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Abstract

An analysis is given for swirl flows in straight pipes. The swirl
and axial component of velocities can be expressed as functions of the
swirl intensity, defined by the ratio of angular momentum flux to axial
one. Experimental confirmation of the results is also given.

1. Introduction

Swirling flows resulting from pipe bends or fluid machines are found in many
engineering practice and the flows received considerable attention from many re-
searchers.

SenoD) studied experimentally the effects of wall roughness on the decay of
swirl flows in long circular pipes. Murakami¢® investigated experimentally the
decay process of swirling flows in a straight pipe. Collatz(®) obtained analytical
solutions for laminar pipe flows with weak swirling components. Lavan(®) also
analyzed the same problem by using a perturbation method for small axial Reynolds
numbers up to 20. Fully developped turbuleut flows with weak swirl components
were analyzed theoretically by Kreith.(5)

This paper gives results of an analytical investigation for turbulent swirl flows
in circular pipes. The analysis was made on the assumptions that the space rate of
change of velocity along the axial direction is negligible small as compared with
that along the radial direction. The results obtained were confirmed by experi-
ments.

2. Nomenclature

b ; static pressure
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Swirling Flow in Circular Pipes

rate of discharge

; radial distance

; pipe radius

; Reynolds number, (=2roVn/v)
; mean axial velocity

; radial velocity

; axial velocity

; swirl velocity

: friction velocity

; distance from pipe wall

axial distance
decay exponent

eddy viscosity

flow angle in wall layer
friction factor
kinematic viscosity
density

; axial shear stress

; value of 7, on wall

; tangential shear stress

; value of 79 on wall

; angular velocity of vortex core

; vorticity component in z direction
; angular momentum flux or swirl intensity, Eq. (28)
; value of £ at pipe inlet

3. Equations of motion and solutions

169

The equations of motion and continuity under the conditions of incompressible
fluid, and steady axi-symmetric flow are
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V.- AL Vziaz,_ R u(, V., =
oV, ov, V.V, a7 Vo
v or +V. 9z |7 < Vo 72
V. o V2 _ 1P o,
Ve “or Vz_?}"?' T p 0z ()
1 ( PV, W_@KZ_¥
K3 0z

ey

()

3

@

For turbulent flows the equations of motion are obtained by adding eddy viscosity
¢, to the kinematic viscosity in Eqgs. (1), (2) and (3).
it may be assumed that the space rate of change of velocity along the axial direction
is sufficiently small as compared with the one along the radial direction and the
pressure drop along the axial direction is nearly balanced by turbulent shear stress

acting in that direction.(®

plified as follows,

From experimental results,

Under these assumptions Egs. (2) and (3) can be sim-
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The general solutions of which can be written down down as,(®
V. :—?—S;r exp{gg—w————-«yr;w dr}dr—‘,——ii -(5)
i C ATAEI I

where ¢1, ¢g, ¢3 and ¢, are integral constants.

3. 1. Swirl velocity distributions

With measured velocity distributions the velocity profiles within a pipe section
can be devided into the three regions as

I ; the forced vortex region in the central zone of the section.

11 ; the free vortex region in the annular zone of the section.

IIT; wall region near the pipe wall (in which wall shear stress dominates).
In the region I, the swirling velocity V, tends to zero at the center and the in-
tegral constants in Eq. (5) becomes

C1$0, Cg':«'O

Velocity distributions near the wall do not follow the relation expressed by Eq.

(5) but the wall law as given in Eq. (7), which was verified experimentally by
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Fig. 1. Tangential component of eddy viscosity.
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Backshall1 9. Consequently, in the region III, the velocity distribution can be expressed
by

Vo _ Veing :<A logmyv* +B> sin ¢ )
V* V* v

Equation (5). which is available for regions I and II contains a eddy viscosity
¢rg. The value of e,y is generally considered to depend on the flow velocities and
its .coordinates. Despite many investigations on the eddy viscosity e.p any definite
value of &,, has not been found. For simplicity’s sake, many workers have been. used
the following simple expression for e.q

e /T V=K K=const. ©)

Kinny‘” found the value of K to be 0.028 for a swirling flow between concentric
cylinders, and Ragasdale‘®> gave a value ranging from 0.038 to 0.08 for vortex type
flow. The measured values of e, in this investigation are plotted inFig. 1. All
the plots approximately fall on one curve irrespective of swirl intensity.

