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Abstract

Analytical results of rotor synchronous response show similar re-
sults with the well known ones of dynamic vibration absorber. Designing
the flexible support with an appropriate combination of equivalently
concentrated mass of pedestal, bearing support stiffness, and optimum
damping, the peak amplitude of a rotor-shaft system is found to be
kept nearly to the value of rotor eccentricity.

1. Introduction

With the higher revolution of rotary machines and greater performance de-
manded of machinery, the vibration-proof problem of a rotating shaft becomes of
vital importance in this age of high speed machinery.

There inevitably exists a small eccentricity of rotor, or an angle slightly
deviated from the ideal mounting. When a gas turbine, a super charger, or a jet
engine supported by ball bearings or roller bearings happens to run near its critical
speed, the whirling amplitude of the shaft becomes so large that the shaft may
break through lack of damping. It is a life or death matter to rotary machinery
and to humans whose lives often depend on the proper function of rotary machinery.

Some experiments (1) C2) have been reported which involve the introduction of
solid friction or viscous type damping into the housing of rolling element bearings,
the outer races of which are supported by rubber or laminated leaf spring which
yield both elastic forces and damping forces. It is regrettable that these experi-
mental results were not yet compared with analytical results. Although a number
of damped and undamped flexibly mounted bearings have been employed on gas
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turbines, little analysis (3) (4) (5) has been presented in the literature as to the
desirable range of bearing stiffness and damping coefficient that bearing supports
should possess in order to minimize the rotor amplitudes over a given wide speed
range. For the simplest rotor system fully possessing the dynamical properties
of rotor, i. e, gyroscopic effects, we consider in this paper a system having six
degrees of freedom in which a rigid rotor is
fixed on a massless elastic shaft, and its dis-
placement couples with the inclination angle. One
ball bearing of both shaft ends is mounted in an
isotropically leastic support, and is also connected
orthogonally to the two viscous type dashpots of
equal damping. By considering lateral vibrations
of bearing support mass, this rotor-shaft system
must be treated as a system having six degrees
of freedom.

Analytical results of the rotor synchronous
unbalance response show similar results with the
well known ones of dynamic vibration absorber,
i. e, a rectilinear vibratory system having two
degrees of freedom (6). Designing the flexible
support with appropriate stiffness and optimum
damping, it is found that the peak amplitude of
rotor resonance passing through fixed points can
be kept nearly to the value of rotor eccentricity.
Experimental results of the rotor unbalance re-
sonance coincide well with the analytical results.

Fig. 1. Schematic view of
experimental apparatus.

2. Equations of Motion

This paper deals with the rotating shaft system consisting of a massless elastic
shaft St and a rigid rotor R having a mass #m. Let O be the position of the geo-
metrical center S of the rotor when no whirl exists, and consider the right-hand
rectangular coordinate system O-xyz fixed in space as shown in Fig. 1. Let S (x, ¥,
0) be the shaft center where the rotor is mounted. The center of lower ball
bearing A4 coincides wiht the origin O, when the shaft does not whirl. Let « be
the distance of the rotor from the lower shaft end 4, and & is the distance from
the upper shaft end B which is supported in a rigid pedestal; /=a+b shaft length,
l. is the length of flexible support K with isotropical stiffness %k, of lateral de-
flection at the point A and with an equivalently concentrated mass m,.

Here, @ is the inclination angle of the tangent SZ of deflection curve at S to
the z axis, and #., g, are the projectional angles of ¢ to planes xz and yz. Now
let us define another system O,—%.¥.2, which is the rectangular coordinate system
through O, paralleling the system O-xyz.

Internal and external damping of the shaft is not taken into consideration. The
flexible pedestal K is orthogonally linked to two viscous type dashpots D having
equal values of damping c.

The analysis covers the steady-state forced vibration of the system and complex
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notation z, 6., z, with vector interpretation is used, with j=+/ —1 as the imaginary
unit.

Z=x-+7y
01:01"{'_j0y (1)
zazxa+jya

Influence numbers of the shaft system @;; are equal to «;; by Maxwell's theorem
of reciprocity. Flexibility matrix [@;;] is introduced as follows,

z P
[&F[%][Mt} (2)
P

4

@ a

in which P is the inertia force of the rotor acting on the shaft at S, M¢ is the
inertia couple of the rotor acting around the point S, and P, is the sum of the
inertia force of a concentrated mass m, and the viscous damping force acting on
the lower bearing A. The positive direction for M¢ agrees with the direction of
increasing 6. Stiffness matrix [a;;] is the inverse matrix [a;;]7', and Eq. (2) is

transformed into the following :

P [z

Mt |=[ay; ] 0, (3)
P, 2,

Element a;; (=a;;) is stiffness of the system, and K;; is the cofactor of the
determinant |a;;| with respect to stiffness element a;;. For the original shaft,
both ends of which are supported by rigid pedestals A, B in Fig. 1, Eq. (3) is

expressed as Eq. (3)
(AR ”

where a, 7 and ¢ are spring constants of the original shaft itself.

