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Abstract

The dynamic character of domain wall motion was investigated for
a one-dimensional planar wall by solving numerically Gilbert equation
of motion. It is confirmed from the numerical analysis that the appli-
cation of the in-plane field is useful to improve the dynamic character,
especially in the high drive field region. Despite the analysis was made
for a virtual one-dimensional wall, the results seem to explain qualita-
tively the experiments in garnet bubbles. Besides we solved the wall
motion analytically by making an approximation with a simplified wall
profile under the biased in-plane field, from which all properties ob-
tained by the numerical analysis can easily be derived.

1. Introduction

It is observed in many bubble domains in garnet films that the wall velocity
exhibits the breakdown or the saturation in the high drive field region.‘® This
unfavorable phenomenon for computer memory application is generally referred to
as the “dynamic conversion”,? which is briefly interpreted as follows: In a
moving wall, a force originates from the gyrotropic nature of spin exerts on the
magnetization inside the wall so as to convert into a complicated structure of the
spin configuration having a large inertia mass, whereby the wall velocity can no
longer increase even when the drive field further increases. A mean to improve
the dynamic character in high speed wall motion suppressing the dynamic conversion
is attained by either applying an in-plane field externally® or utilizing an in-plane
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anisotropy field due to the orthorhombic anisotropy in garnet platelets.(4 The
theoretical considerations, however, have mostly been made on the latter case:
The effectiveness of the in-plane anisotropy field was first pointed out by Thielet®
for one-dimensional wall within the scheme of the Walker’s theory(®> and recently
calculated by Schlémann(” for more realistic two-dimensional wall with the finite
thickness, whereas systematic studies on that of external in-plane field have ap-
parently not yet been published to date, except the work of de Leeuw ef «l.¢® who
analysed it under the condition that the in-plane field is sufficiently large compared
to the stray field which arises from the surface charge at the center of the wall i.
€. Hin_prane>8M, where M : the saturation magnetization. The authors(® previously
investigated through numerical analysis the effect of the in-plane field on one-
dimensional wall motion under the application of arbitrary magnitude of the in-
plane field as a direct extension of the work of Schryer and Walker.(®> However,
since we used in [8] such a small ¢-value as 0.047, which is the same that used in
[97 (the g-value is defined by ¢=k/27M?2: the ratio of the uniaxial anisotropy
energy perpendicular to the film plane to the energy due to the demagnetizing field
of film), the substantial problem was involved to compare to bubble experiments,
because the g-value of bubble materials must be larger than unity. In this respect
we made again numerical computation for ¢>>1 according to similar prescription of
(8] In the present paper we summerize the computed results of ¢=2 as well as
those of ¢=0.047 which were partially described in [8] in detail. In order to
obtain the qualitative understanding on the general character of biased wall motion,
we evolved an approximate analysis using a simplified wall profile which is available
for large g-value as actually used in bubble device.

2. Qutline of Numerical Computation Procedures

As the detail of the numerical computation procedures to obtain the wall motion
by integrating Gilbert equation of motion was given in [8] and [9], we describe
here the brief explanation on it. As shown in Fig. 1 (upper), we introduce the
Cartesian coordinate (x, ¥, z) to define the location of wall and the polar coordi-

nate (@, ¢) to define the magnetization vector ZW: (Mo, My, M,)=M (sinf cosg,
sin @ sin g, cos §). A planar 180°-Bloch wall lies on the yz-plane, whose ¥-coordi-
nate being y=S(f) at the moment ¢. Taking the uniaxial medium whose easy
direction parallel to the z-axis, the drive field to displace the wall toward y-direc-
tion is the field parallel to the z-direction H,, and the in-plane field H, is supposed
to be the field applied in the plane perpendicular to H,, i. e., Hy=(H,, H,) in the
xy-plane, which only acts on the wall so as to deform the wall configuration. We
consider here the case when the in-plane field is applied either on the wall surface
(Hz) or normal to the wall surface (H,). Fig. 1 (below) illustrates how to
compute the wall motion biased by the in-plane field H,,,. Since it is impossible
to analytically express the initial wall configuration biased by H,,,, we determined
it by computing the equation of motion [see eq. (2)7] until the solution under the
application of H,, , tends to the stationary state. The wall motion under the drive
field of a constant amplitude H, applied at the moment #=0 is then obtained by
using the same computation routine. To treat analysis in a general way, we use
hereafter the dimensionless quantities for the time #, the length v, the field strength
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Fig. 1. Coordinate System for computation of
the domain wall motion (upper) and
schematic representation for the application
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H,,y,,, and the wall velocity v=dS/dt as,

—S(t) A, . dY v

T =y.27Mt, y=2=2W) o =Ton: and p= = , (1
re2r 4, ’ H, ar ey, P

where 7 is the gyromagnetic ratio, 4, is the width parameter of the standing still

wall, and Hc=27naM (a: the phenomenological damping parameter) is so-called the

Walker field, the critical field below which the stationary wall motion is realized.