3. 1. 1. Weak swirl flow (in regions 1 and 1I)

When the swirl intensity is weak (2<{0.2), the swirl motion alters a little the
profiles of axial velocity distributions and the rate of change of velocity profile
along the pipe axis. In this case, the radial velocity calculated by the following
relation

_ 1oV
L I ®

is substantially zero. With this result, Eq. (5) can be integrated and gives

for region I Vo-—:-%r (10)
¢ . ¢y Cy
or region II VG:-2—7+7 1D

3. 1. 2. Strong swirl flow (in regions 1 and I1I)

When the swirl intensity is strong (£>>0.2), the axial velocity distribution has
a concave profile at the center and this velocity profile decays in course of swirl
decay. To check the order of the effect of V# on the swirl velocity distribution,
the maximum value of V7, namely, {V#}n.x can be used. If a constant value of
70{V#}max/erg=F is assumed across the section, then Eq. (5) gives

,
¢, i Rp (¥ ¢
=17 {e 70<k————1>i~1}+-—?~ 12
T R? 7o Ty (12)
The first term in the righthand side of this equation can be calculated numerically
for several values of &, the results of which are shown in Fig. 2. Asan example,
a swirl flow of 2=0.7 is considered here. In this case, the following order
estimation for V7 and 4, can be made from the previous investigation(2,
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{Vr}maxN 1 //—;é;l—t'“,v Vm
V. 10000 V o 10

If the value of K in Eq. (8) is assumed
to be 0.03

k»__ 7’0{17 }mzx: {V }max ’\’0.3
ko 7’0 k\/wu/p

With this result the graph of

%
ro{ek r(k%—[)+]}/r.{ek(k_l)+ |}

7
%1_' ;;‘2,’ {ek}'&(/e—?r;wl)%l} plotted aga-
inst radial distance give a forced vortex
type distribution as shown in Fig. 2.
Thus the relation of Eq. (12) can be
taken to express the swirl velocity co-
mponents in regions I and II in case of
weak swirl intensity.

Fig. 2. Velocity profiles expressed by the ;
first term of the righthand side of ' ' ' 0
Eq. (12). °

3. 1. 3. Swirl velocity distributions (in region III)

In the foregoing discussion it is assumed that the velocity distribution in region
III can be expressed by Eq. (7). But the expression is only available in a fully
turbulent region. Fully developed turbulent was attained for a flat plate at the

distance from the wall y satisfying the relation Y 1/* =70. Considering the effect

of the centrifugal force in the swirl flow the condition of -yz/* >100 is used here

for fully turbulent and this condition gives y=2mm when Re=1.0x10% and £=0.5.
When pipe has a rough surface, the wall law becomes

14 o yV* - 4V
VEMA log y -B Ve (13)

where 4V/Vy depends on the size, shape and distribution of roughness elements.
For fully rough surface 4V /Vy have the form

4V k V
v =3.5—5.75 log——*- (14)
where k, is the size of roughness element.

If y* denotes the distance from the wall surface at which fully turbulent is
attained, the swirl velocity at this point is given by; for smooth pipe wall,
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Vsing _ YV :

, ) , (15)
Vi=1TVysin 0=17Ve/sin 0
for rough pipe wall,
Vi=(5.75 log ¥V 5.5 - VW sin g
s
(16)

(17— Ve sing

The following consideration will be available for y* for rough surface. If the ro-

ksV*
v

ughness Reynolds number is less than 100, the value of y* may be determined

¥V,
v

from the relation, =100, and if the Reynolds number exceeds 100, it is reaso-

Vs

v

nable to put y*=k,, since the thickness of y* determined from the equation

=100 will be merged in the roughness elements.

3.2. Axial velocity

The axial velocity distributions are given by Eq. (6), in which the constant ¢,
is taken to be zero, since the velocity at the pipe center should be finite. When the
flow has no swirl component, static pressure is uniform across the section and
pressure drop is given by

oP
= a const. 1
az 0 ( ) ( 7)
But when the flow has a swirl component the uniformity of the static pressure will
be destroyed by the centrifugal force of the swirling motion and the pressure at
any point in the section is given by )

7

P:Pwellisogro—}fé“dr (18>

from which

P 0P an 0 S"’ Vi
= wall dr
0z 0z 0z ), T (19)
9 (7 V3 . . .
To calculate the term p-—=— dr, distribution of V,; and its decay along z di-
oz J, 7

rection must be known, but there is no theoretical provisions for it. For the sake
of simplicity it is assumed that the value 9p/2 z changes linearly with » as
1 0P
S =gy a,r 20
p az [ 1 . < )
where @, and ¢, are constants. , ’
Substituting the value of 9p/6z in Eq. (20) into Eq. (6) and putting (e, +v)



