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Abstract

To describe the phenomena obserbed in the ion drag pump, the ion
transport generator, the corona wind etc., we have proposed the two-
fluid model which is consisted with the charged particle fluid and the
uncharged particle fluid. A set of fundamental equations is the equation
of continuity and the momentum equation for both fluids and the Max-
well epuations. With those equations, the electrohydrostatic equation
has been solved only for a one-dimensional parallel plane case. Fur-
thermore, a one-dimensional steady flow has been treated from which
we have got the modified Poiseuille flow and the mobified Cobine space
charge relation. Finally a numerical example has been tabulated for an
oil.

1. Introduction

We shall call, “the electrohydrodynamics in the narrow sense”, with which we
can discuss the behaviors of a single charged particle fluid in a vacuum or in a
static fluid. In that dynamics, main problem is to find or to calculate the space
charge relation; for example, Langmuir 3/2 powers law in a vacuum diode tube and
Cobines law in a gas-filled diodc tube. In the other words, we can explain the
current-voltage characteristic curve in a vacuum diode tube or in a gas-filled diode
tube without any ionization>~1%,

“The electrohydrodynamics in the wide sense”, which we shall here develope,
can describe the various phenomena of the system consisted with the single charged
particle fluid and the unchrged fluid. Those various phenomena, for example, are
the ion drag pump!®~21, the ion transport generator??’, the corona wind'®>~1®),
the electrical osmostics and so on. The electrical osmostics!'®), however, is con-
cearned with an electrical double layer so that we shall not diseuss here.
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2, The fundamental equations

Comparing the electrohydrodynamics (EHD) and the magnetchydrodynamics (M
HD), O. M. Stuetzer formulated a set of ebuations governing the electrohydrodyna-
mics?3), but it seems to authors too formal. So we shall here propose a new set
of equations which is consisted with the equation of continuity and the hydrodynamic
momentum equation for both fluids and then the Maxwell equations.

They may be written as follows,

on

mn{-%%ﬂ—(v-V)v}:-—mn—-y-p——mmcmzca'(v~vc) 2
on. , . _

T 1. =0 3

M, J( aal;f +(v.p) vc} =—mng-+en,(E+v,XB)
'"Vpcmﬂﬂzcn”ca(vc—v) (4>
prE=j+ P pu=0 )
X B= a,gfl peel=en, (6)
j:encvc (7)

Here the subscript ¢ implies the quantities for the charged particle fluid, m is the
mass, # the number density, v the flow speed g the gravitational constant, « the
coefficient24), E the intensity of electric field, H the intensity of magnetic field,
the dielectric constant, # the magnetic permiablity and p the pressure tensor. The
pressure tensor p is approximately written as

(B)u=00u+5(70)0u—n(-G2+-50c ) ®
where p is the scalar pressure, 7 the coefficient of viscousity, d;, the Cronecker
symbole. The equation (8) is valid when the Newtonian flow and storke’s approxi-
mation is assumed. The pressure tensor of the charged particle, p,, may express
as same as Eq. (8), althongh there is a problem arised from Rutherford’s scattering.
The problem will be solved by selecting #.~1/3 as the maximum impact paramerter.

Thus, all quantities can be determined by Egs. (1)~(8) as a function of the
time ¢ and the position 7. But there is an another problem how is produced the
charged particles. The ansower is that two ways are possible. One way is to
supply into the uncharged particle fluid by an exteral source; for instance, by the
discharge corona. The other way is to utilize the charged particle in the so-called
diffuse layer produced by a liquid contact to a solid. It is believed that if a liquid
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contact to a solid then the profile of electrical potential is as shown in the case
(1) or the case (2) in Fig. 1. In that figure, the charged particles in Helmholtz’s
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Fig. 1. The profile of electrical potential of the liquide
state contact to the solid state.

layer do not move, because the charged particles attache to the solid. The charged
particles in the biffuse layer can be transported with the moving fluid. It can also
be accelarated by an externally applied electric potential and as the result the
uncharged particle fluid is derived, which is called “the electrical osmostics” or
“the ion drag pump”. Thus if the profile of electric potential in the diffuse layer
can be measured by a methode then #. will be known by making use of the Poisson
equation. In the age of Helmholtz, the surface charge density ¢ is as

q=el/3, 9)

where ¢ is the thickness of electical duble layer and £ is of the so-called ¢-poten-
tial. However, ¢ and § themselves should be determined theoretically which itself
is a theoretical problem of physics. So, here, we shall assume that charged parti-
cles are supplied by an external source.

