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Abstract

It was in 1951 that Squire & Winter¢2?> published a new conception
that the secondary flow could occur in a bend through which a perfect
fluid is flowing, as a result of a non-uniform distribution of velocity at
entrance to the bend. Their idea was reformed by Hawthorne and
qualitative successes were gained on the flow in duct bend and the flow
around strut placed in an approaching stream with a nonuniform velocity
(such as a bridge pier in a river).

Although the first attempt of Squire & Winter is supposed to take
aim at the solution of cascade secondary flows, the application of this
idea to blade rows (furbo-machine cascade and linear cascade) has
almost eintirely been unsuccessful. The reason of this can be divided
into two parts. The first is the assumption of inviscid perfect fluid
assumed by Squire & Winter and viscosity neglected, and the second
is that the theory itself had some imperfectness. The opinion, that
the reason why the secondary flow theory is not useable to the problem
of cascade simply only because of the assumption of perfect fluid
without viscosity, is considered by the author to be unsatisfactory. The
author wants to consider the imperfectness of theory itself prior to the
effect of viscosity.  After mending the imperfectness of theory there
comes a step of saying the effect of viscosity.

Contributors to the secondary flow theory other than Squire &
winter and Hawthorne mentioned above must be L. H. Smith Jr. (2O
and Wislicenus. (19(20> Smith rendered a distinguished service in
verifying clearly that the vortex components in the exit flow of cascade
are consisted of the trailing vortices which are formed by a component
concerning the vorticity in the upstream and a component corresponding
to the variation of blade circulation, in addition to the passage vortex
(vorticity) which is formed by the deformation of the upstream vorticity
through the blade passage. If we rearrange his results, we have

(vortex component normal to the cascade exit flow)

> normal component to the flow of the passage vortex (vorticity).

(vortex component parallel to the cascade exit flow)
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(@' parallel component to the flow of the passage vortex.

3 trailing filament vortex (component of trailing vortex concerning

 the vorticity in the upstream).

@' trailing shed vortex (component of trailing vortex corresponding

the variation of blade circulation).

In spite of his important contribution mentioned above he made a
regrettable mistake in the henceforth calculation of secondary vortex.
The mistake made by him is a point of problem itself of secondary flow
theory and will be considered later. And we need some elucidation
about the method of solution prior to the explanation of the mistake.

At first we must define what is the secondary flow. Generally the
secondary flow is defined as the difference of the ideal flow to the
actual flow which differs from the former by the existence of boundary
layer in the flow. But this definition is inconvenient and ambiguous
since the solution differs in accordance with the definition of “ideal”
flow. But the situation is left as it is, and this might be the root of
the mistake such as Smith’s.

The most intelligible definition of secondary flow may be the one
starting from the secondary vortex. If the vortex is contained in the
flow, the streamwise component of this vortex is called the secondary
vortex, and the flow induced by the secondary vortex is the secondary
flow. The ideal flow mentioned above, therefore, is the one containing
no streamwise vortex, and the irrotational flow will be conveniently
accepted.

This idea is especially expedient for obtaining the first approximation
of secondary flow. Namely, the method of solution is to find what
attitude will be taken by the vortex which was originally contained in
the upstream and drifted with the fluid into the downstream.  This is
the means often used in the treatment of secondary flow in linear cascade.
(see Fig. 7-1)

But his idea is not convenient for the treatment of secondary flows
in turbomachine. When the flow in a turbomachine is irrotational, it is
of so-called free-vortex type. But the flow in turbomachine is often
different from the free-vortex type, and therefore it may not be
advisable to take the free-vortex type of flow as the zeroth approxi-
mation. Generally we choose the axisymmetric flow as the zeroth
approximation in this occasion. (The flow around two-dimensional
cascade is employed so as to approximate the flow near blade row.)
But we must notice here that in ordinary cases the axisymmetric flow
has vorticity in it. Therefore, we should think that the secondary flow
is contained in this flow, which means we should have sufficient
knowledges of the behavior of vortex in this flow.

There are two understandings on this axisymmetric flow corres-
ponding to the zeroth approximation, that it is a flow of ideal fluid and
has no boundary layer in the inlet side, and then the effect of boundary
layer and finite blade spacing are caught as the secondary flow, ...... , Or
it is an axisymmetric vortex flow containing the boundary layer in it and
the variation of flow caused by the finiteness of blade pitch is caught
as the secondary flow ...... Both will be of use, and it is easy to
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understand that the knowledge of vortices in this axisymmetric flow
should be indispensable for the solution. But the situation was not so.
Smith’s mistake mentioned above is that the axisymmetric flow considered
by him was not the true one, and if sufficient considerations had been
done his miscarriage would be avoided.

The examination of axisymmetric flow had some curious difficulties
in spite of its simple appearances. Namely, the ordinary method of
solution of axisymmetric flow has no information of the stream-wise
component of vortex (secondary vortex) in the exit flow of cascade.
This was pointed out by Wislicenus¢?9(25 for the first time. In fine
the answer cannot be obtained from the ordinary axisymmetric theory
when we want the solution from the standpoint of secondary flows.

Even in the axisymmetric theory the streamwise component of
passage vortex and the trailing filament vortex can be easily obtained
by assuming the flow in blade passage (of infinitesimal spacing). (The
sum of the both can be obtained without assuming its flow(15(163
The problem is the trailing shed vortex, and a few trials were done
without any success. ‘

Because the flow pattern of the exit flow of blade row can be
obtained from the axisymmetric theory, the author tried to calculate the
vorticity in it (which means he calculates the secondary vorticity) and
found that it could be easily obtainable(*?”’. The fact which is most
important and curious in the results is that when the exit angle of
blade row is of free vortex type i. e. tan 7,.=C/r (where 7;.: flow
angle at the exit of blade row, C : a constant, # : radial position), there
is no streamwise vorticity or secondary vorticity in the downstream
whatever vortices are contained in the upstream. Although this fact
was pointed out by Prestont!®, this phenomenon which can be named as
vortex rectification may be interesting and important.

This fact has a great meaning when we employ an axisymetric flow
as a flow of the zeroth approximation (base flow). In other words,
because there is no secondary flow in the downstream of base flow of
free vortex type no matter how the condition of the upstream may be,
we can get the three-dimensional flow of the blade row of finite blade
spacing if we add the secondary flow correspoing to the finite blade
spacing to this base flow. The data of the secondary flow of linear
cascades will be useful for this process. If the flow is other than the
free vortex type the method of treatment is not clear, but the ideas
mentioned above may become good references.

In the next place, the calculation of secondary velocities from secondary
vortices will be done by Hawthorne’s propositions‘4>. Hawthorne set the
following assumptions,

[17 the secondary flow occurs in planes which are normal to the average
stream direction, (Trefftz plane),

[27] the secondary vorticity is normal to these planes, and

[3] the secondary flows may be treated as a two-dimensional plane
flow superimposed on the main flow.

If we represent these about the linear cascade, we have Fig. 7-2.
The treatment in regard to Trefftz plane has a great defect that
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although the solution as two-dimensional flows is possible if this Trefftz

plane can be considered being a plane, but nothing can be done when

the flow in a turbomachine should be treated. The Hawthorne's
propositions, therefore, can be effectively applicable only to the linear
cascade.

When we want to get secondary velocities in linear cascade such as
illustrated in Fig. 7-2, the shape of boundary of Trefftz plane should
be a problem. In the figure the boundary is illustrated as a rectangle,
but even though AB is straight we must examine whether CD and other
vortex sheets are straight or not. These have been proved to be
straight*V.  In fine the secondary flow in exit flow of linear cascade
can be obtained from the calculation of flow in a rectangle ABDC which
has vorticities w,p, in it. Induced velocities in x-direction induced at
AB or CD form the trailing vortex sheet which is the sum of the trailing
filament vortex and the trailing shed vortex.

Now, we must be careful that there exists an assumption of great
importance in the above ideas. Consideration of the secondary flow in
a rectangle means that we accept the idea that there is no flow in
AC-direction (y-direction) at the trailing edge AB, and there remains
some doubt that the Kutta's condition of blade in the flow containing
secondary flows can be expressed by the above or not. Probably it may
be accepted when the trailing edge is very thin or of cusped form.
And if we accept the above assumption, we can reach a noteworthy
conclusion that the direction of the wake (vortex sheet) will show the
exit flow direction of two-dimensional cascade (i. e. the cascade containing
no secondary flow), because sides AB and CD are not deformed by the
secondary flow. The exit flow angle of two-dimensional cascade should
be obtained immediately from the direction of wake without a trouble-
some method such as the boundary layer suction! This is going to be
proved experimentally. (not yet published)

Now let us consider again on the component of vortices in the
downstream of linear cascade.

(1) corresponds to the boundary layer in the downstream and we can
explain the phenomenon such as the development of boundary layers
in the decelerating cascade.

@Y+@/ forms the trailing vortex and can be expressed by spanwise
velocities along upper and lower sides of the rectangle.

@'-+@" can be obtained from the idea that the passage vortex is
connected through the wake (its streamwise component). This is
not related to the cascade configurations but related only to inflow
and outflow directions(1¢16) In fine IY-+@Y is the secondary
vortex appearing from the phenomenon that the flow is turned.

@’ 1is the trailing vortex component corresponding to the variation of
blade circulation which has close relation to the cascade configu-
ration, as against (I/--@' being not related to those. We can
recognize what characterizes the secondary flow in cascade (that is,
what characterizes the turning of flow under the existence of blades)
is the variation of blade circulation and the trailing vortex
accompanied by it.
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As aforesaid the solution of secondary flow in linear cascade seems
to be obtained from the calculation of the flow in the rectangle, but
even though the boundary is maintained rectangular the averaged flow
angle of flow is changed from the direction of wake (may be the
directoin of two-dimensional case) by the flow inside. We can find the
turning angle is smaller (under turning) at the center of span, larger
(over turning) at side wall, and smallest at the border between boundary
layer and main flow. These explain qualitatively the result of cascade
experiment to some extent. Further studies must be needed on the
effect of fluid viscosity.

1. Introduction

The existence of secondary flow in bends in pipes and rivers has been known
for some time. James Thomson¢?%) showed experimentally that a spiral flow could
be obtained in a curved stream of water, the secondary motion at the bottom being
inward and that the top outward. The secondary flow was attributed to the effect
of the centrifugal pressure gradient in the main flow acting on the relatively
stagnant fluid in the wall boundary layer.

Theoretical analysis of secondary flows had almost eintirely been confined to
the work of Dean‘® for laminar flow in pipe bends of large ratio of bend radius to
pipe diameter, before Squire & Winter¢21) showed that secondary flow could occur
in a bend through which a perfect fluid is flowing, as a result of a non-uniform
distribution of velocity at entrance to the bend. Squire & Winter’'s work had its
freshness in the suggestion that a more general theoretical investigation of the
rotational flow of a perfect fluid in three dimensions might yield useful results, if
attention was concentrated on the secondary circulation, that is the component of
vorticity in the direction of flow. (From Hawthorne’s paper(?).

The author intend in this report to show how to take this Squire & Winter’'s
idea into the clarification of the flow in (axial-flow) turbomachinery. The applica-
tion of Squire & Winter’s theory is not so difficult provided the flow is confined
in a single domain, but its application to the flow in turbomachinery or cascade is
so difficult that simple idea cannot explain the phenomena, the situation of which
will be discussed in detail in the report, but the difficulty will be able to be
understood by the following comments.

It is well known that there exists the axisymmetric theory for the treatment of
flows in turbo-machinery, which, in fine, is to solve the problem by neglecting the
tangential variation caused by the finite number of blades ...... , or under an
assumption that the number of blades 1s infinite. There is the case, of course, that
the inflow to blade row contains vorticity, and we can get the solution although the
practical process has much difficulties. In the next place, because the theory of
secondary flows treats the flow in the passage of blade row (in fine, the case of
finite number of blades), the problem which was not treated in the axisymmetric
theory is transacted. We can imagine, therefore, that to sum up both solutions is
the final goal of three-dimensional treatment of flows in the turbomachinery...... ?
The author thinks that we cannot say so. The reason of which is that the theory
of secondary flows is a perfect theory in which the complete flow field around
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blade row is treated, and the combination with the axisymmetric theory has the
fear calculating the phenomena twice.

Because of difficulties around the circumstances mentioned above, the theory
had been hazy for more than 20 years, and even the correction of outlet flow angle
of linear cascade experiment was not succeeded. But the author feels the haze has
become cleared up.

In this report, only stationary blade rows including linear cascade are treated.
Moving blade rows are omitted because of difficulties included, and also blade tip
clearance problems.