Let e=SG be the eccentricity of rotor; ¢=.ZSZ; the small deviational angle
between the principal axis SZ; of polar moment of inertia and the tangent SZ of
the deflection curve of shaft at the point S; 8 the phase angle between directions
¢ and 7; o the constant angular speed of shaft; [, the polar moment of rotor
inertia around SZ,; axis, and / the moment of rotor inertia around its diameter.

The displacement z, of gravitational center G of rotor, and the inclination
angle #,; of the principal axis SZ, perpendicular to the plane of the rotor surface
are expressed as follows,

2,=2+e-exp(jot) \
0.1=0,+r-exp{j(wt+p+m)} |
Using Eq. (4), we have P, M{ and P,,

4

P=P_,+jP,= —mz,= —mz-+mew’exp(juwt)

Mt:Mt}"]Mtz: _Iézl _%—jIp(DB:l: —Iéz"r"jlp‘UGz . (5)
+ (I~ Drow*exp{j(wt+pB)}

Pa;Paz_‘l'jPaJ“‘ _‘772a2a_0éa.
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3. Forced Vibrations

Considering only steady-state forced vibrations, we take a particular solution of
Egs. (3), (5) in the form
z=F exp(jwt) 1
0.=F exp(jut) 6)
z,=E.exp (jot) j
Substituting these expressions into Egs. (3) and (5), we obtain three amplitudes E,
F and E, in complex notation,
E:Ee':"E-r:{Qumewz'f'@zl(lp“I)fwg’eXp(jtg)}/§¢1i!
F=F A+ F,={0,,mew*+ 05 (L,—I)cw?-exp(iB) } /| #4;] (7
EazEa,-{-E,,,z{@nmewz+¢23(I,,——I)rw2°exp(j[3)}/|¢t,-|
In above equations (7) lower suffix ¢ or ¢ in amplitudes E, F, E, means

amplitude due to static unbalance ¢ or dynamic unbalance r respectively.
Notation |¢;;| is a determinant consisting of elements ¢;; as follows:

ay —mw? A, g
Pijl= ay A+ (L—1w? =M+ jeN (8)
| ay, A3y A33— M+ jew |

Let the cofactor of determinant |¢;;| with regard to element ¢;; be @;; expressed
in the following form:

w2¢{j:G“"":"chﬁ (9)

In Egs. (8) and (9), M, N, Gyj, H;; are all real and do not contain j. Synchronous
unbalance response can be expressed in bilinear form. Thus:

E,  Gu+jeHy,

me M+ je N

Fe _ GitjeH, E. } (10)
me M+ jeN (L,—1I)z-exp(jB)
- F, — Gyt jcH;,

(L—1)z-exp(sP) M+ jeN

Eae — Gla

me M+ je N

* (10"
Ea T — st
(L—1I)z+exp(B) M+ jcN
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4. Fixed Points in Response Curve and Optimum Damping

4. 1. Forced vibrations of rotor E. Fe, E., F»

The absolute value of Eq. (10) is expressed in the same form as a rectilinear-
vibratory system of two degrees of freedom with damping (6],

This amplitude is independent of the damping ¢ if G?i; N?~H?%;; M*=0, or
Gyl fz{;iii (12)
Or again, if Eq. (12) is written out separately: ‘
G N—H;M=0 (12. a)
GN+H;;M=0 (12. b)

Algebraic equations (12. a), (12. b) in variable @ give the horizontal coordinates of
fixed points through which all curves for various values of damping pass in the
resonace diagram (see Fig. 2).
By taking ¢=0 we obtain response curve |G;;/M| from Eq. (11). Critical speeds

w, for this system are obtained by equating the denominator M to zero. Another
extreme case |H;;/N| is defined by taking c¢=oco. If damping is infinitely large,
critical speed w, is derived by equating the denominator N to zero. For any other
value of damping the response curve falls between the response curves |Gij/M| and
|H¢j/N|.

- The most favorable response curve is the one which passes with a horizontal
tangent through the highest among the fixed points. Then the best obtainable
amplitude becomes the vertical coordinate of the highest. Differentiate the am-
plitude (11) with respect to @, thus finding the slope, and then equate said slope to
zero for the fixed points:

o [GI+cHT, _

9o N MPECNT

(GG ;+Cc*HyH', ;) (M?+¢®>N*) — (MM'+¢*NN') (G, +¢*HE;)
V(GT, T HY ) (M N

Then the equations (14. a), (14. b) for optimum damping ¢ep. can be obtained by
using Egs. (12. a), (12. b) respectively.

o MG M—G,M)
T N(H G M—GNY)

(13)

(14. a)

oo MG M—G M)
0T NH,  M+GyN')

Prime over Gj, etc. in Egs. (13), (14) indicates differentiation with respect to o.

(14. b)
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Dimensionless symbols {=c¢/v'ma, Copt=Cop:/~ma are introduced in the following.

4. 1. 1. Displacement response of rotor E. due to static unbalance e

By substituting lower suffix ij=11 into Eq. (12. a) and using M, N, G,; and
Hy; from Egs. (8), (9), the abscissas of fixed points are obtained in the more
simplified form

2 - Kl3
w T—Dax (15. a)
excepting @=0 at which amplitude E. is always zero independently of damping.

