an infinite material. In
this case, Equation (17) becomes, taking account of /—oo.

Q.a® 1 F
* —00) = -
T*(b<o0, {—>00) 2%;0 p{ ApFOA(lﬂ'—E?P) v pF: }

To obtain a large time solution, the transform 7% (b, co) is expanded in ascending
powers of /P and +/Ppb/a as follows, taking account of /P <1 and v/ pb/a<l;

T, ooy=-38 Ll 21124 (n2) + 2—aByim( 2)

(28)

+<1—i22>}+0(p2>] | (29)

a

From the inversion theorem, the surface temperature becomes
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PE(h, oo, 2y =D 1y b (p oo o0 (30)
wil, ¥, v )— ==1% s , ©
201, a

Equation (30) indicates that 1 can be determined from the constant value, t; (0,
co, co), given by the equation. It is, however, an advantage of the hot wire method
to determine A before the surface temperature has a constant value, as mentioned
above. So, Equation (30) is not used to determine 1 in this study. To apply
the hot wire method effectively, the measurement must be finished before the
surface temperature reaches the steady constant value. From this point of view,
it seems that there is a region of time needed effectively in the measurement.
This region of time may be determined from the condition that the initial tem-
perature wave caused by the heat from the wire exists far from the wire and
further does not reach the outer wall of the material. In the region of time as
above, v/ p <<l and +/ P b/a>1 are valid. Therefore, Equation (28) may be expanded
in ascending powers of +/ P and in descending powers of +/pb/a as follows;

Qua? 171, Cp . pf 1-2A [, C2p \*
%k [ 0 el Bt A
T(b, o0) 1, p(zl” R <l” i )

4 (1*—28)17’1 Czp —1}%0(])2)-%7?6-2(“/&)\/?(1

16 1 1 a?l P
L S ){H-Q{(l-zB)

1 a \/3 32 b D
—(1—24)n C;p J}_;{_O(p?e—z(a/b)w’F)J (31)

Using the inversion theorem, the surface temperature is obtained from Equation
(31) as

(1-2B) +

2 ~
56,0, 9= G [ Jn e+

P

+0<_%7>+n{erfc(:) 1[\//15 e %werfc(s)}

*_?H( +2>erfc(5)-\/r : ]} o(-% e )] @2

where {=0b/(a+/ 7).

In the measurement, the radius of the thin wire is 1.5x10-2 cm, the radius of
the material 0.75 to 5 ¢cm and z-value 20 to 1000. So, the terms, 0(1/72) and
0((a2/b?)res*), are negligible in magnitude. To obtain A from the slope of the
plot #3 (b, oo, ©) against [n (6), the second and the fourth terms of the right side
in Equation (32) must be negligible, compared to the first term. This condition
may be satisfied within an error of 1 ¢ if ¢ is determined from both Equation
(25) and the relation

=5 or b=5vap (33)
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3) Semi-infinite Material (b—>oo, —I<<z<l)
Next, let us consider how long the material must be to obtain 2 by the same

procedure as that in an infinite material. In this case, Equation (17) becomes,
taking account of b—oo,

Tr(b->o0, 1<o0)=—08" L 51 LD Koo /[ |35

+<A 23 )pK (an)f{l-r Sah.. 55
+ (sz-&%ﬁp}on&(an)} (34)

Equation (34) is expanded in ascending powers of p and o, as follows, taking
account of p<l and ¢,<1;

e e
DY ol o
gt I 0D ] (35)

Using the inversion theorem again, we obtain the surface temperature of the form,

N et & 4(-1) ot 12V g2
G ot (2%1)7[ J (e s2a

—~AnT - | 27\w 4;'
(e /4‘){<1T23— L >——(1_2A)ln—c—

+O(4,{ (e /5)d5) | (36)

where A,={@2n+1)mra/2l}? and & is an auxiliary variable.

In Equation (36), the term including A, has the greatest in magnitude, and the
terms including 4,, 4,, ... become successively smaller and smaller exponentially
in magnitude. So, only the value at =0 of Equation (36) may be discussed to
estimate the end effect. Moreover, Ayr is small even though r is large, because
a/l is small. If Ayt is small, the following relation can be used;

[ (e /0raz= —C—tnity=+ 4=+ 01(44)?) @n

Then Equation (36) becomes

t¥(oo, I, ©) = Qoa 2 [C—{—lﬂ dyr—Ayz -0 (A2

0

(128
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— 2}‘ >.J-
ah.,

In Equation (38), if the terms in the right side, C-In(d,c), are remarkably
larger than the other terms, 2 may be determined by the slope of the plot % (oo,
I, ©) against /n(@). The fifth term including the thermal contact-resistance can
be removed by taking account of the time lag in the same manner as that in an
infinite material. Then, the right side in Equation (38) can be described by only
the terms, C+In(o7), within an error of 1%, if ¢ is determined by both Equation
(25) and the relation

f L o, ina,: } (38)

A =0.04 or 1=(5)vag (39)

4y Finite Material (a<r<b, —I1<z<I])

Let us discuss the radius and length of the material and the time for measure-
ment required to obtain 1 by the same procedure as that in an infinite material.
The same procedure as that in an infinite material is valid if various factors are
determined according to the following conditions ;

a) the wire must be so small in radius and so good in thermal conductivity
that the radial temperature profile in the wire becomes negligibly small compared
to that in the material.

b) the radius of the material to be measured is determined by Equation (33).

c) the length of the material is determined by Equation (39).

d) the effective data needed to obtain A must be chosen from the region of
time which satisfies Equation (25). When we try to measure a thermal conductivity
of a material, we often can estimate its rough value as a first step. Then the
thermal diffusivity, «, can be estimated roughly. If the radius of the wire is given,
the effective data needed to obtain 1 must be chosen at a longer time than the
elapsed time satisfied by Equation (25). Then, if the effective date were chosen
in the region of time 6=0,~6, (0,>6,), 6,, of course, must be larger than
20a?/a, b must be larger than 5V af,, and [ larger than (=/0.4) Vab,.

3. 1. 2. Experimental Apparatus and Procedure

Polyethylene sold at a shop was used as a standard sample, which was formed
cylindrically, to demonstrate the validity of the above theory experimentally. The
cylindrical sample was divided into two pieces along the axis. Along the axis of
one of the two pieces, C-A thermocouples (0.3 mm¢) enamelled for insulation and
a constantan wire (0.3 mme¢) used as a line heater were attached.

Fig. 3 shows a schematic diagram of the experimental apparatus. A polyethy-
lene sample of a given radius and length (S) is maintained at a specified tempera-
ture level in a vessel (Ts). An electric current is passed through a thin constantan
wire, using a storage battery (12 volts) (B). Magnitude of the electric current
applied depends on the thermal conductivity of the material, to make the tempera-
ture rise a few degrees. In the present measurement, an electric current was
passed through for about two minutes in the range of 0.4 to 0.8 amp., and a
temperature rise in the wire was measured against an elapsed time for the two
minutes. Using the data, a thermal conductivtiy 2 was obtained by the following
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equation, deduced from Equation (26) ; R
M H
Q,a’ 0,10 ,
A= 0 In 2120 26
ity " Tove, Y
BE dL Ts
S
QX
| |
/Sw L
. — T
Fig. 3. A schematic diagram of the T r
experimental apparatus. T

®

3. 1. 8. Experimental Results and Discussion

The experimental results concerning the end effect are shown in Figs. 4 and 5.
All of the data are chosen in the region of non-dimensional time, 7, of 100 to 1000.
Fig. 4 shows that the radius of a polyethylene cylinder must be larger than 2.5 cm
to avoid the end effect caused by the radius, while the length of polyethylene is

1
K
T

T

o

£
T

A (keal/mhr°C)
o o
N w
] ' 1
alkeal/mhr°C)
=}
5

0.2~
01 01F
1 1 3 1 1 fr 1 1 I | - | SO SRS OV WU SUUVOR 2O IS JUUS MU
1 2 3 4 2 3 4 5 6 7
bx102 (m) 1 x10%(m)
Fig. 4. An effect of the radius of material Fig. 5. An effect of the length of material
on the measurement of a thermal on the measurement of a thermal
conductivity. conductivity.