3. The electrohydrostatic equilibrium

We shall call “the electrohydrostatic equilibrium” when »=0, v,=0 and g=0.
Then, a set of equations becomes

7 5=0, (10)
gh.=en K, an
pE="", (12)

E——pv. 13)



Electrohydrodynamics in the Wide Sense 129

Immediately, we get
p=constant, (14)

If the ideal gas law, p.~n kT, is valid and if 7. is constant because the static
equilibrium is in the thermal equilibrium, then it will be hold

nc:ncoexp(—"ev/ch) (15}

where 7.=n, at V=0. Combining Egs, (12), (13) and (15), we have the depen-
dency of V on x

eV X
RT, = tog(1+ 2x0) (16)

xX5= (sch/282nc(})

for a one-dimensional parallel plane case, where #,=#,, at =0 and, by the refernce

D,
Ey=(2n.0kT. /)" an

at x=0.

4. The ion drag pump and the ion transport generator

In this section we shall treat with the one-dimensional steady flow neglecting
the magnetic field.
Seeing the figure 2, we set %,

v=(v,, 0, 0), #m=constant,

v.=(va, 0, 0), E=(E, 0, 0), (18) SSESNINANNANN
E
Jj=(, 0, 0) h v(x) T
Then, from p-v=0, we have . o
ST 777777 X,
v, =0,(%,). :
1=01(%s) (19) Fig. 2. The profile of the flow velo-
From Eq. (2), we get, assuming collisions city v1 (x3), which implies
. the modified Poiseuille flow.
dominant,
_ 0p o
0=~ 9%, 7y axgl —mm,mn, (v, —v,,). 20
The equation (3) becomes
N0, =7(%;)/e. (21)

Assuming collisions dominant in Eq. (4) we have



130 S. Miyajima

O=<en.E,— aﬁi +7, 882;;1 —mm nn,(V,—0,), (22)
3

in which if the third term in the right hand side is negligible small compared with
the other term, p.~n.kT. and 7. constant, then we have

comnssr g2 @
where
_ by _ ¢
b“—n'” mm, na (24)

is the mobility and its value are 10-4~10-7 cm?/sec.V for 0il.2%) 26> Combining
Eq. (20) and Eq. (23), we have

en,Fy— op _ 0p, , 0%, __

0%, ox, T oxz (25)
which, using Poisson’s equation, is arranged as
0%, __ Qw( Y 5 )_ _
7 ox = ox b+ D, 5 =constant=-—C, (26)

That equation is as same as the poiseuille flow by putting p+p.—eE?/2 into p.27
The solution of Eq. (26) is

0=-C(h= )3, @)
under the conditions that v{=0 at x3=0 and x3=£h. And
2 2
Ct,=(u+ pa—58) = (p+ 5.—251), (28)

where the subscript 0 means the quantities at x; =0.
Now the current density is given by the following equations,

. o, { ( kT, on )}
X;) =—en v, = v, 0| By — -2 e )
71(%3) cVer=¢ %, Ol Ey on, 0%, (29)
That equation can be easily integratedv if we neglect the diffusion term, which leads
to the second order algebraic equation on E;. Thus, we have

1\2 7 1/2
Ey=——-+ {(Ew—%) +m2{)1f1} : (30)

In that equation, j;=20 and %,;=0 so that if E;,=0 then E,;=0 for all x; as it was
shown in Fig. 3(a). Under that condition, the ion drag pump will be much likely
derived. If, however, E;,<0 then E; becomes partly positive and partly negative
as shown in Fig. 3(b). When E;, is furthrmore negative, then E, is negative for
all x, as it was shown in Fig. 3(c¢). In that case, the ion transport generator will
be, under better condition, operated. The case of Fig. 3(b) is not in a good condi-
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Fig. 3. The profe of electric potential, where A is the anode,
C the cathode, 1. E. the ion emitter and I. C. the ion
collector.

tion for the jon drag pump and also for the ion transport generator. As it was
stated above, wheather E;, is negative and positive and wheather E, is large or
small are play an important role upon E;(x;) or upon the profile of electric poten-
tial. But it is a quiet bad that E;, can not be determined theoretically.