By the use of eq. (1), Gilbert equation with respect to 6 and ¢ is expressed as,

00 09 _ {whxsinﬁb}_ . . N 1 0 [ w2 >
T - SN 0= 7T =a 71, cos ¢ sin 6 sin 2¢ +2¢ Sn 0 Iy \sm i) 7

(2a)
8870‘ —sin @ aa; —qsinZ(i—a’k,sin@Jra{Z;”gg:gZ?zg}—sinZ@ sin?¢

P )] e

In egs. (2a) and (2b), the variable parameters other than the field 7%,,,,. are «
and ¢. The numelical integration of egs. (2a) and (2b), was carried out by means of
ordinary Runge-Kutta method and found to generally become instable when we use
either large kg, y or large g-value. In order to avoid the instability for a large
ha, 5, the computation was made by changing /%, , stepwise to its final value. For
a large g-value it is necessary to choose appropriate small time and, eventually
spatial increments of 47 and 4Y, as well as the large integration interval in both
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sides of the wall, [—Y,, Y,J]. These quantities used are: 47°=0.25 4Y =0.1 and
Yo=7 to 14 for ¢=0.047, and «=0.01; 47=0.006 to 0.012, 4Y =0. 1, and Y,=14
for ¢=2 and a=0. 05.

3. Numerical Analysis

3. 1. Domain Wall Configuration under In-plane Field

Vella Coleirot!® observed in garnet bubbles the oscillation of the wall displace-
ment and hence its time derivative, the wall velocity, from stroboscopic measure-
ment of wall motion when the wall is driven by high drive field exceeded a critical
value and showed that the period of the oscillation agrees well with that predicted
by Schryer and Walker(® for one-dimensional wall. The wall velocity in the oscil-

Fig. 2. (A) Oscillation of the wall velocity #(7")
as a function of the reduced time, 7' for
g=0.047 and @=0.01, under the field condi-
tion of %.=1.5, and hz=3. Dashed curve
is the case of no in-plane field. (B) and
(C) are the domain wall profile in terms
of 0(Y) and ¢(Y), respectively, at some
moments marked by the arrows in (A).
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latory mode results in an abrupt decrease on the average of time. To begin with
we shall show how the in-plane field affects on the domain wall configuration in
the oscillatory mode. Fig. 2 to Fig.5 are four examples of the computed results,
in which Fig. 2 and Fig. 3 are the cases for the small ¢-value of 0.047, and Fig.
4 and Fig5 those for the large ¢-value of 2, Fig. 2 and Fig. 4, and Fig. 3 and Fig.
5 are respectively the cases when %, and %, are applied. The field strength A, 5, .
used are written in the figures. The top of each figure shows the temporal
change of #(T) as a function of T, the middle and the bottom being respectively
the domain wall profiles in terms of 6 and ¢ at some typical moments of the
oscillation as pointed by the arrows in the figures. From these figures the wall

J
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J

T

Fig. 3. (A) #(T) for ¢=0.047, and ¢=0.01 Fig. 4. (A) 9(T) for ’ g=2, and «=0.05

under the:field condition of %,=2, and
hy=50, (B) and (C) the wall profile
in terms of 0 (YY), and ¢ (Y), respec-
tively.

under the field condition of %,=2, and
hz=10, (B) and (C) the wall profile
in terms of 0(Y) and ¢(Y), respec-
tively.
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Fig. 5. (A) #(T) for ¢=2 and a=0.05 under
the field condition of A,=2, and hy=10,
(B) and (C) are the domain wall profile
in terms of 0(Y) and ¢(Y), respectively.

configuration is subjected to a complicated change by the application of the in-plane
field in comparison with that of no in-plane field, where ¢ keeps the same functional
dependence at rest [§=2tan" ! exp (¥Y)] and ¢ is substantially constant regardless
of Y. 1t is further recognized that the wall configuration of ¢=2 is simpler than
that of ¢=0.047. This is due to the facts that with increasing ¢-value, (i) the
wall contraction during wall motion is small, and (ii) the contribution from the
exchange energy increases [see eq. (2)7], so that the spatial variation of wall is
retained. If, though numerical computation might be more difficult, one computes
for a large ¢-value as actually used in bubble materials (g=5~10), the wall
configuration will be much simpler as shown in Fig. 14.