fixed at 4 cm. Fig. 5 shows that the length of polyethylene must be greater than
4 cm to avoid the end effect caused by the length, while the radius is fixed at 2. 5
cm. The critical values of the radius and the length may be determined theoreti-
cally by Equations (33) and (39) as follows;

b>6a/ = =5%1.5x107%% /1000 =2. 4cm
I>(n/0. 4)ar/ 7 =(x/0.4) x1.5x1072 X 4/ 1000 =3. Tcm
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The theoretical estimation is in good agreement with the experimental results.
From the above discussion, it was found that Equations (25), (33) ard (39) might
be applied to determine the critical dimensions of a material in measuring its
thermal conductivity by the hot wire method. Avoiding the end effect according
to the above theoretical considerations, the thermal conductivity measurements of
the solid materials concerned in the present study by the hot wire method were
carried out in the non-reaction states. Examples of the measured data are shown
in Figs. 6 and 7. -

3. 2. Measurement of Thermal Conductivity with Reaction®®

As is mentioned above, in the course of a solid reaction, in general, the rear-
rangement of the micro-crystal structure takes place. Therefore, it would be
expected that the thermal conductivity during the period when the reaction (or the
rearrangement of the crystal structure) is taking place has some different value
from those in the non-reacting states (the pre- and the post-reaction states). This
kind of the thermal conductivity -(the thermal conductivity- with reaction) is, in
some cases, likely to be a more important basic property than those in the non-
reacting states for discussing the relationships between the heat transfer and the
overall rate of the reaction. Up to the present time, however, no effective mea-
surements or no appropriate evaluation methods have been reported, the exception
being the measurement by Mogilevsky & Chudnovsky.®’

In this section, one of the effective methods of measuring the thermal conduc-
tivity with reaction is proposed, in which the principle of a D. T. A. (Differential
Thermal Analysis) is applied in a suitable way. By the proposed method, the mea-
surements are carried out for several kinds of crystal transformations and thermal
decompositions which differ from each other in the reaction temperatures and in
the heats of reaction. After eliminating effects of the changes in the macroscopic
structural properties (like the void fraction) by the reaction, the measured thermal
conductivities with reaction are compared with those in the non-reacting states.
Effects of the reaction temperatures and the heats of reaction also are discussed.

3. 2. 1. Theory of Measurement

As has been mentioned in the foregoing section, thermal conductivities of solids
are normally measured by the following two methods: a steady heat flow method
and an unsteady heat flow method. Typical examples of these methods are: a
cylindrical method and a twin-plate method for a steady heat flow method, and a
hot-wire method for an unsteady heat flow one. These methods, in general, can be
applied for measuring thermal conductivities of solids in the non-reacting states.
However, it is difficult to measure the thermal conductivity with reaction by dire-
ctly applying these methods, owing to the difficulties of eliminating the effects of
unsteady heat absorption (or generation) accompanied by the reaction.

Thus, in the present study, the thermal conductivity with reaction was measured
by applying the principle of a D.T.A. method. When the fundamental equations
were derived for this method, the following assumptions were made :

(1) Both the reference sample ([) and the reactant (] ) are cylindrical.

(2) The axial heat flow in the samples is negligible.

Based on the assumptions (1) and (2), the fundamental equations of unsteady
heat conduction in each sample can be expressed as follows:

(Reference Sample)
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where A(f;) denotes the thermal conductivity with reaction.
Setting the following variable:

(Reactant)

A gt =ay (42)

putting cpyi=cpy=cp and p=p;=py, and assuming cp, @ and A1 to be constant
during the measurement, we obtain Equation (43) by substracting Equation (40)
from Equation (41).

coo\ 0T | Hp(@k >:}_ 0 ( o0(p—1y) > 43

<x>a@‘x a6 )" ar ' or (43)

If we can assume that A(f7)/A=1-+K,, namely that the themal conductivity
with reaction also is constant during the reaction, Equation (43) is rewritten as

(58155 + Lo )= o e ) e g @

where 7 represents the differential temperature between the reactant and the
reference sample, and is defined as T'=ty—1?;.

Integrating Equation (44), at first, with respect to time under the following
initial and boundary conditions :

0=0, 0<r<la; t,=t;=t,
} (45)
0=0,, 0<r<a; t,=ty=1,
00, r=a; t,=t;=r(0—0,) -+, (7; @ constant)
} (46)
r=0; 0t;/0r=0ty/0r=0

where the subscripts 0 and 1 express the initial and the final stages of the reaction
respectively, we get

9ot 2 ol ) o) 8 L) o] o

where @ (=Hp) denotes the heat of reaction per unit volume. Again, integrating
Equation (47) with respect to 7, we obtain

S“_ZQTrdr_w(HKz)S Td@+KzS:<t;. . —1y, )df (48)

where 7, means the differential temperature at the center, or the D. T. A. peak.
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Introducing #¢, s—11, .= 4t 14y into the second term of the right-hand side of Equa-
tion (48), we finally obtain

KA [ G P [ (s no0]

Thus, by measuring the peak area of the D.T. A. curve and the average temperature
difference between the surface and the center of the reference sample, the thermal
conductivity with reaction can be determined by Equation (49).

3. 2. 2. Experimental Apparatus and Procedure

1) Samples

As is mentioned above, several kinds of crystal transforming and thermally
decomposing solid reactants were employed as samples for the present measurements.

Those are: ammonium chloride, silver iodide, quartz and barium carbonate for
crystal transformation, and sodium bicarbonate, gypsum (natural- and chemical-),
calcium hydroxide and marble for thermal decomposition. Natural gypsum was
from Africa with a purity of more than 98 %, and marble (white) from Greece,
whose purity more than 98 5. The other samples were powdered, of reagent grade
with a purity more than 99 . Each powdered sample was formed into a cylindri-
cal shape (8.0mm diameter and 18.0mm length) by pressing. A chromel-alumel
thermocouple wire (0.3 mm¢) was inserted along the axis through a small hole
drilled to measure the temperature at the center of each sample. Natural gypsum
and marble also were formed into the same shape by cutting and shaving, and a
small hole was drilled similarly. Before the measurement, the samples were well
dried in a desiccator.

The physical properties and the type of reaction of each sample are presented
in Table 1. As is seen from the table, those samples are much different from
each other in the reaction temperatures and the heats of reaction. Therefore, it
seems possible to relate the expected differences among the measured data to the
reaction temperatures or the heats of reaction and to discuss the theoretical back-
ground of the thermal conductivity with reaction.

It is necessary that the reference sample does not react in the range of the
reaction temperature of the reactant and that it has, as closely as possible, a similar
value of the thermal diffusivity to that of the reactant. In this measurement,
sodium carbonate was chosen as the reference sample for sodium bicarbonate, and
anhydride gypsum for gypsum, and calcium oxide both for calcium hydroxide and
for marble. For the crystal transformation, three to five kinds of materials:
kaolin, sodium carbonate, natural anhydride gypsum, silica and calcium oxide were
used, and the results were compared between these samples. The physical proper-
ties of the reference samples used are presented in Table 1, together with those
of the reactants. The values of the heats of reaction and the specific heats were
obtained from the Chemistry Handbook, Japan, and those of the thermal conduc-
tivities in the non-reaction states were measured by the hot-wire method, discussed
previously. Since the densities of the samples (void fractions) scattered slightly
(except for the natural gypsum and the marble) owing to slight variations of the
conditions of pressing, the effects of these variations on the 1-values were correc-
ted by the Kunii-Smith’s equation!®, and the corrected values were applied to
Equation (49).
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Table 1. Physical properties of the samples employed.

