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Abstract

A linearized BGK model equation is solved using half-range Hermite
polynomials. Effects of evaporation and condensation coefficients on
the evaporation and condensation problems are studied. It is found
that in the two-surface problem macroscopic jumps of temperature and
density are weak functions of the condensation coefficient and the
temperature jump is independent of the evaporation coefficient, while
mass flux (evaporation rate) is strongly dependent upon the both coef-
ficients.

Introduction

In the previous paper [17, the authors obtained a solution to the BGK model
equation [2] for a one-dimensional evaporation and condensation problem. Applica-
tion of the solution to the half-space problem confirmed the validity of the method
used.

In the existing analyses of the problem [3]-[6], the following boundary con-
ditions were utilized: Particles impinging into the condensed phase are hundred-
per-cent captured while particles emitting from the interphase surface have a
Maxwellian distribution function corresponding to the saturated vapor condition at
the surface. These boundary conditions are physically unpractical in the sense, for
instance, emitting particles are entirely independent of impinging particles. The
purpose of this paper is, then, to release such restrictions on the boundary condi-
tions, by using macroscopic ones instead of being based on a priori assumption on
the distribution function itself. In other words, we use conventional accomodation
coefficients; an evaporation coefficient a, and a condensation coefficient a. [7],
[8] The boundary conditions at the interphase surface are given using these
coefficients as follows: The a, fraction of the particles impinging into the con-
densed phase is captured and the remaining (l—a.) reflected from the surface
either specularly or diffusely, while the a, fraction of the particles emitting from
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the surface is able to evaporate and the remaining (1—a,) of them recaptured by
the condensed phase. Of course, no essential problem arises in resorting to any
other meaningful boundary conditions if available. The solution obtained in the
previous paper will be applied to study the effects of the accomodation coefficients
on the evaporation and condensation problem. The results will suggest the necessity
of further study of the problems included in evaporation and condensation pheno-
mena.

Formulation of the Problem

Let us consider the following evaporation and condensation problem. Two
vapor-liquid (or vapor-solid) interphase surfaces are maintained at =0 and x=L.
The liquid phases in the spaces x<(0 and x>L are kept at constant temperatures
Ty and Tr; Tr=T1+4T), respectively. Due to a difference of the saturated
vapor pressures maintained between the two condensed phase, the vapor gas is
evaporating from the interphase surface at x=L and condensating into the other
interphase surface at x=0: As the results of the evaporation and condensation
processes at the interphase surfaces, there are fluxes of mass and energy in the
—x direction (See Fig. 1).

condensed phase
T n u
—
hydrodynamic region
kinetic layer

Fig. 1. Schematic drawing of the Two-surface problem.

Let f(x, V) be the distribution function of the vapor gas where ¥ is the mole-
cular velocity. The Boltzmann equation with BGK collision model [2] is written
as follows:

V. (0f/0%)=v.(fo—1) D
where v, is a collision frequency and f, is a Maxwellian,
fo=n@2raRT)* ?exp —(V—u)*/(2RT) ]

where R is the gas constant.

In order to evaluate effects of imperfect accomodation at the interphase sur-
face, we introduce an effective evaporation coefficient «, and an effective conden-
sation coefficient «, defined by the following way: The a, fraction of the particles
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impinging into the condensed phase is captured and the remaining (1—a.) reflected
from the surface specularly, while the a. fraction of the particles emitting from
the surface is able to evaporate and the remaining (1—a,) of them recaptured by
the condensed phase. Then, the distribution functions of the particles emitting
from the interphase surfaces are give by

f(oy V:v>0) :aefs+ (1"'“0)][(0, Vx<0)
fL, V.<O)=a.fo+A—a)f (L, V.>0) (2)

where f, and fr are the Maxwellians corresponding to the saturated vapor condi-
tions at the surfaces at x=0 and x=L, respectively. A perturbed distribution ¢*
may be defined by

and

f=(@/a.)f;(1+9%) (3

Entering (3) into (1), we obtain a linearized version of (1) using a length scale
23/ 7 ; A is the mean free path corresponding to the saturated vapor condition
at x=0,

L (9% 0x) = D¥— % @
where
Pk= k20, uk ok (c2—3/2)

where v¥, w* and ¢* are the perturbed density, flow velocity and temperature,
respectively, and ¢, is the x component of the peculiar velocity ¢=(ca, ¢y, c2);
c?=c-c.