2. Secondary Flows

When a passage of flow has a curvature,
the centrifugal force of fluid must be
balanced with static pressure. The solid
line in Fig. 2-1 shows this condition. This
is achieved in the main flow where the
effect of boundary layer or the like is not

reached. Let us now consider a case in b
STREAM LINE OF MAIN FLOW

which the bgundary la;ier parallel tf’ the ———— STREAM LINE OF BOUNDARY LAYER
surface of this paper exists. According to S.P. : STATIC PRESSURE

the idea that the static pressure of main C.F. : CENTRIFUGAL FORCE

flow passes into the boundary layer, the Fig, 2—1

static pressure gradient of this main flow

is the pressure gradient in the boundary

layer. But the boundary layer velocity is smaller, thus the centrifugal force is
smaller, the balance of static pressure and centrifugal force is destroyed, and
finally the flow is turned by the static pressure much more than the main flow.
The broken line in Fig. 2-1 showes this situation. This is the reason why the

secondary flow occures.

2. 1. Secondary Flows in Linear Cascade

The problem in a single domain such as the secondary flow in a curved pipe or
the flow in a bend of river is rather simple provided the story is confind in the
limit of assumptions mentioned above, and can be considered being the technique of
solution.  But, the applicability of solution to the practical phenomenon is another
problem ....... We can find examples in a few reports(1 (92D,

Since in the case of linear cascade the domain is no longer single, the phenomenon
becomes rather complex. The secondary flow in cascades is originated by the
spanwise nonuniformity of incoming flow which is caused by the existence of side
walls at the inlet of cascade experiment or the like. (see Fig. 2-2). Because the
particle in the side wall boundary layer is turned strongly as explained in the above,
we recognize spiral motions of fluid as illustrated (A) in the figure. This mode of
phenomenon is quite same as that in a single domain, but the spiral motion (A) is
repeated at every passage in cascade, which results in the vortex surface having
opposite velocities at each side of the wake just like a needle bearing as illustrated
(B) in the figure. This vortex surface is unstable, and rolls up in a pair of vortices
before long as illustreated (C) in the figure. The pair of spiral motions (A) is also
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the vortices which have also a tendency

P el PP to roll up into a pair of vortex, and
C O 1 (B) these locate at corners of the suction

/ 1T __ . = , surface of blade and side walls.
/ I C Q i—(8) This is the outline of the secondary
n 4~ C O flow in linear cascades, and the fact
% T | = ’ that the secondary flows are consisted
/ from two vortices, which are the passage
(1) ¢2) vortex (A) and the trailing vortex (B),
(C{) makes it difficult to treat the phenomenon
%_}_}_ in a simple manner as in the singlg
domaijn. Moreover, because the roll-up
Vi of these vortices into two pairs of
%—e—- vortices, and the process of diffusion of
i the Iatters have not yet been clarified

at all, the analytical treatment is difficult,
At the present state, the theory is
treated with assumptions that the roll-
up and the diffusion is entirely neglected
or the roll-up is eintirely finished, and we cannot tell whether these assumptions
are suitable or not.

(3)
Fig. 2—2

2. 2. Secondary Flows in Axial-flow Turbomachinery

The flow in the blade row of axial-flow turbomachinery, for example the annular
cascade of the stationary blade of axial-
flow turbine (Fig. 2-3)(", is much more
complex and difficult to be understood.
In the annular cascade, not only the main
flow and side wall boundary layers are
turned by the cascade (this is same as
the linear cascade) but the tangential
flow which is accompanied with boundary
layers on blade surfaces is turned by
outer and inner casings, The latter causes
the secondary flow toward the inner
casing through the blade boundary layer

or wake. This phenomenon is known
experimentally but has not yet treated
analytically.

3. Theory of Secondary Flows

Although the analysis of Squire & Winter(21> should be noticed because of its
new concept, the handling was not so smart. On the contrary the Hawthorne's
analysis‘4> was much more worthy to learn, in which an exact solution was obtained
in the limit of assumptions. In this report only the outline of Hawthorne’s anlaysis
will be written, and a simple first approximation theory will be stated.
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3. 1. Hawthorne's Analysist®

Hawthorne’s theory is presented for a steady, inviscid incompressible fluid in
motion in the absence of body forces. Representing the velocity yector by V and its
scalar by ¢, the vorticity vector

Q=rotV ~ W

The component of the vorticity resolved in the direction of flow, whose scalar
will be presented by w, gives rise to a secondary circulation which, when measured
around a stream tube of cross-sectional area dA, has a magnitude wdA. Since gdA
is the constant volume flow along a stream tube, the secondary c1rcu1at10n around
any given stream tube will be proportional to w/g.

Let us consider the special type of flow in which the streamlines and vortex
lines lie in a surface of constant total pressure p, or a Bernoulli surface. (For
example the inlet boundary layer flow of side walls of a linear cascade windtunnel
can be regarded the shear flow satisfying this condition.)

Abrxdgmg the modification process of equation (1), the final result given by

Hawthorne is
w w\ _  of* 1
().~ (3). =2,

NORMAL TO SURFACE

grad<1’° )} Si%"’ds 2)

~PRINCIPAL NORMAL

STREAM LINE BERNOULLI

SURFACE

Vvx(Vx Q)
MAGNITUDE

/ q"gmd‘%g’
Fig. 3—1

where ds : an elementary arc of the streamline.
é : the angle between the direction of principal normal and the normal to
the Bernoulli surface (see Fig. 3-1).
This is expressed in the form of integration along a streamline.
Now (sin¢/R)=(1/R¢) is the geodesic curvature of the streamlines on the
BRernoulli surface. By definition

1_do
i ds
where df : the angle between tangents to the streamline at points arc length ds

apart.
Hence equation (2) may also be written

().~ (5.,

grad( Do )‘ sin ¢ iﬁ
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An important result of this analysis is that if ¢=0 or the direction of
acceleration (or pressure gradient) lies in the plane containing the velocity vector
and the normal to the Bernoulli surface, there is no change in secondary circulation
along the streamline. Hence streamlines along which the secondary -circulation
remains unchanged are geodesics on the Bernoulli surface,

(From Hawthorne’s paper)

3. 2. Simple Examplest4(5)

The simplest examples to which this analytical result may be applied are
those in which the initial flow has a uniform pressure and a velocity varying in only
one direction. Such a flow may exist in the boundary layer of a large straight duct,
in an open channel whose width is large compared to its depth or in a linear cascade
windtunnel. The Bernoulli surfaces are planes and the total pressure varies in one
direction only. If the stream enters a bend whose plane is parallel to the Bernoulli
surfaces, the angle ¢ is initially #/2, so that a secondary circulation is created in
the bend. Since each particle of perfect fluid retains its original total pressure
and the particles are carried with the secondary flow, the Bernoulli surfaces are
distorted as the fluid passes downstream so that the original unidirectional feature
of the total pressure variation is lost.

Equation (3) is not sufficient to determine the flow, but Hawthorne proposed
that if certain assumptions are made, approximate solutions may be obtained by
estimating the secondary vorticity. These assumptions are, [17] the secondary flow
occurs in planes which are normal to the average direction, [27] the secondary
vorticity is normal to these planes, and [37] the secondary flow may be treated as a
two-dimensional plane flow superimposed on the main flow. To obtain the secondary
vorticity from equation (3) the behaviour of the Bernoulli surfaces and streamlines
must either be estimated or calculated by some step-by-step process.

In the flow of a boundary layer described above, the Bernoulli surfaces are
initially planes and are distorted as the flow proceeds round the bend. Under
certain conditions the distortion of the Bernoulli surfaces may be small and
lgrad(po/p)| and ¢ will be considered to retain their initial values. If the variation
in ¢ along a streamline is also small, and noting that initially

grad <%°—> = grad(—g+—§~qz> =q-grad ¢=qQ,

where (), is the vorticity in the upstream which lies on the Bernoulli surface and
is perpendicular to the stream line. Equation (3) gives for the vorticity downstream
(([)1:0),

wy=—2Q ¢ (4)

where ¢ is the angle of turn in the bend. These are the assumptions and the result
obtained by Squire & Winter(21 using a different analytical approach, which is not
adopted in this report because of its prolixity.

A similar methd of superimposition may be used for the flow around an obstacle,
such as an aerofoil, when the velocity varies only in the direction of the span.
Then equation (3) yields for the downstream vorticity

(£),=—20.( % (5)
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Equation (5) shows that a symmetrical obstacle such as a cylinder or strut will
create a secondary vorticity due to its thickness alone. The secondary vorticity
will result in induced drag effects which may be reduced by minimizing the integral
in equation (5). This is a possible basis for a method of designing thick struts for
use in boundary layers. (From Hawthorne’s paper(3’)

3. 3. Determination of Secondary Velocities

Let the secondary velocity components be expressed by V., Vy, V,. z-direction
is chosen to correspond to the direction of main- stream, and V, is the velocity
parallel to the main stream. V., V, are velocities in a plane normal to the main
stream. This plane is called Trefftz plane.

The continuity equation of secondary velocities are

oV, ., v, oV, _

% oy +=0 (L
If we consider a state in which the secondary flow is fully settled, we can put
v,
0z =0
and we have
oV, , oV, _
ox Ty 0 @)

Since we considered (assumed) the secondary vorticity w, is perpendicular to Trefftz
plane, we have

_ov, av,
Y =T9x oy @
Equation (2) allows us to define a stream function ¥, such that
o
Vx————-ay )
v ot @
? 0x

Substituting these into equation (3), we obtain Poisson’s equation

2 2
* | o*W _ (5)

o Ty
which is to be solved for ¥ with the boundary condition given. We can get V. and
V, from equation (4).
These process is along the line of assumptions [1]~[3] stated in the last
paragraph.
3. 4. Simple Method to obtain the First Approximation of Secondary

Vorticity
Hawthorne's analysis mentioned in 3. 1 and 3. 2 is pretty difficult to understand
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because of the vector method used. Here the author will show that the same
result can be reached by using the vortex law and simple calculations.

Let us consider the (base) flow which was possibly originally two-dimensional
and irrotational, but in reality it has the vorticity and secondary flows are induced
which make the flow three-dimensional. Assuming the vorticity contained being
small, we can get the final three-dimensional flow by the addition of the inducegi
flow by the vorticity to the basic two-dimensional flow. Accordingly the result is
the first approximation.

A.Sl

Fig 3—2 Fig 3—3

TN
Let us consider the streamline 4,4, in Fig. 3-2. The vortex A4:;B; at 4; on
this steamline drifts with the fluid to 4, in # second. The attitude of vortex be-

comes A,B,. @ in the figure is the adjoining streamline of @ The distance
of the both is 6,. Time required by the fluid to flow from B; to B, is f second.
Subscript ; and , correspond to positions A; and A4, respectively.
Let the radius of curvature at a point on the stream line be 7, we have a
equation of equilibrium of centrifugal force, which is

2
% g

where p : static pressure
# : distance normal to streamline
p : density
V : velocity

The Bernoulli’s equation is

p+~1—pV2=C
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Assuming the base flow is irrotational, C is constant throughout the flow field.
Hence the differentiation of the above equation by #z becomes,

op oV _
oV =0 @
From (1) and (2), we get
ov _ vV
on | r @
In the next place, we have
. Ag dS
{8 @
where s : distance along the streamline
and
. By dsb
t_ng Va (5)

PR
where subscript , represents the value along B;B,. Assuming 8, is small, we get
from (5)

" 5131 tan Ky N Ba dS,, - 8,,2 tan Ky t
ptel 2N - = (5
On the other hand,
. oV
Vb—V+»5-?-Z—é‘n ,
and from (3),
Vb:V<1— &.)
p

and

ds, =ds<1 -+ 0 )

n
7

Substituting these relations into (5'), and using (4), we have at last

Opptank,  Jutank; . o(* d, ds
v, v, 2f = (6)

Expressing the flow quantity between two streamlines by @, we have,
8Q=V0,=V.8,,=V,0,,
And

¥
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where 6 : inclination angle of the tangent to streamline. Substituting these into
(6), we get the following relation on theé inclination of the vortex.

tan «, tan &, $m25 4 dy (7N

Vi Vi W V2

In the next place, let us examine the change of vortex strength at stations I
and 2. (see Fig. 3-3). Vorticity is expressed by ®, and the vortex tube whose
largeness is 4f; at station I changes to 4f, at station 2. Because the strength of
vortex tube is invariable, we have

w df1=w,df, 8
Since 4s in the figure drifts with the fluid, we get

4s, 'V,

ds, V, )
and
Af = 48,08 £,
10)
Af,=45,C08 &,
From (8), (9 and (10), we obtain
Wy I’}'ICOS Kq (11)

w,  V,COS i,

The secondary circulation of flow is the streamwise component of ®, and let us
denote it wy,

W, =W, 8in xl)

(12)
w32:w23in A:ZJ
From (11) and (12)
(,Usz ___ V1 tanKz
Wy o VZ tanﬁ'l (13)
From (9), (13) and (7), (12), we get
Wso Wy . Wy 4a d@
VZ - Vl “'.‘“‘“2 V] COSN1SA1< V >2 (14)
Vi

If we consider the case ry=0, which means that there is no secondary circulation
in the upstream as we experience in the linear cascade experiment, we have,

=T (£>g (15)
. 1

This is same as the equation derived by Hawthorne. [equation (5) in 3. 2.]
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4. Axisymmetric Theory of Turbomachinery

Although the secondary flow theory stated above is thought to be an useful
method to approach the three-dimensional flow in axial-flow turbomachinery, the
axisymmetric theory is also useful as an intermediate method (which is called the
actuator disc theory when the axial length of blade row is infinitesimally small).
The latter is understood to be a treatment of the case in which the tangential
variation of three-dimensional flow is ignored or the number of blades is infinite,
and the former is thought to be a method to deal with the flow in blade passage
and the change of outlet flow caused by it. To clarify the connection of the both
is important for the understanding of three-dimensional flow in turbomachinery and
the establishment of the fundamental conception of design, and this is one of the
object of the report and will be explained later. In this article the axisymmetric
theory will be explained at first.