127

H cp () o (e) % (1) Reaction| Type of
Sample (kcal/m Temp. .
(kcal/kg)| (kcal/kg’C) | (kg/m?2) ) (C) Reaction
NaHCO3 204.3 |0.280(120C) | 1650(0.25) | 0.73(120C)| 125~135 ocqydration
decarbonization
n. CaS04-2H,0 | 116.9 |0.285(130C) | 2320(0.0) | 0.90(120C)| 130~140 dehydration
n. CaS04-1/2H,0  27.6 |0.258(190°C) | 1951(0.26) | 0.52(160°C)| 190~200 |dehydration
c. CaS04-2H,0 | 116.9 |0.283(115C) | 1601(0.31) | 0.37(110C)| 120~130 [dehydration
c. CaS04-1/2H;0|  27.6 | 0.258(190°C) | 1762(0.33) | 0.28(190C)| 190~200 |dehydration
Ca(OH); 337.0 | 0.361(5001C) | 1650(0.26) | 1.85(500C)| 520~540 |dehydration
CaCO; 426.0 | 0.307(9000C) | 2710(0.0) | 2.30(900C)| 900~920 |decarbonization
NH,4CI 18.7 | 0.495(180°C) | 1460(0.05) | 0.55(180C)| 184~189 |CsCl2NaCl
Agl 6.3 |0.066(127°C) | 5030(0.14) | 0.16(145C)| 147~152 | a2
Si0; 2.5 |0.295(5700C) | 1954(0.26) | 0.53(570°C)| 573~578 | @ = f
BaCOj3 18.0 |0.167(670°C) | 3607(0.19) | 1.18(800CC), 810~820 2
NazCOs3 0.288(1501C) | 1756(0.31) | 0.29(150C)
Kaolin 0.198(1807) | 1802(0.31) | 0.65(180C)
n, CaSOy 0.200(190°C) | 1830(0.38) | 0.30(200C)
c. CaS0y 0.200(1907C) | 1681(0.43) | 0.32(200C)
Ca0 0.220(5000C) | 1340(0.60) | 1.00(600C)

2) Heating Apparatus

A sketch of the heating apparatus
employed is shown in Fig. 8. As shown
in Fig. 8, the apparatus consisted of an
iron tube (100 mm, I. D. and 500 mm,
height), three pieces of 1kW kanthal wire
wound separately around the tube, and
refractory and insulating bricks. The tem-
perature of the tube wall was measured
with 0.3 mm¢ chromel-alumel thermocou-
ples at three points, and recorded conti-
nuously by an automatic temperature re-
corder. After the sample holder was set
in the middle part of the tube, where the
temperature was kept uniform, the holder

"

8

@ MV.recorder

@ Zero junction
@ Thermocouples
@ Sample holder
® Kanthal wire
® Bricks

Fig. 8. A schematic drawing of the
heating apparatus.

was heated at a certain constant rate by adjusting the voltage of the slide trans-

former connected with each wire.

3) Sample Holder

The details of the sample holder are shown in Fig. 9.
made of a cylindrical steel block, 60 mm diameter and 90 mm height.
in Fig. 9, two holes of 8 0 mm diameter and 30 mm height were drilled in a sym-
metrical position from the center axis of the holder to hold the reactant and the

The sample holder was

As illustrated
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reference sample, respectively. The tem-
perature of the holder was measured with
a 0.3mm¢ chromel-alumel thermocouple
inserted along the center axis of the
holder.

@ SampleHolder
@ Sample

® Reference

@ Thermocouples

4) Experimental Procedure

After chromel-alumel thermocouples
(0.3 mm¢) were inserted into the reactant,
the reference sample and the sample holder
as shown in Fig. 9, each thermocouple was
connected with a mV-recorder and an
automatic temperature recorder. Then, Fig. 9. Details of the sample holder.
the sample holder was placed in the proper
position in the heating tube, and the hea-
ting was started. The temperature of the tube wall was carefully controlled so
that the sample holder would be heated at a constant rate, and the differential
temperature between the reactant and the reference sample was recorded continu-
ously by a mV-recorder. As for the ammonium chloride, after the heating experi-
ment was completed, the sample holder was cooled at a constant rate from near
200°C, and the differential temperature was again measured (cooling experiment).
At the same tirne, the average temperature difference, 4f;,, was measured with
another differential thermocouple. In Equation (49), however, the values of
At1ay(01—~0,) were lower than 5% of the peak area of D. T. A. curves, and their
contributions were relatively small.

3. 2. 3. Results and Discussion

Examples of the D. T. A. curves obtained from the measurements are shown
in Figs. 10 to 12. As described previously, the thermal conductivity with reaction,
A, can be calculated from the peak area of the D. T. A. curve by Equation (49).
These calculated values of /4 are tabulated in Tables 2 to 11.

8 { min)
0 10 20 30
7 T T
5k
JRESHRSI, Fo Ho
>
" . 420
3 | NaHCO
— £ | (Heating) 4 The reference side
o = contains N
< 25wt% NatCO3)
< ~5p 4-4
—— Aterp, °
| - At T Atede,
1 1 i 1 = A 1
10 20 30 0 5 10 15
8 (min) 8 (min)
Fig. 10. D. T. A. curves of sodium bicar- Fig. 11. D. T. A. curves of sodium bicar-
bonate and gypsum (natural- and bonate and ammonium chloride

chemical-). (heating and cooling).
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Fig. 12. A D. T. A. curve of calcium hydroxide.
Table 2. Dehydration and decarbonization of NaHCO3.
No. | dt/do | e vk Am | A A | 2
1. 170 0.04 0.90 g 0.20 0.20 0.17 : 0.31 3.60 0.33
2. 400 0.05 0.89 i 0.23 0.23 0.20 ; 0.38 3.60 0.33
3. 580 0.14 0.81 0.20 0.15 0.16 | 0.36 3.60 | 0.30
Table 3. Dehydration of natural CaSO4:2H30.
No. | dt/do e 2 s . Ay As % \ %
6. 25 0.0 0.90 0.26 0.24 0.21 0.29 0.90 \’ 0.52
7. 110 0.0 0.90 0.28 0.27 0.25 0.32 0.90 0.52
8. 190 0.0 0.90 0.25 0.24 0.22 0.29 0.90 z 0.52
Table 3. Dehydration of natural CaSOy4+1/2H;0.
No. dt/do € A A Am Ar As Xs b5

® N>

25 0.26 0.52 0.25 0.22 0.19 0.45 0.70 0.30
110 0.26 0.52 0.23 0.22 0.21 0.42 0.70 0.30
190 0.26 0.52 0.19 0.17 0.17 0.34 0.70 0.30
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Table 4. Dehydration of chemical CaSO4:2H20.
No. dt/do € A Az Am Ar As As A
4. 250 0.17 0.61 0.19 0.18 0.17 0.29 1.95 0 40
5. 240 0.15 0.63 | 0.22 0.21 0.19 0.34 1.95 0.41
Table 4. Dehydration of chemical CaSO4+1/2H;0.
No. dt/do . 3 A Az Am Ar As As 2
4 250 0.43 0.40 0.15 0.14 0.13 0.29 1.10 0.32
5. 240 |- 0.40 0.41- 0.16 0,15 | 0.14 0.25 1.10 0.32
Table 5. Crystal transformation of NH4Cl1 (heating).
No. dt/do 5 A A As As by
9. 85 0.04 0.57 0.46 0.77 1.10 0.57
10. 140 0.02 0.58 0.46 0.76 1.10 0. 5%
Table 6. Crystal transformation of NH4Cl (cooling).
No. | dtjdo| e 2 A s \ % %
9. —60 | 0.04 | 0.57 | 0.45 | 0.77 | 1.10 = 0.57
10. —175 | 0.02 0.58 0.45 0.74 [ 1.10 0.58
Table 7. Crystal transformation of Agl.
No. dt/db e 2 A A% A
22. 25 0.14 0.16 0.11 0.72 0.16
23. 100 0.14 0.16 0.12 0.77 0.16
24. -30 0.14 0.16 0.11 0.72 0.16
Table 8 Crystal transformation of SiOj.
No. dt/do € A A A/n As/hs
11. 190 0.26 0.53 0.54 1.03 1.01
12. 320 0.25 0.54 0.53 0.99 0.99
13. —210 0.26 0.53 0.52 0.98 0.98
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Table 9. Crystal transformation of BaCOs.

No. dt/dl 5 s A A/ As/ s
14. 155 0.19 1.18 0.54 0.46 0.46
15. 205 0.19 1.18 0.43 0.36 0.36
16. —140 0.19 1.18 0.49 0.42 0.42

Table 10. Dehydration of Ca(OH)a.

No. | dt/do e | A A %
20, 175 026 | 18 | 044 | 024 100
21, 300 | 0.2 | 1.8 | 046 | 025 | 100

Table 11. Decarbonization of CaCOs;.

No. dt/do £ 2 A A/x As/2s
17. 75 0.0 2.30 0.64 0.28 0.38
18. 110 0.0 2.30 0.69 0.30 0.41
19. 175 0.0 2.30 0.68 0.29 0.41

In the calculation of the peak area, the base line was determined by the me-
thod of Rose, et al.1¥ and the curve was integrated graphically. In Tables 2 to 11
2 and /4 denote the effective thermal conductivity in the pre-reaction state and
that with reaction, respectively. Also, i; and 4 are: the thermal conductivity of
the crystal in the pre-reaction state and that with reaction, respectively. The
thermal conductivities of the crystals shown in the tables are the values calculated
“back from the effective thermal conductivities by the Kunii-Smith’s equation!® in
the case of the powder sample, or by the Kingery’s equation!? in the case of both
natural gypsum and marble. For the calculation of 4 by Equation (49), the value
of the thermal conductivity in the non-reaction state (the i-value) is required. In
the progress of a solid reaction such as thermal decomposition, however, the 1-value
itself is considered to vary owing to the change of the void fraction and the crystal
structure.

