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Abstract

Basing on the Green’s theorem the potential flow around an arbitrary three-
dimensional body can be expressed by the surface distributions of singularities as
soures and doublets. When the surface of body has a discontinuity of tangent across
the edge line, infinite velocities are possibly induced at the edge point by the self-
induction, which is produced by the distributions of source and doublet on the
surface element containing the concerning edge point. Considering physical chara-
cteristics of flow such an infinite velocity should be eliminated in some cases, for
instance, at the trailing edge. In the present paper some fundamental characters of
the theory are first introduced, and eliminating the singular terms of induced velo-
city at the trailing edge an expression of the Kutta’s edge condition is obtaind,
which is useful to determine the circulations around a three-dimensional lifting
body. This trailing edge condition containes some continuities of components of
vortex vector parallel and perpendicular to the trailing edge, through the body and
wake surfaces. It is found that these relations can be used as a matching condition
between body and wake, giving the starting value of vortex vector at the wake
initiation. Similar relations can also be applied to the separation edges, from which
vortex sheet issues.
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1. Introduction

The theory of distributed singularity is based on the Green's theorem of poten-
tial flow. The velocity potential at an inner point of the space can be expressed
by distributions of source and doublet along the boundary surface of this space.
When the surface is continuous no singular characteristics of velocity is induced in
any point, excepting the finite amount of jump of velocity at the inner and outer
point on the boundary surface. This discontinuity is produced by the self-induction
due to source and doublet or vortex distributions on the surface element containing
the concerning surface point in its center.

When the boundary surface has a discontinuity of tangent across the edge line as
like the trailing edge, infinite velocities are possibly produced by the self-induction
from the surface element surrounding an edge point, i. e. the edge element, which
is divided into some parts of different inclinations. The self-induction to a trailing
edge point 7 is originated from distributions on the trailing edge element, which
consists of infinitesimal parts of upper and lower surfaces of body and wake adjo-
ining and surrounding the point 7% The purpose of the present paper is to find an
edge condition, which satisfies the Kutta condition, by eliminating these singular
terms of self-induction which may cause infinite velocities. This condition can also
be applied to the edge, where flows along upper and lower surfaces of the body
join on the edge line and form a separated sheet issuing into the fluid, such as the
leading edge of a delta wing at high attack angle and the tip of an lifting wing of
ordinary form.

In the original form of Green’s theorem the velocity potential is expressed by
source and doublet distributions along the boundary surface. As was suggested by
MaxwellD> the surface distributions of doublet can be transformed to those of vortex
sheet and vortex filament. Introducing the formulations given by Hess?’ and Ebi-
hara®), a physical interpretation is derived in the present paper. This theorem
provides the foundation of a three-dimensional wing theory, where solutions are
expressed by source and by doublet or vortex distributions. In order to make the
space simply connected region, the boundary surface of the body is extended to the
infinity covering the wake surface, and the space is divided into two regions, i. e.
the inner region, where the flow is considered, and the outer one.

The solution of flow around a specified body is obtained by determining the
strengths of source and vortex distributions as to satisfy the boundary conditions.
To calculate the surface value of functions, there are two different ideas. In the
first method only the concerning flow field is solved by setting the potential of the
body to a constant value, which means that no fluid motion appears in the inside
region of body. In the second method the whole field of flow containing the inside
of body is treated. Analysing self-induced velocities we discuss the relations be-
tween these two methods. As it is more suitable for the present purpose, the
second method is used through the remainder of the present paper.

The distributed singularity technique is first developed for the flow around an
arbitrary two-dimensional thick body,4), 5), 8 where only the vortex distributions
are considered, and the Kutta condition is satisfied by putting the strength of
vortex sheet zero at the trailing edge.5> This result depends on the fact that in
the two-dimensional flow no vortex sheet is shed into the wake. It is noted that
the result can be reduced as a special case of the present analysis.
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Respecting to the three-dimensional case the theory of distributed singularity
is successfully applied to sclve the non-lifting flow around an arbitrary body,”
where no edge conditions are needed.

Analyses of the three-dimensional lifting flows are early developed by the lifting
surface theories, in which the effect of a lifting surface is represented by the
vortex distributons over surfaces of thin wing and wake. The kutta condition is
simply satisfied by the continuity of vortex at the trailing edge, which is derived as
a special case of the present calculation. The lifting surface theory with vortex
sheet is recently extended to solve the flow around a thin wing with large angle of
attack.8’, 92,10

The lifting flow around a thick body is early solved by the combination of
source and vortex distributions!?’, 12> in which the Kutta condition for the two-
dimensional flow is conventionally used. In a theory of distributed doublet!® for
the lifting flow around a body of general configuration the continuity of doublet
strength between body and wake is used for the Kutta condition. Considering the
equivalency of surface doublet and vortex distributions, such an edge condition should
contain some relations for the vortex strength. The present results consist of
continuity relations of doublet and vortex strength between body and wake, as shown
later.

A trailing edge condition presented by Mangler and Smith!% states that the
wake surface is tangential to the upper or lower surface of body according to the
combination of direction of the lifting force and of velocity component along the
trailing edge. Since the direction or sign are easily changed by an infinitesimal
change of these quantities across zero value, an abrupt change of the inclination of
wake surface can happen on the trailing edge, which is an unnatural circumstance of
the flow. In some numerical computations?’,1% this flip-flop condition is disre-
garded, resulting in a well convergent solution. Mangler and Smith’s conclusion is
derived only by the wake conditions, in which a vortex line is parallel to the mean
stream line. This condition is also considered in the following calculations. On
Kutta condition Legendre!®> gives a general survey with some qualitative descrip-
tions.

In the present paper terms of infinite velocities due to the self-induction from
the trailing edge element, which is a composite surface element surrounding the
trailing edge point 7, are calculated by assuming piecewise continuity of surfaces
and of strengths of source and vortex distributions. Eliminating these terms the
Kutta’s edge condition is formulated with terminal values at T of source and vortex
distributions on the four parts of infinitesimal surface elements. The principle of
the theory is based on the idea given by Ebihara®), while it is extended and improv-
ed in the present calculation. The present results on the trailing edge condition
are expressed in some forms of continuities of doublet and of vortex strengths
through the body and wake surfaces.