For convenience, we introduce reduced distribution functions g and % defined by

g:ﬂ"ggm gxe— 3 dc dc,, lz::/—r”lgr (c2-c2 —1)e*e =3 %qc dc,

In terms of g and A, Eq. (4) reduced to

c,(0g/ox) =v¥+2cu*+-*%(c2—1/2) —g

c,(0h/0x) =%—h ©))
Perturbed values are given by

=g, 12>, wk=<g, >

= (2/3){<g, ci—-1/2>+<h, 1>} 6

where < A4, B> implicates

and

An actual density, n, a flow velocity « and a temperature T are easily found from
the relation (3) as follows:
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n=(a,/a)n,(1+v¥%), wu=wu* T=T,(1-+%) (7N
The boundary conditions (2) are reduced to

g (O)=~10-a)g (0), A (0)=1—-a)h (0) 8, a)
and

g (L)=a dn-+-4T (c2—-1/2)}+(1—a)g" (L)

h(Ly=a 4T+ 1 —a,)h* (L) (8, b)
where superscript “+7 and “—" implicate ¢, >>0 and ¢,<0, respectively. From Eq.

(5), the first four lowest moments on ¢,, which are corresponding to the moments
of collision invariants and energy flux, become

(d/dx)< g, ¢.>=0 (9, a), (d/dx)<_g, ci>>=0 O, b),

(a/dx){<g, c.(¢*—1/2) >+ <h, ¢;>}=0 9, o,
and

(d/dx){g, ci(ci—1/2) -+ <h, ci }=@Q% 9, d

Here, we find from (9, ¢) and (9, ¢) that u* and @*, which implcates a heat flux,
are constants. Any other higher moments include moments of g and/or £ in the
righthand-side of the moment equations.

In order to solve (5), we introduce half-range Hermite polynomials H,(») using
the Gram-Schmidt method [17, which have the following relations:

7)n:T(n, n).Hm Hn:F(n, n)’77n and an_l:M(Thl, n),Hn (10)

Here, Hy=(Hq, Hy, -+, H,)T and 7,=(1, n, 52, ---, 77 1)7; superscript 7' implicates
the transpose of a vector or a matrix, where matrixes 7% ™, F®, ™ and M, ™
are shown in Ref. 1. Let us define half-range distribution functions g* and 4* by
gr=g (c;>0), g7=g (c,<0), h*=h (¢,>0) and h~=h (c,<0). Entering g* and
h* into (5, @) and (5, b), we have

7(0g* /0m) =i 2pu+ K (- 1/2) —g°
& (9h*/3x) =% —h (11)

where 7=|c... The half-range distribution functions g= and 4* may be expanded
using the half-range Hermite polynomials,

g*= S H (e (x), =3 H b () (12)

where

a;=<H(y), g (%)> and b;=<H,(9), h=(x)>

The macroscopic moments are given by
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V=gt (at+ar), wh=x"1? Ty (at—a7)+7T1.(a—a3)]

= (2/)n VT (ai+a3) +Te(ai+a3) -+ T (b7 +57)} 13)

Substituting (12) into (11), multiplying (11) by H,(7) exp (—72) and integra-
ting it from 7=0 to 7=co, we obtain a simultaneous differential equation on the
coefficients ¢% and b%,

d/dx)X=I-X (14)

where X=(at?, b*7, a7, b)T; a*=(a%, a3, ---, ai)T and b*=(b%, bi, -+, bE)T.
In obtaining (14), the relation (10) and an orthogonal relation <H,, H,>>=43,, are
utilized. From the concrete form of the matrix I, a characteristic equation of I';
|I'—AI|=0, can be expressed by [1]

2n -2
ML (=2 =0

where 2, is an eigenvalue of the characteristic equation of /. Thus, a general
solution of Eq. (14) is expressed by

2n—~2 4n—4
X =Vp,expliixloulb+ 3 poexpl Mxl-ui-+X, (15
k=1 k=21 -1
where u, is an eigenvector corresponding to the eigenvalue 1, and superscript “P”
and “N” implicate 1,>0 and 2,<70, respectively. A fluid dynamic solution X,
which is directly related to the four-fold degenerated eigenvalue 24=0, i, ¢., rela-
tions (9, a) through (9, d), is given by

XF:leo”‘i"‘XzZL*‘%’XSTO“‘l"X‘QQ*’f"XsQ*‘x . (16)

where X,=(T351, T22, 0, -+, O30y —T o1, —T 22, 0, -+, 04,)7 and other vectors X;s
are given in Ref. 1. v9 and ¢ are called the macroscopic jumps of density and
temperature, respectively. The general solution (15) and (16) include 4n adjustable
parameters, p, (k=1, 2, ---, 4n—4), v°, u* r° and Q* so as to be able to satisfy
the boundary conditions at x=0 and x=1L.

