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Abstract

Viscous flows of an incompressible fluid through a back-step chan-
nel, i. e., a channel with abrupt expansion of width, is investigated with
special attention to the behavior of separated flow. Numerical solutions
of Navier-Stokes equation is obtained by using the successive-over-
relaxation method. Values of stream function and of vorticity are cal-
culated for Reynolds number Re=0, 0.1, 1, 3, 10, 20, 30 and 40. Pressure
distributions along the lower wall are obtained for some cases. It is
found that, as described in some previous papers, the flow does not
separate at the sharp edge of the corner. In the present paper the
positions of separation point and of reattachment point are given as
the function of Reynolds number.

1. Introduction

The separation of flow has been extensively investigated by many authors so
far. However, we have not sufficient knowledge on the phenomena, since the
mechanism of separation is so much complicated. Flows with sharp corner are
mainly investigated by numerical integrations of Navier-Stokes equation, which have
been done by Kawagutil’® for elbow and step channels, Macagno and Hung?®’ for an
abruptly expanded tube and Roache and Mueller® for a backward step.

In the present paper some numerical solutions for the fundamental configuration
of back-step channel are computed to give some insight into the behavior of flow
at the sharp corner and the situation of flow at separation point. The two-dimen-
sional viscous flow of an incompressible fluid through a channel with a back step
on one wall is considered as shown in Fig. 1. Successive-over-relaxation method,
which is one of the finite difference methods, is adopted as a numerical procedure.
It is shown that, in such flows, the separation point deviates from the sharp corner
to the side of the back step.
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Fig. 1. The schematic model of a back-step channel.

2. Fundamental equations and boundary conditions

The co-ordinates system and dimensions of this model are defined in Fig. 1.
It is assumed that the inflow into the entrance section OA is Poiseulle flow. The
continuity and Navier-Stokes equations are made dimensionless with the reference
quantities of the mean velocity U and the width A in the entrance section as follo-
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where pressure terms refer to pUZ2. Reynolds number is given by Re=UH/v,
where v is the kinematic viscosity. The stream function ¥ and the vorticity { are
defined by
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Substituting these quantities into Egs. (1), (2) and (3), we have the fundamental
equations for ¥ and { as follows:
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Fig. 2. Rectangular mesh geometry (m=0.1, n=0.05).
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If no-slip condition is considered on the walls, the boundary conditions are

U0, 9¥/on=0 along OCDE s
)
and V=1, 0¥/on=0 along AB

The notation n denotes the direction normal to the wall. As the flow at the

entrance section is Poiseulle flow, #=6(y—y2) from the assumption, the boundary
conditions of ¥ and { at the entrance section are given by

V=y(3—2y) )
and

{=6(2y—1). (10)

The base pressure 7, along the lower wall is evaluated from Egs. (2) and (3)
with taking account of the boundary conditions.
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Since the absolute value is arbitrary, the pressure distribution is calculated under
the assumption that the base pressure is taken to be unity at point O.
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3. Procedure of numerical computation

Dividing the flow region into small rectangular subregions as shown in Fig. 2,
differentiations of the functions can be substituted by the finite difference between
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Fig. 3. Various types of the boundaries.
(a) The upper wall.
(b) The lower wall.
(c) The step wall.
(d) Outflow condition.

the concerning central point (7, s) and its four adjoining points for a sufficiently
smooth region of flow. In order to apply the successive-over-relaxation method,
Egs. (6) and (7) are transformed to the form of finite difference equations as

follows :
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where % is the iteration number and ® is the acceleration parameter for the con-
vergence of numerical procedure, which is taken 0<w<2.
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The vorticity on the wall is expressed by Taylor expansion of the stream func-
tion and by the boundary conditions.