2. Pundamental Relations

2. 1. Characteristics of Distributed Singularities

The steady potential flow of an incompressible fluid is considered. According
to the Green’s theorem the velocity potential ¢ at a point P(x, ¥, 2) in the simply
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connected region is expressed by a system of distributed source and doublet on the
boundary surface, which contains the wake surface extended to the infinity for
making the region simply connected one, as shown in Fig. 1. Introducing a surface
point Q(x1, y1, 1), the distance PR=r=+/(x—x,)2+ (¥—y1)2+(2—2;)2, the unit
inward normal n(Z, m, #), and a differential operator a/0n,=/(3/0%,)+m(3/9y:)+
1(8/8z,) = —d/on, the original form of Green’s theorem!?’ is given by

w2, e fen gl o

where —1/4mr and —d/dn, (—1/4nr) represent unit potentials of source and doublet
directed to —n, respectively. Eq. (1) states that the velocity potential at a space
point is expressed by the source distributions of strength (9¢/6n)s=ws and by the
doublet distributions of strength (—¢s) along the surface S. We may refer the
two different ways of analysis according to the condition of outer surface, i. e. of
inside of the body.

a) The method of inner space analysis

Denoting the inner and outer spaces by R and R', respectively, the velocity
potential valid for the inner space is expressed by Eq. (1), where the surface Sis

P(x%7)

region  outer

d) Method of inner b)Method of whole
space analysis space analysis

Fig. 1. Surface distributions of source and doublet

placed along the inside of boundary surface as shown in Fig. 1 a). Taking the limit
process of #—0, we have the surface value ¢., where -- sign refers to the upper
and the lower point on the surface.'® ¢. consists of the self-induced discontinuous
term +(1/2)(—¢s) and of the remainder continuous term ¢, which is represented
by the sign of Cauchy’s principal value of integral, as follows:

$o= £ (1/2) (—os) + e,

so= o ras+ (o0 S-S @)

we have, therefore,
—ps=¢,—¢_, dc=(1/2)(p.+¢.) 3

The »n component of velocity is calculated by

oo gy (s s Jrl gl s @
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Taking the limit process of #—0, the surface value w. is obtained!® by

w.=+1/2ws+w,,

2"0:@(2"5’>*‘5%?(i—‘}7>d5+§§ (=) aan [a?zl( 4}—(7 )jds’ ®

where +(1/2)ws is the term of self-induction and w. is the remainder term. Eq.
(b) gives

wy=w.—w_, we=(1/2)w,+w_), (6)
Substituting Egs. (5) and (6) into Eq. (1) we have
po= . —w) Las+ ({6 -o0 2( L )es )
4y o1, \ 4rr
From the Green’s theorem for an outer space point 7', we have
0= 50 ) st N bar)s @
and, therefore, there is no flow in the outer space R, resulting in
w_=0, ¢_.=0 ©)
When w. and ¢. on the surface S. are known, ¢» can be calculated by
The strengths of source and doublet distributions are found to be
(wo=w., (—p¢5)=9.. (1D
It is noticed that the sign of ¢ is changed. Va-
lues of ¢ and w close to the boundary are sche- ) W
matically shown in Fig. 2. ‘ Wi

~¢.s/2vz, s Vis/2

b) The method of whole space analysis s %5 3 s g

To get the expression of ¢ valid for the i?.’- <5 'ig" CR
whole field, sources and doublets are distributed 0 s

) . ; 24 e U o

on two layers in both sides of boundary, i. e. on X - %

. ——O) ———l)
the inner surface S and on the outer surface S, % / EN
as shown in Fig. 1 b). Applying the Green’s ! !
theorem to these two layers the velocity poten- Fig. 2. Potential and normal velo-
tial at the inner space point P are given, respec- city near the boundary (Me-
tively : thod of inner space analysis)

2, s oo (L s
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In the limit of S'—S, #’ and #' approach #'—# and »'—7. Adding these two equat-
ions we have

w55 e ool 09

The velocity potential at the outer space point P’ induced by those two layers
are, respectively:

0= (5o). s+ f o (g )os

o= ()i + [ o )85

Approaching S'—S, we have #'—n and #'—7. The addition of these two equations
gives

(14)

oo (B30, ks fnrd b s o

We have the same expressions for ¢ in both inner and outer spaces, and, therefore,
getting together these two layers into one, the formula of the velocity potential
valid through the whole space can be obtained in the form of Eq. (13). Denoting
the strength of distributed source and that of doublet directed to —n by ¢ and r,
respectively, they are defined by

U
o=(-28—0) —ws—wis, p=—(8s—65). (16)

In order to get the physical meaning of o and g, surface values of velocity
potential ¢. and of normal velocity w. at the surface point Q@ is calculated by the
limiting process PQ—0, i. e. 7—0. ¢. and w,. consist of self-induced term which
has a discontinuous jump of value across the surface S, and of the remainder conti-
nuous term which is shown by using the sign of Cauchy’s principal value of integral.
The velocity potential at @ is expressed by

¢ =3 (1/2) (—ds+0s) +do

bo=ff o) T Las+ f—por2-(5)S

4y

a7

which gives
p=—¢s+os=b,—¢_, dc=(1/2)(p,+0-). (18)

The velocity component along inner normal at @ is calculated in similar form with
Eq. (5):

Wy=:= (1/2) (ws_w's) +We,
(19)

ar = s (g as+ §serso ()l
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which gives
C=Ws—Ws=W,—W_, W= 1/2)(w,+w_) (20)

Values of ¢ and w near the boundary region are scnematically shown in Fig. 3. It
is noticed that the sign of boundary value of ¢ is changed similar to the previous
case,

T
¢, m n ﬂt .
9:- l P(X.Y.2) P(xY,2)
A al /r
L {aEsmz) @xor
i 4 as=ma® | QXY 2)
R +2
a) Doublet b) Vortex ring
Fig. 3. Potential and normal velocity near Fig. 4. Equivalency of doublet and infini-
the boundary (Method of whole tesimal vortex ring

space analysis)

2. 2. The Equivalency Theorem of Doublet and Vortex Distributions

It is easily proved that a doublet and an infinitesimal vortex produce the same
form of dipole potential, as those shown in Fig. 4. Setting a couple of source ¢ and
sink —¢g apart by a small distance 7 at @, the velocity potential at P induced by a
doublet is given by the limit process of /—0.