Effects of the Accomodation Coefficients

The boundary conditions (8, a) and (8, b) are rewritten in terms of ¢* and 5%
as follows:

a’ (0)—Q—-a)a (0)=0
} (17, a)
b°(0) —(1—a,)b(0)=0
and
a(l)—1—-a)a*(L)=an-dn+o 4T
} (17, b)
b (L) —A—a)b"(L)=a,n-dT
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where n=(T11, 0, -+, 0,)7 and ¢=(0, T35, T3, 0, -+, 0,)7. Imposing (17, a) and
(17, b) on (15) and (16), we obtain

4n—4

?j i —AQ—adu;}+a, X1+ Q—a ) Xiu¥r+a, X'+ Q2—a, ) X 10%=0
(18, a)

4:}§pkeﬂc{u; —(A—ayuit+a X'+ Q—a) Xk +a X3°
(2 a) X Q% X QL a( >An a( JaT (18, b)

where superscript on the vector X;, “+” and “-—”, denote the uper half and lower
half of the column vector, respectively. When a.=1, Eq. (18) is reduced to

n—2 an
zzp e iyt 22 Pt X0 X sk X o0 X Q% =0 (19, a)
k 7 -1
2n -2 —4
> pLui+ Z meﬂ w,+ X=X uk - X o0 - X Q%+ X QL
k: -

kul
. /71 i

:-:( >An+< >AT (19, b)

7 . \o S \n/ .

where pr=p% exp (A2L) ~O(4T) dnd g=Q*L ~ O(4T) because X must be finite

at x=L. Neglecting terms of the orders O (exp (—2{L)) and O(1/L) for L>1,

(19, a) reduced to the Eq. (35) in Ref. 1. Thus, we have »O:C,ﬂh and 0=cpm
[17] where m=u* In the same manner, (19, b) can be solved and results in

m=(1/2)4p/(c,¢,), q=—AT+Ap-c,/(co+cy)
and

Divona=10; 3 dp=dn--4T (20)
where a symmetric relation of the solution X=*(—x)=X=*(x), i, e,
A== pian s Uiy poon-r=Upazn, o ANA Uy = U g0 4ion2s
u;, , is a component of vector u, is used. Then, we obtain
W= (1/2)4p-c,/(¢,+¢,) and =°=(1/2)dp-c,/(¢,+Cy) 2

Results of finite values of L are listed in Table I and shown in Figs. 2-4. A
parameter f8 is defined by 4n= 47 which is obtained from the Clausius-Clapeyron’s
equation

dinn)/d(InT)=Ly/kT*—1=§

where 7% is a boiling temperature and L, is a latent heat.
When L>1, (18, a) and (18, b) can be simplified for cases a.=1 as well as the
case a,=1:
4n—4

> pdui—(—a)ui}+aX '+ (@—a) Xpuwhta X3 =0 (22, )

k=28—
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Fig. 2. Density and temperature Fig. 3. Density and temperature
distributions ; 8=1. distributions ; =10,

zizp; {u;,—Q—a)u;} ra. X7+ Q—a ) X;u*+a X307+, X ;0%
k=1
4
:ac<n>4n+ac< >AT (22, b)
0 n

Solving (22, a), we find the macroscopic jump coefficients

o= 00/ (2m) = ) Qaack/a) = — (¢5/2) (a./a,)
== 20/ (2m) = 0/ Qetau¥/a) = — (¢3/2) (@./@,) (23)

where ¢y=uv%/u* and c¢;=1c%/u* Microscopic jump coefficients are also obtained as
follows :

P'=— (c5(0)/2) (@./a) and 3= (c3(0)/2) (/)

where ¢;(0)=v*(0)/u* and c¢;3(0)=c*(0)/u*. As the values with superscript ‘“*”
depend only upon the condensation coefficient «.. the jump coefficients are inversely
propotional to the evaporation coefficient a,. When a,=a,, the superscript “*” can
be removed (See (7)). In Table II, the macroscopic and microscopic jump coeffi-
cients are given for a few values of a, (=a,). In the same manner as in the case
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Fig. 4. Pressure distribution.

lllllll!l

0 05 10
- X/L
Table 2. Jump coefficients
ac : 1.10-2 0.1 - 0.5 1.0
= 1.55026 % 102 1. 48687 %10 2. 43038 0.84275
d= 4.42895x 102 4,.2122 0.66704 0.22334
7° 1.54987 %102 1.44991x10 2.14756 0.66124
80 4, 42859 % 102 4,17821 0.63968 0. 20480

a.=1, (22, b) can be solved and results in

ut=(1/2)4p/(ci+ci), a¥=—AT+dp-ci/(c;-+c7)
W= (1/2)dp-ct/(citcp), 0=(1/2)4pc3/(c+c3)

and

P'k =Diizn-z

In the limit a.—0, ¢;/c3—7/2, u*—(2/9)/a' 2adp, q*—(2/9) dp—4T, v*—~(1/18)4p
and 79— (1/9)4p, while 7;2-—5(623/015)%* and an actual heat flux Q= (a./a.)q*/L. -
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Solutions to Eq. (21, a) and (21, b) 05
for the finite values of L are listed in ’

Table 1 and shown in Figs. 5-7.

o
=00
L
s
=
Fig. 5. Effects of the accomodation coeffi-
cient on temperature distribution.
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0O 01 02 03 04 05 Fig. 6. Effects of the accomodation coefficient
X/L on density distribution.
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Fig. 7. Effects of the accomodation coefficient on pressure distribution.