The axisymmetric theory has been studied by many researchers, but let us
follow the method developed by Wislicenus(®%), because in this method the physical
meaning of the introduction is clear, the treatment is possible in the case in which
meridional streamline is not axial, and the calculation by computer will be easier
even in the case of compressible fluid.

Only the flow through the stationary blade row is treated in this report.
Although treatments about the moving blade row may be possible by uses of the
idea of relative energy¢19(25) (in axisymmetric theory) and the consideration of
secondary flow in moving blade, they are problems to be solved in the future.

4. 1. Theory for Stationary Blades
Let the total enthalpy of the flow be H which is,

VZ
~Tg-+k ¢Y)
where V is absolute velocity of flow, and # is static enthalpy. If we assume
isentropic flow, H is constant along a streamline provided it does not pass moving
blades. Let us consider two closely adjacent meridional streamlines as shown in
Fig. 4-1, and let the total enthalpy along these two streamlines be H and H + dH.
Then we have

H+dH=CONST.

i
I
!
|

AXIS OF ROTATION

FLOW THROUGH STATIONARY BLADE ROW
Fig. 4—1
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dH = (%) 1dn1 = (%—?—) 2alnz =const. 2)
Therefore
()= () ®

where # is the co-ordinate normal to meridional stream surface. From the con-
dition of continuity, we get

an, P2Wo 27 2

dn, - &

01Wn171

where o is density and w, is component of velocity V along meridional streamline.
Differentiating equation (1) with respect to #,

0H 1 oV* | 0ok

Eon "2 m S ©)
From the differentiation of equation of adiabatic change,

%zconst. . p(l_%> =gRT
we get

180 e

where Cp is specific heat at constant pressure, and 7' is absolute temperature.
For any curved flow the pressure gradient normal to the flow is related to the

velocity ¥V and radius of curvature R of the streamlines by the condition of radial
equilibrium

1 0p V?
Y TR g

The application of this equation to such flows as illustrated in Fig. 4-2 and 4-3,

.'\\ _~RADIUS OF CURVATURE OF
X MERIDIONAL STREAM LINE

MERIDIONAL a0 ’
STREAM LINE -~ rfcos ¢
¢ r \A
r /cos¢ \2
. 1\ AXIS OF ROTATION L\ AXis OF ROTATION
\
9

Fig. 4—2 Fig. 4—3
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in which a peripheral and meridional components of velocity are w, and wn
respectively, leads us to
1 0p . wj wi

o on  r/cose + I

(8

where 7, is the radius of curvature of meridional streamline. The plus sign applies
to the case shown in Fig. 4-3, the minus sign to that shown in Fig. 4-2, referring
to the direction of curvaturé of the meridional streamlines.

Considering that the total velocity V can be expressed by its peripheral and
meridional components,

V2 —w +wm

and differentiating it with respect to #,

1 3 2 awe ow,,
Substituting from equations (6), (8) and (9) into equation (5), the following relation
is obtained.
0H _ ow, w, > W,
on uw"< an " 7/coSs ¢ i, ( on rm> a0

The components of vorticity parallel to w, and parallel to w, are denoted w, and
wy respectively, we have

— awe __}_ wo

Ym0 r/cos ¢ 1
wy=— (P . Y ) (12)

Equation (10) may thus be written in the form
Gy o tne (13)

Considering that the velocity and vorticity components normal to the meridional
stream surfaces are zero*, equation may also be given by the vector form

g——:{Vst (14)

It will be understood that the last equation could have been derived more
directly from the laws of vortex flow of an ideal fluid. However, the physical
background of this equation might have been greatly clarified by the method
mentioned above.

In order to derive a corresponding relation to equations (10), (13) or (14) for
the flow through rotating blade systems it is customary to introduce the concept
of “relative energy” I, by the definition,

* Meridional stream surface is Bernoulli surface. (see 3.1)
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[=H- "0 = V" 1 p_ 4 (15)
g 2g g

where # is the tangential velocity of moving blade at the radial position we are now

considering. (see Fig. 4-4) Because the analysis of secondary flows of moving blade

system is not under way, further considerations of the moving blade system will be

not performed in this report.

M 1+dI=CONST.
NSSARSW 2

AXIS OF ROTATION

Lo e e st e Z)éu

FLOW THROUGH MOVING BLADE ROW
Fig, 4—4

4. 2. Equation corvelating Conditions before and behind Blade Row

Combining equations (3), (4), (10) and (14), we obtain for the relation between
two stations 1 and 2 on the same meridional streamline before and behind a stationary
blade system.

ow w > ( ow w > } 1
w ] __1‘ 6 e m i m
[ 81( 07 r/cos o /1 " on Y /14 0171 Wiy

ow w ow w 1
=|w [ [ >'[‘w < m_ m ] . 16
[ 92( on | rjcose¢ /2 TR\ om = 7 J2d 0573 W s (16)
Vectorially,
(lewli — ‘[V2><wzi (17>
0171 Wy 027 2Wm2
or
Wy 1Dy — Wi Wo1  WeaWnp—WysWys (18)
0171 W 02F W2

We must be careful about the fact that we cannot get the component of @,
parallel to V, from equation (17) or (18). This is because the vector product of
two vectors which are parallel to each other is zero. Therefore, the vortex shed
from a system such as the trailing vortex cannot be obtained from this axisymmetric
equation. Since the secondary flow theory is the consideration of vortex parallel
to the flow, there exists a solicitude that the axisymmetric theory is impotent to
the secondary flow problem. We shall discuss about it later.
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For the convenience of comparison with the secondary flow theory, we take the
incompressible flow assumption and a case in which the meridional streamline can
be regarded to be parallel to the axis. From (18) we have,

We1Wa1 —Wa1Wyy . WypWay—WeWyy
71Wqy ¥olWqz

(where subscript , indicates axial direction.)
and using next relation,

Wor — _tany,, Z” =—tanr, 19)

wal a2

(where 7y, and 7, represent the inflow and out flow angles to and from the blade
row respectively.) we get the following equation after a readjustment.

Wy Way

Woq Way — 2 0
e +Wr1 tany, " ~t——~72 tany, 20)

4. 3. Method of Solution

Equations (16) through (18) may be used in the following manner to predict
flow with vorticity through a stationary blade row of turbomachinery. The flow
through a rotating blade system can be obtained in the same manner, which was
explained in the Wislicenus’ report(193(25) and is not discussced in this report because
of the reason said above.

The flow may be assumed as given at station 1. This determines completely
one side of the equation with which we are concerned.

For the other side of the same equation one may choose one of the two
components of the flow and then numerically calculate the other. To carry out this
operation it is necessary to approximate in advance the local inclination ¢, as well
as the local radius of curvature 7, of the meridional streamlines at the two stations
considered. The required approximation must be derived from a lower-order
approximation of the entire flow. The potential (free vortex) pattern of the
meridional flow may be used as first approximations for ¢ and 7,  With such an
assumption the above-mentioned numerical calculation of the missing flow component
can be completed except for a constant of integration.

If the missing velocity component is the meridional one (which is usually the
case) then the constant of integration is to be determined from the condition of
continuity. It is usually possible to estimate the average density of the gas in the
cross section considered, and thus calculate the average meridional velocity from
the given mass flow. There may be difficulties when the velocities are near the
acoustic.

If the peripheral component of the flow is to be determined, the constant of
integration is usually given by certain requirements regarding the angular momentum
of the flow in the cross section considered which follow from the prescribed
performance of the stage of machine.

In the case of application to the axial-flow machine, the potential flow pattern,
which has straight meridional streamlines parallel to the axis of the machine, is to
be used as the first approximation. Consequently, everywhere ¢ = 0 and 7, = co.
If we also assume that P37 ,Wms = 0171 Wn1 (or duy = dny = dn = dv), we can easily
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obtain the first approximation at the station 2 (and stations farther behind in the
same way).

We can now plot the approximate meridional streamlines, and get the local
radius of curvature 7, and the inclination ¢ for a second approximation. Repeating
this process we can get the final converged value. The detailed process must be
referenced to the report written by Wislicenus et al(19,

The important point of this paragraph is that we can obtain the flow field
(velocity) from the axisymmetric theory, although the vortex shed from a system
such as the trailing vortex could not be obtained from this theory.

4. 4. Vortex along stream Line

Because we could obtain the flow field from the axisymmetric theory, there may
be no doubt that we shall be able to get the vortex in the flow. The practice to
get streamwise vortex will be explained later. This has an important meaning in
connection with the secondary flow mentioned in the next chapter.

5. Theory of Secondary Flows in Axial-flow Turbo-machinery

The theory of secondary flows got a new development by Squire and Winter(21,
They regarded the shear flow of the side wall boundary layer of incoming flow such
a vortex as

v,
a9y

wy=

which is illustrated in Fig. 5-1, and investigated the movement of this vortex on an

(DI
Q

Vi Fig. 5—1
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assumption of inviscid fluid. Although the theory was on the linear cascade in this
case and ®; was perpendicular to the inflow, the theory we are now to consider is
the first approximation theory of secondary flows caused by casing boundary layers
of axial-flow turbo-machinery and the condition is somewhat generalized. The
phenomenon such as the boundary layer growth on casing walls together with blade
surfaces which is supposed to have severe influences on the cascade performance is
neglected in the theory.

5. 1. Symbols

. blade pitch

: constant }

: number of blades

: radial position (Fig. 5-2)

: time

. peripheral velocity

: relative velocity

. absolute velocity

: axial position (Fig. 5-2)

: breadth of vortex (Fig. 5-4)

: breadth of vortex in the direction of stream (Fig. 5-4)
: blade circulation

: strength of trailing vortex per unit blade height
: stream angle from axial direction (Fig. 5-4)

. angular position (Fig. 5-2)

: angle between vortex and stream (Fig. 5-4)

. vorticity

N g TR YR QR

S8

=]
L

g " =

Subseripts

. axial or z direction

: base flow

. exit of blade row

. passage vortex

: radial direction

. stream direction

. trailing vortex

. peripheral or tangential direction

: perpendicular direction to the stream line on the meridional stream surface
(Fig. 5-4)

: upstream of blade row

. downstream of blade row

DN R S R

~

[\

5. 2. Fundamental Equations
Vorticity Written by Cylindrical Coordinates
We determine the coordinate, velocity and vorticity as shown in Fig. 5-2. The
vorticity and velocity are connected by the law of right-turn screw.

_1 ow, ow,
wr‘“?“ a@ az (1)
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T oW, W,

wy
wy §
I \

\
i

Fig. 5—2
_ 0w, 0w,
Y= "5z or @
_ow, , w, 1 ow,
CTor 7 7 00 (3)

If we neglect the effect caused by the finite number of blades by averaging it
in @-direction, and think the flow at the position far downstream of the blade row
where the stream is recognized to be invariable in z-direction, we have

w, =0 19
wy =~ @)

_ 0w, . w ,
T or ‘_7&_ &)

These equations can be easily solved, and we get

w0, = —Sw9d7’+()a 4)
where C, : integration constant
_1¢r
We=-—\ wyrdr )
vJo

5. 3. Vortex Motion

We consider here only stationary blade system (annular cascade). The moving
blade system can be treated by adding or substracting the peripheral velocity to or
from the flow field as illustrated in Fig. 5-3, provided the radial deviation of
streamlines being small (solid lines in the figure are relative streamlines, broken
lines are absolute streamlines, and the arrangement of vortices is applicable to the
both). But since there should be difficulties when the radial deviation is large, we
would postpone the treatment till another day. Because the theory of secondary
flows ought to be developed generally under the assumption that the radial deviation
of streamlines is sufficiently small, it can be applied to the case of moving blade
system without any modification.

The following theory is a first approximation (perturbation) theory, and we
think that the vortex drifts with the basic ideal flow (primary flow). (Basic flow
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or base flow must be selected to be a flow which can be theoretically in existence.)
In the case of a linear cascade, we can choose the irrotational flow of two-
dimensional cascade as the base flow. But when we consider the turbo-machine, the
choice of free vortex type of flow, which corresponds to the irrotational flow of the
above, as the base flow has some defect in general cases because of its severe
difference from practical flow patterns (unless we consider the free vortex type of
machine), and we shall be unable to get high accuracy of approximation. We choose,
therefore, the axisymmetric flow as a base flow in the following treatment. Because
the flow field in blade passage cannot be represented in good accuracy with such a
base flow, we employ the treatment of linear cascade for the flow field near the
blade element. Practically, we treat the problem by the extension of the flow field
as illustrated in Fig. 5-4. Because of the radial deviation of streamlines, the extension
of meridional stream surface into a plane is impossible, and the extended figures
shown in Fig. 5-4 etc. must be considered to be conventional ones and not strict.