In the present study, therefore, three kinds of A-values: 2, 2’ (the thermal con-
ductivity in the post-reaction state) and the arithmetical mean of 2 and 1': were
applied to the calculation of the /-value in the case of thermal decomposition and
the calculated results were compared with one another. In Tables 2 to 4’, these
three kinds of /-values are denoted by /;, Ay and /A, respectively. It is seen that
A; Am and /sy are observed to be in a fairly good agreement. Thus, hereafter the
discussion will be presented on the basis of the .;-values, and on the basis of the
As-values which were calculated from the A;-values.

The following interesting results can be deduced from Tables 2 to 11: the
effective thermal conductivity with reaction, /, is smaller than both the effective
thermal conductivity in the pre-reaction state, 2, and that in the post-reaction
state, A/, and the /-value obtained for each reactant is almost constant inde-
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pendently of the heating rate. It was also confirmed for the crystal transformations
employed that the reference samples have little, if any, effects on the measurements
and that the /-value for each reactant is almost independent of any reference
samples employed in the present measurements. This was tested mainly using the
ammonium chloride. As is seen from Tables 5 and 6, in both the heating and the
cooling experiments of the ammonium chloride, the /-values obtained also were
almost the same. In addition, for the marble which reacts at the highest tem-
perature among the reactants employed, an effect of the diameter of the sample
was tested in the range of 9 to l4mm. However, no appreciable effect was
observed.

When thermal decomposition takes place, a diffusion rate of the decomposed
gas or liquid sometimes produces some effects on the reaction. For this reason,
the application of Equation (49) to thermal decomposition would be questionable
under some experimental conditions where the diffusion rate has a larger effect.
However, as pointed out previously and as demonstrated later, the effect of the
diffusion rate is usually much smaller than that of the heat transfer rate in the
case of the sample reactant employed.

Therefore, it can be concluded that the thermal conductivity with reaction has
truely a considerably smaller value than that in the non-reaction state, although
the absolute value of / itself contains an uncertainty in the case of thermal de-
composition. In Fig. 13, the average value of the ratio, 4 to 2, (or /s to )
obtained for each reactant is plotted
against the heat of its reaction per unit

volume, . In a preliminary discussion, L S S e A A LA RS
we have tested a few kinds of plots o= \ o
concerning the relations between the ~ | X  BaC03
ratio, /4 to 2, and the parameters ex- L 4 At gggggfa
pected to be related. However, the gos-og.%g&zzﬂzo

parameters other than the heat of rea- < ||a cCaS0a2t0 I L
ction have been observed to have no < 1% nasoamo gt
methodical relations to the ratio, A to ool LT Lo

2. Even the reaction temperature and 5 10 50 100 500 1000
the type of reaction are unlikely to be A=H-#) (callcm)

related reasonably to the ratio. There- Fig. 13. The relation 4/ and the heat of
fore, it has been concluded that only reaction.

the heat of reaction is the parameter
to have a methodical relation to the
ratio.

It is seen from Fig. 13 that the ratio, 4/i, decreases with increase in the
@-value in a similar form to that of a probability distribution function. The
curve starts from about unity for the quartz, which has the smallest heat of
reaction among the reactants employed, and reaches around 0.25 for the marble
with the largest heat of reaction. Hereafter, the curve seems to be saturated.

In an endothermic solid reaction like crystal transformation and thermal de-
composition, the heat of reaction generally can be roughly related to the activation
energy of its reaction. As is well known, the activation energy of such reaction

is a good measure of disorder or disintegration of the crystal lattice which would
take place during the very period when the reaction takes place.

The theoretical background of the reason why the value of A (or A;) is smaller
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than those of 2 and 1’ (or A;) would be very complicated. However, it is suggested
from the results and the discussion through Fig. 13, as one of the principal reasons,
that the crystal lattice assumes a disordered or disintegrated state (the pseudo-
amorphous state) owing to the violent thermal vibration of the bonded molecules,
and that the dependency of the ratio, 4 to 4, (or As; to ;) on the @-value repre-
sents the change in a degree of disorder or disintegration. In the low and the
medium temperature range, the thermal conductivity of an amorphous solid is
usually smaller than that of a crystal. In a similar temperature range, the specific
heat of an amorphous solid is nearly the same as that of a crystal, or is slightly
smaller. Therefore, it seems reasonable that the specific heat is assumed constant
in comparison with the heat of reaction.

As has been discussed in the theory of measurement, in the present method,
the thermal conductivity with reaction was determined only on the basis of the
peak area of the D. T. A. curve (the basic equation was first integrated with
respect to time). Also, in the case of thermal decomposition, the diffusion rate of
the decomposed gas may have some effects on the determination. Therefore, it
seems advisable to confirm theoretically the reappearance of the peak shape and
the peak temperature of the D. T. A. curve.

If the concept of the overall specific heat described in Section 2. is wvalid, and
if the type (a) or the type (c) shown in Fig, 1 is assumed to the relation between
the overall specific heat and the temperature, Equation (44) is rewritten as

()G )+ (o) (G )= () 5 G )+ ) 60
2 20 X 00 7 o7 or r or or

where Ki=H/{cp(tyr—1ty:)}. t1: and fy; denote the initial and the final tempera-
tures of the reaction. Equation (50) with the initial and the boundary conditions,
Equations (45) and (46), was solved by a numerical method using the thermal
conductivities with reaction which were obtained in these measurements, and a
comparison was made between the theoretical D. T. A. curve and the experimental
one. Examples of the results are shown in Figs. 10 to 12.

Furthermore, taking sodium bicarbonate as an example, a comparison was made
for the case that some quantity of sodium bicarbonate was added to the reference
sample, and this example is shown in Fig. 11. Through Figs. 10 to 12, it is observed
that the theoretical and the experimental D. T. A. curves are in a fairly good
agreement with regard to the peak shape, the peak temperature and the peak time.

Summarizing the above results, it was shown that the thermal conductivity
with reaction was smaller than those in both the pre- and the post-reaction states.
Furthermore, it was also noted that the crystal thermal conductivity with reaction,
which was excluded from the effects of the void fraction, became almost constant
for every reactant, independently of the experimental conditions, and that temporary
disorder or disintegration of the crystal lattice during the very period of the
reaction was assumed to cause such differences between the thermal conductivity
with reaction and those in the non-reacting states.




134 S. Sugiyvama and M. Hasatani

4. Unsteady Heat Conduction Accompanied by an One-Stage
Endothermic Solid Reaction

In this section, an unsteady heat conduction problem accompanied by an one-
stage endothermic solid reaction is dealt with theoretically. The term, ‘One-Stage’,
means that the reaction concerned takes place singulary under the condition given,
only in the one-narrow and limited temperature range. We have a number of
examples of this type of endothermic solid reactions. Those are: the crystal trans-
formations of ammonium chloride, silver iodide, quartz, barium carbonate and others,
and the thermal decompositions of sodium bicarbonate, kaolinite, calcium hydroxide,
calcium carbonate and others.

As is seen from the foregoing discussions, the principal interests of the present
theoretical analysis are in the overall specific heat and in the thermal conductivity
with reaction. The applicabilities of the overall specific heat to those one-stage
reactions have already been discussed partially in the author’s previous works con-
cerning the cyrstal transformations of ammonium chloride, quartz and barium
carbonate!3’ and the thermal decompositions of sodium bicarbonate!4 and kaoli-
nite!®. In this section, therefore, it is intended to discuss an effect of the thermal
conductivity with reaction on the unsteady heat conduction accompanied by the
one-stage endothermic reaction as well as the applicability of the overall specific
heat.

The theoretical results obtained from a numerical treatment of the basic diffe-
rential equations are compared with the experimental data measured in the experi-
ment of one-dimensional, unsteady heat conduction in both a sphere and a slab. The
reactants chosen for the experiment are calcium hydroxide and calcium carbonate,
which have recently an increasing new need in the area of the recovery or the
storage of waste heats. The theoretical results also are compared with the results
calculated from the theory which does not involve an effect of the thermal con-
ductivity with reaction.