For a shaft with uniform bending stiffness E/, and I,=nd*/64 both ends of
which are simply supported by self-aligning double-row ball bearings as shown in
Fig. 1, Ky3/ay3=~b (ad—712)/(ab—1)=—3IEIl,/b2<0 always holds, and then Eq.
(15. a) is negative and has a purely imaginary root, and Eq. (12. a) gives no fixed
point since the Ip>>7 rotor is used in our experiment.
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¢

|Eelmax, |[Eaelmax, @max versus dimensionless damping ¢
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Fig. 2. Rotor response |E.l, |Fe|, |E-|, |F:| and pedestal response |Eae|, |Ea-| versus
rotating speed @ for various amounts of damping; system shown in Fig. 1,

Fig. 7 (a) and Fig. 8

(ma/m=0.309, ka/a=0.1115, épg=1.08, (p=0.483, {;=0.532, |E.lr/e=1.23,

|E¢|Q/e=1.33, |Ea¢|r/e=1.09)

Expansion of Eq. (12. b) by putting lower suffix /=11 in Egs. (8), (9) vyields
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a quartic equation (15. b) in the variable w2,

2mmg (L,—I)%w?

+2(L,—1) {2mm o,y —m(Ly— 1) gy —m(L,— 1)t Jw®

+{2mmap—2m (L,—1I) (yttys+ Kyy) —2m,(L,— 1) (a),a0p+ Kyy)

+ (L= 1) (@A + Kyy) ot

F{—=2may, Ky —2m o0y, Ky -+ (Ly—I) (@1 Kyy + Ap Ko+ 33 K | @) Jw?

+ |y + K1 K33 =0 (15. b)
This equation gives the abscissas wp, wgo of the fixed points P and @ in Fig. 2 (a).
Displacement response of rotor E,. against angular speed @ is shown in Fig. 2 (a)
for various values of damping: ¢=0, 0.5, 1, 5, 50 or co kg s/cm. Dimensions and
spring constants for calculation of Figs. 2 (a)~(f) are those with the experimental
apparatus (Fig. 8), and the abscissas of fixed points P, @ are calculated numerically

from Eq. (15. b) as wp=137.4 rad/s, w, =507.3 rad/s. The ordinates |Ep, |Edo
of fixed points P, @ are given respectively by the first equation of Eq. (10) as

f I | | I
IEc:PaO___! Gu! =§H11
me | M jw=wp, wg | N jw=wp, wy

(10. 1)

The optimum damping cr or ¢o making the tangent to the resonance curve hori-
zontal at P or @, is separately given by Eq. (14. b) by letting #/=11 and w=wp or
w:wo,

Fig. 2 (f) shows the maximum values |E;inax, |Eaemax and rotating speed of
peak @g.x against the various damping { from 103 to 102. The maximum value of
amplitude |E.|n.x makes a flat bottom near the optimum dampings {r=0.483, (o=
0.532. It makes little difference in |E.'max and |Eqemax, even if the adopted value
of damping ¢ differs to some extent from Eq. (20).

4. 1. 2. Rotor response F, due to static unbalance e, or E. due to dynamic
unbalance t

When lower suffix i/=12 is introduced into Eq. (12. a), the abscissas of fixed

points in response F., E. in relation to  are given by both Eq. (15. a) and the
following equation,

2 Ky

(16. a)

Since the relation Koz/az3=— (ad—72)/(6—7b)=—3IEI,/ab3<0 always holds for a
simply supported shaft with uniform bending stiffness EI,, as shown in Fig. 1, Eq.
(16. a) is positive and has a real root (wz=76.6 rad/s). The abscissa wr of fixed
point R is not only independent of m,, but also independent of %, for the shaft
system shown in Fig. 1, as Eq. (16. a) does not include m, and %,.

Expansion of Eq. (12. b) by putting /=12 in Eqgs. (8), (9) yields a cubic equat-
ion (16. b) in the variable w?

2mm,(L,—I)a,,wb

+{2mma 0, —m (L,— 1) (a0, — K,,) —2m, (L,— I a,,a,) ot
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—{m (K, — 3, K, p) +2m ot . Koy + (L,—I) (@, K, — @1, K5,) Yo?
+ |yl — K, Ky3=0 (16. b)
Equation (16. b) has two real roots, w;=86.8 rad/s and wr=401.6 rad/s. The

ordinates |Fe|z, s, r or |E+|z, s, r at the fixed points R, S, T in Fig. 2 (b) are given
by the second equation of Eq. (10) as

|H,
tiiks SHT . |E‘P|R’ S 7 :]Glz' :§—A1Tz (10. 2)

me IIP—-I‘C ] M !w:wx,ws,wy W=Wg, WS, WT

The optimum damping cr, giving the horizontal tangent to response at R, is given
by Eq. (14. a) from letting /=12 and w=wg, but the optimum dampings cs, ¢r at
fixed points S, T are derived from different equation (14. b) letting ij= 12 and
W=ws, Wr.