The axisymmetric flow contains generally the vortex in it. We also assume the
gradient of radial deviation of streamline being small (or radial flow velocity being
small), although the deviation itself is not confined to be small. This assumption
was not employed in the previous axisymmetric theory, but we need it in the
secondary flow theory because we feel the difficulty in the development of theory
without this assumption.

The situation of flow is like Fig. 5-4. 1In this case, @, is not perpendicular to
the flow, and the circumferential (6-wise) distance of two streamlines which pass
through adjacent two blades are different before and behind the blade row.

Let the number of blades be n, we get

an=2rv,

(6)

A,n=2r7,

and
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wl,, :w] COSs 131
. ()
W1 = Wy SN £y
Wops = wngOS kg
. ©)
Wops == Wayp S Ky
The condition of continuity for base flow is
V 15C08 715201071 =V 3,C08 755 Q,d7, )
or
Warp _ 7207, g
Waop 71dr, )
and concerning vortices we have
Af,=4S8,cos £,
(10)
Af,=48,c08 k,
From the law of vortex
w1 4f1dr )= wydf,dr, (11
and, because the vortex drifts with the fluid, we get
4s, Vis
= 12
4s, Vs (12)
Calculating from equations (7) ~ (12)
Wapr —_— COS 7zp .WQ (13)
W1 CoOsST1z ™
Wops . COST2p  4an Ky 72 (14)
Wi, COS 713 81

If we know the value of r;, we can get the passage vorticity w,,. (Notice, we can
get w,pr without the knowledge of value of x,.) &, cannot be obtained if the flow
between blades is not known. This will be clarified later.

5. 3. 1. Determination of the Inclination of Passage Vortex

w,p makes an inclination angle (—g— _,;2> to the flow direction as illustrated in

Fig. 5-4, but this should not be a straight line in a correct sense. If we allow to
assume this to be straight, the inclination will be obtained from the calculation of
A4, in Fig. 5-5.

A; A, can be obtained from the calculation of difference of times required by a
particle on the incoming stagnation streamline travelling upper or lower surfaces of
the blade. We refer here to the work of Smith¢29.

Let a particle of fluid at A; in Fig. 5-6 be reached to A; in f second flowing
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Fig. 5—5 Fig. 5—6

along the upper surface of blade, and A; in same ¢ second along the lower surface.
The time 4f required by a particle reached at A; to flow from A; to 4, is

ALA
Af=-2222"2
& (15)
At is equal to the difference of times required by a particle to flow along upper or
lower surfaces of blade. That is

wf 2

where +, — represent lower, upper surfaces and
L, T leading, trailing edges respectively.
& is the length along blade surface.

The above equation becomes

LT IT
V. V.

P

where LT is the distance between leading and trailing edges,
V is the averaged flow velocity.

and, furthermore

where C is the mean value of LT, and LT..
If we represent

We have finally
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At (16)
If we think that I" is the blade circulation and V., is the uniform flow velocity in
the case of monoplane or the geometrical mean velocity of inflow and exit-flow in
the case of cascade, this expression is known to be a good approximation(2®,

There exist many problems in exact consideration of 4f. The introduction of
equation (16) was wild, and furthermore the time required by a particle to reach to
A, or A; from A; must be infinite when there exists a stagnation point at the
leading or trailing edge. But, fortunately, the values of 4¢, A;A, or &, have no
serious meaning if we consider the averaged secondary flow as will be explained
later, which will allow us to recognize equation (16) being sufficient for the present
purpose.

Because times required by the fluid to pass C,B; and C,B, in Fig. 5-5 are
equal, we have

C.B, _ C,B,

= 17
T Va an
At the same time, we have
C.B,=0,Sin 71,-- G:C08 715+ tan #; (18)
and
Ay A, =a,8in 745+ G,C08 Topetan £,—CyB,
Equations (9), (17), (18) and the above yield
?1;712:(21[——71 SiN 7542 COS T2+ tan £,
7y 7y
SIN7,,°COS 11, 717 COS8*rig tan £, - r.dr, } (19)
COS T3z 7,d7, Ccos?y,, 7,dr,
From (15) and (16)
A A,—Ltsy (20)
241 — Vogc 2B
and
Dp=a,Vy,siny,,—aViysiny, (21)

From (19), (20) and (21) we can get r,.

5. 4. Trailing Vortex

The author said in 2.1 and 2.2 that there exists the trailing vortex in the wake
of cascade. We must now examine the character of this trailing vortex.

Although w,p which is illustrated in Fig. 5-4 or 5-5 is cut by the wake, this was
originally a continuous vortex ®;, and therefore w;, must be continuous according
to the vortex law. This means that w,, makes a train through the wake, and we
can think that the part in the wake of vortex train makes the trailing vortex.
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Another idea on the trailing vortex is that there exists the trailing vortex
corresponding the variation of circulation along blade span which is shown in the
theory of three-dimensional mono-plane.

Although both ideas are correct and we can get the trailing vortex along the
line mentioned above, the explanation which was developed by Smith¢2® and will be
reproduced here is more exact and clear.

Wwyr ==~ CIE
\\
\Y
Fig. 5—7

We focus attention on one of the blade in a cascade as illustrated in Fig. 5-7.
The oncoming fluid has spanwise distributed vorticity. Consider the circuit ABCDEFA
in the oncoming fluid which is chosen so that at some time later it will wrap itself
around the blade in the position A’B'D'E'F'A’. The line A’B’, D'C’, A'F’ and D'E’
are selected to lie in the axisymmetric stream surfaces of the base flow. The line
AF does not coincide in direction with the line AB because it is desired to have B’
next to F’' at the trailing edge of the blade. Therefore, due to the spanwise
secondary motion, particle F and B must come from different streamlines. We
assume this incoincidence being small.

Now let us examine the circulation 4I' around ABCDEFA. 1If we assume the
incoincidences between AF and AB, or DE and DC being small, we have

APZwl,':jEFBC:wI,°31-d71 (22)

Because the circulation around A’B'C'D'E'F’A’ is equal to the around ABCDEFA,
we get

AP:PCIDIEI——PBIAIFI+2AwTd7’e

where 4wy is the spanwise velocity which appears as the secondary flow and can
be recognized being same in magnitude but opposite in direction on upper and lower
surfaces of blade. This may be approved according to ideas explained in Fig. 2-2.

Noting that the first two of the right side of above equation are actually blade
circulations, we can write

ar
dr,

We must notice that I' is the actual circulation, which means the circulation in the
actual flow having boundary layer, and not that in the base flow.
From (22) and (23)

A= — dr,+24w.dr, (23)

o . dr 7 dr,
2A.,UT—~[CU“ 5+ dﬁ}dre (24)
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d1 can be calculated using equation (16) as follows,

0=V AtV (25)
Equation (24) gives the secondary velocity which creates the trailing vortex sheet.
It is seen to be made up of two parts, one being proportional to the spanwise
gradient in blade circulation as in the Prandtl wing theory, and the other being a
function of the vorticity in the oncoming flow. It should be noted that only the
component of the vorticity which is perpendicular to the flow enters into the relation,
and that the magnitude of the effect is proportional to the blade circulation as can
be seen from equation (25). The Prandt! wing theory is applied only in the case of
irrotational oncoming flow, and equation (24) must be used when the oncoming flow
is rotational.

The strength of trailing vortex I'r (which is the vortex contained in unit span)
is

I'y=—24w, (26)
and let us express as
FT:PT(F) + PT(S)

where I'r(zy and @'z are named the trailing filament vortex and the trailing shed
vortex respectively, and

lom=—wi, <0y Zz:l (27)
d
Trsy= *“E,I:‘ (28)

We put 4;A4; = d, in Fig. 5-6, and consider the immediate downstream of the
exit of blade row. Then we have

0y =V 54t (29)
From equation (9) (we abridge subscript B in the exit flow.),
V15C0S 71,7107, =V 5,C08 12,747, (30)
From equation (13)

(Uzm COs 7/2e 7’e

Wiq N COST1s 71 (3D
Using (25), (29), (30) and (31), equation (27) becomes
FT(F):_('UZJJT'BZ (32}

From the idea that w,, makes a train through the wake, which was mentioned at
the start of this paragraph, we get easily the same result as (32). Therefore, the
above idea can be regarded being correct.

From equations (32), (31) and (19) I'r¢s) can be expressed as follows. (Subscript
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e is abridged assuming the distortion of flow downstream the exit blade row being
samll.)

sinyy,; 7, siny, 7y dry
CoOS 71z "1 COSTsp Vo a7,

Loimy=—w1,0,C08 7’23[

L Waps W15 COSTip Ty dﬁ} (33)
W1, Wi, COSTas Vo 4¥,
5. 5. Vortices in the Downstream of Blade Row

From the discussions above, vortices in the downstream of blade row are
consisted of,

(1) the passage vortex Wap
its component parallel to the stream Dyps
its component normal to the stream on the meridional

stream surface Wypr

(2) the trailing vortex T'r
which is consisted of trailing filament vortex Trery
and trailing shed vortex Tre

We must call attention to the facts that the passage vortex is the distributed
vorticity, makes an angle %_. £, with the stream direction and, therefore, has

components parallel and normal to the stream, on the other hand the trailing vortex
is one contained in the wake and has only component in the direction of stream.

The first approximation of passage vortex (vorticity) can be calculated as
shown in 5.3., when the blade row and the base flow has been given. The trailing
filament vortex can be also calculated as in 5.4.. But the trailing shed vortex
cannot be obtained if the slope of blade circulation is not known. Blade circulation
must be the actual circulation affected not only the base flow but the secondary
flows (see 5.4.). Its solution, therefore, must be done from the other point of
view and will be explained later. (In Prandtl wing theory the actual circulation is
calculated by considerations in which the induced velocity at the wing position and
attack angle-lift characteristics of the wing of oo aspect ratio are used, but in the
case of cascade other ideas are used which will be discussed later.)

5. 5. 1 To take the Average of Trailing Vortex and the Vorticities in the
Downstream of Blade Row

The passage vortex is a distributed vortex, and the trailing vortex is a confined
vortex, and these mean that they are different kind of vortices which must be
treated in different ways. But when we treat the flow in turbo-machine, we often
desire to take the peripheral average of flow, and considering the axisymmetric
theory is one example of averaging, let us also try to do so on the secondary flow.
To get the peripheral mean value is not equal to get the axisymmetric flow. To get
the flow through blade row of finite blade pitch at first, then to calculate the
peripheral mean value, are the fundamental ideas, which are somewhat different
from the axisymmetric considerations (finite pitch is different from infinitesimal
pitch). In this paragraph we consider the averaging of trailing vortices, and some
different result from the axisymmetric consideration was expected, but we have get
the coincidence of results provided the treatment is confined in the following.

The trailing vortices are



Theory of Secondary Flow in Cascades 193

I'r= PT(F) + PT(S) (34}

Peripheral average of these are
— Iy 5
Wop= Gic0S T, etc. (35)

where w,r is the vorticity as the result of averaging the vortex, and we have

Wop = Wag(py T Warcs) (36)

We had better now refer again to the vortices in the downstream of blade row,
which are, as explained in 5.5, :
(1) The component of vortex perpendicular to flow on the meridional stream
surface w,. is consisted only of the normal component of passage vortex w;s,
which is from equation (13)

COSVap 73 (37)

Wy, =W =w
27 2p7 17 cos T}B 7,1

(2) The streamwise component of vortex w,s is consisted of the streamwise
component of passage vortex and two kinds of trailing vortices. If we take
averaged values we have

Wy = Wyps Way=WapsT Warem T Dars) (38)

5. 5. 2. Quasi Vortex

Considering the trailing vortex as vorticity distributed we have from (33) and
(35)

1{sinm 7y sinri 71 dﬁ}w CoST1p 71 Ay (39

(&) ’&‘CU =
pe TR COST1y 71 COSTay 7o Aryd " COSTyy 7o dry

This relation shows that the sum of the streamwise component of passage vorticity
and the trailing filament vorticity is got without the knowledge of blade profile
etc. (the knowledge of x;). (We must remember the trailing shed vorticity wazrs)
is got from other points of view.) In reality, because the fact mentioned above
has some meaning which will be explained in the following, the author has named
the sum of both vorticities “quasi vortex”.