3. 2. Effect of In-plane Field on Wall Velocity

On comparing the solid curves with in-plane field and the dashed ones without
in-plane field in the top figures of Fig. 2 to Fig. 5, the period and the amplitude
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of the oscillation of #(7") are subjected to modulation by the application of the
in-plane field as well. This is understood from egs. (2a) and (2b) as the following
way : We consider first the case where the in-plane field is absent. The magne-
tization inside the wall experiences the torque to rotate around the z-axis by #.,
9¢/0T, which gives rise to the demagnetizing field due to the free poles appearing
along the wall width. The demagnetizing field generates the torque, siné sin2¢,
which exerts on the magnetization to rotate upwards so as to decrease 0, —98/0T.
This torque is the motive torque to push the wall toward the y-direction. When
an in-plane field is applied, the motive torque depends, in addition to the demagne-
tizing torque, on that due to the in-plane field, sin @ sin 2¢+{M2chs£ g} [Strictly

speaking, the third contribution from the exchange torque, —2¢ si1}1 7 aaY (sin gg. ),
must be taken into account, because of the spatial variation of #7J. Thus comparing
to the case of no in-plane field, the period and the wall velocity in the oscillatory
mode are increased or decreased according to whether both torques act in the
same direction to enhance them or the opposite direction to diminish them, depending
on the orientation of the magnetization ¢. It is considered that under appropriate
field condition, the period becomes infinity resulting in the cease of precession,
0¢/0T =0, this means that the oscillatory mode is converted into the stationary
mode. In the absence of in-plane field, the stationary mode is realized only when
the drive field is smaller than the Walker field, [k,<(1], while by applying the in-
plane field, it is expected that the stationary mode is realized even when h,>1.
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Fig. 6. (A) Temporal change of the wall Fig. 7. ¥ (A) and ¢0 (B) vs. T for ¢=0.047,
velocity ¥ and (B) the azimuthal angle and «@=0.01, where k,=1.5 and hy is
at the center of the wall surface ¢o= changed as a parameter.

#(0) vs. the reduced time T for ¢g=
0.047, and @=0.01, where h,=1.2 and
hs is changed as a parameter.
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changed as a parameter. as a parameter.

In order to confirm this consideration, computation was made by changing various
combinations of %, and %, . Fig. 6 to Fig. 9 show four examples of the computed
results for the wall velocity #(7) and the magnetization orientation at the center
of the wall, ¢,=¢(0), in which Fig. 6 and Fig. 7 are the cases for ¢=0.047, and Fig.
8 and Fig. 9 are those for ¢=2, where the curves are drawn for a fixed %, and several
in-plane field %,, , as a parameter. In any case the period of the wall oscillation
is lengthened with increasing the in-plane field and finally tends to the stationary
wall motion with a constant velocity, #;, when the in-plane field exceeds a certain
strength, in accordance with above expectation. It can be shown that 9 is the
maximum wall velocity to be achieved under the given drive field strength, which
is very desirable for the application of high speed wall motion. Fig. 10 (g=0.047)
and Fig. 11 (¢=2) are the dependences of % on h,, , keeping %, constant, where
for the oscillatory mode, the peak velocity 9, and the time-average velocity, <#>;

T
:%So 9(r)dr, are plotted. From these figures, the wall velocity increases with

increasing in-plane field, the effect of the in-plane field on the wall velocity is
more stronger for g=2 than ¢=0.047: 9, increases approximately linearly to /g, »
for ¢=2, while ¥, tends to the saturation in high %, , for ¢=0.047. <#>, in both
cases increases approximately proportionally to %2,,, as has observed in experi-
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Fig. 10. Dependence of the wall velocity