4. 1. 3. Inclination vesponse of rotor Fr due to dynamic unbalance r

Substituting lower suffix ij=22 into Eq. (12. a) yields the same equation as Eq.
(16. a) with the abscissa wr=76.6 rad/s.
Equation (12. b) is transformed into a quartic equation (17. b) in the variable

w?,

2mim, (I, —I)w?

+2m{mm oy, —m(I,—I)ay,—2m,(I,—Iay }w®—{m?(a,,a,+ K,

+2mm, (010, + Kyg) —2m (1, —I) (a0 + Kyp) —2m, (L, — Dafi} !

+{m (e Ky + 00y Koy + a3 Kag + ;) +2m,000, Ky — 2 (1, — Dy Ky} 0?

—ay |y — Kpp Ky =0 (17. b)
Equation (17. b) has three real roots wy=83.1 rad/s, ww=236.6 rad/s and wy=

558.9 rad/s. The ordinates |[F|z,v,w,x at fixed points R, V, W, X in Fig. 2 (c)
are given by the third equation of Eq. (10) as

| |
|F ol py vy ws x —| Gzz‘ :I_Iii’_z_‘
L—1I[c | M o=z, or, oy, 0x | N

10. 3)

W=wpg, Wy, Oy, Wy

The optimum damping c¢r at R is derived from Eq. (14. a) by letting ij=22 and
w=wgr; on the contrary, the optimum dampings ¢v, ¢w, cx at V, W, X are derived
from Eq. (14. b) by putting i/=22 and w=wy, oy, 0x separately.

4. 2. Forced vibrations of flexible pedestal Eg,., E.-

The absolute value of Eq. (10") is expressed in the same form as Eq. (11), ex-
cepting H;3=0.

j Gi3 I_\/ G?a
| M+jeN |V M?+c*N?

(1=1, 2) 1)

This is independent of the damping ¢ if G;3 N=0, or written out separately if
G;;=0 (12. ¢)
N=w@y=w[m(l,—I)w*+ {may— (l,—Iay o —aya,+ay =0 (12. d)
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At the abscissa of the fixed point R satisfying Eq. (12. c¢), the ordinate |E. 'z is
always zero by Eq. (11’), and it counts for nothing.

As the abscissa @y of fixed point ¥ is obtained by equating Eq. (12. d), that
is, the denominator of response |H;j/N| to zero, @y is naturally nothing but the
critical speed for infinitely large damping. Unless the dashpots D are connected to
the original shaft St through a ball bearing C other than A as in Figs. 7 (c), (d),
wy coincides with the former critica] speed ., of the original shaft, satisfying
a)=a, ay2=7, a22=6 in Eq. (12 d)

The tangent through the fixed point Y is derived by introducing H;;=0 and
N=0 into Eq. (13) as follows,

( 0 \/ is ) — o (G M—Gi: M)
dw Y M?+c¢*N* Jo=wy = M*

according to G;sM=0. The tangent at Y is found to have no connection with
damping c¢. Equating the tangent at Y to zero gives the following relation:

G sM—G M =0 (13. d)

Even if a horizontal tangent is given to the response curve through Y, there may
be two peaks (0=w,=83.0, 535.4 rad/s) on either side of Y in the case of small
damping as shown in Fig. 2 (d), (e). Then the damping ¢ is desirable to be larger
than critical damping ¢.., and ¢, is derived by equating the second differential
coefficient of Eq. (11’) to zero and by using Egs. (12. d), (13. d) as follows,

Glil3ﬁdi+ G’,‘ SMM’_‘ G,‘g (M’Z_l'._ MM”)

C (14. &)

- —
Ccr—

4. 2. 1. Displacement response of flexible pedestal E,. due to static
unbalance e

Substituting =1 into Eq. (12. ¢) gives the same equation as Eq. (15. a), which
yields no fixed point in Fig. 2 (d) regarding the I,>>I rotor used.

The abscissa @y is given by Eq. (12. d), and the ordinate |E..|r is obtained
from the first equation of Eq. (10’). For the apparatus shown in Fig. 8, wy=207.1
rad/s and |Eq.lr/e=1.09 are found to be definitely independent of m, and k,
because @wy=w,,.

Inserting k./a=0.1115 into Eq. (13. d) determines a mass ratio m./m=0.269,
which makes a horizontal tangent through the fixed point Y. Moreover, inserting
the combination of k./a=0.1115 and m./m=0.269 into Eq. (14. d) defines a critical
damping {.,=0.550.

