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Abstract

The equilibrium problem of toroidal plasma with distributed current
in a fat torus with any small toroidicity and rectangular cross section
is analyzed.

The analytical solution is deduced by the use of Green's function
and the constant-variable method and also the some numerical results
are given.

1. Introduction

It is difficult to solve the equilibrium problem of toroidal plasma with any
toroidicity and any boundary conditions. The methods usually used are the itera-
tional one under the assumption of small toroidicity and the near-axis expansion
around a magnetic axis.l, 2> However, as the critical beta 8, (8=plasma pressure/
magnetic pressure) is inversely proportional to the aspect ratio A (A=major radius
/minor radius),®’ the fat torus with small aspect ratio is favorable. In the present
paper we give the exact solution for equilibrium of plasma with more general cur-
rent distribution and with rectangular cross section.?, 4> The boundary conditions
are usually specified for given special cases, but we may regard any magnetic
surface given by a solution obtained as a plasma boundary and may study the equi-
librium of plasma with various kinds of cross section. We solve the inhomogeneous
partial differential equation for plasma equilibrium by applying the constant-variable
method to the singular equation in order to obtain Green’s function in 2. In 3 the
numerical calculation of solution is performed and the conclusions are summarized.

In cylindrical coordinates (7, ¢, z) (Fig. 1) we consider the equilibrium equa-
tions for axially symmetric plasma which is written in terms of a stream function
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as follows®?;
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where | and p, the current stream function and the pressure, respectively, are
arbitrary functions of ¥, Expanding the both functions in powers of ¥, we get
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where the prime denotes d/d.
The case when only the first constant term is retained was solved by Zueva et

al,, but the result is not likely realistic because the z-dependence of current dis-
tributions is disregarded.?’
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Fig. 1. Cylindrical coordinates and boundary conditions

2. Analytical Solution

In the present paper we consider the equilibrium with current distribution
which is dependent on ¥ (7, z), so that the second term &’ in eq. (3) is included.
Therefore, the equations to be solved have the following forms;
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with the boundary conditions for rectangular cross section (Fig. 1);

W(RJ = W(Rz) = 0,

)
(0)=¥(d)=0,
where the arguments 7, z are normalized by the major radius of torus R.
The equation for Green’s function corresponding to Eq. (5) is
2 32
PG G 109G _po__s(r—8)3(z—7). (8)

T T

Expanding Green’s function and delta function by the eigen functions which satisfy
the boundary conditions, we get the following expressions;

G(r, 256 n="2 31 g0,(r, &) sin 75 sin "7 ®
=1
d(z—3)=23 sin WE . sin 20 (10)

Substituting Egs. (9) and (10) into Eq. (8) and transforming from go, to g, by the
relation g,,=7g», Eq. (8) becomes

G (r%e)-Lg—prrg,=—00r—0), an

where

R
()

This is formally the Strum-Liouville type equation, but it is not easy to seek
for the eigen values for 7, so that we solve this problem by applying the constant-
variable method to this singular equation as will be described in Appendix.

(1) The case of B2=0

Transforming the arguments from (7, &) to (%, ¥) according to the relations
B.¥=2x and B,£=y, the equation for Green’s function is written by

d2g2n I 1 ngn___ 1 e g— —
B L B (14 Vs = —3(5—9) /7. (12)
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We introduce two functions g}, and g%, that satisfy respectively the boundary con-
ditions at x; and #,, which are defined as a function of the modified Bessel function
I, (%), K; (%), i. e., the solutions to the homogeneous equation of Eq. (12);

g;n(x):DZﬂ(xb x)a

(13)
82 (X) =Dy, (X2, %),
where ‘
Dy (2, ») =K (#) L(9) —L(%) K1 (). (14)
The function corresponding to w, (%1, ¥2) in Appendix is
Wan (%1, %) =% W[g2(%), g2u(¥)]
=D, (%, %), (15)

where W is Wronskian for gi, and g%,. Therefore, we obtain the following expre-
ssions as the solution to Eq. (12);

2
{_,___&L(__x_)_____g%n<y)’ xlé‘yéx’
Dz-n(xl? xZ)
gzn(x):i 1 (16)
(%) 1 3y 3y,

B DZn(xly x?)

(i1) The case of Bi=—0b2=0

In this case, transforming the arguments from (7, &) to (x, y) by the relations
b.r=x and b,&=Y, the equation for Green’s function is given by

d’g,, , 1 1 __0x—y)
dle 'l"’,?guﬁ‘(l %7 )gln’“ — a7

As the solutions to the homogeneous equation of Eq. (17) are Bessel functions
J1(x) and N;(x), we get the solution to Eq. (17) by the same procedures as for
the first case. It is
_n (X))  ay x Sy
2 Dm(xz, xl) " ’ V==
g1n— — (18)
n_ g (%)

v o snNT/ 2 4 4
2 Dy(%,, %) &un(7), BLY L

where
Dy, (%, »)=Ny(2)J1(y) =T () N,(9). (19

From Eqgs. (9), (16) and (18) the Green’s function that satisfies the boundary
conditions is obtained as follows;
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o

G(x, 239, =57 31 g.(%, ¥) sin"75+sin 77T, (20)

where

82 (%), Fix0
gx(%)= (21)
g1.(%), 81L0.