164 M. Murakami and 0. Kito

to be a constant, Eq. (6) gives

Vz:_l {&72+%}*73}+00

€rzty 4

@D

As the decay of swirl flow along the pipe is assumed to be small and variation of
axial momentum flux is substantially negligible in the first approximation, the re-
lation between pressure drop and wall shear stress can be written down as

oP 4. o ., _
27rS . W7'0?7’—,27”0 Tow

Equations (20) and (22) give the following relation,

p( Aoty |, Q173 )___T
2 ‘ 3 =

Now, rate of discharge is given as
Q:m'?,Vm:27rS Vrdr
0
from which

A g S

Let Vi be the axial velocity V, at y=y*, then

e s
Tzy LR

where constants @y, @1, and ¢, in this

(22)

(22)'

23)

24

(25)

expression can be determined if 7,4, Vi 03 T S PR
and V} are given. - 1&(‘1;9) 1; x10 -
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Fig. 3. Axial component of eddy viscosity. 0 0.2 0.4 0.6 0.8, 1,0
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3.- 3. Flow angle near wall . ;
Flow angles in the wall layer are defined by the following equation

_ Voo :
tan )= 20 @6)

where (V) and (V,), are the swirl and axial components of flow in the: wall
layer. This flow angle § changes with the swirl intensity 2. If it is assumed that

the axial velocity component (V,), is independent of the swirl one, the functional
relation between ¢ and. 2 can be given as follows
(i) for forced vortex distributions

ve=el3)

ooes{ G} ¢ vt

@7

In this case dimensionless expression of angular momentum flux becomes=

0=270(""V.Virdr/oxriV
0

Ao 7

tan =22 29)

B (28)

(i) for forced-free vortex distributions

p= ol )re(Ze)

tan f=w-+c¢

and hence angular momentum flux is given by

oo el )+

From above results, the following relation can be obtained

tan =0 +_‘éi (30)
This relationship. between tan § and 2 may be comfirmed by experiments as shown.
in Fig. 4. But the numerical factors-in Egs. (29) and (30) differ slightly from .those .
assumed by experimental results, which will probably- due- to the rough assumption:
on. the axial velocity (Vi)o, (Vo) o=Vn).

To meet with experimental results, Egs. (29) and (30) are rewritten with:
altered numerical factors as
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1.5 T T T [ T T T T ] T T T T T T 1
@ - .
[=d
2 L _
(o]
n . _
1.0 +— 4 —
- Qs  Re x10° -
- o ° o 1,047 1.2 .
v
- © 80 v 0.866 1.6 -
- e 0,679 2.5 =
0.5 A 0,450 2.5 —
~ e 0,224 2.5 7
oo b e b
0 0.5 1.0 1.5 Q 2.0
Fig. 4. Relation between tan 0 and Q (brass pipe).
(i) tan=2.78 29’

4. Experimental results

4, 1. Vorticity distributions

Distributions of vorticity component @, in z direction across several sections
are shown in Fig. 5, where @, is defined by

1 9
W, "‘7?(7’1[6) 31

Except the inlet region ($;~S$s) and the sections with weak swirl (2<0.1), ®, has
approximately a constant value within the region 0.6<(#/r,. The constant value is
0.4 for brass pipes and 0.3 for steel pipes. Within the core region 0<(7/7,<0.6,
the values of w, change with radial distance (r/7,) and swirl intensity £2. When
£<0.1, w, remains nearly constant over the cross section. When the swirl intensity
2 is greater than 0.1, the swirl velocity distributions within the range 0.6<(r/7¢
can be expressed as
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Fig. 5. Distributions of vorticities.
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Vi=

where ®, is indepent on swirl intensity.

2

C .
wr+ S (32)

This equation shows that the swirl velocity can be expressed as the sum of

velocities due to a forced vortex motion of strength %co, and a free vortex motion

of arbitary intensity. This result agrees with the analytical results for region II
described in-section (2.1). It shoud be noted that when 2>>0.1, the value of w, is a
universal constant. Consequently, the decay phenomenon of swirling flow appears only
in the component of the free vortex motion.

If the :swirl intensity is weak and 2<0.1, V, can be given-as

Ve

%wzr (33)

since w, is substantially constant over the section, and (V),.,=0.

4. 2. Swirl velocity.