4= Gim 14 0 (1)= m__0 (l) (21)

10, g 4T 0N \T 4w on, \7r

where the strength is defined by m= lim /Jg. An infinitesimal ring vortex of

1=0,7—co

circulation I” with a vanishingly small diameter @ placed at @ induces the velocity
potential at P:

o= lm [ZL 0 (L)ro@y+]=2 2 (1), @

a—~(, D=sco 47[ ‘ 3521 r

where the strength is defined by m= lim =a?l.

@0, Doeo

When the doublet is distributed along a surface S and has variant strength g,
its velocity potential can be replaced by the distribution of vortex, i. e. by a vortex
sheet, whose strength and direction is given by

T=nXV1/“x
23
div r=0 (23)

where F,=i(9/0x)+j(@/0y1)+k(9/0z,). This relation is easily known by the
schematic illustration in Fig. 5. The strength of dipole distribution on S changes a

finite amount across the boundary curve C and, therefore, along the curve C there
remain a concentrated vortex filament with circulation (—g)¢, which is also known
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by Fig. 5.

M c

n D b

I P P Db

~ 4 P P P D P
h—cp—co—ch—cp—

Fenxwp g o)
Y=0op/aa  [=-p

Fig. 6. Equivalency of dipole (doublet)

a)Vortex vector b) Derivative of double
blet and vortex distributions

Fig. 5. Relation between dipole (doublet)
and vortex distributions

The equivalency theorem between doublet and vortex distributions is derived by
Hess?’ and Ebihara® as shown in the followings. Considering a concentrated vortex
filament with circulation — along the closed boundary curve C of a surface S as
shown in Fig. 6, the velocity induced at P is first calculated by the Biot-Savart’s
law. When it is transformed by the formula'®) deduced from the Stokes’ theorem,

we have
rrrrrr L§cmasx(ri)=L [fouxryx(-wrl).

Using the formula of vector triple product and Fir-1=0, we have

(nxF) < (—p-FyrH
=n[V(pFyr ) 1= n(prr)]

=n(Fy) (For ) =FpenelP ™t —pl (n-Fr™h)
= r ' X (nXF ) —pml (nFr)

Applying the nabla ¥ =i(d/dx)-+j(d/dy)+k(9/92) to a function of r=[(x—x)2+
—y1)%+(2—2)%]"% we have PLp(nFypr= ) J=pl (n-Vyr=1)=—pF(n-Fyr~1) and,
therefore, the velocity induced by a surface distribution of dipole, whose axis dire-
cted to —n, is given by

L s

L s e fenan(rnl) e

7

SRR SR T

The first and second terms are velocities induced by the vortex distribution 7 on
S and by a concentrated vortex filament (--u) along C. The equivalency theorem
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between doublet and vortex distributions
is thus proved.?’

When the surface is separated by
some closed curves into several subsurface
as shown in Fig. 7, concentrated vortex
filaments are added along all dividing cur-
ves, across which the strengths of dipole
are discontinuously changed.

2. 3. Fundamental Theory of the
Analysis of Flow by Distribut-
ed Singularities

Fig. 7. Vortex sheets and filaments on
a multi-surface system

The steady potential flow around an
arbitrary lifting body is considered in a
simply connected inner space, which is di-
vided by the body and wake surface from
the outer space, as shown in Fig. 8. Ac-
cording to the Green's theorem the velo-
city potential can be expressed by a system

P(xY, z)

R
inner T
reg|on I.,){,Z.)

J\"~ "“?‘::
CY R
n(l, m n) / 3\ &7‘“"

outer

ans region
of distributed source and doublet on these Tralling edge : R’
boundary surfaces, which are represented Fig. 8. Surface distributions of source
by ¢, and ¢,, respectively. Superposing and doublet on a lifting body
a known basic flow denoted by ¢,, it is
given in the form of
$=thot b1+ b2 (25)

Potentials for a space point P are

O €= RO PR G RS

where ¢ and p are strengths of distributed source and doulet directed to —n,
respectively. Potentials for a surface point @, which is taken on a continuous
surface, consists of the self-induced term and of the remainder term, which is
conveniently represented by Cauchy’s principal value of integral, as follows:

The velocity is calculated by V=F¢, and is given in the form of
V=V,+V+V, (28)

where ¥, and V, are induced velocities by source and doublet distributions, respec-
tively. ¥V, at P is given by

V“,::VSSS 4—1 So‘l’( 1)ds, (29)

pres

and V, at @ is
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Vig= i%@n+§§sat7(%)ds, - (30

where the first term represents the self-induced velocity from the infinitesimal

surface element centaining the point .
The induced velocities: by a doublet distribution or by the equivalent system of
vortex sheet and filament are given for a space point P by

Voot [ o ()29

L el L cmann(r )

where 7 should hold divy=0 on the surface S. For an ordinary surface point &
we have

an—i (VIM +§§ /LV an1< 471rr ﬂds

— :t% (rxXn),+ %{@ Sr X (V 1;1;)0?3 (32)

T+ (- wdsx(7,L)

where the first term with = sign represents the self-induced velocity.

The solution should satisfies the boundary condition at surfaces excepting infini-
tesimally narrow strips along the trailing edge, where the Kutta’s edge condition
should be satisfied.

The boundary condition along a body surface is simply given by

VQ'n:<V0Q+V1Q”]L‘V2Q)'n:O. ) (33)

(3D

The wake surface is a vortex sheet flowiﬁg with the mean velocity VW of
upper and lower surfaces. In the mean velocity self-induced terms of both sides
are cancelled and Vw is given by

V=Vt @;ﬂ( ;Tlr )ds

+_417_T._§§Sr X (71%)d8+~11ﬁ—<§ . (—p)ds X (‘71};).