We regard that the base flow is deflected merely mechanically at the actuator
disc, and vortices are carried mechanically by this flow (see Fig. 5-8). Let us now
think the blade row being a disc, in which an axially stretched disc is permitted.
The important point is that the flow is turned at the disc. A vortex at AB, is
carried to the position A;B,. The time required is

Lyima2=lp152

and the time required by the flow between A;~A; is equal to that between Bi~FB;.
That is

Lgrmazr=Lp1rmpe

Therefore
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Fig. 5—8

Lagiaz =tpiprr

we rewrite this as
@ SIN Y15+ @1COS Tipetan £y __ G,8IN 75,-+@,C08 7ypetan £,
- Vs

Vis

From the condition of continuity, we get
V 15C0S T15° @17 1=V 5,CO08 735° 207,

and
a, _1r,
a, 7,

From (40), (41) and (42), we have after calculations

1 { i <
ey COS V1 5 * SII1 °
Y on L T vy dr,

tank,=
COoS

¥y >2 dr, }

cos?y -t (
+ cos®ripetan k, ) @,

Since the vortex drifts with the fluid, we have

s, _ 4s,
Vie Vi

and since the strength of vortex does not change, we get

v, \? dr .
1) L——cosrm-sm Ton

(40)

(41)

(42)

(43)

(44)
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w, Af1dry = w, df 5dr, B (45)

and '
Af1=A45,¢08 , (46)
Af,=4S,c08 47

From (44) ~ (47), we get after calculations

COS 72 72
Wogr =Wo,COS kg=Wq—- 2P 2 A8
297 2q 2 17 COSTm 7.1 ( )
And from
: COS 7125 72
W ggs™=Wog SIN k= W1, ———2E_ 2 ian g 49
24s 2q 2 i7 COSTw 7,1 2 ( )
we obtain
w, :_w”[ Sinye 7 SNV 7 dﬁ}‘wl COS 715 71 dry (50)
s
! COST1, 71  COSTa2, ¥y dr, C0S Tes To AP

Equation (48) coincides with (37), and (50) with (39).

The theory treated in the above is started from the idea that the base flow
was turned at the actuator disc and the vortex was carried mechanically by it.
The coincidence of equations (50) and (39) reveals that the trailing shed vortex is
not contained in this theory, namely this theory is the quasi vortex theory. T his
situation is the important point of question existing in this theory ----- , nay, in the
whole secondary flow theory. The trailing shed vortex must be calculated from
another idea as mentioned formerly.

The author(!5 once regarded the trailing shed vortex to be 0. This is, of
course, misunderstanding because of the ignorance of conditions which decide the
shed vortex.

Smith(2® considered this quasi vortex being the axisymmetric flow, and thought
the difference of this quasi vortex and passage vortex being the secondary vortex
(because the difference of axisymmetric flow and passage vortex flow is the
secondary flow). But we have already recognized that this difference is no more
than the trailing filament vortex as shown by eguation (39). Here is also the
problem of forgetting the trailing shed vortex.

The idea that the flow is deflected at the blade disc and the vortex is carried
merely mechanically by it is nothing but the treatment of the flow at bend which
was explained at the beginning of the consideration of secondary flows, and there is
no cascade or blade row. The question what is the difference between the existence
and non-existence of cascade is answered by the existence or non-existence of the
trailing shed vortex. Therefore, the method of taking the existence of cascade or
the trailing shed vortex into calculation becomes an important point of the secondary
flow theory of cascades. This will be explained in another chapter.

5. 5. 3. The Correlating Equations before and behind Cascades
From equations (39) and (37),
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Siny,s %2 SiNyis 7 drl}

Wy == — W)
& ”{ COST1p 71 COSTyp 73 QF,

COS 7y, ¥y dry

¥ CoS T,y T2 dry 2re 5L
We write equation (37) again,
COS Vs 7>
Wop =Wy e t2n T2 52
2 17TC0S 11p T (52)

Now we change expressions w;, @, into w,, w, because of convenience. (We abridge
subscript B.)

Wiy =  Wa1COS 71— W,;8inT, _
(53)
Wir,= WeSINT1+®Wy1COST,
Way = W 2,COS TZ‘*~ Wyq sin T2
(54)
Woy=— Wy SINY,+ W5, COST,
Using these relations, we reform equations (51) and (52),
w
Wy =W g2 () 51y COS T3 (55)
waIB
4 w Vs .
Wop==Way [*“Z“tan Tis——222 tan 7’25} W g 1—E— Wy SIN T35 (56)
¥y Warp (81
Eliminating wy.8/ws1s from (55) and (56), we have
Lot 4 Ya1 tany = Yoz 4 Paz g5y 57
7 + 7 Tis 7 + 7, 725 (57)

The trailing shed vortex has disappeared in the process of introduction of this
equation. We can understand from this situation that the. trailing shed vortex
cannot be obtained unless other ideas are introduced. This equation can be recognized
being identical to equation (20) in 4.2.. (The difference of 7z or 7 depends on
ideas that the vortex drifts with the base flow or the resulting flow including the
induced flow caused by the vortex itself, and is the .difference of first approximation
or exact solution.)

5. 5. 4. Induced ‘Velocz'ties by Avemged Vortices

From the discussion mentioned above we have understood that we can get same
results as the axisymmetric theory by averaging vortices. Let us now try to get
induced velocities which correspond to that of quasi vortex, where the trailing shed
vortex is omitted since it has not yet been solved. We assume the radial velocity
component being small. ;

Let the variation from base flow (induced velocity) be expressed by 4dw. We
consider the peripheral induced velocity at first. From equation (5)

T1

Awmz“‘}l“go Wai?1d1 (58)
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Awegz%g v, (59)

Substituting (55) into (59), we get using (58) (where we neglect wj,rsy which is
put to be 0),

A0 gy =140,y (60)
2

On axial induced velocities, we have from (2'), (3') and (4)

_ 04w, + Aw o,

o or, 71
(61)
Woy=— ag;,all
AW,y = —Swezd72+ca2 (62)

Substituting (56) into (62) (where we put war¢y = 0), we get using (61) and (9)

1\ dr, ] w, 1
Awaz=~g[tanrw—tan m-( ;) . j[wl—B‘Td(rl'Awel)
2 2 a2B 1

W,
+ {12 g(1003)+C (63)
waZB
Cq.2 is decided from the condition of continuity of flow quantity. (This cannot be
immediately obtained since we have not yet get the induced velocity by war(s))
Blade circulation is,

I=—a04,+ a4, - (64)
therefore, k
A= —a, 4w 5, + a, 4wy, (64
Be;ause of equation (60) and a,/a; = r1/74 we get
47=0 (65)

We can say, therefore, that the blade circulation does not vary by the flow induced
by the passage vortex and the trailing filament vortex. We must notice that the
actual blade circulation is not invariable, and the trailing shed vortex which corres-
ponds to this variation exists in the downstream besides the vortex of base flow
and the quasi vortex (passage vortex plus trailing filament vortex).

Because of the complexity of equation (63) let us simplify it under some
assumptions. We assume at first the radial deviation of streamline being small,
that is

7'1 .
7;;——.—1 (66)
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and
Warp . dr,
waZB ) drl (67)
Under these assumptions, equations (60) and (63) become
At gy =AW 4, (68)
dr wip 1
AwQZ:—S[tan Tiz—tany,,e ar :] wa;z Td(r dw,y,)
+{Lers (sr0,,)+ Co (69)

a2B

Let the blade circulation in the base flow be I's. We have under the assumption
mentioned above,

dr
Iy= -aw613+aw923=awm{tan Tip—tanyype- .t } (70)
2

Substituting this into (69),

Awazz -

nSF,, L w

o aln ld(?' Au}(”)-ﬂ S walB d(AZUa1)+Caz (71>

u’al n ZUaZ B

6. Determination of Vortices in the Downstream
(Determination of the Trailing Shed Vortex)

Neither axisymmetric theory nor secondary flow theory could lead us to the
trailing (shed) vortex.

In the secondary flow theory, the trailing vortex was determined in the past
from the consideration that the trailing vortex is consisted of spanwise velocities
induced at the upper and lower surfaces of blade trailing edge. This is the idea
already explained in many reports and is to be calculated by the method stated in
2.3..

In the axisymmetric theory, various ideas appeared without sufficient succes-
sest62(100 But this can be solved easily by the consideration of the out-going flow
of blade row as explained in the following.

The reader should be careful that the vortex does not drift with the base flow
but with the final flow including induced velocities by the vortex itself, which is
just same as was explained in 3.. There is no subscript B, therefore, on the
velocity or the angle.

6. 1. Determination of the Trailing Vorvtex in the Axisymmetric Theory

If we regard the axisymmetric theory being a case of infinitesimally small blade
spacing, we can apply the idea of secondary flow theory to it, although the latter
is originally applied to the case of finite spacing.

Vortices in the flow just behind the blade row are consisted of passage vorticity
wyp and trailing vortex I'r(= I'r¢y + I'resy) (f we consider the trailing vortex
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being distributed, it is trailing vorticity @,r), and the direction of flow is the exit
direction of blade row which is given by 7z.. Vorticities parallel to the flow (s-
direction) and normal to both the flow and the span (r-direction) are respectively
CUgs:Cngs'i“ng (1)
Wos = Wopy (2>
where

Wap==Wyy(ry T Wares
For the sake simplifying explanation, let us consider a case in which radial
component of velocity can be neglected (where the change of radial position of
streamline is arbitrary), then we have

W= W, COST— W, SINTY
) 3
W, ==W,SIN T wyCOST
J— awe | we
R P
(4
= 0w,
! or
w,=Vcosr
_ (5)
Wy=—Vsiny
From these we get following equations just behind the exit of blade row,
oy Ve .
W= ~Vze~—a—‘;—?:~-72—~—cos F2er Sin 72, (6)
_— 6-{/—25 s VZ& i 2
27— **é;;;— “77,—2“5111 7 2¢ (7

(where subscript ¢ which must be attached to @ was omitted.) From equations (1},
(2), (6) and (7) we get
.._VZE 87,2& . VZe

or, T'COS Toe® SIN Vo0 ™= Wops - oy €)

avze . VZe Sinz

Yo, == () 9
872 7,2 / 2e¢ 2pT ( )

Since if we assume 7, ==7,, we can get w,p, from equation (13) in chapter 5 and
V.. from equation (9). We can have, therefore, w,p;+w®yp from equation (8). If
we want to get w,p, and w,r separately, we get at first ®,p, with the aid of
knowledge of flow in blade passage and then get ®,rz, but provided that we know
Wyps + Wor we can get vorticity components just behind blade row from equations
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W g5 = (Wyps+Wsr) COS T a0+ Wyp, SIN 7pe
(10)

Wy = — (Wyps+ Wyp) SIN V5 Wgp, COS T,

If there exists an assumption that the distortion of flow is small, these can be
regarded immediately as the vorticity component in the downstream.

Thus we have been able to get the vorticity (or trailing vortex) in the down-
stream by the consideration of condition just behind the exit of blade row. (see 6. 2.)

When the spacing of blades is infinitesimal, the velocity component perpendicular
to blade surfaces at the exit of blade passage is negligiblly small (this component
exists as the secondary flow when the spacing is finite (see Fig. 2-2)). Accordingly
we can say that the component of secondary velocities perpendicular to the main
flow and the span (r-component) is 0. In this case, therefore, the flow angle 7,
just behind the blade row can be considered being the exit angle of the blade row
(which may be equal to the efflux angle of two-dimensional cascade of the blade
element, because there is no secondary velocity in the two-dimensional cascade and
r-component of it is 0). This means that 7,. can be fixed when the cascade is
given. This is the reason why we used the values just behind the blade row exit
(subscript ¢) in the expression mentioned above. We have the similar equation at
the far downstream of blade row, but we cannot fix 7, beforehand in this case.

6. 2. Considerations

We could find in previous considerations that we can get the vorticity in the
downstream including the trailing shed vortex, but it had been unsucceeded to get it
in a neat form. The author will, therefore, enumerate what he did in hopeing to
be the information for the future study.

At first we summarize various equations for the convenience of considerations,
where we assume,

© radial component of velocity is negligible,

© where the radial position (variation) of streamline is arbitrary,

© we consider arbitrary axial positions in upstream and downstream of blade

row,

© it is axisymmetric flow, and

O we treat the finally built up flow incluing induced velocities by vortices

(theoretically real flow, not the first approximation).
From equation (8),

0 V .
-V, 87;2 — r2_cos7’2oSln72:w2p3+w2T(F)—|—w2T(s) 11
2 2

From equation (9),

v, |V,

ity 2 —
37t - sin?y,=wy,, (12)

From equation (13) in chapter 5.,

COSY, 73
=_x77l2, "2 13
T cosy, 7, LT (13)

The equation of circulation of blade,
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_ 2=
n

(=7 Vssin gy 7.V osings) =2 (rwg —ra,)  (14)

where n —> oo ;
The equation of trailing shed vortex (vorticity) is given from equations (28) and
(35) in chapter 5.,

n 1 ar
27 7,087, dr, (15)

Waopesy=

From equation (39) in chpater 5.,

siny, 7, _ siny 7.dr; ] L. COST: ¥,dv, (16)

Wops—t W ,=-—w1[
2ps T ar( Lcosy, 7y COSy, 7udr, YcosT, 7,47,

Equation of continuity,

c 7y dry  Vicosy, W an

¥y dr, Vicosy, Wa

Equation of vorticity,

= ow,
¢ or
(18)
0= 0w, I wy 1 o(rw,)
or ¥ I3 or
Relations of vorticity components
W, =waCO8 Y —w,Siny
(19
W, =w,sIn 7+ w,co87
W, =w,Cosy+w,siny
) 20
Wg=—wSIN 7+ W,COST
Equation (16) can be written in the following form, using (13) and (17),
_ V, . V, :
Wops+ Wap(py = —Wap-tAN T+ W1, 174 tany,+wis 174 (21)
1 1 .
Substituting (14) into (15) and using (18),
1 w,
YO = 07, {w‘” w: - waz} (22)
From equation (10),
W= (Wyps = Warcpy~ Waresy) COS 7o+ Wap, SIN 73 (23)
Weyo=—— (w2ps+ Warpcp)y -+ wZT(s)> Sin T2 + Wap-COS Ty (24'>

We get wgp, from (13), and (waps + War(p) + war(sy) from (11) and (12), furthermore
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way and w4, from (23) and (24), we can obtain, therefore, w,ry from (22).