The following model for the swirl velocity can be given, from the above con-

siderations. .

v

The first term of. the righthand side
of Eq. (34) expresses a forced vortex
motion and the second term' a free-

vortex one:s The value of f (—:—) in
0

Eq. (34) can be calculated from mea-.
sured velocitiesas-is shown in .Fig. 6.
The experimental results can be shown
by one curve irrespective of different
swirl intensities.. Numerical factors «
and b in Eq. (34) depend .on swirl
intensity £, and: their relationships are
shown in Figs..7 .and 8. The results
within the: inlet region are excluded
in these figures.- When 0.1<82, ¢ is
nearly constant, the value of which is
0.18 for brass pipe and 0.12 for steel
pipe. When 2<0.1, ¢ decreases as £.
The value :of b -also decreases as £
reduces, and ‘becomes zero at £2=0.1.
From the above considerations, it may
be concluded that the swirl .velocity
can be expressed as the sum of a
forced vortex motion and a free vor-
tex one if £ exceeds 0.1, and as a

"
L )+or (L) (34)
¥y
Q,o Re xlOs
o 0721 1.2
e 0,505 1.2
a 0.470 1.2
4 0,357 1.2
o (.208 2.5
o 0,241 2.5
= 0.356 2.5
x 0,396 2.5
+ (.485 2.5
1.0 I
>é +'0
R 2
§§ - % ©
~ r/
= e
[ x ©
0.5 /.
b A'
(o}
! 1 I 1 | 1 1 ! I
0 0.5 "/t 1.0

Fig.”6. Curve of f(r/ro) in free vortex range.



Swirling Flow in Circular Pipes 169

forced vortex if the value of £ is less than 0. 1.
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0 0 1.5 Q
Fig. 7. Relation between b and Q.
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2o 1047 1.2 = 1,742 1.6 .
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=Jeo 0.679 2.5 234 1,199 1.0
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- | 0,450 2.5 - Q R -
e
Do Re °
0.5 —
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B 2 00 o " B
" et e 0%, 0 o .
~F t T -Hg\-\K/ST%[ pipe 1
[N S SN NN AN NN SN NN W AN U S S
9 0.5 1.0 15

Q
Fig. 8. Relation between a and Q.

5. Experimental verification of calculated results

As the first step, the flow next to the wall or in region III is considered. The
distance from the wall at which the fully turbulent is attained is so small that, the
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concept of wall slip may be introduced. The wall slip condition is given by

gm =a( Lo )+of (Lo ) =a-+bf (1) (35)

0
0 7y
In this case the angular momentum flux becomes
(! 7 . >} V., ridr
o=2f {a( ) ror ()55 (36)

From Egs. (35) and (36), the values of @ and b can be determined as functions of
Q if Vi is given. With the condition ylv* —100 Eq. (7) gives

5 =17Vysin 0=17Vpx+/sin 0

’ = 37
where Vs = \/ i-;f— 37

It is known that 2 decays exponentially downstream(®’, and hence the shear
stress r4» may be expressed as

= 302 38
iy~ P (©8)

where B is a decay exponent.
For brass pipe, by taking the value A to be 0.011, V§ can be determined by use
of Egs. (29)" and (30)". To estimate the value of V7 for steel pipe having a rough
surface, Eq. (13) shoud be used instead of Eq. (7), in which it is assumed that 4V/

V=7, because ksuV* is nearly equal to 65 for steel pipe.(®

The tangential stress of steel pipe can be calculated with the use of a friction
factor 2 by

3
(Tew> steel — }:SEEL‘ (Tgw) brass

brass

The calculated values of V5§ are indicated by solid lines in Fig. 9. If these values
are used in Egs. (35) and (36) the constants ¢ and b can be determined as shown
by solid lines in Figs. 7 and 8, in which it is assumed that V.,/V,=1.0 for simpli-
city’s sake. An experimental agreement is comfirmed within the region 0<(2<0.6.
When £ increases beyond 0.7, the discrepancy increases, which will be due to the
defect of the assumption of V,. Namely, the assumption that V,/V,=1.0 will lose
its validity.

To find the axial velocity distribution, Egs. (23), (24), (25) and (26), as well
as Eq. (39) can be used.

Vi=V3;/tan g
} (39)
Tow = Tgu/ tan g

As an example, calculated‘results for a smooth pipe is shown in Fig. 10, in which
the measured values are also plotted. Agreement is satisfactory except the wall
region.
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Fig. 10. Distributions of axial velocities.
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. 5. Conclusions

1. The swirl velocity is generally expressed as the sum of velocities due to a forced
- vortex motion and a free vortex one. ,

2. When 2 exceeds 0.1, the decay of ‘the swirl velocity follows the same process as
the free vortex motion and the forced vortex component remaines unaltered.
When £ is less than 0.1, the decay of the swirl veloeity follows the same pro-
cess as the decay of the forced vortex motion.

3. Axial velocities can be calculated by equating the pressure drop along pipe axis
to the turbulent axial stress.
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