V By using this Green’s function the solution to the boundary value problem with
the rectangular cross section can be expressed in the following integral form;

ver, 2y=—{ & &G, 258, )(ae+b), (22)

and performing this integral we get

nr
Sln—~2——
V0, D=1 S i Ry

=1

Dn(‘Rb 7) (0R2+b/R2)

—Dy(Ry, 7)(aR,+b/R) = (ar-+-b/r)Dy(R,, Ry)}cos "5, (23)

where we used the following transformation and the relations for Bessel functions;

z = 2+d/2, (24)

[v%2,(») )V=y%2,(¥),

[2,(») ) =2.(),
Ivaﬂ + I;z+1 v:—%; F ‘ (25)
LK, /K= 1.

Yy

3. Numerical Calculations and Conclusions

By calculationg the analytical solution given by Eq. (23) for various kinds of
parameters we study the equilibrium state of toroidal plasma. The parameters in-
cluded in the solution are the geometrical parameters R;, R, and d and the physical
parameters a, b, and b’ that were introduced in the expansions of p and I(¥),
i. e., in Egs. (3) and (4).

If »'=0, the physical parameters « and b are related to the plasma current Ip

and the poloidal beta B,(8p=2p/B3) ;

I,

m’z

o=t _pop, (26)
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R “/fz‘r% 1—4,), )

v g

where 7, is the radius of plasma column. However, the equilibrium is determined
by the ratio of these parameters, b/a;

bja—tTVI=e" 1-5,

2 By
—~ 1 1""4811
_(1—.2_8)_73;_, (28)
where
e=1/A=7,/R,

and this parameter becomes negative in the region of =0 as shown in Fig. 2.
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Fig. 2. Parameter b/a v. s. poloidal beta

The parameter b’ is related to the diamagneticity or corrective mechanism of
plasma that makes the current to coincide the magnetic surface. We then analyze
numerically taking the following values of parameters;

R‘l: 1/2) R2:3/27 d: 1:
b/a=1, 0.5 0, —0.5, —1, (29)
b=1,0, —1, —5 —60.

In this case the aspect ratio of torus, 4, is 2 and the results calculated are shown
in Fig. 3-(a) to (k).
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Fig. 3. Equilibrium of toroidal plasma with rectangular
cross section; A=2, d=1
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We can deduce the following conclusions from the results of numerical calcu-
lations; (1) the displacement of plasma 4 is almost determined by b/a, 7. e.,

4/(d/2) :%(1. 8—0.7b/a) (30)

(2) only if b'>b/a the equilibrium with vanishing current density on a certain
magnetic surface can be realized, (3) the appearance of multiple magnetic axis is
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related to the inversion of plasma current and-if #=0 this takes place at f»=2, (4)
the configuration shown in Fig. 3-(i) is also realizable by replacing the current at
the outside of the surface j,=0 by that of external conductors, (5) the solution of
Doublet type corresponds to the configuration appearing around the left-side axis in
Fig. 3-().

With the help of the solution presented in this paper we can investigate the
equilibrium with very elongated shape that is favourable for the fusion reactor
from the point of view of the efficiency and so on, and can study the fat torus
with any small aspect ratio. The equilibrium obtained by replacing the plasma
current outside the surface j,=O0 by that flowing in the external conductors such
as shown in Fig. 3-(i) has an advantage over the usual Tokamak with mettalic shell.
Such configuration is shell-less and may constitute a diverter or magnetic limitter.

We wish to thank Dr. Y. Tanaka for valuable discussion.

Appendix

Here we prove that the constant-variable method is applicable to the singular
differential equation of Strum-Liouville type; '

LLg) =0 (p) %X ) gy g = —ax—8).  (A—D)

We take the functions, g! and g2, which are solutions to the homogeneous equation
of Eq. (A-1) and satisfy respectively the boundary conditions at x; and x,. We
define a function w(x!, x2) by g! and g2;

w(xy, %) =px)W[g'(x), g*(x)], (A—2)
where W is Wronskian for g! and g2. Therefore, formally applying the constant-

variable method we obtain the solution to Eq. (A-1) as follows;

gz, =—ED (% g(xyo - 5yde - LI grno(w—s)de

{—gz(x)g‘(f)/w(xl, Xy) X LELX,
(A—=3)

—&' (X)) g (E)/w(xy, %,) X LELX,.

It is proved that g(x, & in Eq. (A-3) is always the solution to Eq. (A-1), in
the following way. The equation (A-1) is to be considered as an equation of dis-
tribution and can be expressed by the relation for distribution

Jg(x, &) Lp(x)dx=—¢(&), (A—4)

or

~e@)| pOPO+E @] pOeE) +LLg® D) =—9(E). (A=5)
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Comparing both sides of Eq. (A-5), we get

1¢+0

g =0, (A—6)
Lg(x)1=0, (A7)
g =—1/p(). (A—8)

Therefore, the function g(x) is continuous as usual function and is a solution to
the homogeneous equation of Eq. (A-1) and also has a jump only at point &, that is,
these are conditions for Green's function. Considering the relation

1 W[g, &%) _
& w1 (A=9)

and substituting Eq. (A-3) into Egs. (A-6) to (A-8), it is clear that g(x) satisfies
these all conditions.
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