4. 1. Theoretical Analysis

The basic equations for one dimensional, unsteady heat conduction accompanied
an endothermic solid reaction can be written as follows, using the concept of overall
specific heat:

(For a sphere)

Co(0(-30) =2 (1 or 2L ) (51)

7,2

(For a slab)

Coo(-S5) =2 (155 (52)

where A(f) is a thermal conductivity of a solid and has a different value, the
thermal conductivity with reaction, in the range of the reaction temperature, from
those in the non-reaction states. The initial and the boundary conditions of Equa-
tions (51) and (52) are:
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(For a sphere)

(For a slab)

0=0, 0<x<{L; t=t,

207 x:L ; ("

x==0; <

ox/

x)

)

=0

135

(53)

(54)

where #,, t, and #; denote a certain constant temperature below the reaction
temperature, a heating temperature and the surface temperature of a sample, res-

pectively, and L is the thickness of a slab.

As has already been discussed in Section 2., if the concept of the overall
specific heat is valid for the reaction concerned, the fraction of the reaction (the
conversion) can be dealt with as a function of temperature only. Therefore, at the

same time, it is also allowed to deal
with the physical properties of the solid
as a function of temperature. This is
illustrated schematically in Fig. 14. Si-
nce, in Fig. 14, it is assumed that the
conversion increases linearly with in-
crease in temperature after the reaction
starts, both the values of Cp(f) and ()
also become constant in the range of
the reaction temperature. Although such
a linear relation between the conversion
and the reaction temperature is not
necessarily true (therefore, both Cp(#)
and A(#) also do not have the constant
values.), this assumption may be useful
to reduce the troubles in a calculational
procedure. ,
Dividing a sphere (or a slab) into

Cplt) /ep,A(t) , £(1)

| Colt)cp

1

-~

{
teee)

0.0

Fig. 14. Illustrative variations of the
physical properties of a sample.

a thin shell (or a thin sheet) with a constant space interval, s, in the direction of
heat flow and rewriting Equation (51) (or Equation (52)) into the form of a
difference equation, we get, for the i-th increment (except for the first and the

final increments),

o Cp(ti)!)az')Vi

A (tz‘+l) + 7\(@) l zi+1"ti
2

S
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_._Aiw%{ 7‘<ti> ‘f‘;(ti-l) } ti—:sti—l ]A@ (55)

where 4f; denote a temprature increase during a time interval, 46, and A and V
are a heat conduction area (a geometric mean area beween the two increments)
and a volume of the increment, respectively. Calculating Equation (55) numerically
according to a successive method, we can obtain a theoretical, unsteady temperature
distribution in a sphere (or in a slab).

The theoretical results thus obtained by assuming the physical properties illu-
strated schematically in Fig. 14 is denoted, hereafter, by ‘calc. 1, and the results
calculated from the theory which assumes constant physical properties, by ‘calc. 2.
In the ‘calc. 2’, only the overall specific heat is assumed to be the same as that in
the ‘calc. 1’, and the other properties, those in the post-reaction state.

As is described later, in the present experiment, a coupled radiation and natural
convection heat transfer concerns the boundary condition on the surface of the
sample. Therefore, a heat transfer coefficient, %, is expressed in both the theories
as follows:

h=h,+h, (56)

hc:a(tw —"[8)1/4
(57)
hr ::¢s—zvg(T1u *E‘ Ts) (Tr% ‘{“Tf)

where %, and /%, denote a natural convection- and a radiation-heat transfer coeffi-
cient, respectively, and ¢,_,, ¢ and T, an overall gray absorptivity of radiation, a
Stefan-Boltzmann constant and absolute temperature, respectively.

4. 2. Experimental Apparatus and Procedure

4. 2. 1. Samples

A solid sphere and a solid slab employed in the present experiment were
formed by pressing powdered calcium
hydroxide of reagent grade. The dia-

meters of spherical samples were 1.0, o)

2.0, 3.0 and 4.0 cm, and the thickness 7]

of a slab sample (a disc of 18 cm in ?) gmerm"b“‘““ce
diameter), was in the range of 2.0 to ® ;emi;R::fer
5.0 cm. A special care was taken of J © ® Ffmdge‘
pressing the powdered sample to depress 1 ® sic Heater

a scatter in the values of the density . ® Reaction Tube
and the thermal conductivity of the @ Thermocouples
solid sample formed. Thus, the densities ‘Q Sample Sphere
of the solid samples were: 1660+10 kg/ 7 ®

m? for the spherical sample, and 1430+

20 kg/m3 for the slab sample, respec- %

tively.

Fig. 15. (a) An experimental apparatus
used for a spherical sample.
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@ SIC Main Heater
@ sample

O ©
Y S —— @ ~ @ sample Holder
® g % il’iﬁig Plate @® Sample sphere
~r/\/vvwvvv\/vv\,——:

® Ni-Cr Sub Heater @ Thermocouple

X Thermocouples ® Insulating tube
Fig. 15. (b) An experimental apparatus Fig. 15. (¢) Details of the thermocouple
used for a slab sample. connection employed for temperature

measurement in a spherical sample.

4. 2. 2. Heating Apparatus

1) For a Spherical Sample

A schematic drawing of the heating apparatus used for a spherical sample is
shown in Fig. 15 (a). A porcelain reaction tube of 9.0 cm in inner diameter and
60.0 cm in height was heated from the surroundings in a vertical electric furnace
with eight rod heaters made of silicon carbide. Above the top of the furnace, a
thermo-balance of a minimum sensitivity of 0.1 mg was mounted to measure a
weight decrease in the sample with the reaction. The temperature on the whole
inner surface of the reaction tube (the heating temperature) was kept at a given
constant in the range of 650 to 750°C by controlling an electric current passing
through the rod heaters by seperate four slide-transformers. After a sample sphere
was placed at a fixed position in the reaction tube, the measurement of unsteady
temperature distribution and weight decrease in the sphere placed was started.
The temperature distribution was measured with chromel-alumel thermocouples and
recorded continuously on an automatic temperature recorder. The weight decrease
was measured at a time interval of one to two minutes. To enable the simultaneous
measurement of temperature and weight, the thermocouple wires were connected
with the lead wires of the temperature recorder through a liquid mercury pool
(a Hg-junction).

2) For a Slab Sample

A porcelain tube of 22.5 cm in diameter and 7.0 cm in height was used as the
reaction tube for a slab sample. The above mentioned slab sample (the disc) was
set in the tube as illustrated in Fig. 15 (b), and the powdered sample was filled up
in the gap between the side wall of the sample and the inner wall of the tube. A
stainless steel plate of 5 mm in thickness (a heating plate) was placed on the top
of the reaction tube and heated uniformly from above by eight rod heaters of
silicon carbide, which were arranged across each other. The heating temperature
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(the temperature on the lower surface of the plate) was raised exponentially with
time in the form, t,=t¢-+tz{l—exp(—p68)}. To satisfy the boundary condition on
the lower surface of the sample, x=0; (9t/9x)= 0 (adiabatic), the lower surface
also was heated by a nichrome wire heater of 2 kw-power through an insulating
brick disc, and the adiabatic condition was monitored by measuring the temperature
distribution in the brick disc. On the outer side wall of the reaction tube, another
auxiliary nichrome wire heater was wound to make the heat loss from the side
wall the minimum with aid of an insulator. The heat loss also was monitored by
measuring the radial temperature distribution in the sample disc.

4 2. 3. Measurement of Temperature Distribution

Flg 15 (c) shows the details of the thermocouple connection used to measure
the unsteady temperature distribution in the spherical sample. The shrinkage of a
solid sample usually takes place with dehydration of calcium hydroxide. Therefore,
it is necessary for measuring the temperature distribution accurately to hold the
thermocouple bead at a fixed position in the sample with a special care. For this
sake, in making the connections of thermocouples for the spherical sample, the
wire of negative side was shared with the wires of positive side as shown in Fig.
15 (¢). Thus, the interval between the temperature measurement positions was
kept constant thr oughout even though the shrinkage took place. In the case that
the shrinkage is 1elat1vely small, other cares are unlikely to be necessary. Within
the range of the experimental conditions employed, the shrinkage of the spherical
sample was less than 2 to 3 percents of the initial diameter.
~In the case of the slab sample, the shrinkage of the sample had only a lesser
effect. However, it was still necessary for an accurate measurement to bond the
bead of the thermocouple to the sample at a fixed position.