We should, however, rememedr that in the above disussion we have neglected
the diffusion term in Eq. (30). Indeed, if we set v;=0 and if we calculate the
space charge relation including the diffusion term then E;, can be determined?®.
In the next section, we shall develope the calculation of space charge relation inclu-
ding the diffusion term. It is noted that electrical potential is easily obtained by
an integration, but that calculation was already carried out!$~21 g0 that we are
no more any discussion in this section.

5. The effect of the diffusion term upon the space charge relation

Combining Eq. (29) and the Poisson equation, the electric field E; and the
electric potential V is easily obtained as follows: we introduce the iollowing new
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notations,
S A A
z:—-]]— joz?”cgich, =2ty (B 0-0, @
c=—22 tns— —*‘%fj
then we have |
gﬂ +99=0 | (32)

whose solution is

9(2)=A4A:2""3]1,5(%) +B.2%] _, ,5(2), for y>0,

and B (2%) = A,2¥1731, ,,(2%) 4+ Boz¥ /31, ,,(2%), for y<0 ©
where
2=(2/3)y"?
30
7= (2/3) ()"
From Eq. (33), {+p8 is
(@) + =LA a(2) B Laa(2)), for 30,
and (35)
(@) = GO (AL B L a(0), for 30,

The quantities A;, Az, By, and B; are determined by the following conditions;
(1) ¢ and £-+pB are continuous at z=z*=0,
(2) when z¥—co, then the solution terminate to the solution neglecting the di-
ffusion term, namely

@)+ - @) eR S ={iE+ (LA =117

Q) ¢p=1 (W=0), {+p=L+p5 at £=0.
The conditions (1) and (2) lead to
Ay=B;, Bi=B; and A;=—4.,.
Thus, ’
for y>0,
¢(2) = A, R(2),

(3i>1/3 (36>

C(?) +ﬂ:“7(z‘)*—A13(z),
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and for y<0
9 (&%) = A R(2%),
: 37
oy L (30 s
1(2 )+1{J ¢(Z*) AZ\S(Z )
Here
R(2)=2"3(]1,5(2) +J-1,:(2)), @8
R(z*):2*1/3(]_1/3(2*)~]1/3(z*)),
S<Z>122/3(]—2/3(2)*‘]2/3(2>)>
(39)
S(&K) =283 (1,5 (2%) — L 5(2%)).
To determine A; and {,+8, we put
2, :ii1/2r3/27
) (40)
%~ __F1/2( __4\3/2
ZO - 3 t 2( T) ]

and we apply to the third condition. Then we can determine A; and {,+f as a
funetion of z, or zj; in the other words, we can determine 4, and {,+p as a
function of ¢, as it will be described in Appendix.

The function R(z) or R(z*) is a scale of electric potential and is shown in
Fig. 4. That R is zero at z2==2.381, R=1.404 at z=0.68555 and approches to zero
with the increasing z* Fig. 5 shows the function S and S is a scale of electric
field. The function S is zero at z=0.6855, is in maximum (the value 0.5925) and
terminate to zero with the increasing z*. Both Fig. 4 and 5 can use for z, or z:.

From Appendix, the relation between A; and { in Fig.6. The value of 4; has
a minimam (A;=0.7123) at i=0.4853 and, for ¢ << 10-2, it is hold

A;=0.432047172, (41)

whose relation shows the straight line AA’ in Fig.6. Now, the relation between
{o+pB and 7 is shown in Fig. 7. If i=0 then {,+8=—1, if 1=0.4863 then {,+8=0
and for the large i (say ¢ <4) it is valid

Lo (42)

Furthermore, |7| is shwn in Fig. 8 as a function of 7. If i<(1.291 then 7 ispositive,
if 1=1.291 then 7=0 and ¢>>1.291 then 7 is negative. Especially i<{10-2 it gives

y=3.709¢"1/3 (43)

whose relation is shown the straight line A4’ in Fig. 8. If the approximate relation
(42) is valid then the following equation can be used,

—r=i. (44)
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Fig. 4. The curve of R(z) or R(z%).