4. 2. 2. Displacement response of flexible pedesial E., due to dynamic
unbalance t
Introducing i=2 into Eq. (12. ¢) yields Eq. (16. a), which has a real root, wz=
76.6 rad/s. Fixed point R lies on the horizontal coordinate as shown in Fig. 2 (e).
There exists another fixed point Y, the ordinate of which |E.«|»/cv/T/m =0.57
is aiso found to be independent of m, and k. for the shaft system in Fig. 1 where
the relation oy=w,, always holds.
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5. Favorable Choice of Added Mass m, and Pedestal Stiffness %,

5. 1. Tuning condition adjusting rotor response to zero at critical speed
.o 0of original shaft

Even if the flexible pedestal has no damping, an appropriately chosen combination
of m, and k, can bring rotor response E or F to zero at the angular speed @=w,,,
which is nothing but the resonant speed of the original shaft rigidly supported by
lower and upper pedestals A and B.

a i 1 | RN ;
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3 II A\ f /.'g\’ Y ;
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1 [ 2 N 1
©® i / / ~ g |
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] [’ A / . // 1 L (S S i
/ % e ¥ tpr0527 |
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E i .ﬂ\_\_\,‘, | - l
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0
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Fig. 3. Response curves |Eg|— @, and |Eq|— @ for a favorable case derived by letting
amplitude E.=0 at o = w,=207.1 rad/s.
(ma/m=1.062, ka/=0.1115, £pg=3.94, {p=0.527, {u=1.036)

Inserting the critical speed w=w,, into Eq. (8) and assuming G, is zero gives
the following relation between m, and kg,

m = (IP“I)a’aswfa'i'Ku
ol {(L—Dwi, +ds}

A chain-line curve in Fig. 4 (a) represents the mass ratio m,/#m as the function of
ko/a for the shaft (Fig. 8). Mass ratio m./m=1.062 is defined by Eq. (18) for a
given stiffness ratio k,/a=0. 1115.

Figs. 3 (a), (b) show response curves E,—® and E..— for a flexible pedestal
K with parameters of m,/m=1.062 and ko/a=0.1115. The amplitude E, is made
zero at the former critical speed ®,,=207.1 rad/s. A response curve (E,—) of
infinitely large damping coincides with that of the original shaft.

We can obtain tuning conditions similar to Eq. (18) with respespect to F,, E-,
and F.,. These conditions are effectively applied to the vibration-proof problem of

(18)
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rotor response only if the running speed of the shaft is limited to a rather narrow
speed range near w=w,,. Moreover, it is dangerous for the no damping shaft to
be increased or decreased repeatedly passing through the first critical speed o,
lower than .

When the viscous type dashpots of optimum damping {,p: are equipped with the
flexible pedestal K, the value {, in Fig. 3 is seen to be twice as much as {p, and
the ordinate |E.|p of the fixed point @ is four times larger than |E.|r of fixed
point P as shown by chain lines in Fig. 4 (c). Even if we choose the larger value
Co=1.036 between {r and &, for the response curve E,—w of Fig.3 (a), we cannot
get one as flat as in Fig. 2 (a).

5. 2. Most favorable condition for equality of ordinates of fixed points

By changing a combination of m, and k, one point between fixed points P and
@ goes up, and the other down. The most favorable case is clearly one in which,
by a proper choice of m, and k., the two fixed points P and @ are adjusted to
equal heights |E./»=!E.p, and by a proper choice of damping ratio ({,».) the response
curve is adjusted to pass through one of them with a horizontal tangent. It will be
shown later in Fig. 4 (d) that it makes practically no difference which one of the
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two we choose, {p or {g.

Any choice of m, and %, in Fig. 4 (a) gives the two fixed points P and @,
the ordinates of which are not always equal. A parameter &pq is introduced as the
ratio of the two ordinates,

!EQ|Q:EPQIE2IP (19)

The abscissas ®@p, wy of fixed points P, Q can be given numerically by Eq. (15. b).
The ordinate |E.|r of fixed point P and the ratio &pq are derived from Eq (10. 1).
They are plotted for various ratios £pge=0.5~2.0 by full-line curves in Figs. 4 (b),
(c).

The most favorable case is denoted by full-line curves (£p¢=1) in Figs. 4 (a),
(b), (¢) and (d). It is clearly seen from Fig. 4 (a) that some deviation (m, or k)
from the most favorable case £po=1 curve) makes practically no large difference
between |E.|r and |E.lq, especially when the pedestal stiffness ratio k,/a is smaller
than 0.1. Fig. 4 (c) shows that the ordinate |[E.|p/e remains nearly at unity in
relation to the values k./a from 1073 to 10-!. On the contrary, the decrease of
the ratio k./a smaller than 0.1 makes a difference between optimum dampings C»
and (g in Fig. 4 (d). By taking Figs. 4 (a), (¢) and (d) into consideration, we may
determine the most proper stiffness of the flexible pedestal to be approximately
ko/a=0. 1.

Either choice of m,/m =0.266 and k./a=0. 1115, or m./m=0. 309 and k,/a=0.133
can make the ordinate ratio of fixed points P, @ equal to unity, that is, &pe=1 for
the shaft (Fig. 8). Although a flexible pedestal X with mg/m=0.309 and k./a=
0.1115 is used in our experiment and shows a slight deviation from the most
favorable case (mq/m=0.266 and k,/a=0.1115), it makes little difference in heights
(€p0=1.08), and also the optimum dampings ({p==0.483, {,=0.532) deviate little
from the most favorable case ({r=0.486, {o,=0.495).