&,=31-",,.)/n*—(1/2)¢,,, on the upper wall. (14)
(,=—3¥,_/n*—(1/2)C,_, on the lower wall. (15)
Co=—3Wp,/m*—(1/2) 4,y On ‘_ch_e step wall. (16)

The situation of &7, ¢, and {x are shown in Fig. 3-a, 3-b and 3-c, respectively.
The vorticity at the sharp corner C is evaluated by Eq. (15). Other schemes of
this evaluation are examined in detail by Roache®.

To calculate ¥,, at the downstream section (see Fig. 3-d), it is expanded
around point (#,—2) as follows: ..
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Since ¥,,-, is also expanded in the form;
o 1 (07
r = — . PR S 2
Vnes= Ve ( 0x )y,~z 2m-+ 2 !( ox? )r,—2<2m> ’ (18)

the first and the third terms of right hand in Eqgs. (17) and (18) can be eliminated,
which giving

_ ov
V=V im(G0),

By the use of central difference for (9%/9x),,, the value of ¥7, can be expressed
by

W,n: wh_4+2(w,b_1—~ w’m_g)' (19)

The similar treatment is applied to the boundary value for ¢, too.
Boundary values of ¥ and { are finally expressed by

1 + 1

U= =205 +2¥5 5 on BE, (20)
1) +1 9

S =00 =200 50 + 20050 on BE. 2D

The initial values in iteration are taken from the values of Poiseulle flow.

In the course of computation the stream function and the vorticity are regarded
to be converged, when the totals of absolute values of E; (#, s) and E.(7, $) in
all inner points, i.e.,

NORM,=S|E\(r, s)] and NORM,=3|E,(r, s)|

become less than 0.5x1072, where E; (¥, s) and E, (v, s) are written in terms
of the brackets in the right hand of Egs. (12) and (13), respectively.



On some Numerical Solutions of the Flow through a Back-Step Channel 157

R w
SR DUTOINI00 LO‘_% b

. Q ;L »‘ 2.

<

Livbhind N o

o
—
N
W
o~

. .

= oo o

-2,

Fig. 6. Stream function and vorticity (Re=1).
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Fig. 9. Stream function and vorticity (Re=20).
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Fig. 11. Stream function and vorticity (Re=40).

4. Numerical results and discussions

Choosing a back-step channel of L/H=4.5, [/H=1.0, h/H=0.5 m=0.1 and
7=0.05 as shown in Figs. 1 and 2, the numerical solutions for Reynolds number
Re= 0, 0.1, 1, 3, 10, 20, 30 and 40 are obtained. In this computation, the accelera-
tion parameter @ is taken to be unity.

Even for the lowest limit of Stokes flow, Re=0, it is found that the flow
separates from the corner as shown in Fig. 4. The recirculating region grows large
according to increase of Reynolds number (see Figs. 4 to 11). The distance 7,
from the concave corner D to the reattachment point increases linearly in propor-
tion to Reynolds number as shown in Fig. 12. Denoting the distance from D to the
separation point by h, hs/h is found to be 0.56 for Re=0 and approaches rapidly
to unity for Re>>1 as shown in Fig. 13. The distributions of base pressure is shown
in Fig. 14 refering to the stepped co-ordinate along OCDE. The base pressure p,
drops at the convex corner and keeps on decreasing even after separation. Sub-
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sequently, it rises and reaches to a peak value behind the reattachment point.
Then, it approaches to the constant pressure gradient in the far downstream.

It is found that the separation point moves toward the concave corner in dec-
reasing Reynolds number, which is the same tendency as in the flow past a circular
cylinder. In the latter case, however, the flow does not separate in the low Reynolds
number region near Re=0, namely in the non-vortex region®. This means that if
the boundary has a sharp corner, separation occurs even in the very slow flow.
Recently, Matsui and Hiramatsu investigate that the displacement of the separation
point occurs in the low speed flow around a sharp corner?.
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Fig. 12. Location of reattachment point.
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Fig. 13. Location of separation point.
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Fig. 14. Distributions of base pressure (R.=10, 20).
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