The quantities R, S, i, {;+B and 7 are tabulated in Table 1. (a) or (b) as a
function of z, or z;. While, if z, and z§ are equal to or larger than 4 then the
effect diffusion term will be able to neglect: namely R(z*) and R(z}) are given by

the following equations,

Re)~=(—52 ) exp(—29),

2rz*

. 3 1/2 .
R<Zo>—'\—/<‘2ﬂ7) exp(—2z%),
0
approximately. Thus, we have

W=2In¢+p~2In—"<

2 a0 Nasa_ (E__Nasz 3 (=0 =
= 2= G+ S in (ST

which is, using —y=~i for i=4, rewritten as

212 3/2 3/2 3 4 w
W= SZ {372 — (640)32} 4+ = ln<+z> +B,¢

That equation becomes, for &>1,
W:_%i1/253/2+ﬂ5’

approximataly,

(45)

(46)

(47)
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6. A left problem

As was mentioned aboye, the uncharged particle fluid follows the Poiseuille flow
by putting p+p.—¢E/2 in p, and v,=0 at the wall; 7. e., on the one hand, v; is a
function of the coordinate x; perpendicular to the flow. On the other hand, the
electrcal potential V' and the intensity of electric E; are independent on x5. So, a
pionering reseach coworker. O. M. Stuetzer, takes the average value for V; and
thereby the calculated equation is not exact.

If one does not take the diffusion term, then Eq. (30) changes as

2 L U1 \? 25x
(B g) = (B )} =2 (48)
so that, by the integration from x;=0 to x3=5, we get
Ch? I
(B E){ (Bt B+ =200,

g
where I:S;jl(xg)dxg is the total current. That equation is rewritten as

. Cr . Ch* N\ | 2Ix, }1/2
E=—gpy (2 o) ] (49)

from which the electrical potential become

Vv Ch? ¥ 2 cbh {(E10+ Ch? )Z—Ir 21%, }3/2

6y 32T 60y ) " cbh
2 ebh ( Ch? \?
3 2T \E’“”L 60° )

If one takes the diffusion effect into acount then the results will be much compli-
cated, so that the problem will be left as it will be solved in the future.

7. A numerical example

We have treated the space charge charge relation by taking into account the
diffusion effect in the section 5. As a numerical example of the present theory,

we put
7.,2=10'/m®, ~T,=~500°K, b=10"%m?/sec-V,
v,7~10"'m/sec., d=~=1m,
where d is the anode-cathode distance. Then
%,>=1075, B=2x10%, j,=~7x107%A/m?®
S,=d/x,=>=10%, p&,~=2x 108,
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since +B~i if 1224, thereby if 22X 103 then (>0 and (>0 for all x;. In the
other words, when i2>2x10% then the ion drag pump is likely derived when, however,
i<<2x10% then at the near anode (orat the ion emitter) {<{0 and thus the electrical
potential begins to becomes positive with the decreasing i. In Table 1, we have
shown a numerical example with the above data.

Table 1. An numerical example of 7, {o+ 5 and V where $=2x103

i 7 o+ 8 V(Volt)
108 —106 106 —4.52%10°
105 —105 105 —5.42x108
104 —104 104 —9.81x107
108 —103 103 —2.07x107
102 —102 102 —7.23%x105
10 —-10 10 5.01x108

1 0.60 0.73 8.09:x106
10—t 5.7 —0.64 8.5x106
10-2 17.2 -0.91 8.5x106
10-3 37.1 —0.97 8.5x1086

8. Conclusion

We have here developed the electrohydrodynamics to describe the ion drag pump
and the ion transport generator. That dynamics is consisted with the equation of
continuity and the momentum equation for an uncharged particle and for a charged
particle fluid and furthermore tye Maxwell equations.

With these fundamental equation, we have given a solution of electrohydrostatic
equilibrium for one-dimensional parallel plane geometry. Next, we have treated the
one-dimensional flow when the uncharged particle fluid is incompressible taking into
accound the diffusion effect for the charged particle fluid. Because if we neglect
the diffusion effect, one can not theoretically determine the strength of electric
field at the ion emitter. The results of the present theory shows that the ion drag
pump is likely operated for the higher electric current whereas for the smaller
current the higher electric potential is generated leading to the ion transport gene-
rator. It is noted that the Poiseuille flow will be kept unchanged if we put p—
eE?/2 into p (where ¢E?2/2 expresees the electrical stress).