The thermocouple employed was a chromel-alumel thermocouple of 0.1 to 0. 3
mm in diameter, and the number of the temperature measurement positions was
two.or three for the spherical sample and six for the slab sample.

4. 2. 4. Determination of Conversion

The conversion of the spherical sample was determined from the relation
between the measured weight decrease and time according to the following equation:

b= (w,—w) / (0,~10,)

where w; and w, denote the initial weight and the weight at the equilibrium,
respectively. The sample weight measured at the equilibrium was in a quite good
agreement with that calculated from the stoichiometric relation of the reaction.
Therefore, the dehydration of the calcium hydroxide sample employed was consi-
dered to be completed irreversibly within the range of the experimental conditions
employed. For the slab sample, based on the measured temperature distribution, a
local conversion was first calculated from the relation assumed between the con-
version and the temperature. Then the conversion of the slab sample was deter-
mined by integrally averaging the local conversion calculated.

4. 3. Results and Discussion

4. 3. 1. Measurement and Evaluation of Physical Properites
For the reaction temperature of calcium hydroxide (the equilibrium temperature
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of dehydration under an atomospheric pressure) a few measurements have been
made previously. Those are: 540°C by Johnston; et «l.'%, and 512°C by Halstead
and Moore!”. If a solid sample is heated from the surroundings at a higher
ambient temperature than such an equilibrium temperature under an atomospheric
pressure, the effective initial temperature of thermal decomposition of the solid
should be almost equal to this equilibrium temperature so long as the diffusion
rate of the decomposed gas has no controlling effect. This is mainly because
thermal decomposition usually has a relatively large activation energy. As men-
tioned above, the ambient temperature (the heating temperature) in the present
measurement was in the range of 600 to 750 C, being much higher than the equi-
librium temperature, and the measured effective initial temperature of dehydration
was around 520°C with a very little scatter dependent on the heating conditions.
Thus, the initial reaction temperature was assumed to be 520°C. For the final
reaction temperature, there is no established method to be determined. Therefore,
applying several values ranged between 525 to 570°C to the final reaction tempera-
ture, a preliminary calculation of Equation (51) and (52) was carried out, and a
comparison was made between these results. The differences observed between
the results were a relatively little, especially no appreciable differences were ob-
served for the final temperature lower than 540°C. Thus, the final temperature
was assumed conventionally to be 540 °C in the present calculation.

For the heat of dehydration, the value, 337kcal/kg, was applied, which was
measured by Halstead and Moore!” according to the van't Hoff equation. Using
this value, the overall specific heat, Cp(#), was calculated as follows;

C, (1) =c,+H(dk/at)
or

C,(1) =c¢,y, 1<t

Co(t)=Kc,y, t,<t<t, (58)

Co(D) =¢ps, 12515

where K=1-+H/{cp1(ty—1t1)}, and ¢4, f5, cp; and cp, denote the initial and the
final temperatures of the reaction, the specific heats in the pre- and in the post-
reaction states, respectively.

Fig. 16 shows the thermal conductivities in the non-reaction states measured
by a hot wire method the applicabilities of which have been demonstrated in Section
3, in the ranges of the temperatures between 100 and 400°C for the calcium
hydroxide samples, and between 200 and 750°C for the calcium oxide samples,
respectively. For the thermal conductivity with reaction of calcium hydroxide, the
measured ratio, //41, (41: the thermal conductivity in the pre-reaction state) is
0.254-10 % as shown in Table 10.

For the specific heats and densities, the respective constant value was applied
to each of the reaction states, since the temperature dependencies of these quantities
are usually small, compared with that of a thermal conductivity.

The gray emissivity of the sample, e;, was calculated from the spectral emis-
sivity data of calcium oxide, ¢,, according to the following integration:
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esz—-g‘:ekEmTS)cn/oTz

The spectral emissivity of calcium oxide was measured at about 600 °C by the Double
Beamed Null Method in the range of the wave-lengths between 1.0 and 15.0 um,
and the result is shown in Fig. 17. Using the gray emissivity thus obtained, the
overall gray absorptivities of radiation were evaluated as follows:

o ® Ca(OH)2 £=1420 Kg/m3
e A Ca0 £=1240 Kg/ m?
£30r O Ca(OH)2 P=1650 Kg/ m?3
E T -5 A Ca0 £=1340 Kg/m?
7 20¢ ,, O
x ‘.\e~.‘\“\
~ 1.0 @@L— —A . _A
< TTome-e Ay T A e A~
L 1 1 i
0 200 400 600 800
t(°C)

Fig. 16. Thermal conductivities of calcium hydroxide and calcium oxide measured
by a hot wire method (non-reaction state).

Spectrat
Emissivity of Calcium Oxide
t=600°C
10k
1
2
W
.05k
Fig. 17. A spectral emissivity data of calcium
oxide measured at 600 C.
00 1 1 1
"] 10 15
Alum?}

(For a spherical sample)
¢s_w=1/{(1/es) +(Ds/Dy)*(1/er—1)} (59)
(For a slab sample)
bs-w=1/{(1/Fs_w)+1/ew—1)+1/es—1)} ] (60)
Fon=FoyFs e Fr /(1= Fy_2) J
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where F denotes a geometric factor of radiation.
The natural convection heat transfer coefficient was evaluated from the equa-
tion reported by Yuge!®> for the spherical sample and neglected for the slab sample.
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4. 3. 2. Unsteady Temperature Distribution in a Solid Sample

Figs. 18 to 20 show examples

k(=) 05

00 02 04

B(miﬁg
- Fig. 18. A comparison between the ex-
perimental data and the calculated
results of the unsteady temperature
distribution (for a spherical sample).

of comparisons between the experimental data
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—r fexp,

weme tealet

fca!c.’t

0

L 1 1
215  3/5 415 1
(L=-x)/L (=)

1
115

Fig. 19. A comparison between the experimental data and the calculated results
of the unsteady temperature distribution (for a slab sample).

Sample: Calcité

1000
S 900
Dp =0.027m
) e exp.
700 ——-- | cale(l)
—-— |—calc.(2)
l 1 | 1 1 1 [ ! . 1
0 10 20 30 40 50 60 70 80
0 (min)

Fig. 20. A comparison between the experimental datal® and the calculated results

for a calcite sphere.
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and the calculated results of the unsteady temperature distribution in a solid sample.
Figs. 18 and 19 show those in a spherical and a slab samples, respectively, and Fig.
20 shows that in a spherical calcium carbonate (a calcite) sample the experimental
work of which was carried out in the author’s previous work!?), and the physical
properties employed of which are shown in Table 12.

Table 12. Physical properties of a calcite and CaO formed by the reaction.

Sample H cp () o(e) ) ke 1 A
(kcal/kg)| (kcal/kg C) (kg/m3) | (kcal/m hrC) (kcal/m hrC) ;
CaCOg3; 426.0 0.31 (900C) | 2710 (0.0) 2.30 (900C) | 0.64~0.69 (900~920CC)
CaO 0.23 (900°C) | 1740 (0.48) | 1.00 (900C)
Sphere Slab
Dp= 30
100k p=30cm 200k to:gsé% ":/
tH= 5 A Ua
- e exp N " s
I calc.l o B =025 // e
i.;,‘ r ——  calc.2 ‘; . 9/‘/‘
»-z 4: E ’I,f/"/
b 50~ ',»"‘/* ] s
T 100 Ve
e ,"'” et "’ ‘/ @ t
- L R ’/ Abexp,
L Pt R 7 e Afcalet
e —eerems A Leale2
1 1 i . ,
° 650 700 750 0 T a0 sowio
tw(°C) ' L(m)

Fig. 21. Temperature differences between
the surface and the center of a cal-
cium hydroxide sphere at 2=0.5.

Fig. 22. Temperature differences between
the upper and the lower surfaces of
a calcium hydroxide slab at k2=0.5.

In this kind of heat transfer problem, the maximum temperature difference
produced in the solid is also a good measure to discuss its characteristics. In Figs.
21 and 22, the maximum temperature differences at the fixed conversion, £=0.5,
are plotted against the heating temperature (for a spherical sample) or the thi-
ckness of a sample disc (for a slab sample).