7 on the in-plane field hz,y for ¢=0.047,
and a=0.01, where %, is chosen as a
parameter. s, {#)>:, ¥p stand for res-
pectively the velocity in the stationary
mode, the time-average and the peak

~ velocities in the oscillatory mode. Da-
shed curves are the results calculated
by the approximate analysis in §4.
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q=2
3 (B ® 20.05
i —— : DIRECT COMPUTATION
J : APPROXIMATE ANALYSIS
It
> i
2r ] ',‘
8] 2
<] ’,' iy
4. ; 0
T A
1
72N
i NI~ S
T S el T, oo T e -
1 R s e e
1 I i
0 5 10 20

15
DRIVE FIELD hz

Fig. 12. Dependence of # on h; for ¢=2, and @=0.05, where the in-plane fields
hz (A) and hy (B) are chosen as a parameter. Dashed curves are
the results calculated by the approximate analysis in § 4.

It is further noting that © has the dependence of the direction of the
The most effective direction is the x-direction for ¢=2, while the

Fig. 12 shows, on the contrary, the dependence of ¥ on
h, for choosing %, » as a parameter, in which the left side where o increases,
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corresponds to the stationary mode and
the right side where # decays out, the , ~e—!DIRECT COMPUTATION
oscillatory mode. Let the maximum drive of - =~ APPROXIMATE  ANALYSIS | |
field under a fixed in-plane field to ma- ‘

intain the stationary mode and the velocity
at this field call as the critical field, Aem.,
and the critical velocity, @..,, respectively,
which correspond to the Walker field (4,
=1) and the Walker velocity in the case
of no in-plane field, respectively. As seen
from this figure, such available para-
meters as the wall mobility, ¢, =(89,/
0h)rz, 5, Hern, and D.y, are monotonica 0

0 20
lly increased with increasing %, y, among INPLANE FIELD  hx
which #e, and f, of Fig. 12 (A) are Fig. 13. Relationship of the critical velocity,

. . . Deri iti i herit, against
lotted as a fu of k. in Fie. ) Derit, and the critical field, Zerst,
plottec as netion = in Fig. 13 the in-plane field, &, in Fig. 12 (A),

Both increase hnearl}f at least in t.he * where"dashed curves are calculated by
range of computed %, in agreement with ‘the approximate analysis in § 4.
the analysis of de Leeuw.(”

L i
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4. Approximate Analysis

As has already described in the last paragraph of Section 3. 1., the wall profile
biased by the in-plane field can be approximated by the curves drawn in Fig. 14
for large g-value (compare Fig. 14 and Fig. 4), In this case, apart from tedious
numerical computation, one can discuss wall dynamics analytically and can explain
easily the various properties in the foregoing section.

The analytical expressions of the variations of 6 and ¢ in Fig. 14 are, respec-
tively, ' ‘

VIO sy, |y—s(Ol<4(0)2

_722 (1)
0(y, T)= 7—0,, y—s@)>4(t)/2
b0, y—=s(@)<—4()/2 (Ba)

5, =] Do | +0@Tur—s) + F4@) —u(r—s@) - L4l @b)

where s(t), 4(t), @(t) are the y-coordinate of the wall center, the wall width, and
the amplitude of #(y, #) which fluctuates with time, at the moment f, respectively.
6o denotes the inclination of the magnetization with respect to the z-axis and
u(x)= 1, for x2>0; u(x)=0, for x<0, the unit step function. If k., ,>h, 0, is
given by eq. (4):
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According to Slonczewski,(12) Gilbert equation is expressed in the integral form as,

S(—g?-r—t—a%f_sin 0) sin OdyZ—AT["%Z—: (Ga)
f(-2-sino— @90 Yay=T_ % (5b)
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where —(—)—(—I—:p—l——a( gg ) is the functional derivative with respect to ¢ and ¢
a( 3y ) - ’ ;

the internal energy to be considered which consists of following five contributions:
The uniaxial anisotropy energy, the energy due to the demagnetizing . field -across
the wall width, the potential energies due to the drive and the in-plane flelds and

the exchange energy ;

:S[K sin?0+27 M ?sin®f sin?¢ — MH,cos 0

B A ) e o

Substituting eqgs. (3) and (6) into eq. (5) and integrating over ¥, we get eq. (7) by
the use of non-dimensional quantities of eq. (1) [Although the 1ntegrands involve
such singular functions as #(x) and du(x)/dx, the singularities do not affect the

result because the divergences at two smgular points of y s(t)j;ld(t) cancel each

otherj

(r—20,)$ cos 00~711—a¢'(7r—260+ éinZ@o)