5. 2. 2. F, or E»

When the most favorable case for E, shown by a full-line curve &épgp=1 in Fig.
5 (a) is applied to rotor response F, or E., the ordinates |F.|r, s, r of three fixed
points R, S, T are represented by full-line curves against k,/a in Fig. 5 (b), and
the optimum damping {,p¢ for the highest fixed point among R, S, T in Fig. 5 (b)

10' 10° —
I / | A
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E / S Sarel \ S
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E 7 £ < / R
G| e W
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y —/T/ s — &rosl
= Earel or Esr=l J
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[opd 0% 007910™ 1 10! 10 102 007910 | 10
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Fig. 5. Comparison of the most favorable case for E. with that for Fe..

is also indicated by a full-line discontinuous curve in Fig. 5 (¢). Moreover, a
chain-line curve in Fig. 5 (¢) represents the geometric mean (20) of optimum
dampings {r and (o for &pg=1,

:opl::'\/:p’cq (20)

Broken-line curves in Figs. 5 (a), (b), (c) are independently derived by the most
favorable case so that &zr=|F¢r/|F.r=1 holds for k,/a<0.079, or &sr=|F.r/ Fes
=1 holds for k./a>0.079 respectively. As the abscissa wp agrees with w®g in the
neighborhood of k,/a=0.079, both optimum dampings {» and {s drop sharply in Fig.
5 (c).

There is little difference in Fig. 5 (b) between the largest height R or 7 among
full-line curves (for &pg=1) and a broken-line curve (for &zxr=1 or &sr=1). The
optimum damping {,p: shown by broken-line or full-line curves in Fig. 5 (¢) differs
little from a chain-line curve of Eq. (20), so the latter may be used in place of
the former, taking Fig. 2 (f) into consideration.

5. 2. 3. F,

The most favorable case for rotor response I, is discussed in the same way
as rotor response F.. When a proper choice of m, and k. (§pp=1 in Fig. 6 (a))
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Fig. 6. Comparison of the most favorable case for E. with that for F.

is applied to F,, the ordinates |F. &, v, w, r of the four fixed points R, V, W, X
are represented by full-line curves in Fig. 6 (b); and also the optimum damping
{,p: for the highest fixed point among R, V, W, X are shown in Fig. 6 (¢) by
full-line curves. A chain-line curve of Fig. 6 (c) represents the mean of {r and
Lo according to Eq. (20), which differs slightly from broken- or full-line curves.

Broken-line curves in Figs. 6 (a), (b), (c¢) are derived separately by the most
favorable case so that &wy=|F,| x/|F,w=1 holds for ke/a<0.46, or &vw=|F.|w/
{F;ly=1 holds for k,/a >0.46. The relation |F,|r=|F.,|w=|F.r exists only if
ko/a=0.46 holds.

6. Two-mass System with Damping

By neglecting the inertia couple of rotor M? and omitting inclination angle 0.,
the rotor-shaft system (Fig. 1 and Fig. 7 (a)) can be simplified to a rectilinear
two-mass system with damping (Fig. 7 (e)) which has two degrees of freedom,

Zl=[an ez @)
This is rewritten by stiffness matrix,
PAREE @

In the same analytical way as (6), we can directly obtain abscissas and ordi-
nates of fixed points P, @ as follows,

wfz,___ mﬂkll+mk33:F \/(maku-—mk33)2-}-2mmak,23
wi 2mm,
. 21
Elpo _| o |
me i kll——mwzlw=ﬂ)p, g }

Substituting @r=+/k;;/m into E.. determines

the ordinate of fixed point Y,
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|Eee |y :| ku] (22)
e | Ry |
The most favorable case (§pq=1) is found to be expressed in the simple form,

My _ Ry Ry —kE
2

m 2 (23)
Substituting Eq. (23) into Eq. (21) yields
wf’: ki1 {2k Ry —RET o/ ki (2R 1Ry — kE)}
w§ 2m (k11k33—k123) (24)
iEe;P — [Ec;Q — 2k11k33_k123— \/klza(Zkukss_kxza)
e 4 '\/k123(2k11k33"—k123) _klza

Using elasticity elements a,,=1/k+ (b/1)2/k,, a13=(/l)/kq and as3=1/k, for a
simply supported shaft (Fig. 7 (e)) makes

ku=Fk, kyg=—(/Dk, ky=k,+ b/ (3"

where k=(ad—72)/0=(1/a11)sque i8S spring constant of the original shaft. In-
troducing Eq. (3") into Eq. (22) gives |Egelr/e=1/b=1.25 which differs little
from |Eqelr/e=1.09 for rotor-shaft system (Fig. 2 (d)). By using Eq. (3"), Eq. (23)
is simplified to the formula Mao/m=ko/k=(a/k)(ka/a)=3.219(k,/e), which is
denoted by a dotted straight line in Fig. 4 (a). Dotted-line curves in Figs. 4 (b),
(c) also represent the values wp, wy and |E,|» of Eq. (24) for the most favorable
case of a two-mass system.

Optimum dampings {», {, can be derived from Eq. (14. b) by latting #j=11 and
introducing M= (ky;,—mw?)(kys—mw2)—k?,, N=w(ki;—mw?), G,,=0?(ky;—
maw?), Hyy=w?. Egs. (14. b), (24) define the optimum dampings (p, o for the
most favorable case (£rp=1) shown by dotted lines in Fig. 4 (d).