As is seen from Figs. 18 to 22, the following experimental trends (denoted by
a solid line in the figures) were obtained within the range of the experimental
conditions employed: (1) both the temperatures at the center of the spherical
sample and on the lower surface of the slab sample remain the nearly constant
value equal to the initial reaction temperature of the reactant (about 520°C for
calcium hydroxide and about 900°C for a calcite) throughout the whole period
excepting the initial and the final stages of the reaction, and (2) the maximum
temperature difference produced in the sample during the reaction increases with
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the increases in the conversion, the heating temperature and the radius or thicknes
of the sample. '

These experimental trends are also in fairly good agreements with both the
trends observed from the results of the ‘calc. 1’ (denoted by a dotted line) and
from those of the ‘calc. 22 (denoted by a chained line). Therefore, it would be
first concluded that an unsteady heat conduction has a controlling effect on the
overall kinetics of an one-stage endothermic solid reaction like the dehydration of
calcium hydroxide and the decarbonization of a calcite.

In a comparison between the ‘calc. 1’ and the ‘calc 2’, the ‘calc 1’ was cbserved
to show a better coincidence with the experimental data especially for the maximum

temperature difference than the ‘calc. 2’ within the range of the experimental
conditions employed.

4. 3. 3. Dead Time of Reaction

The results of the dead times of the reactions are shown in Figs. 23 and 24.
In Fig. 23, the ratios of the theoretical dead times to the experimental ones,
Ocare-/Oeap., of the dehydration of calcium hydroxide are plotted against the heating

L{m)
0 2 4 6x107
T T T T H T
151

a e o e e e e e ]

R P I i

=10 X g ] ®

i1 ¢ °

[T T - S X O e ] 1.0 T T
i o8t .

Ocates/Bexp.  Bcalc2/ Bexp. 06 |
05} —~
e (e Slab \l’ 7 Dp 20027 m
= o Sphere Dp=10 =4k .4:/ $ =2700 kg/m® |
S o 20 g /’ H = 426keal/kg
r v v 30 // | exp.
A A 40 0.2f / -~ | calc.(1) b
X107 /' e )]
00 ! L L 1 L ! ! L L i
650 700 750 00 02 04 08 08 10 12 14
tw('C) 6 (hr)

Fig. 23. Comparisons between the calcula- Fig. 24. A comparison between the calcu-
ted and the experimental results of lated and the experimental relations
the dead-times of the reaction (for of the conversion to time (for a cal-
Ca0). cite).

temperature (for a spherical sample) or the thickness of a sample disc (for a slab
sample). The heating temperature for the slab sample in Fig. 23 is quite the same
as that in Figs. 19 and 22. In Fig. 24, comparisons are made between the experi-
mental and the theoretical relations of the conversion to time, obtained under the
same condition as that in Fig. 20 for the decarbonization of a calcite. As is seen
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from Figs. 23 and 24, within the range of the experimental conditions employed,
the results from the ‘calc. I’ were also recognized to be in a better agreement with
the experimental data than those from the ‘calc. 2’ for both the dehydration and
the decarbonization. However, the difference between the ‘calc. 1’ and the ‘calc. 2’
is not so large as that in the case of the temperature distribution. Roughly speak-
ing, a heat flow rate in a solid is, in general, determined by the product of a
thermal conductivity and a temperature gradient in a solid. In the ‘calc. 1, the
thermal conductivity is smaller but the temperature gradient produced in the solid
is larger, compared with those in the ‘calc, 2'. Therefore, the product of these two
quantities would have no large differences between the two cases. This may be a
principal reason why the thermal conductivity with reaction has only a smaller
effect on the theoretical dead times of the reaction than that on the temperature
distributions in the solid sample.

Summing up the above results, it was shown, within the range of the experi-
mental conditions employed, that the theoretical analysis taking account of the
thermal conductivity with reaction fitted the problem of an unsteady heat conduc-
tion accompanied by an one-stage endothermic solid reaction better than the theory
which did not involve an effect of the thermal conductivity with reaction. However,
it was also shown that as long as the dead time of the reaction was concerned,
the two theories had no large difference.

5. Unsteady Heat Conduction Accompanied by a Two- or a Multi-Stage
Endothermic Solid Reaction

In this section, it is aimed to discuss the applicabilities of the overall specific
heat and the thermal conductivity with reaction to the problem of an unsteady
heat conduction accompanied by a two- or a multi-stage endothermic solid reaction.
In a two- or a multi-stage reaction, the reaction kinetics become more complicated
and the heat capacity of a solid has a much more serious effect than those in an
one-stage reaction. However, if the concept of the overall specific heat is proved
to be also applicable to this problem, the mathematical difficulties involved in this
problem would be greatly reduced, because the difference between a calculation pro-
cedure in a two- or a multi-stage reaction and that in an one-stage reaction is
usually very small. In the case of an one- stage reaction, the overall specific heat-
temperature relation belongs to the type (a) or the type (b) shown in Fig. 1. On
the other hand, in the case of a two- or a multi-stage reaction, in general, either
the type (c) or the type (d) is applied to this relation. This may be the largest
difference between the two cases.

Again the same type of the basic equation as Equation (9) is applied to the
problem of an unsteady heat conduction accompanied by a two- or a multi-stage
endothermic solid reaction. If the appropriate physical properties of this reaction
system are known as functions of temperature, the basic equation would be solved
numerically by a similar method to that in Section 4.

5. 1. Two-Stage Dehydration of Gypsum?, 20,21

5. 1. 1. Modelling of the Overall Specific Heat
As shown before in Fig. 10, in the two-stage dehydration of gypsum, the two
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dehydration reactions (one is CaSO,:2H,0

—> CaS0,-1/2H,0+3/2H,0 and another

is CaS0,-1/2H,0 —> CaSO, -+ 1/2H,0) ! e
usually take place separately in the two 14K, I p”
quite different regions of the reaction
temperatures. In this type of two- (or
multi-) stage endothermic solid reaction,
therefore, the discussions made for an one
stage reaction in Section 4 may be also 1
valid for each of the two reactions, and | |
then the relations between the physical
properties and temperature are expressed
in the form shown schematically in Fig. Fig. 25. Illustrative variations of the phy-

25. Thus,the overall specific heat becomes, sical properties for a two-stage
in this case endothermic solid reaction.
3

(=)

k(t)

14K,

Co(t) /ey (=)

t t
“redd

C(@®)=cp, 1<t

Co(t) =Ky, t,<t<t,

Co(D)=0pa, 1, <8<t (61)
Co(t) =Ky, ts<<t<t,

Co(t) =cCpyy >0y /

where K}I].*}“Hl/{Cp](tz—tl)} and K2:1+H2/{Cp2(i4~t3>},t1 and iy denote the
initial and the final temperatures of the first stage reaction, and f; and #, denote
those of the second stage reaction, respectively. H,; and H, are the heats of the
first and the second stage reactions, and c¢p;, ¢p; and c¢p; are the specific heats
of CaS0O,-2H,0, CaS0O,-1/2H,0 and CaSO,, respectively. The other physical pro-
perties including the thermal conductivity with reaction have already been shown in
Fig. 7, Tables 1 and 3 to 4. Using these relations and solving numerically Equation
(51) with the initial and the boundary conditions, Equation (53), we can obtain a
theoretical, unsteady temperature distribution in a spherical gypsum sample, accom-
panied by the two-stage dehydration. ’

5. 1. 2. Unsteady Temperature Distribution in a Spherical Sample

Figs. 26 and 27 show typical examples of comparisons between the experimental
data and the theoretical results of the unsteady temperature distribution in a
spherical sample made of natural gypsum from Africa. In Figs. 26 and 27, the
‘calc. 1’ and the ‘calc. 2’ denote quite the same as those in Section 4. As is seen
from Figs. 26 and 27, for the two-stage dehydration of gypsum, the same trends as
those in Figs. 18 to 20 were also observed in the range of the experimental con-
ditions employed, and the ‘calc. 1’ was shown to fit also the problem of an unsteady
heat conduction accompanied by a two-stage endothermic solid reaction like the
dehydration of gypsum better than the ‘calc. 1’.