The flow should be tangential to the wake surface W and vortex lines are
parallel to stream lines. Introducing vorticity components 7s, 7a and velocity com-
ponents vs, ¥y, U, in the orthogonal co-ordinates s, h, n, where s and % are taken
tangential and # is normal to W, the boundary conditions along the wake surface
are given by

(34)
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Vien=v,=0, 7o/ Th=0s/Vy, (35)

which expresses that 7 is parallel to V. Therefore, this relation can also be
derived from?3
Dp _

=v

DI 5 gg + Uy, Op =Vl —Uhl's= 0. (36)

oh

As a principle unknown parameters ¢ and g or 7 can be determined by solving
Fredholm’s integral equations, which are obtained by the substitution of Egs. (28),
(30), (32) and (34) into Egs. (33) and (35). To determine the vector 7 tangential
to S, an additional equation divy=0 should be used. As the form of wake surface
is not known @ priori, the analysis is started by assuming the form of wake surface.
Calculating the velocity Vi, and then, the vortex line of wake is corrected to lie
along the mean velocity vector Vw. Some iterative procedures will be necessary.

3. Singularities of the Induced Velocity at the Trailing Edge

To derive the Kutta's edge condition singular terms of the induced velocity at
the trailing edge point 7 is now calculated. When the solution of a lifting flow is
expressed by source and vortex distributions along the body and wake surfaces,
possible infinite velocities induced at 7 are caused by distributions on the infini-
tesimally narrow strips of surfaces containing the trailing edge, i. e. by the self-
induction terms of velocity at T.

The surface element of trailing edge, which contains 7" as the mid point, is a
composite one consists of upper and lower surfaces, each of which has the fold line
of the trailing edge between body and wake as shown in Fig. 9. If the piecewise
continuity of these surfaces and of the strengths of source and vortex distributions
are assumed, the self-induced velocity at 7" can be calculated by integrating inductions
of source and vortex distributions along
the projected plane elements, which is
tangential to the individual part of surface

u S element at 7, in the similar way to the
3 method!® for a continuous surface element

aC . given in Appendix 1. The self-induced

W velocity is finally obtained by taking the

£ w

Body Wake

Fig. 9. Trailing edge element

infinitesimal limit of the surface element,
which in that case approaches to any ex-
tent to the tangential plane element at 7.

As shown in Fig. 9, body and wake Wuorl)
sides of the upper surface of trailing edge a) Left element b) Right element
element are denoted by # and w, respec- Fig. 10. Co-ordinates for the trailing

tively, and those of the lower surface are edge element
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denoted by ! and w, respectively, where w and w are finally got to-gether to a
single surface of w. In order to simplify the later calculations on the lower
surface by using the same formula for the upper one, the back sides of / and w
denoted by /' and w’, respectively, are considered. Regarding to the trailing edge
element two systems of cartesian co-ordinates are introduced, as shown in Fig. 10.
In X, Y, Z co-ordinates, axis Y is taken along the trailing edge, Z is vertical and
X is normal to them. Co-ordinates s, &, n are fixed to the individual part of
surface element with different inclinations, where axis % is taken parallel to the
trailing edge, axis # is normal to the individual part of projected plane element and
s is laid on it perpendicularly to % and #.

Velocity components at P due to source and vortex distributions on the upper
and lower surfaces of trailing edge element are calculated by Egs. (29) and (31),
resulting in

W) p=@x)p+ W) p
R e A
e, L () 2 .

v gt (B)-azp (7))

where r=[(X—X)2+(Y—=Y,)2+(Z—Z,)?]/? and summation is made for four
parts, %, w, ' and w', of the trailing edge element, which has 7" as the mid point.
(vy)p and (vz)p are also calculated by cyclic changes of variables of Eq. (37).
The self-induced velocity can be calculated by the limit process PT—0, which means
P—T, in a higher order than making both area of elements 4S and length of edge
line 4C infinitesimal, i. e. 4S—0 and 4C-0. This is the same process as in the
ordinary surface element, as given in Appendix 1. According to the assumption of
piecewise continuity the strengths of source and vortex in each parts approach
continuously to their individual values at T, which are denoted by or and (7).
Components of self-induced velocities at 7" are expressed by

Vx)r= (v.rl) = @x2)

. X - X
=N, faiitnt S
(v‘\ 1)’ =7 Pl:'r_l:lo SS 18 47(7’3 dS’
(185=0)

wede={[@tim [ Z-Zas - Goplim ] YT s

PT-0 PT—0 4z
(485--0) (45-0)
38)
T im b 2%y Y=Y 47} (
"MT[ 7111“{110 sc Axr? dl’1+#1;no sc  A4mrd e
(1c=0) (4C=0)

and their cyclic changes of variables. By referring to the back side of lower parts
of surface element denoted by {° and ', the single formulations for the upper
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surface element can be used in common in these calculations. Denoting the incli-
nation angle of each part of surface element by ¢, the transformation of co-ordi-

nates from X, Y, Z to s, h, n system by ,
X=scosf—mnsing, Y=h Z=ssinf-+n cos/,
39
X =s8,c080, Y,=h, Z =s,8n9, (39

is applied, where we have r=[(s—s;)2-+(h—h;)2+n2]1/2  Introducing the limit of
integrals defined by

I— lim SS ~S14S, J= lim SS h—h g

B 15 Anrd oo M as 4mr?
(S ) (485-0)
(40)
. n
Ketm (2 as
FT—0 ss 4mr
(45-0)

limits of surface integrals contained in Eq. (38) can be calculated by

Jim gg XX S Tcosg—Ksing, lim SS Rt T
PT—0 s Arnrd B0 s Anr?
(485-0) (48-0)

(41)
lim SS Z—2, LT84 4S=TIsin -+ K cos §,
25 Anr?