By neglecting the inertia couple of rotor M¢, or putting I,=7/=0 in Eq. (5) a
rotor-shaft system (Fig. 8) with critical speeds ®,=83.01, 535.4 and ®,,=207.1
rad/s can be simplified to a two-mass system (Fig. 7(e)) with critical speeds w,=
82.98, 302.7 and w.,=152.6 rad/s. Even if there is some difference in regard to
higher critical speeds, dotted-line curves (£po=1 for two-mass system) in Figs. 4
(a), (c), (d) agree approximately with full-line curves (épe=1 for rotor-shaft
system), and the former may be adopted as a first step numerically to determine
the most favorable case of the latter.

7. Stiffness Elements qa;;

Stiffness elements @;; used in Chapters 2~5 may be obtained for usual rotor-
shaft systems (see Fig. 7) by using the strength of materials.

7. 1. Simply supported shaft (Fig. 7 (a)

An=a, adyp=y, dp=F—ab)/l, a,,=3¢ ]
N (25. a)
Apy=(0--1b) /I, ayz=ko+ (ab?—2r0+0)/1> |
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(b) (C) (d)

Fig. 7. Various rotor-shaft systems.

7. 2. Clamped-hinged shaft (Fig. 7 (b))

ayn=a, a,=r, a,=b{3rQ2l—b)—ab(3l-b)}/2

Wpp=0, 0yy=b{30(21—b)—rb(31—b)}/20*

Qyy=Ro+ky+[ab* {413 —a*(4a+3b)} —6rb*{21*—a(2a*—b%) }
+30b{41*— (4a*+b*) } ]/4l°

where k, is spring constant of cantilever at the location A, letting the upper
end B be clamped and the lower end 4 be free.

(25.b)

7. 8. Dampers connected through ball bearing C to simply supported shaft
with uniform bending stiffness (Fig. 7(c))

For a>s>0
czn_SEI{b3 _éLS_a?I_Z_s)_}, o Zngl{bZ 2(3a— ;l)r(ams) }
ozm:_ﬁE]o_%‘_s_z)_, @y =3EI {‘17 ﬂ%_&} L (25. ¢)
2__¢2 3
A “(“sHS) , 0y =12El— 5

where H=3a1—8a3s+6a2s%—s4

7. 4. Dampers connected through C to overhung uniform shaft on simple
supports (Fig. 7 (d))

1 . 4@3a+s) 1 23a+2s) |
a”_BEI{b3 a3(3a+453—}’ Fiz= BEI{bZ a*(3a-+4s) }

_ 18EI B 1. 4(a+s) _
N ETON “22‘3E1°{b i a(“3‘a+4s)“} @D
v BEL _12E]

S@atdsy 0 YT S @ar4as)
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8. Experimental Apparatus and Experimental Results

Experimental apparatus is shown in Fig. 8.

The rotor R with a diameter of

480 mm and a thickness of 5 mm is driven by a DC motor with speed variations

Center of upper
ball bearing B
/] ' Rigid
pedestal
11979 —fe-
@ -
! W ©
| o o
/ Steel shaft St . "
Geometrical
/] center of
/ rotor S
g - 480°% i ;
td { ~
Z B e N
s £ .
/ Center of lower m o Disk R
. \ N 0
% ball bearing A <]
I— = - xq direction
NNNAN
7 /o
- / a
oil Qil demper D
S/ Pressure )
/ pickup 7
7 -
/ Flexible l8¢ e
- pedestal K
—— Drill chuck
¢ 100 200 300™™

Fig. 8. Experimental apparatus.

(Ip=2.212 kgcm s2, I=1.106 kg cm s2?, mg="7.876 kg, a=10.23 cm,
6=40.58 cm, /=a+b=50.81 cm, d=1.197 cm, ¢=602.51 kg/cm,
7=—5680.9 kg/rad, d=77705 kg cm/rad, we,=207.1 rad/s,

vV a/m =273.8 rad/s, vimma =2.201 kg s/cm, /T/miz =0.2309,

kfa=1/3.219)

of from 150 rpm to 6000 rpm. In order to eliminate disturbance from the motor
a helical spring is inserted between the motor and upper end of a vertical shaft
St with a diameter of 11.97 mm. Both ends of shaft are supported freely to incline
by self-aligning double-row ball bearings with a bore of 10 mm (¥1200). The mass
m and moments of inertia 7p, 7 of rotor, and spring constants «, 7, 6 of shaft
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itself used in the experiments are indicated in Fig. 8. The shaft is made of mild
steel, and «, 7, 6 can be obtained from the strength of materials.