:%n(T)[(n~200+ sin 26,) sin 2¢i4a{2:} cos 50{,§ér;}‘¢, (7a)

a(x—20,)*8+2¢ cos 0,=27(T)ah,cos 0,, ' ’ . (‘7b‘)'

where 7(T)=4(T)/4, is the wall contraction, $ is #(7) in the previous sections,
the dot - denotes the derivative with respect to the reduced time T, 3/6T. On
solving egs. (7a) and (7b) with respect to $ and ¢, and using an approx1mat10n of
7—204-sin 20 y=x, we have, -

“”4—(17;%9%*4 7 sin 29 -+ nzazhzj;éla/{éj:}cosﬁoicscig}?ﬁ], (8a)
¢:Lh—z-o-s-—@°—[l asm2¢:Fb{§g;} I | . | (8b)
Wﬁere ’
. H a2 .
A= cos 00+~§—7c(ﬁ~200), 4
)
a= . ”(77"200) S h= z)y . (7 200)
84, c0s2f, ’ 2h, cos f, .

and the upper and the lower signs in eq. (8) correspond to the cases when the in
plane field of &, and h, are applied, respectively.

4. 1. Stationary Mode , o _
The condition for the stationary wall motion is obtained by putting ¢=0 in eq.
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Ok , ,
. ijsm} __ 8h,cos?d, dah,, , {sin} ‘
Sln 2¢-———:F p) lCOS = 777(71'—‘200) ’ + i \..0360 cos ¢. (10)
This i’s the extension of the Walker condition,
| sin 20=1h,, (11)

for the absence of the in-plane field, that is, if we put %, ;=0 (and hence 6,=0),
then we get,

sin 2¢=01,(=0.8106h,) =, | (12)

which agrees with eq. (11) except the numerical constant of 877:? The stationary
wall velocity 9, is obtained readily from_ eq. (7b) as,

A

Dy=8|5_0=7

2h,cos 0y _ 7> h,cosf, ,
T(r—2007 4 (x—200)% (13)

This relation can also be derived from more rlgorous formula of the energy con-
servation of moving wall(®,

avg [(%) - sin20<ug%~>1dy:2dhzcos 0o, (14)

by substituting eqs. (3a) and (3b). The wall contraction 7 is determined to make
the comparison with the Walker solutiont®, d,=h,/(1+¢ 'sin?¢)1/2 and ;= (1/4)7J;.
[put 6,=0 in eq. (13)7]. . Thus we have,

7]24/(1%‘4*1 Sin2¢)1/z ‘ (15)

The factor 4 of the numerator in eq. (15) arises from the approximation of egs.
(3a) and (3b).

4. 2. Oscillatory Mode

The quantities to determine the dynamic character such as the instantaneous
velocity #(T)=3$, the orientation of the magnetization ¢(7"), and the period of the
27 .
wall oscillation, F:SO”¢‘1d¢, can be obtained by solviog the simultaneous differ-
ential equations of egs. (7a) and (7b). From the viewpoint of engineering appli-
cation, however, most interesting may be the time-average of the wall velocity
<§>,=<9>>;, which is determined from eq. (7a) as,

A . COos O e 2
<v/t———————4<ﬁ~260) [r<nsin 20>, +ra?h, <>,

clpfon [P 0

where < f>>, stands for the time-average of f(7'), which is calculated by using eq.
(7b) as,
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<f>=lim 4 F (s

() o f(pdy
- So ¢ % S° 1~asin2¢:tb{§?§}¢
- Zﬁﬂ - 27 d¢ <17>
So ‘// So l1—asin 2¢ﬂ:b{g§)§}¢

5. Comparison with Numerical Analysis and Discussion

First let us compare the approximate analysis of §4 to the direct computation
of Gilbert equation of §3. Since the approximation is valid for large ¢-value, the
comparison was made only for ¢=2 as shown by the dashed lines in Fig. 11 to Fig.
13. It is seen from these figures that both agree fairly well though ¢=2 is not
vet sufficiently large to use the approximation. Next let us show how main con-
clusions of §3 can be explained from the approximate analysis of §4.

(a) The in-plane field acts on the magnetization so as to suppress the preces-
sion, so that the stationary wall motion is realized, even when the drive field
exceeds the Walker field.