PT-0

(48=-0)
The limits of line integrals for an infinitesimal part of trailing edge, where X;=
Z;=0, are introduced defining,

L=tlm b —Z_av, M=1im$ % av, (42)

BT—0 sc 4mr PT—0 ac 4mr

(45—=0) {(48—-0)
Folded rectangular surface elements having 7' as the mid point, which consists of
parts of 4S=2bxc, and line element of trailing edge of 4C=2b are considered, and
those limit calculations are performed as shown in Appendix 2 and 3, in which limit
of PT—0 is first applied and then limit of b, ¢—0 is taken. It is found that the
results contain pole and logarithmic singularities and an indefinite function:

1 1 1 1
T ox EII%T = T 515 m In o

. (43)
A P Sl

S

= n .
4 1+ sin w

Limits of integrals I through M have different signs according to the position
of parts of surface element relative to the trailing edge. Values for left- and
right-hand parts are expressed by subscripts L and R. We have for the left-hand
parts # and [’,

L=z+2, J,=0, K;=1/4)+F—0)/2r,.

44
L,=ccos ¥, M,=—csinV¥, 4D
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and for the right-hand parts w and w’,

Iy=—(x+2), Jp=0, K,=(1/4)—¥F—0)/2r, A
L,=—tcos¥, M,=rsinV, (45)

where ¥ is the projected angle of path of P approaching to 7, as shown in Fig. 10.
Substituting Egs. (41) and (42) into Eq. (38) components of self-induced velo-
city at T can be calculated by

(0y)p= 3 {[o,C08 0+ (1) sin 671
+[—oysin 0+ (ry) rcos O 1K —p,L},
(v,) = 31 {[o,sin 60— (ry) rCOs 011
+[o,cos 0+ (ry) psin 0 1K +p M}, (46)
)= 2 {{Gz)rcos 06— (rx)rsin 611
—[(r,)rsin 0+ (7x) rcos 6 1K
= {0 I— (s) K},

where 7.=7zsin 0-+7xcos 0, Ta=7zcos 0 —7xsin =0, and > is made for four parts
of surface elements at the trailing edge, i. e. #, w, /' and w’. Removing the sub-
script T for simplicity’s sake, strengths of source and vortex at T are briefly
denoted by subscripts #, w, / and w’, hereafter. Components of self-induced veloci-
ties are calculated by substituting Egs. (44) and (45) into Eq. (46), and then,
quantities for the back side of lower elements, / and w', are replaced by those for
the original ones, / and w, and finally, two sheets of wake surface, w and w are
put to-gether into one sheet w, by using

0,=0, Ow=0c=0:=0u,
Gr)e=0ro Tw=0D5n et T)e=0r)w 47)
Goer=0Du Ga=0dwn et Gda=0w
P ==y P = My e g = oo,
Components of self-induced velocities at 7' are then obtained by
L (vy)r=A@+2)+B(¥/2r) —Cr cos ¥
+[(1/4) = (0./27) JL— 0y sin 0,4 () C0S 0. ]
+L(1/4) — (0./27) [ —o,sin 0,+ (ry).CO8 0, ]
+L(1/4) + (0/27) 1(r ) COS O,
v,)=—BE+1)+AW/27)—Crsin ¥ (48)
+[(1/4) — (0./27) J0,c08 O, + () w Sin 0, ]
+[(1/4) — (6,/27) J[o,cos 0,+ (rv).sin 6, ]
+L(A/4) + (00/27) J(r) w S0 Ou,
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(@) r=—DW/27) = {L(1/4) — (0./27) I G
+0(1/4) —(0./27) () +L(1/4) + (0/27) 1(e) ),

where

A=0,c08 0,+0,€08 0,4 (ry).Sin 6, + (75),8In 0, — (75w Sin 0.,

B=—o,sin §,—0c,sin 6,+ (TIV)uCOS 0+ (ry)CcOS 0,— (7}')wCOS 0

‘ (49)

C=ttu— prr— Py

D=(G)ut+ T~ ()w=—dC/dY

4., The Kutta's Edge Condition

The Kutta’s edge condition states that the flow is controlled not to induce an
infinite velocity at the trailing edge. Eliminating singular terms of induced velocity
in Eq. (48), this condition is satisfied by

A=B=C=D=0, (50)
Rearranging Eq. (50) the Kutta’s edge condition can be obtained by
7,,€08 0, +7,C08 0,4 (73), Sin 0, -+ (7). 810 0,= (71) » SiN O, (61)
—0o,8in 0,0, 8in 0,4+ (75)uC08 0y + (77),€08 0,= (7¥)wC0S0,,  (52)
Tdut @)= 5w (53)
P P = (54)

where ¢, 7 and p are specified values at the trailing edge of each part of the
surface element.

From Egs. (51) and (52) we can calculate (7¥), and 6,,.
() w={o%+0%+20,0,c08(0,—0.,)
+0.(re)i—ou(ry) I sin(6,—0.) (55)
)i+ )i H200). () icos(0,—0,) 172,

0. — tan~-1—_%uC08 0, +7,C0S 0,+ (rv)esin 0, + (75), sin 6,
v — 0,810 0, — 0,81 0,4+ (71 )uCOS 0+ (1) ,COS 6, *

(56)

In some analyses by the doublet distributions Eq. (54) is used. By these Egs. (51)
through (56) the present result states that some continuity relations should be held
between the strengths of vortex sheet 7, i. e. the derivative of #. These relations
provide the condition of wake initiation, ft,, (7s)w, (rr)w» and @, as functions of
quantities at the end of body surfaces, o4, 61, (Fs)u, (7s)1, (Fr)w and (7r)..

In the method of two-step analysis the lifting flow around a general configura-
tion can be obtained by dividing the solution in two components, i. e. the non-lifting
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flow and the circulating flow. The first component of non-lifting flow is calculated
by the source distributions superposed on the basic flow. Satisfying the boundary
condition on body surface

() o+ (¥2)1=0 (67

we can determine the strength ¢ on the whole surface point, which contains ¢, and
o, at the trailing edge.