The auths wish to appreciate to Prof. Minoru Ueda for his interest in this
paper.
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Appendix

Two quantities 4; and {,+p cav be determined as a function of i by making
use of z=1 and {-+p={+8 at z=2, or z%¥=z;. Namely

R('ZO) :A;Iy

(A1)
R(z7)=A71,
AS(2) = (L+P)/(30)173,
) (A2)
AiS(25) = (Lo +08)/(3i)172,
We define
feGE ASG)
i Z11/2 ’
Sotp _ A5(=F)

TG 2
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from which we have

CokP=f/ A+,

(A4)
Cot+B=g/(g*— 1),
Then, 7 and ¢ are also expressed as a function of z, or zj by
i=1/32,(1+ %)
(A5)
~1/32¢(g"— 1)
r=82,(1+ 1%
(A6)

——3z1(g"— )"

Thus A;, Co+p, i and 7 can be calculated as a function of z, or z; from (Al),
(A4), (A5) and (AB) respectively. The calculated results have been tabulated in
Table 2.

Table 2(a) The values of R, S, 7, {o+# and r as a function of Z

z R S i o+ r
2.5 —0.1459 ~1.593 - — —
2.4 —0. 0236 —1.605 — — -
2.3 -+0. 0881 —1.600 5.523x10-5 -1.000 9.518< 10
2.2 0.2210 —1.580 8.163x 104 —0.9845 3.765% 0
2.1 0.3435 —1.543 3. 286103 —0.9633 2.295x10
2.0 0. 4624 —1.492 8.206x10~3 —0.9315 1.612x10
1.9 0. 5812 —1.427 1.602x10-2 —0.8929 1.266%10
1.8 0. 6924 —1.346 2.761x10-2 —0,8474 1.018x 10
1.7 0. 8001 —1.257 4.342x10-2 —0.7962 8.430
1.6 0.9037 —1.158 6.389x 102 —0.7389 7.387
1.5 0.9983 —1.048 9.095x 102 —0.6811 6. 061
1.4 1.086 —0.9298 1.193x10-1 —0.6076 5,288
1.3 1.164 —0. 8033 1.546% 101 —0. 5346 4.619
1.2 1.233 —0.6749 1.952x10-1 —0.4577 4,049
1.1 1.291 —0.5422 2.408x1071 —0.3771 3.563
1.0 1.338 —0. 4004 2.914x1071 —0.2927 3.138
0.9 1.373 —0.2762 3.475x10"1 —0. 2040 2.758
0.8 1.395 —0.1451 4.099%10-1 -0.1114 2.410
0.7 1.404 —0.0179 4.762x10-1 —0.001436 2.100
0.6 1.399 0.1036 5.499x10-1 0.08750 1. 806
0.5 1.379 0.2196 6.284x10-1 0.1968 1.530
0.4 1.344 0.3218 7.168x10-1 0. 3092 1.261
0.3 1.291 0.4147 8.142x 101 0.4327 0.9983
0.2 1.219 0.4937 9.258x10-1 0. 5694 0.7299
0.1 1.118 0. 5558 1.061 0. 7306 0. 3855

0 0.9306 0.5925 1.2914 1. 000 0.000
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Table 2(b). The values of R, S, 7, {4+ and 7 as a function of Z*
7% R s J i (o8 r
0 0.9306 0.5925 1.2914 1.000 0.000
0.1 0.7424 — 1.522 — 0. 3896
0.2 0.6387 0.5283 1.667 1.414 0. 6000
0.3 0.5571 — — — —
0.4 0. 4900 0. 4541 1.877 1.649 0.9155
0.5 0.4331 — 1.868 — —
0.6 0. 3839 0. 3855 2.074 1.846 1.160
0.8 0.3038 0. 3250 2.210 2.010 1.376
1.0 0.2422 0.2728 2.388 2.172 1.556
1.2 0.1937 0. 2283 2.507 2.304 1.729
1.4 0.1556 0.1906 2.677 2.453 1.875
1.6 0.1250 0.1587 2.764 2.570 2.028
1.8 0.1009 0.1322 2.887 2.691 2.162
2.0 0. 08227 0.1100 — — -
2.2 0. 06495 0. 09154 — — —
2.4 0.05048 0.07611 — — —
2.6 0. 03601 0.06347 — — —
2.8 — 0. 05289 — — —_
3.0 — 0.04530 — — —