Results and Discussions

The Case a.=1.

Equation (19) can be easily solved for arbitrary values of L to yield the
evaporation rate, energy flux, flow field etc. of the two-surface problem. The
important results are listed in Table I for typical values of L where f, is the
critical value of B for which the heat flux @ becoms zero. The results for L=oo
are obtained neglecting the terms including exp (—L) and 1/L. It is interesting to
note that the macroscopic jumps of the density v® and the temperature ¢° depend
only upon the pressure difference 4p while it is expected that the evaporation rate

m is propotional to the pressure difference 4p. On the contrary, the heat flux @*
depends upon 47 and 4n with opposite sings. Thus, the temperature gradient,
which is indicated as @* in Eq. (30) in Ref. 1, can be of the sign opposite to the
maintaing temperature difference, as has been predicted by Pao [9] using the ap-
proximate method, when B exceeds the critical value 8.. For the given temperature
difference 47, the evaporation rate increases with 4p because the pressure diffe-
rence is propotional to (B-+1). The transient flow fields for finite values of L,
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from free molecular to continum, are shown in Fig. 2-4. The temperature gra-
dient for B< B, is positive and the temperature jump decreases as L increases while
the density distribution behaves oppositely. When B>>8., the profiles of the density
and the temperature are reversed, as seen from comparison between Fig. 2 and 3.
The density profiles for L=10 in Figs. 2 and 3 show that Knudsen layer emerges
adjacent to the interphase surfaces while the Knudsen layer in the temperature
profile seems rather ambiguous. Steep decrease of the density near the interphase
surfaces causes rapid change of the pressure in the Knudsen layer, as shown in Fig.
4, while 4p is constant for large value of L outside of the Knudsen layer. In the
cases for L<C10, present results show a good agreement with those of Matsushita

6.
The Case 0<a <1

It may be convenient to discuss the results for a,=a. because »* and t* give
the actual perturbations of density and temperature in that case. Of couse, we can
easily obtain the results for case a.=+«a..

In the half-space problem (See Table II), the jump coefficients ¢; and c7
increase as @, decreases; when a. decreases, the vapor gas accomodates less to the
condensed phase and consequently the Knudsen layer becomes ambiguous. In the
limit a,—0, where the vapor gas cannot accomodate to the condensed phase at all,
the Knudsen layer disappeares. Although this situation seems analogus to the free
molecular flow conditions, the vapor gas is in thermal equilibrium at x—oo, which
is essentially different from the free molecular results. In Fig. 8, evaporation rate

m and the macroscopic jumps of density and temperature are plotted against the

o
I~
[

[

L0/Ap

(@]
w
I
!

miAp . LIAP . TIAp
s

Ap

o
—
T
1

m/Ap

00 IR R N A T I
00 05 10
dc

Fig. 8, Macroscopic jumps and evaporation rate vs ac
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accomodation coefficient a, (@.=e«.). It is worth noting that the macroscopic jumps
of density and temperature are weak functions of a,, while the evaporation rate is
strongly dependent upon the coefficient. Behaviors of the values in the limit a,—0
are already mentioned in the previous section, except that the critical value B,
approach 7/2. Effects of the accomodation coefficient for finite values of L on
the evaporation rate etc. are found from Table IT where A; implies an effective
density difference and B; implies an effective temperature difference: In the ex-
pression of u?, the decrease of the accomodation coefficient is accompanied by the
decrease of the effective temperature difference B,, while it is insensitive for the
effective density difference A,. We find a reversed tendency in the expression of

7%, In the evaporation rate m and heat flux @, both of the effective differences
A; and B; decrease in the same degree as a. decreases.

Throughout the analysis, the effective accomodation coefficients @, and «, have
been utilized. As a matter of fact, these coefficients must be related to some real
physical phenomena of evaporation and condensation. Decrease of «, implies the
decrease of saturated vapor pressure at the interphase surface; it may be caused
from a temperature gradient at the interphases surface, inside of the condensed
phase. In the future analysis, therefore, the surface structure has to be taken into
account. On the other hand, decrease of a, may be caused by contamination due to
some noncondensable gases; the condensed phase may contain small amount of other
substances the saturated vapor pressure of which is much higher than that of the
main substance of the consensed phase, or noncondensable gases exist between two
condensed phase. Thus, the study of noncondensable gas effects on evaporation and
condensation is required. This problem is now in progress by the authors using the
method applied here.
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