The second component of circulating flow is calculated by the vortex distribut-
jons superposed on the non-lifting solution. Satisfying the boundary condition on
body surface

v,=0 or (v,),=0 (58)
and those on wake surface
Ts/Ta=Us/Vs and v,=0 (59}

with the Kutta's trailing edge condition, we can determine the strength 7 and 7»
(=7y) for suitablly chosen co-ordinates. In these analysis the velocity on the body
surface is calculated by Egs. (28), (30) and (32), and that on the wake surface by
Eq. (34). The boundary condition on wake surface states that the vortex vector
should be parallel to the mean velocity vector on wake surface. In the iterative
procedure to determine the form of wake surface the use of this condition will be
effective, by putting the vortex line along the velocity vector which obtained in the
previous step of iteration.®’, 10)

At the trailing edge the Kutta condition given by Egs. (51) through (56) formu-
lates relations between ftw, (Fs)w, (7r)w and @, at the wake initiation and o4, oy,
I)w (7 (7r)w and (ry), at the body end, in which ¢, and o, are already known
by the non-lifting analysis. In addition to the Kutta condition, these quantities
should satisfy the boundary conditions at the body end and at the wake initiation:

©).=0,  (@.),=0 (60)
on the body, and with

(,TS)w/(rY)w: (Us> w/(vh>wr (yn)w"-:o (61)

on the wake, where (v,). and (v,), are calculated by Egs. (28), (30) and (32), and
(0w, (v9)w and (v)w by Eq. (34). In principle these four additional relations and
four previous equations of edge condition can determine the eight parameters:
O T T u )i tw, (7w, (Tr)w and 6, at the trailing edge.

Vectorial representation
The present edge condition consists of vector type continuities, Eqs. (51) and
(52), and of scalar type continuities, Egs. (63) and (54). The former can be trans-
formed to a vector equation, by rearranging Egs. (51) and (52) in the following
form:
7,08 0, +7,C08 0, (75) €08 (0, —7/2) + (7y) 08 (0, —7/2)
+ (TI’)wCOS <0w +7T/2> :Oa (62>

6, 8in 0, -0, 8in 6,4 (7y) o sin (0, —7/2) + (ry), sin (6, —7/2)
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+ () wsin(0,+7/2) =0, , (63)

— —
Considering some rules artificial vectors ¢ and 7y are introduced. The artificial

vector o is defined by its magnitude o and direction -6, and 7r by its magnitude
7r and direction #¥Fx/2, where the double sign represents values for left and right
part of surface element of the trailing edge, i. e. for #, [ and for w, respectively,
It is noticed that these arguments, =6 and #F=/2, indicate directions of infinite
velocity induced at the cut of the fold line of each part of the surface element.
Egs. (62) and (63) can be replaced by

ot 0 () ()i () w =0, (64)

which represents the balance of artificial vectors as shown in some qualitative
illustrations in Fig. 11. As mentioned before the final values of these quantities
are determined with the finish of computation for the whole field. In special cases
of symmetry or anti-symmetry some parameters can be estimated qualitatively and
the relation of Eq. (64) can be examined as shown in Fig. 11.

%) R (%, .
\U\%/‘ N

~~/ 17
\ 6‘ /I’
4 ),
BB =0 Gt B (R (T, ;
a) Symmetric flow b)Tilted edge nearaq)
2 T 3‘\0\* =
S8/ GG s
;= A=
= g— O—
(T (‘f) ~b (R R
B L. X P e
Eu"‘ 6l =0 Gu+61“(7;‘)u+(n)l

c)Anti-symmetric flow  d)Thickened trailing
edge close to ¢)

Fig. 11. Schematic illustration of balance of
strengths at the trailing edge

In the case of symmetrical flow represented by

G, =0y (T}')u: - (TY)L for 011: - 01 (65)
Eq. (64) is reduced to

(r)w=0 S ()e=0 (66)

as shown in Fig. 11 a). It states that the wake has no component of vortex parallel
to the trailing edge.

When a little incidence angle is applied to this symmetrical body in a uniform

flow, ;l+?l+(?y)u+ (?y); takes small value near zero, and produces a small (;;)w
which is nearly perpendicular to the bisector of upper and lower surfaces as shown
in Fig. 11 b). This means that the symmetrical body with a small angle of attack
issues a wake of weak (7r). lying close to the bisector of upper and lower surfaces
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of the trailing edge.
Another special case is the antisymmetrical flow along a body of thin trailing
edge with #,=6,, which is represented by

sa=—0n ()u=()e for 0,=0. 67)
Applying oy +0,=0, Eq. (64) is reduced to
Gut @it Gr)w=0, (68)
which gives |
Ou=0.=0, ()w=0r)ut s (69)

as shown in Fig. 11 ¢). This states that the wake surface is tangential to the
upper and lower surface of zero trailing edge angle at T, and that the vortex
component is preserved from body to wake surface.

If a small thickness is added to this configuration of body, _gu+~gz is changed a

little from zero and the value of (T;y)w is slightly changed from the previous case
of ¢) as shown in Fig. 11 d). This means that a thinly made body issues a wake
nearly tangential to the bisector of upper and lower surfaces at the trailing edge.

5. Conclugion

Some fundamental characteristics of the theory of distributed singularities are
investigated for the application to the steady incompressible flow around an arbi-
trary lifting body, and the trailing edge condition for it is obtained in a suitable
form for the present type of analysis. Introducing the mutual relations between
analytical methods treating the inner and the whole field, characteristics of source
and doublet distributions along the boundary surface are elucidated from the basis
of potential theory. The transformation of the potential due to the distributions of
doublet to those of vortex is introduced and some insight into its physical situation
is presented. '

Assuming the piecewise continuities of body and wake surfaces and those of
source and doublet strengths, singularities of induced velocities at the trailing edge
are investigated. For the calculation of self-induced terms parts of surface element,
which have different tangent at the trailing edge, are assumed to be continuous in
their individual regions, and usual limit calculations of surface integrals on the
projected plane elements are applied to the individual parts of surface elements.