6. 2. 1. The Case having no Vortex in upstream of Blade Row
In this case, we have from (13) and (16),

prf :0
WapsT wZT(F):O

we get, therefore, from (11)

ors o V,

By CosTatsinT (25)

Wapsy = V,

On the other hand , substituting (14) into (15), we have (abridging lengthy calcula-
tions in which we use the fact that the flow in upstream is of free vortex type),
or 14 .
TPRES —Vz——ar"; —--—F: COS 73+ Sin 7,
This is perfectly same as (25), which means that there exists only the trailing shed
vortex in the downstream corresponding the variation of blade circulation (as a
matter of course).

6. 2. 2. The Case in which Exilt Flow is of Free Vortex Type
The meaning of free vortex type is that y,, has the following character,

tan 7, =K (26)

¥y
where K is a constant. (In this case we don't think that the axial velocity is
constant which is a special feature of free vortex type. This type of flow is one
where the true free vortex is realized when the flow is ideal in which no secondary
flow exists. From equation (11) we have directly,

wzps”{’wzz*(m'{‘wzzv(s):o (27}

If the blade row is a linear cascade, 7,. is constant which is a special case of the
above, and naturally we get the same result. Accordingly, we recognize that in
axisymmetric condition the free vortex type of blading or the linear cascade has no
streamwise or so-called secondary vortex in the downstream "of blade row. This
result coincides with the result obtained by Preston('®. The author wants to
suggest to say this as the vortex rectification of cascade.

6. 2. 3. Axial and tangential Component of Vortices

In many occasions in the treatment of axial flow machine we find that axial
and peripheral components of vortices are more convenient to handle than expressions
of streamwise component and perpendicular one to it. Let us consider here the
components of quasi-vorticity wg.

From (20), (13) and (21), we have

Wye= gaz Way . (28)
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and from (20), (13), (21) and (19),

¥y Weyy } ¥ :
W =|—2tany, ——22tany, |w —2w 29
a0 [ 71 71 W, V2 |{Wa1t 7 61 (29)

‘When the inflow is axial and there exist boundary layers along the casing, which
is the case that w; has only tangential component, w,; = 0, we have from equations

(28) and (29),
wQa:O
} (30)

Weo=—"2w
26 ?,1 g1

We find that the quasi-vortex has only tangential component, and this can be easily
understood from the fact explained in 5. 5. 4. that the blade circulation does not
change. It is clear that the blade circulation should be changed if the quasi-vortex
has the axial component. We must not forget that the actual flow has another
vortex, i. e. the trailing shed vortex.

When o, has only axial component, w, has axial and tangential components
which are from (28) and (29),

o, (31)

7 w,
wqa:[?f—tan =t tanerwal (32)

al

Let us change here our consideration to another problem, from equation (14)

I [ ¥y Wy . ]
=] —t 2 %ad ¢ 3
ai., any,+ AT (33)
where
a, = 277,
n

The similarity of this to the coefficient of w,; in equation (29) is interesting.
Assuming

I_&il
vy
and substituting this into (29), we get
. T
wqe;wel“;aw ; Way (34)
And from (14)
Woy=rWg,— W1 (35)

al

If we express w,; and w,; in a same magnitude, ws, and w,, become equal and the



204 S. Otsuka

we, and velocity we1 become also equal.

aAWq1 aAWq1

These conditions are illusirated as in Fig, 6-1. But the significance of this fact is
not clear because this is the consideration only of "the quasi vortex in which the
trailing shed vortex was omitted.

tangential induced vorticity

o
aWq1 al
Vi )f ]
VZ W,
Waz 1
e ) ] '
< W2
0} -
(‘“ g @l
Wl wgy
}
[0} j ?
C:[Qﬁ
Wq .
Fig. 6—1

6. 2. 4. The Case in which w, has only component Perpendicular to Flow
(r-component)
This corresponds to the linear cascade experiment.
Since

wls':o

we have from equations (13), (16) and (17) (see also equation (37) in chapter 5.,

cosT, 7,

Wop == Wop, =—nLl2 "2 g 36
27 2p7 COSTl 7.1 17 ( )
War= Vgt Wancry == | sinjy 7, S7 Bes |, 37
e bs 7 COST, 71 COSTy Wa d 7

The trailing shed vortex must be added to these.

6. 2. 5. The Case in which wy has only Streamwise Component
This may be a rare case. Since
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CU]T :0
we have from equations (13), (16) and (17) i
Wyr =gy, =0 ' (3%)

=2t arery =, (39)

The -trailing shed vortex is added in the downstream of the cascade, and anyhow
there exist only streamwise vortices in the flow.

6. 3. Determination of Trailing vortices by the Secondary Flow theory

As aforesaid the trailing vortex in the axisymmetric theory was obtained from
the equation of vortex at the cascade exit side. Then how is in the secondary flow
theory? On the linear cascade, this can be calculated from the consideration of
flow in the Trefftz plane at cascade exit, and this process is regarded being correct
(see 3. 3.). This method will be explained in the next chapter.

If we want to apply the same idea to the blade row of turbomachine, we should
treat the problem from the consideration of such a surface B,C.CsB;B; illustrated
in Fig. 6-2¢2% as Trefftz plane, but there was no attempt of doing it and is no
ample hope for successt®, The author, therefore, cannot do further explanations.

INTEGRATION
SURFACE

VORTEX SHEETS
Fig. 6—2

7. Theory of Secondary Flow in Linear Cascades

The theory of secondary flow in linear cascades corresponds to the special
case of the theory of secondary flow in turbomachines which was stated in chapters
5 and 6. The situation, that the theory of secondary flow in turbomachines has not
yet progressed at present beyond the stage of axisymmetric theory and the treatment
on cascade of finite spacing is pending¢2®’, must be compared to the one that the
linear cascade can be anyhow advanced to the latter stage. The adaption of two-
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dimensional cascade flow as a base flow is a further good point in approximation in
comparison with the axisymmetric flow used in turbomachines. After all, since the
examination of the secondary flow in the form of linear cascades is supposed to be
useful for the clarification of merits or defects of secondary flow theory, the theory
will be explained again in this new chapter.

7. 1. Vortex Motions and Attitudes

Vortices in the flow field are thought to be as illustrated in Fig. 7-1.  When
the side wall boundary layer of cascade windtunnel is considered, w; is perpendicular
to the flow and £, = 0, but let us consider now a more generalized case.

For the sake of comparison with the theory of secondary flows in axial-flow
turbo-machinery (chapter 5.) equation numbers are matched to that of the former,
which means that the reader will recognize some missing numbers.

ij
Wap

N

-
g
|
|

Fig. 7—1

Wy g ::CUICOS.‘CI } (
7
Wi, =Wy Sin £,
Wap :CUZPCOS ﬁ:zl 8
| ®

Waps = Wap SIL Ky
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The condition of continuity of base flow is
V1,C08 115=V 25C08 725 )
or
Wer3=Wazp (9,)
On the vortex we have,

Af =48,¢c0s K,

(10)
Afg“—:ASZCOS Ko
From the vortex law,
w df 1= wapdf, an
and
4s;, Vi, 12
4s, Vi 12)
Calculating from relations of equations (7) ~ (12)
Wopr . COS T3y (13)
Wyr COS V1p
Daps . S Tan tap , 14)
Wy, COS 715

k5 can be obtained when the flow between blades is known. w,p is thought not to
be straight in general cases, but if we allow to assume this to be straight, the in-
clination #, will be obtained from the calculation of A, A4, in Fig. 7-1. What we
did in 5. 3. 1. can be directly applied to this calculation. Let a particle of fluid at
A, be reached to A, in ¢ second flowing along the upper surface of blade, and A,
in same ¢ second along the lower surface. The time 4¢ required by a particle
reached at A’, to flow from A’, to A, is
_ A4,
At = V. (15)

This 4t can be expressed by the following relation which was explained in 5. 3. 1.,

Ly

At== 7 (16)

where Iz is the blade circulation originated from the base flow, and V. is the
geometrical mean velocity of cascade inflow and exit flow.

Because times required by the fluid to pass C.B; and C,B, in Fig. 7-1 are
equal, we have

CE. _ OB, .
Vi~ Vi an
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At the same time, we have

C.B,=asin rz+a cos ryz+tan & (18)
and
A A, =a sin 1,5+ ac0s 745+ tan £,—C,B,

Equations (9), (17), (18) and the above yield

I : . 2
A;Azza[sin Y25+ COS 7apetan k,— SIN715°COST1p  COSTT1p tanfcl} 19

COS V25 COS Y25
From (15) and (16)
(D
and
Ty=a(Vypsinr,—Vipsin i) @1

‘From (19), (20) and (21) we can get x,.

7. 2. Trailing Vortex

Same things as explained in article 5. 4. can be applied to the trailing vortex in
this case. Namely, the spanwise velocity 4wy which appears at the blade trailing
edge is,

2AwT:w1,-6+%— (24)

1= [/ 1 =t [/ 1

Where I' is an actual blade circulation including the consideration of secondary
flows (see 5. 4.). '

The strength of trailing vortex (the strength of vortex contained in unit blade
span) I'r is,

p=—24w, (26)
which can be put as,

FT = FT(F) + PT(S)

where
Lrimy=—W150, trailing filament vortex 27
FT(3>=—%—I;— trailing shed vortex (28)

And by the same consideration as in 5. 4.
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Drimy=—wzpr+0, (32)
where
BZZA;AQZVQAt
From equations (32), (13) and (19)

sin sin w Wy, COS
Driry= — 1, @ COS 7’23[ T2 T1m 2ps _ Wi T1s ] (33)
COS 71z COS 725 Wiya Wy, COS73zp

7. 3. Determination of dws in Linear Cascade

Awy is given by equation (24) as explained, but the problem has not yet been
solved since dI'/dx is not obtained. Awr is thought to be obtained by the consid-
eration of Trefftz plane at the exit of cascade, which was explained in articles 3. 2.
and 3. 3.. The followings are the practical method of solution along this idea.

A\
WX’

AN

Vi

P

TREFFTZ PLANE

Fig. 7—2

Let us consider a plane perpendicular to the flow at the exit of linear cascade
(Trefftz plane) as illustrated in Fig. 7-2. ABDC in the figure is this plane viewed
from the downstream concerning one passage of the cascade, and forms a rectangle.
2B corresponds to the span of cascade and &’ is the distance between two adjacent
stagnation streamlines. The vortex perpendicular to this plane is the passage
vorticity wsps. When there exists such a vorticity in this rectangle, the calculation
what velocities will appear at the boundary of rectangle from the standpoint of
two-dimensional flows is the solution for dws.

Fig. 7-3 (a) is another illustration of the rectangle. w;p; can be generally
considered being constant in y-direction and a functionof x. If the flow is bilaterally
symmetrical in spanwise as in the ordinary experiment of linear cascade, the half
of rectangle illustrated in (b) of the figure is sufficient to be considered.
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Before we shall do following mathe-
matical treatments, we must be careful
to a point. In Fig. 7-2 we assumed that —Waps
ABDC in Trefftz plane is a rectangle, ’
but, although the side AB may be assumed
to be straight because it is a trailing

RV

S
[S
~
3
P —

edge of blade, the straightness of the = B——+—B ”
side CD is not assured. There were some v fa)

discussions on this problem (2(12>(22),

The conclusion of the problem, although // —AWr

will be shown in the later article, shows —AW, 0V AWt AWyer

that CD can be regarded being straight : == X

which differs from the result of the R
discussions. Since we are now in a state f

without the conclusion, we should assume ; l

that the distance from the trailing edge 1@ : [ X
to CD is quite small, namely 7, ==0, or L«S* l L——J
the blade spacing is small. Under the (¢}

above assumptions, we shall consider the Fig. 7—3

flow in ABDC which is a rectangle.

7.38. 1. Flow in a« Rectangle having Vorticity in it

From article 3. 3. we define the following stream function ¥ for the solution of
two-dimensional flow in Trefftz plane.

o
- (1
V,=——Z
7 0x
where V,, V, are x, ¥ components of the flow. ¥ satisfies next equation,
2 2 o
R aw'_ﬁw 2)

ax? | oy?