The upper surface of the rotor is made of disc, then the whirling of the shaft
is measured optically by recording simultaneously lateral motions of the disc edge
in both directions x# and ¥. The .upper end of shaft B is rigidly supported, while
the lower end A is flexibly supported by an isotropically elastic pedestal K with a
diameter of 18 mm, the lower end of which is clamped on the rigid base. By
changing the length !, of K, pedestal stiffness %, can be varied. The value of ks
is directly defined by measurement of deflection at the location A. An equivalently
concentrated mass #, is determined experimentally from the measured natural
frequency of the pedestal K only. Two viscous type dampers D are linked orthogo-
nally to the housing of the lower bearing A (see Eig. 9). )

Yo direction

:ﬁ—a—_ﬁ— / Frame movable to y, . direction
Frame movable to x, direction
< 4 '

Piston Spindle oil
/ Cylinder

Strain gage pressure
pickup to measure
/domplnq force

/
] . : - __. - —jgm Xq direction

Control valve
- to change damping

Radial ball
J bearing

%'ﬁ To another

cylinder

e

z direction X
_~Housing of fower ball bearing

|
E— xg direction

. ! . SEEE i J mm
WA ... jomeene S \ 0 25 50
|

\ S SO o | S EE———e
T~y WNVN RN NN

—— e Cross section of frame

Fig. 9. Pressure-pickup type dashpot.

8. 1. Dampers having nearly equal damping in two dirvections X, Y

Response curves E.,—® and E,.—® for a proper choice of #2,/m=0.309 and
ko/@=0.1115 are obtained experimentally as shown in Figs. 10 (a), (b). Experi-
mental results are indicated by circle marks for various values of damping. Full-
line curves (£=0.0204 and 0.655) and a chain-line curve ({=o0) are the calculated
response curves derived from Egs. (10) and (10’). Each damper D consists of a
cylinder fixed to the ground and a movable piston linked to the bearing housing A.
The sliding piston has several holes. Damping force, i. e, pressure difference
through piston holes, is measured by a load cell inserted between the cylinder and
the ground.

Though there exists little difference in respect to critical speed . between
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Fig. 10. Response curves with nearly equal damping in two directions xa, ya.
(ma/m=0.309, ka/a=0.1115)

experimental results and the analytical results because of the accuracy of spring
constants, neglect of distributed shaft mass, Coulomb friction in dampers, and some
elastic deformation of the load cell, the theoretical results are verified through
experiments.

When another choice of m./m=0.340 and k./a=0.1265 is adopted, and a
pressure pickup of Fig. 9 is inserted into the damper to record the damping forces
on behalf of an unavoidably elastic load cell, the experimental response curves
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Fig. 11. Response curves with nearly equal damping in two directions wxa, ya.
(ma/m=0.340, ko/a=0.1265)

E.—w, E..— are shown in Eigs. 11 (a), (b). As the damping { increases, peak
amplitude near ®@=85 rad/s decreases, and there clearly appear fixed points P, @ in
Fig. 11 (a) and fixed point Y in Fig. 11 (b).

8. 2. Dampers having unequal damping ({.<Cy) in dirvections %q, Yo

If the dampers happen to have unequal damping ({.<C{,) in contrary to our
expectation, the whirling motions of rotor and flexible pedestal take elliptical paths
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Fig. 12. Response curves with unequal damping in two directions xe, Ya.
(ma/m=0.340, ka/a=0.1265, Cy/{z=3)
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near critical speed ., and the major axis of the ellipse motion coincides nearly
with x axis. Experimental response curves for a combination of #4/m =0.340 and
ke/a=0.1265 are displayed in Figs. 12 (a), (b) where the damping ratio &,/C.=3.
Maximum amplitudes in x direction become two or four times larger than maximum
amplitudes in y direction.

9. Conclusions

(1) A flexibly mounted bearing applied to a rotor-shaft system can be very
effective to suppress the rotor resonance near the major critical speed.

(1-1) A favorable choice of added mass m, and pedestal stiffness %k, can make
the rotor response to zero at the critical speed ., of the original shaft only if
the running speed of rotor is limited to a narrow range.

(1-2) If a favorable choice of m, and k, is adopted so that the fixed points
adjusted to equal heights, and if there is a proper choice of damping C,p: S0 that
the response curve is adjusted to pass through one of the fixed points with a hori-
zontal tangent, the rotor response curve E.—w nearly flattens ous over a wide
range of rotating speed.

(1-3) The most favorable choice of m,, k. and (,p; with regard to the dis-
placement response of rotor E. due to static unbalance e, can be precisely applied
to the displacement response of rotor E. due to dynamic unbalace r, and also to
the inclination response of rotor F.due to r. Thus, other response curves E,—,
F.—w can also flatten out like E.—® curve.

(2) Fixed point Y in response curve of flexible pedestal generally coincides
with the critical speed for infinitely large damping, and the ordinates of the fixed
point are constant independently of added mass m,.

Especially for a rotor-shaft system such as seen in Figs. 7 (a), (b), the
abscissa ®y coincides with the critical speed w., of the original shaft, and the
ordinate of fixed point Y has no connection with m, and k,.

(3) By neglecting the inertia couple of the rotor, a rotor-shaft system is
reduced to a two-mass system. Rather simple formulas (23), (24) by the two-mass
system can be adopted as a first step numerically to obtain the most favorable
case of the rotor-shaft system.

(4) It is most desirable for the flexible pedestal not to have the directional
inequality in pedestal stiffness and viscous damping.

The authors wish to express their sincere thanks to Professor Toshio Yamamoto
for his guidance and to Mr. Masayoshi Kato for his drawing the figures.
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