Eliminating the occurrence of these singular velocities the Kutta condition is
obtained in the form of some continuities suitable for the theory of distributed
singularities. These conditions contain the continuity of doublet strength from body
side to wake side, and the continuity of normal component of vortex to the trailing
edge. It is easily shown that the latter relation can be obtained by differentiate
the former along the trailing edge line. The Kutta condition contains, further, the
vectorial continuity of the parallel component of vortex to the trailing edge, which
is a continuity relation of normal derivative of doublet strength to the trailing edge
line.

It is noticed that the present results can be used as a matching condition be-



On' the: Potential Theory of Distributed 201

tween strengths of body end and of wake initiation. The final value of these stren-
gths are determined to-gether with strengths on the whole surface at the final
stage of all calculations. The present investigation is performed under the assum-
ption of piecewise continuity of surfaces at the trailing edge, and the problem of
the edge condition for a discontinuous surface of higher degree may be left to the
future investigations.
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Nomenclature

a: radius of a ring vortex
b: half span of infinitesimal surface element
C: closed circuit of the boundary curve of S
¢: half chord of infinitesimal surface element
h: arc length of a co-ordinate axis on the surface
I, J, K: limit of surface integrals
i, j, k: unit vectors
L, M: limit of line integrals
/- infinitesimal distance of source and sink
m: strength of dipole (doublet or infinitesimal ring vortex)
, n: arc length and unit vector of a normal to the surface
n: direction consines of vector
P space point
@ : surface point
g : volume flow from a source
R, R': inner and outer space
r: distance and vector from @ to P
S: boundary surface of space R
s: arc length of a co-ordinate axis on the surface
s: vector along the closed curve C
s, h, n: orthogonal co-ordinates referring to parts of surface element

T : trailing edge point
t: time
v, V: magnitude and vector of velocity
W : wake surface point
w: normal component of velocity at the surface
X,Y, Z: cartesian co-ordinates for the trailing edge
x, v, z: cartesian co-ordinates
I+ circulation of a vortex filament
. r: strength and vector of vortex sheet
¢: infinitesimal quantities
6 : inclination angle of part of surface element in the section perpendicular
to the trailing edge line
4: logarithmic singularity
¢ strength of doublet distributions and circulation of a vortex filament
o: strength of source distributions
71 pole singularity
¢ velocity potential
¥: projected path angle of approching P to T in the section perpendicular to
the trailing edge line
o angle or solid angle
7, 7,: nabla defined in the above sentence of Eq. (24) and at Eq. (23)
4 : values for inner and outer side of the surface '
Subscripts
0: quantities for a known basic flow
1: quantities induced by source distributions or co-ordinates of a surface

point
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2: quantities induced by doublet or vortex distributions

4, —: wvalues of inner and outer side of the surface
C: mean values of inner and outer side of S
L: left part of surface element, i. e. substitute of #z and
I': lower part of body surface in the trailing edge element
P quantities at a space point P
@ : quantities at a surface point @
R: right part of surface element, i. e. substitute of w and »’
S’: wvalues at the surface S and S’

s, h, n: components of vector in co-ordinate axis s, /2 and #

T: quantities at a trailing edge point 7'

#: upper part of body in the trailing edge element

W . quantities at a wake point W

w: part of wake surface in the trailing edge element

w: upper part of wake surface

w, w': lower part of wake surface in the trailing edge element

Appendix

Appendix 1. Limit of Integration for the Self-Induction at an Ordinary
Surface Point

Consider a surface element dS, which is an infinitesimal part of the continuous
surface S, and its project 4S to the tangent plane at the mid point @ as shown in
Fig. 12. Continuous strengths of source and doublet distributions along this conti-

a) Solid angle of b) Section of
surface element surface element

Fig. 12. Surface element

nuous surface are assumed. Denoting the distance from a local surface point to a
space point P by 7, the local normal to the surface by » and the angle between 7
and 7 by ¢, the self-induced normal velocity of source distributions and the self-
induced potential of doublet distributions at @ are both contain the following limit
calculation of surface integration:

: . cos
lim SS " _4S= lim SS w_-(f das
PR-0 as 4mrd FO-0 as 4drr
(dS—0) (dS—0)
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. dw 1
——-F%IEIO S Pl;rg 47T =+5 (AD
where @ is a solid angle and + sign is taken for the inner (upper) and-the outer
(lower) side of point @. The self-induced normal velocity of source distributions
and the self-induced potential of doublet distribution at the ordinary surface point
Q are calculated by taking the limit P@—0 with a higher order than taking the
limit dS—0 as follows:

. o [ —1 .
2 = 2
Jim SS“" on ( Iy )ds 7o _lim ng e dS=E (A
(dS—0) (d§—0)

i 0 1 n G — Fo

dim (g )is=re Jim | Eas=atp (a®)
(dS—0) (dS—0)

These are appeared in Egs. (2), (5), (17), (19), (27) and (30).

For the case of continuous source and doublet distributions along a continuous
surface, it is shown that the previous limit of integration in Eq. (Al) can be calcu-
lated on the projected surface element 4S to the tangential plane at Q.1®

For the sake of simplicity an example of -the two-dimensional surface element,
whose section is shown in xz plane of Fig. 12, is considered, in which point P app-
roaches along z axis to point @. By the Taylor expansion the ordinate z of the
surface can be expressed by

2=zt 2%+ (1/2D) 2457 + -,

A4
dz/dx=z4+2q% + -, (Ad)
where ’ represents derivative in x and z¢=2¢=0 in this case.
Angles in Fig. 12 are calculated by
d=tan"'(dz/dx) =z23%+---,
e=tan~1.F —”e R/ S S O
tan % + tan P = 2 1+<Zp/x>2 ng'!" 3 <A5)
e (B—2p)/%+2p/% _ 1 1 s
R P = Ny - B} N ey By 7 LRl
Substituting Eq. (A5) into
e — (8 —) = — A2 e _ (1/2) 4 (zp/%)*
§D—§D (8 E) —gD Az9x+ ’ - 1+(2 /x)z ’ (A6>
we have
cos ¢=cos ¢'[1—(1/2) (Az",)2x%+--- ]+ sin ¢'[Azgx+ -] (AT)
A7

=cos ¢’ — sin ¢"[ (1/2) (Azg)2x%+ -]+ cos @[ Azgx+ -]

The ratio of distances and of areas are given by
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r'? x24+22 1 2p/% Vet
G o AL T VL

8
is 1 (A8)

1Lz,
dS™~ coso *Hﬂf(%) s

The integrand of Eq. (Al) can be transformed to

oS ¢ yg._ COS go’dS,
72 7-/2

ds’
r'?