The flow in a rectangle having vorticity « in it, as illustrated in Fig. 7-4, has
already been solved as follows(23),

4,7

A

<——@;-—>
)
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]
o S N
L E 51(3 l (o)

x HO sinh( 7 > sinh (nﬁ%ly-> cw (€, Pdy

al ’
+ (" sinh (n7-3 >-sinh(n7ra —7 >~w(§, 7 (3)
5 B B
As aforesaid w(=w;p;) is generally constant in y-direction and a function of x.
Being constant in y-direction comes from the assumption that the inclination of
wqp is constant (see 5. 3. 1), which may be approved as the first approximation.
If we think @ being of a step-like distribution as illustrated in Fig. 7-5, @ can be
regarded combinations of cases in which w is constant in a range of 8. The treatment
of w in which w is regarded as the above, therefore, doesn’t lose the generality.
Assuming o is constant in y-direction and a function only of #, we have

RS J S

. X
o SIN| BT+ B /
y—2 % - Sin<h (nf>a> Sow(é) sin<m_g_>ds

T n=1
B,
X [sinh (nn—q/—g)i)S: sinh <nz g, )dv

+ sinh (m%)& sinh (m =7 )dﬂ 4

Integrations in [ 7 can be performed easily. In conditions as expressed in Fig. 7-3,
we notice for the integration with respect to & that
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w(&)=w (constant) 0<<0
w(€) =0 0<E<B
Therefore, we get after calculations,

2B &1 . x o
— w’awsm@ﬂB)[l—cos(nn—B—)]

’

y {1_ sinh(nn%—> + sinh <,n:r a Z;y > } -
sinh(?m Z >

The spanwise velocity 4wz at the blade trailing edge, which corresponds to the
trailing vortex, is

U=

X [1 — COoS <n7r%~>] -tanh («%ﬂ—%) (6)

The induced velocity in y-direction 4w, at any place is

du, = -y 2B, i ‘1'2*C05<”7f x>~[1~—cos<n7z_3->}

ox 7t i m B B
y {1—— sinh(nn%) + sinh(lnn al§y> } -
Sinh(ﬂrf g >

7.3. 2. The case of Infinitesimal Blade Spacing

The flow in a linear cascade of infinitesimal blade spacing which corresponds
to the axisymmetric flow is given by putting ¢’ —> 0. From equation (6) we have

a &1 x B 0 ﬂ

p- ’gl—ﬁsm@mB) {1 cos<n7r 5 ©)
On the other hand, the relation w ~ x which is illustrated in Fig. 7-3 (c¢) can

be expressed by Fourier series as,

f:wzEisin<nng>-[1—cos<nn—g—>} €)

T a=1 7

dw,=w

Therefore we get,

2
=0 (0<x<B)

AwT:_%Lf:i'w (0<2<0)
} (10)
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The strength of trailing vortex at unit of span is,
Ip=—24w, an

Let us now take the average value of this in tangential direction (cascade direction)
as was done in 5. 5. 1.. Because we are now thinking about a case a’ —> 0, there
may be no problem which existed in the case of &’ being finite (the doubt if it is
allowed or not to take such an average). Expressing the vorticity in such a case by

The proof of (13) can be done also in the following manner. Let us examine the
circulation along the path ABCDA in Fig. 7-6.

TR 3
R
, D¢~y
¢ :j/ 77
0 /:L-{//
A B 4wy £
)
B
Fig. 7—6
a’ 0
ZAw;r-Ax—}—SO szy(x+Ax)dy—{-ga,dwy(x)dy:wa’-Ax A
Now we examine the limiting case of a’—0. First term becomes from equation (6),
R 2B =1 . x\.[y1_ ,_@ nr a a’
Bg‘xodw:p.— 3 wngl—-—nz sm(mr§> i.l cos(n'rB)j;X 5 B —O[—-——B :t (B)

where O[ ] represents “order”.
For examinations of second and third terms, we use equation (7) in which the
contents of last [ ] becomes under the condition a’—0,

sin(n72) + sinh (=72 }{1_ cosh(nﬁ%f—z—/—)

sinh (ﬂﬂ%—) cosh (mr%)

2 sinh(nr—2%-)- sinh nﬂ-ﬂi .
= ( Ci’j}}(m g;) 2 ) =2 sinh(nrc—z%>-sinh(nn_ﬁ§_B—y—>

wifon oo )< = )

where

0<y<la’

‘We have, therefore,

. a \2 had x 8\ a’ \?
all_x}:&)tdwy <(-—-B ) wBﬂ%}l cos(nﬂE){l—cos(mr?)]mO[(«-—B ) ] [€o))
Second and third terms in equation (A) is, therefore, of higher order of infinitesimal
than the first, and we have from equation (A),
24dwr-dx=w-a’+dx
or

7
Asz a

50 (D)

This is completely same as equation (10).
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w,r, we get using (10) and (11)

Wop= 1;? = Wopg (0<x<8)
(12)
=0 (0<x<B) ~
where
Wops— W
Therefore, we have
wzz;g'i"wZT:O (1'?’)

at every x-position. This is completely same as equation (27) in 6. Z. 2. which
means that there is no streamwise vortex i. e. secondary flows in the outgoing
flow of linear cascade having infinitesimal blade spacing from the consideration of
Trefftz plane.

7. 4. Outgoing Flow from the Linear Cascade

7. 4. 1. Discussions about the Boundary of Trefftz Plane

There was some question in the idea that the boundary of Trefftz plane is a
rectangle as said in 7. 3.. Stephenson(??) once published a paper in which he said
that the result of Squire & Winer can be obtained by much more simple method
originated from the law of conservation of circulation. In this paper he applied
this idea to the passage vortex and pointed out that the trailing vortex must be
added to the former. Unfortunately his theory should be said to be erroneous, but
he may be the first man who pointed out that both the passage vortex and the
trailing vortex must be considered on the secondary flow in cascades. Furthermore,
he took the average of the trailing vortex in cascade direction. This is the idea
same as the author’s which was adopted with some doubt in the paragraph of
axisymmetric treatment. Because there were such points of questions in his paper
several discussions were held in the Reader’s Forum in Journal of the Aeronautical
Science.

Eichenberger(®) said that there is no need of consideration of both the passage
vortex and the trailing vortex, and only the secondary vortex (passage vortex) of
Squire and Winter is sufficient to be considered. Namely, because the trailing vortex
can be replaced by the boundary, the flow is regarded as the one in a duct and the
trailing vortex can be disregarded.

Yeh(2? said that the algebraic summation of the passage vortex and the trailing
vortex done by Stephenson is not good, since locations of both vortices are different.

Loos and Zwaaneveld(1?) commented on Eichenberger's conclusion that thinking
the trailing vortex as a boundary and taking no account in the calculation are correct,
but there remains a question that the shape of boundary is not yet obtained and,
therefore, the problem will not be solved. To get the solution of the flow field,
we must calculate both the passage vortex and the trailing vortex.

Interpretations of Eichenberger or Loos and Zwaaneveld are both not erroneous.
The problem is what is the shape of boundary which is formed by the trailing
vortex, and let us examine this in the following articles.
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7. 4. 2. Flows in Trefftz Plane (Rectangular Boundar?y)

* The flow in the Trefftz plane having rectangular boundary was treated in 7. 3.
1... The assumption of rectangular boundary may be adopted as the zeroth approxi-
mation. This is the same idea as an assumption used in the monoplane wing theory
in which the trailing vortex sheet is assumed to be flat. Assumptions that, w(=wjs)
is «constant in y-direction, and constant in the range of §, are also allowed for the
sake of simplification.

= Induced velocities at any point (&, ¥) in the rectangle can be obtained from
equation (5) in 7. 3..

dw, (%, ¥)= w Z (:mr%)[l - COS(?HT '; )]
y sinh(nﬂ%-g&> (10
cosh(?zzr 5B )
dw,(x, y)=— 25 “’g‘;}%&‘wg(’ f;) [1”&3(“ g >]
x[l—— cosh(nr ngy> 1 (15)

L LOSh(?Zn_QE~) d

The spanwise velocity 4we at the blade trailing edge, which corresponds to the
trailing vortex, is expressed by equation (6) which is rewritten as,
2B &1 x° ; ) a’
dw, = w > sm(n:rm)- {1 — COS(?ZT X tanh{ nr 16
TR U Em Tt B ;] "mag) (10

. The induced velocity 4w,., in y-direction at the center of span is obtained
from (15) by putting x = B.

s A=1

AW, = — 2}? w3 (‘;3)” {1~cos<7m g ﬂ
/ a'—2y

cosh ?mmm;wm—») 1

X[L~H G |

cosh(nn 2‘2) J 4

The mean induced velocity dw,, in y-direction is given from equation (15)

1, 2B o1 ( ‘x>.[m ( 8)}
A, = (l/So dw,dy = ~?~w[;§1»?72~c03 nT 11 cos( nmwz

3{ ZB 5’; (nﬁ_%).{l—cos(nn%)} . tanh(nrc 2‘2 ﬂ (18)
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7. 4. 3. Considerations about the Trefftz Plane

The above was the consideration on Trefftz plane having rectangular boundary.
On the other hand it is a problem in what location the Trefftz plane should be
placed along the stream, and let us place it as shown in Fig. 7-2.. In this case the
Trefftz plane becomes semi-infinite rectangle as illustrated in Fig. 7-7.. AB in the
figure corresponds to the trailing edge of blade shown in Fig. 7-2, and is regarded
to be straight. ACE..... and BDF...... are side walls, and regarded also to be
straight. CD, EF, ...... indicate wakes of blades where trailing vortices exist, but
it is not clear if these are straight or not. This is the problem we are now going
to examine.

7. 4. 3. 1. Strength of Trailing Vortex Sheet

To fulfill the straightness of boundaries (4B, ACE.... and BDF..... ) shown
in Fig. 7-7, we consider mirror images as shown in Fig. 7-8. The upper side of
LM-line is the fold-back of the lower, and we can easily see the arrangement of
vortices in each domain is same as the one shown in Fig. 7-7.

2B
leg—] e 5]
x,§ A — i’fr :)B
T o
Bl =Gl 92— F
1C | ¢
T a
¢Cleetoois"n+
Ci 0,
TG Nl el
C 2 .
fa3 fa ~ ~ A B M
A A v ~ TN e 75
E i3
7
Fig. 7—7 Fig. 7—8

At the boundary AB in Fig. 7-7, the velocity 4ws is induced. The induced
velocity 4wy has the relation to the strength of trailing vortex I'r, as

[p=—24w, (19)

dwr or Iy is thought to be unknown and will be calculated hereafter. The passage
vorticity o is regarded being given (which was obtained as the secondary vorticity
waps In 7. 1.).

Let the induced velocity at AB by passage vorticity  be dwrp, and the one by
trailing vortices CD, EF, ..... be dwrr, then we have
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AW, = 4w, 4w, 20)

Awrr contains T'r or dwe in it, and equation (20) becomes finally an integral equation

concerning Adwr.
dwrp can be obtained from equation (16), which is the expression of the flow

in the rectangle, by putting ¢’ —> oo without the consideration of mirror images.

2B =1 AN ET )
A p= — w?_‘i e sn(n“B> {1 COS(?ZTEF>J (21)
dwgrr is obtained with the aid of Biot-Savart law considering mirror images.
7 @
B - oo <o B
w0 =1{T.® % 5 B T AT
T Jo A=1 = oo (Zm_{__i_i) +<nd )
B B B
n @
- .
, i 22)
E x\? a’ N2 } B (
(2m—5+5) +(ng )

(where n is the number of trailing vortex sheet, for examples CD is n=1, EF is
n=2, ..... etc. and m is the number of mirror images on right and left sides.
Detailed calculations are quite complex and may be seen in the reference (11).)

Abridging detailed calculation, the final result is,
mrx a’
~coth(75 7 )]

X Sin(?ﬂﬁ—%—> - sin (?;z:ffg> & (23)

B
Substituting (21) and (23) into (30), we have

Aw, (%) _ _2__ 1 i—n;“ ; <ﬁﬁ%>o[1_cos<nﬂ%ﬂ

Q10,7 (%) = 5 24w,(5) ) [1

M=l

wd 72 0 a=m
5
+ on Awf§¢> S coth(l%l g)]-sin(MW%)
><Sin< é)‘g (24)

This is a Fredholm type of integral equation of second kind with respect to dws as
an unknown function, and the solution can be obtained by the method of successive

substitution(®. The result is,

01 L) el
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nr a’
% tanh<--—~—> 25
5B (25)
This coincides with equation (16). Namely, dws from the consideration of Trefftz
plane mentioned above coincides perfectly with the one from the case of rectangular
boundary.

7. 4. 3. 2. Form of Trailing Vortex Sheet

The treatment mentioned above was done under an assumption that the section
of trailing vortex sheet at Trefftz plane is straight. The straightness of trailing
vortex sheet must be confirmed by the examination of y-directional induced velocity
at that position. If this is zero, the assumption of straigtness becomes correct.