5. 1. 3. Dead Time of Reaction
As has already discussed extensively in Section 4 and also as is seen from
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Fig. 26. A comparison between the ex- Fig. 27. A comparison between the ex-
perimental and the calculated results perimental and the calculated results
of unsteady temperature distribution of unsteady temperature distribution
(for a spherical natural gypsum). (for a spherical natural gypsum).
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Figs. 26 and 27, the ‘calc. 1’ is a better theory than the ‘calc. 2. However, as long
as the dead time of the reaction is concerned, in general, there is no serious
difference between the two theories. In Figs. 28 and 29, the experimental dead
times of the two-stage dehydration of natural- and chemical-gypsum are compared
with the theoretical results obtained from the ‘calc. 2'. Fig. 2829 shows the effects
of the thermal diffusivity and the heat of reaction of a solid sample employed as
well as of the heating temperature on the value, 6,/0,, (¢: experimental and f:
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theoretical). The thermal diffusivity and the heat of reaction of a solid sample
were varied in the ranges shown in Table 13 by mixing chemical gypsum with the
inert material like alumina, silver, diatom earth and graphite. In Fig. 292D the

Table 13. Physical properties of the chemical gypsum samples mixed
with inert materials.

Content of inert _
material mixed o v o a=1/cpp
(wt %) (kg/m3) (kcal/kg C) | (kcal/m hr 'C) (m?/hr)
Al203 20 1.50 (x103) 0. 260 0.25 0.64 (%103
40 1.58 0.248 0.30 0.75
60 1.60 0.236 0.35 0.93
80 1.76 0.224 0.39 0.99
Ag 20 1.69 (x103) 0.229 0.32 0.83 (x103)
40 2.11 0.189 0.48 1.2
60 2.74 0.143 0.85 2.2
80 4.06 0.100 2.00 4.9
Diatom earth 20 1.24 (x103) 0. 260 0.19 0.59 (x103)
40 1.15 0.240 0.17 0.62
60 0.97 0.230 0.16 0.72
Graphite 30 1.30 (x103) 0. 260 0.55 1.6 (x103%)
50 1.34 0. 250 1.00 3.0
Gypsum 1.44 (x103) 0.272 0.20 0.51 (y>< 10%)

non-dimensional dead times, ., are plotted against the non-dimensional heat transfer
coefficients, Bi, (or the Biot number). In this experiment, a natural gypsum sample
was immersed in a fluidized bed to vary the heat transfer coefficient in the range
between 28 and 290 kcal/m2. h. C. From both Figs. 28 and 29, it is seen that the
experimental dead times are in a fairly good agreement with the theoretical results
from -the ‘calc. 2’ in the extremely wide range of the experimental conditions
employed. Thus, the ‘overall specific heat’ model was concluded to have also the
powerful applicabilities to the problem of a two-stage endothermic solid reaction
like the dehydration of gypsum. However, it should be noted that 6.,». becomes
gradually smaller than 6;,.,. as the heating rate becomes slower and that 0..p.
becomes larger than G.,.,. as the heating rate becomes higher. These two opposite
trends which may limit the applicabilities of the overall specific heat are due to
the too rough simplification of intrinsic reaction kinetics in the former case??
and to the neglect of diffusion of the decomposed gas in the latter case?®, res-
pectively.

5. 2. Multi-Stage Thermal Decomposition of Coal and Polypropylene?t, 25

In the case of a multi-stage (or a continuous) endothermic solid reaction like
the thermal decompositions of coal and organic polymers, a key factor is to deter-
mine or to model the overall specific heat-temperature relations. Since in these
reactions many kinds of a single reaction (perhaps involving a phase change), in
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general, take place simultaneously or successively in an extremely complex way, it
is difficult to assume the overall specific heat only from a basic reaction kinetic
data as in an one-stage or a two-stage reaction. Although a few methods like a
differential scanning calorimetry have been reported to discuss the basic reaction
kinetics of those thermally decomposing materials, the overall specific heat of
those materials, in actual cases, may be affected by the heating rate, the material
dimensions and the diffusivities of decomposed gases as well as by the basic reaction
kinetics. Therefore, only a conventional method would be available to model the
overall specific heat of those materials in engineering applications. For the thermal
conductivity with reaction, its determination would be more difficult than that of
the overall specific heat.

Again, Equation (51) with the initial and the boundary conditions, Equation
(53), is applied to the problem of an unsteady heat conduction accompanied by a
multi- (or a continuous) endothermic solid reaction in a spherical sample. Taking
a briquet sphere and a sphere of polypropylene-kaolin mixture as samples, the nu-
merical solutions calculated from Epuation (51) are compared with the experimental,
unsteady temperature distributions in the samples in Figs. 30 and 31. The physical

Dp=8.5¢cm —cal.
ty=115+ 885 —-- - eXp.
(1 - e00458 )

10007 V.M. 20°% -

8Q0

15 - N
T © 300/} 47 —_— eXp. kcxolmo
600 \ i/ e exp. PP 20%
| T exp. PP 40%
200¢: / / —— cdlc. PP 20%
400 i 17 ¢ —-— calc. PP 40%
4 =0. m
100k Dp=0.054
200 ] tw=700°C
. i I
1 ] i 1 L
8 16 24 32 40 0 30 60
o (min) 8 (min)

Fig. 30 A comparison between the expe- Fig. 3i. A comparison between the expe-
rimental and the calculated results of rimental and the calculated results of
the unsteady temperature distribution the unsteady temperature distribution
for a briquet sphere. for a sphere of polypropylene-kaolin

mixture.

properties employed in the calculations are: 2=0.94 kcal/m.h.C, ¢p=0.34 kcal/kg
T, 0=1,300 kg/m? and e,=0.9 for a briquet, and the values shown in Table 14 for
a polypropylene-kaolin mixture. Of both the samples, Figs. 32 and 33 show the
overall specific heats employed, which were modelled by a trial-and-error method.
As is seen from Figs. 30 and 31, the ‘overall specific heat’ model would have basi-
cally a powerful applicability to a multi- (or a continuous) endothermic solid
reaction, if a more reasonable way is established to model the overall specific heat.
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Table 14. Physical properties of the sphere of polypropylene-kaolin mixture.

thermal specific density .therfn:al mel.ting
conductivity heat . diffusivity point
(kcal/m hr 'C) |(kcal/kg'C) (kg/m?) (m?/hr) T
kaolin 0.8 0.2 1.6x108 2.5x1073
P. P. 20% +kaolin 80% 0.45 0.25 1.2 1.5
P. P. 409 +kaolin 607 0.42 0.3 1.1 1.3
polypropylene 0.10 0.46 0.9x103 2.4x1074 164~170
S - -——
PP 40%
rm - Len
4+ i H H
0 e ;
S5l L ; *PP 20 %
= ’ 1
T 38 VM. 20% 2 9 i
§30of 25 ©
?s 2.0~ 17 1
© 11
1.0F i 1 L PR fake
) 0 100 200 300 400 500
80 300 500 600 700 1000
t(eC) t (°C)

Fig. 33. The overall specific heat of a
polypropylene-kaolin mixture.

Fig. 32. The overall specific heat of a
briguet.

6. Nomenclature

radius of a sample sphere or of a thin wire [m]

a =

b = radius of a cylindrical sample [m]

Bi = Biot number [—]

cp = specific heat of a sample solid [kcal/kg'C]

Cp(t) = Overall specific heat [kcal/kgC]

Dy = diameter of a sample [m]

E = monochromatic emissive power [kcal/m2hr]

o = geometric factor of radiation [ —]

h = heat transfer coefficient [kcal/m2hrC]

he = natural convection heat transfer coefficient [kcal/m2hr'C]

hr = radiation heat transfer coefficient [kcal/m2hr'C’]

H = heat of reaction per unit mass [kcal/kg]

k = fraction of reaction [—]

K = a constant [ —]

! = length of a sample [(m]

L = thickness of a slab [m]]

Q = heat of reaction per unit volume [kcal/m3]

Qo = heat transmitted from the wire per unit volume and unit time [kcal/m3hr]
r = distance from the center of a spherical or cylindrical sample [m]
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= temperature ['C]

temperature difference ['C]

absolute temperature [°K]

= sample weight [kg]

distance from the lower surface of a slab [m]

axial distance [m]

thermal diffusivity [m?2/hr]

emissivity [—]

time [hr]

= dead-time of the reaction [hr]

= thermal conductivity of a sample solid [kcal/m hr’C]
= thermal conductivity with reaction [kcal/m hrC]

= bulk density of a sample solid [kg/m3]

= dimensionless time [—]

= overall gray absorptivity of radiation (or interchange factor) [~
= Stefan-Boltzmann constant [kcal/m2hr°K+]

i

i

i

i

I

Q"&““AVQQWQN&;Q&W
=
i

Subseripts -

e = equilibrium
f or 2 = final
¢ or 1 = initial

m = middle

s = gurface or solid
w = wall

pA = gpectral
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