The critical field /... is determined by putting (8h2/8¢)h =0 in eq. (7a). If

we neglect the effect of the wall contraction 7, fe. becomes

_ (r—20y) . 4ah,, , {sin)
]zc,“—m[sm%iw—{——cos@o cosfx]’ (18a)
where
feos) . 1 he s (( s >2 )“2
{sm]x_ 5 [i - cos -+ 2 cosfy) +2 }, (19)
thus the critical velocity @, is from eq. (13) as,
3 —_ 8hcrit
l)cm——"*(;_—z‘ﬁo—)?COS Oo. (18 b )

According to eq. (7), hes. and .. should change proportionally to /g, ,. It seems,
however, to be rather difficult to derive these relations explicitly from egs. (7a)
and (7b) because f, is dependent on ’,, , in the manner as eq. (4a) or (4b). The
result of straightfoward computation of ... and .., are shown in Fig. 13, which
are nearly proportionally to %,y in accordance with eq. (8).

(b) The wall mobility f,=(39./8/.) hia, 5 is also improved by the application of

the in-plane field (see Fig. 12).
fw is calculated readily from eq. (12) as,

i cos 0,
fy = 4 ﬁm (20)
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Under the condition of ¢>1 and ah,, y<g, eq. (18) reduces to,

~ 2, 1/ .
f=1+— — (207
which represents that j, should increase proportionally to /., , but at the same
time the effect of the in-plane field is weakened inversely to ¢.

(c) The time-average of the wall velocity <(>>, in the oscillatory mode chan-
ges approximately proportionally to the square of the in-plane field.

For the constants ¢ and & in eq. (8), 13a>b holds under the ordinary field
condition, so that eq. (14) is approximated by,

oI sin 207>,

SZ: sin2gdg 1+ asin 29T b {C"S} ¢

__ _mCosfy | sin
T (w—20,) o . cos
: So [1+asm2¢3;b{sin}¢]d¢
- 2 ot o 2 Lar ,
T67.cos%, 16, 10" 1gz, (L) 1)

(d) The stationary velocity &, is the maximum velocity which can be achieved
under a given drive field.
From eq. (7b), the wall velocity is generally expressed by,

. 2¢,c080, (22)

S= =

Toa(z—200)*"

so that we get $<(9, because of ¢>0 in the oscillatory mode [because the preces-
sion direction is anti-clockwise for positive %], or ¢ =0 in the stationary mode.

As shown above, the dynamic character of wall motion is found to be improved
by the application of the in-plane field, under which the wall velocity increases,
regardless whether the wall moves stationary or oscillatory. This fact can also be
interpreted from another viewpoint of the wall configuration. Since, from eq. (14),
the stationary veloity 9, is related to the reciprocal of the exchange energy, i e,
E.. :Ar dYT (96/3Y )2 +sin20 (8¢/3Y )2], it is expected that the wall is converted
into the wall having smaller E,., by the in-plane field. Fig. 15 is an example of
the wall configurations in the stationary mode for four different in-plane fields,
For the spatial variation inside the wall, [36/3Y |>|sin 0(2¢/0Y)| holds, so that E,.
is determined mainly by 86/8Y ~(x—268,)/4, which decreases with increasing the
in-plane field, thus E., also decreases.
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ig. 15, Domain wall profiles of 6(Y) and ¢(Y)
in the stationary mode for g=2, and
several in-plane fields %.

6. Concluding Remarks

In this paper we have investigated the wall dynamics on a virtual one-dimen-
sional wall, which utterly ignores two-dimensional structure of wall such as the
twisted spin arrangement along the film thickness and the virtical Bloch line, the
co-mixture of Néel segment in a Bloch wall. When a wall once moves, these two-
dimensional structures are apt to be converted into more complicated three-dimen-
sional structure such as the horizontal Bloch line. This is the theoretical basis
of the dynamic conversion.®> Since the wall shape of bubble domain is not planar
but circular or elliptic, the wall is inherently three-dimensional. Nevertheless it is
considered that one-dimensional wall is still useful to survey the nature of domain
wall motion as in suggested from experimental fact that the Walker oscillation was
observed in bubble domain.(1® Indeed most of bubble experiments concerning the
effect of the in-plane field(?, 11 may, to some extent, be interpreted by the present
work.
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