Let us examine the y-directional induced velocity at the trailing vortex sheet
y = Na& (where N is positive integer) in Fig. 7-7.. This can be divided into two
parts. The one is that caused by the passage vortex and denoted as dw,p. Another
is by the trailing vortex and denoted as dw,r.

dw,(y=Na") =dw,,+dw,, (26)

dwyp caused by the passage vortex can be obtained from equation (15) by putting
@' —> oo, where the semi-infinite domain in Fig. 7-7 is considered being a rectangle
of @' —> co. We have (putting y = N&’)

<[1-exp(—nngv)] @7

To obtain dw,r caused by the trailing vortex Biot-Savart law is used. For the
satisfaction of boundary conditions we must consider mirror images as shown in
Fig. 7-8, where we must be careful that the trailing vortex sheet along the boundary
AB or n=0 must be treated as a boundary and not a vortex sheet. The distribution
of trailing vortices can be divided into two groups, which are

(1) symmetrical distribution with respect to ¥y = Na’

(2) additional distribution which is added to (1) to return to the original

condition.
The y-directional induced velocity at y = Na' by (1) is easily understood to be zero.
Distributions of trailing vortex sheet of (2) become,

I'r at y = 0
U'r at y=Nda’
2lr at vy = [ad’ where [ =1, 2, ..... 9, N-I

0 at any y except the above
Induced velocities by these vortices are expressed respectively as dwyro, 4dwyry and
Adwyr,. We have,

Ay, =AW, o+ 410, 5 + 420, 4, (28)

Using Biot-Savart law, y-directional induced velocity at (x, Na’) caused by the
vortex sheet existing at y = Nda' is,
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r 21 - £~£
dw,,(x, Na')=— 21 X " (‘)”’i Jt ‘f;‘ EJ;B{ 5)(”‘“N>}2
2m~—,—§-—‘g‘ } 5 9
{zm*g'%} ” {E_(””N)} v <2>

Adwyro is obtained from equation (29) by putting » = 0 and substituting (19)
and (25) into it.

4wy, is obtained from equation (29) by putting n = N.

4wy, is obtained from equation (29) where we put I'y —> 2I'; and # =/ and
take the sum of /[ =1, 2, ..... , N-1.

Substituting these results into (28), we get after calculations.

D )
B
X [1-exp<—-nn~%;N>} (30)

where we used a relation that

tanh<n~r 5B > [2 Zl exp(—?m W~Z> e exp<~n7z~g~N> + 1}

:1"—6Xp<—~%7(—~a~wl’\7> 3D
B

Now we substitute equations (27) and (30) into equation (26) getting the result
that

dw,(y=Na")=0 (32)

Lengthy explanations yield a very simple result which states that y-directional
induced velocity at the position of trailing vortex sheet is zero. This means that the
vortex sheet is flat, and therefore the boundary of Trefftz plane can be considered
being rectangle. From the result we have obtained, we can say that the flow in
Trefftz plane haveing rectangular boundary treated in 7. 4. 2. can be directly
applicable to the consideration of secondary flows in linear cascades.

7. 4. 4. Results of Calculations of Flow in Trefftz Plane

Spanwise velocities at the trailing edge 4wgs, which corresponds to the trailing
vortex, are shown in Fig. 7-9 (a) ~ (d) calculated from equation (16).

y-directional induced velocities at the center of blade span 4w,.; are shown in
Fig. 7-10 (a) ~ (d) calculated from equation (17).

y-directional mean induced velocities 4w,, are shown in Fig. 7-11 (a) ~ (d)
calculated from equation (18).
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y-directional mean induced velocities at the center of blade span, which are most
indispensable for the correction of exit flow direction of cascade experiments, are
values at x/B = 1.0 in Fig. 7-11 and reproduced collectively in Fig. 7-12.
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7. 4. 5. Streamwise Velocity Distribution of Exit Flow

The first approximation of the component of vorticity normal to exit flow in
linear cascade is given by equation (13) in 7.1. (see Fig. 7-1).

Wopr . _COST2p (33)
Wy COS T1p

Because there is no other normal component (see 5. 5.), we can get exit streamwise
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velocity distribution.
Let the velocity deviation from the base flow (induced velocity) be denoted 4V,
then we have in the upstream of cascade,

AVlzgwl,dx (34)
where we note the condition of continuity which is

SZBAVIdxzo (35)

0

In the downstream of cascade we have also,
szzg . (36)

The condition of continuity will be expressed as follows with the aid of result
obtained in 7. 4. 3. which states that the boundary of flow through the blade passage
stays rectangular still in the downstream,

SZBAVde:() (37
0

From the condition of continuity of base flow,
V14008 11,7V 5,008 T2 (38)

After calculations using equations (33), (34), (36) and (38), we have

AVZ _( COS 7ap >2 dVi (39)
Vs COS 13 Vig
Because |71|<lr.| in the accelerating cascade, we get
AV, 4V (40)
VZB VIB
and because |7;|>|72] in the decelerating cascade, we get
4V, |4V, (41
Ver = Vs

Since the velocity of base flow is considered being averaged velocity, the velocity
deviation from the average in the downstream looks becoming smaller than in the
upstream in the accelerating cascade, and this gives us an impression that the side
wall boundary layer becomes suppressed. And conversely the one in the decelerating
cascade seems growing. It is worth noticing that we have got the result above
stated without considerations of the boundary layer growth caused by the viscosity
of fluid.

7. 4. 6. Exit Flow Angles

Provided the spanwise velocity distribution of entrance flow of cascade is given,
we can obtain the exit flow velocity distribution from equation (39) as,
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Vo=Vop+4V, (42)

The averaged y-directional (nbrmal to span and flow) flow velocity is obtainable
from equation (18) or Fig. 7-12 (a) ~ (d), where w is passage vorticity ®gps, and
from equation (4) in 3. 2. we have,

Wops= —2w;e

¢ is the turning angle and we assume the vortex in upstream of cascade is normal
to the flow or #; = 0. Namely w; = w;.. (When #; =0 we employ the way
mentioned in 7. 1., and can get w;ps.) In the next place, because

o Vi _ 84V,
v ox ox
we get
04V
w= cuzps=2€—~—-ax ! (43)
Expressing the deviation angle of exit flow by 4e we have
—— ‘Aw}’m

where 4w, is the y-directional mean induced velocity.

From the above consideration we can find that the turning angle is smaller
(under turning) at the center of span, larger (over turning) at side walls, and
smallest at the border between boundary layer and main flow. This explains
qualitatively the result of cascade experiment to some extent, but sufficient
explanation of the latter is not accomplished in which the turning angle at the
center of span is not always smaller than the ones at side walls. Further studies
must be needed on these points, and we feel some limit of theory which does not
consider the viscosity of fluid.

Now, we must be careful that there exists an assumption of great importance
in the above ideas. Consideration of the secondary flow in a rectangle means that
we accept the idea that there is no flow in AC-direction (y-direction) at the
trailing edge AB, and there remains some doubt that the Kutta’s condition of blade
in the flow containing secondary flows can be expressed by the above or not.
Probably it may be accepted when the trailing edge is very thin or of cusped form.
And if we accept the above assumption, we can reach a noteworthy conclusion that
the direction of the wake (vortex sheet) will show the exit flow direction of two-
dimensional cascade (i. e. the cascade containing no secondary flow), because sides
AB and CD are not deformed by the secondary flow. The exit flow angle of two-
dimensional cascade should be obtained immediately from the direction of wake
without a troublesome method such as the boundary layer suction! This is going
to be proved experimentally. (not yet published).

8. Conclusions

Because this report on the secondary flow theory was lengthy, and many in-
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accurate points were involved, and furthermore explanations were along the develop-
ment of the author's idea, the author is afraid it has defects that the story is
diffuse, redundant and difficult to seize the essence. Therefore let us rearrange the
story.

(The method of approach to the secondary flow is not confined to the
theory explained in this report. Honda, Gomi and Namba have developed other
methods(9(3(14) )

The fundamentals of secondary flow theory are clear and sufficient by the
methods developed by Squire & Winter or Hawthorne. When we apply these method
to the cascade problem the consideration of Trefftz plane at the exit of cascade is
probably not entirely erroneous, although it cannot be said being strict. The objection
in considering the boundary of Trefftz plane being rectangle was eliminated in
Chapter 7. The idea that the spanwise velocity induced at the boundary of rectangle
corresponds to the trailing vortex is not doubtful, and therefore the treatment of
secondary flow theory customary used should be sufficiently usable for the purpose.

On the other hand the axisymmetric theory is the one to solve the flow in
axial machine under an assumption of axisymmetry and has no room for doubt in
itself.

If so, where was the point of problem? It was in the process connecting the
secondary flow theory to the axisymmetric theory. The author thinks that the
employment of the axisymmetric flow as a base flow to get the first approximation
of secondary flow did especially make the problem complicated. Furthermore, to
intend to introduce the idea of trailing vortex of secondary flow into the axisymmetric
flow is supposed to be another source of troublesome complexity. It is easy to
understand that the strength of the trailing vortex in the axisymmetric theory can
be obtained by the analysis of axisymmetric flow itself or by the examination of
secondary flow at the limiting case of infinitesimal blade spacing of cascade, but
strangely neither of them were attempted until the author has tried (for twenty
years!). This might show, however, the want of assiduity of the author himself
who has engaged in the secondary flow theory almost all the time during this period!

8. 1. Summary of Results

Explanations on the secondary flow were done under an assumption of the theory
of ideal fluid flow with vortex. The foundation was the theory created by Squire
& Winter and improved by Hawthorne. The first approximation of secondary flows
could be easily obtained from the law of vortex (3. 4.).

Brief explanations were presented on the axisymmetric theory, which has the
meaning as the zeroth approximation for the use of secondary flow theory and,
therefore, is important. It was clarified that the equation introduced in the axisym-
metric theory gives us no information on the trailing vortex. But because the flow
in the downstream of cascade can be obtained from the equation, it was hoped to
get the vorticity from this flow, and the trial was succeeded (6. 1.). But the ex-
pression of trailing vortex in a neat form has not yet been obtained. One of the
important present results is that, if the exit flow of blade row is of free vortex
type, namely tany,. is inversely proportional to radius, there is no streamwise
vortex in the exit flow even if any vortex is contained in the inlet flow, which
means there is no secondary circulation in the exit flow. This produces an important
meaning when the axisymmetric flow is employed as a base flow. Namely, when
the flow is of free vortex type, there is no secondary flow in the base flow, and
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therefore in the case of blade row of finite spacing the final three-dimensional flow
can be obtained by adding the secondary flow corresponding to the cascade of finite
spacing to this base flow. 1In this instance, the data of linear cascade will be
useful. (Since there is no secondary flow also in the exit flow of linear cascade of
infinitesimal blade spacing, this flow is to be used as the base flow of linear cascade.)
(Practical method has not yet be presented.)) One of the questions mentioned in
Introduction has been answered. When the flow is not of free vortex type, the
treatment has not yet solved and must be examined in the future, but considering
the case of free vortex type good results may be expected by adding the correction
of finite spacing to the axisymmetric flow (although the method of finding this
value for correction is unknown). The practical method of treatment is left to be
the future problem.

In the explanation of secondary flow theory stated in Chapter 5., the movement
of vortex in the upstream of cascade into the downstream was examined and the
fact that the trailing vortex is consisted of the trailing filament vortex and the
trailing shed vortex was clarified. The former can be explained as a connecting
vortex of vortex in a passage with neighboring one when the vortex in the upstream
is deformed in passing through cascade passages, and the latter as a shed vortex
corresponding to the variation of circulation of blade. The sum of the both corre-
sponds to the spanwise flow induced at the boundary of Trefftz plane (or the blade
trailing edge). (3. 3 and 7. 3).

Vortices existing in the downstream of blade row are the passage vortex, the
trailing filament vortex and the trailing shed vortex, and the author tried to name
the sum of the former two “quasi vortex”. In contrast to the fact that the trailing
shed vortex corresponds to the variation of blade circulation, the quasi vortex, when
regarded in an averaged vlaue, is related only to inlet and outlet conditions and not
to the blade profile etc.. Also there is no change of blade circulation by the quasi
vortex. These facts perceived the author that the quasi vortex flow is to be under-
standable to correspond to the flow in the bend of single domain, and affairs which
characterize the secondary flow in cascades (characterize the existence of blades)
are the variation of blade circulation and the accompanying trailing shed vortex.

Since the treatment of the Trefftz plane of the circular cascade is impossible,
considerations were limited to the Trefftz plane of linear cascade (Chapter 7.).
The Trefftz plane is thought to be rectangular at the exit of cascade, and the
examination of subsequent modification of the shape of boundary in the downstream
showed us that the rectangular form must be retained, and calculations of flow in
rectangle were guaranteed to be useful for the purpose. The fact that the rectangle
of boundary is retained showed us also that the direction of wake of blade is
expected to be the direction of exit flow of two-dimensional cascade, and this is
-expected to be a quite easier way to find the two-dimensional exit direction without
using troublesome methods such as the boundary layer control in cascade experiments.

Calculation results of induced velocity in y-direction were also shown, but
sufficient agreements to experimental data are not expected. The phenomena of
decay of vortex and such should be adopted to get the final agreement, and the
author has deeply felt the way to the goal being quite far despite of the haze has
been cleared up.
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