+

{m sin gg”l:__g.‘_ilg:@)ix2+...]+cos 90”[}1253;.*_...]}, (AQ)

where ¢”=tan-1(zp/x). If the surface has a finite z{, the integrand function
approaches in any extent to the corresponding function to the projected element by
taking the region closer to @, resulting in

LS - 2 f-ds (A10)

The integration in Eq. (Al) can be performed for the corresponding integrand
function in its projected plane tangential at Q.1®

Appendix 2. Limit of Surface Integrations: I, J and K

In the present theory parts of surface element have different tangent at the
trailing edge, but they are continuous in their own regions. With similar considera-
tions to the case of ordinary surface point it is assumed that the usual process of
limit calculations of surface integrals performed on the projected plane element
can be applied to the present individual parts of surface element.

In order to calculate I, J and K of Eq. (40), integrations are first performed
for a fixed point P and satisfying the higher order approach limit of PT—0 is
calculated and then limit of 4S—0 is taken. Values for a left- and right-hand parts
of surface elements are distinguished by subscripts L and R, which substitutes u, '
and w, w’, respectively.

Expanding the terms of surface integral for Iz given by

JL anf. 25sas

I el RN (e DN h—b+ (s4¢)°+ (h—0)*+n’
htb+ NS+ (h+b)e+n? hb+ A (sto) 2+ (htb)P+n?

into small magnitude of s, & and # comparing to b and ¢, we have limiting values
of the first and second terms by taking P70, i. e. s, k, n—0, as follows:

. h—=b+ s+ (h—0)*+n* _ .
—_— Zl )
T Y A e S

(b~0)

=1 +In
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- h—b-+ 1/ (s+c)+ (h—b)*+n? —b+ /2 p?
1 ]. : ! - i
e N R L ) B R S

0

=1n[(1— sin w)/(1+ sin w) 7,

Introducing a logarithmic singularity :

x=(1/47) lim In(1/0%), (A1D)

and an indefinite function depend on the form of surface element which is defined
by

we have
. . S — Sl o ‘
I[, ;‘ hl’liri)OSS 48 - 4;”;3de» X )‘. ( A 13)
(4S1—0)

The similar limiting process on the integration:

0

b 4 .
SMbd’%S S"*}','g%“dsl

h=btv (s=0)*+ =0+ n* | h=b+vs+ (h-b)*+n
htb N (s—0) 2+ (h-b)2+n?  htb+ S (hD) - n?

gives for a right-hand part of surface element

=—In

— liv \ S—38, — (L \
[R:, hl,lnm-gogg sSe drps BT D (Al
(4Sp—0)

When the same process is aﬁplied to an ordinary surface element of 26X 2c,
which is given by taking 4S=4S;+4Sr and §;=60r, the function [ for the ordinary
surface point can be calculated by I;+Ir, resulting in

I=1,+1,=0, (A15)

Integrations for Jr and J» are calculated by

[asfl, b

S+ /st (h—b)* N s+ /s (i b) n

=—1In

Sterv (sto)t(h—b)2+nt In St (s+e)2 4 (h+b)*+n?
and by
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JLasf_, At

T e A C o) Kl (/1) et AR P e Gt i W U D

S+ /824 (h—b)2+n? -1n STVSTIhED ,
respectively. With the limit of PT—0, i. e. s, h, 70, Jz and [z are
— 1 h—-]Zl . ‘
/ "Z,h,liffiog 25, drrs B0 (A16)
(4S7—0)
and
-~ I h—ny o o
]”:,h,lﬂogg sse g P70 (A17)
(4Sr—0) :

Similar to the previous process J for an ordinary element can be calculated by

J=J.+7T=0. ~(A18)
Taking the limit process PT—0, i. e. s, i, >0, on T
b © Mg an- (h—b)s o (h-+b)s
S~bdh1.§—c po S tAnTy Uy (h—0)*+n? tan s*+ (h+b)*+n?
- (h—Db) (s+c¢) ) B (50
—_— 1 1
VA i L ¢ L e VA CE S ey (R D
we have
K, =1 _n
"s, h,lifﬁoﬁ Sz 4mr? as
(48;—-0) A1)
= I 1 — -18 *lw,.M,_bW_(i_N: m—ﬁ]‘” gpz
:,h,liznlo 4,—;[ Zran T 2ty e }“‘“ 4 2z
(b, c—0)

where 4 sign represents values for the inner and outer side of a surface element,
respectively, and ¢ is the path angle approaching Pr to T with —n<¢.Zm, as
defined in Fig. 13. The similar limit process on

a) Left element b) Right element
Fig. 13. Singular characteristics of limit of integrals: Kr and Kz
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’ Ol e (h—Db) (s—¢)
[l edsi=tann S G
- (h+b)(s—c) ~_ (h—Db)s
— 1 . 1
an ny/ (s—c)2+ (h+b)*+n? tan 1/ s*+ (h—b)2+n?
_ (h+b)s
1.
-+ tan N =T
leads to
1 ”
KR;— h,lfiosg 4Sg 4mrd as
—0
o (A20)
: _ be .S 1 @
_ b ST .1 o
_s?h,lgio e {Ztan nyciig T2t n] SR R P
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It is found that K and Kz contain a constant value and a term of path angle ¢ as '
shown in Fig. 13, referring to polar co-ordinates.
If the similar process is applied, K for an ordinary surface element is given by

K=K,+K,=+1/2 (A21)

This is the same result obtained by a direct calculation shown in Appendix 1.

Appendix 3. Limit of Line Integrations: L and M

The basic form of a line integral for a fixed space point P is given by
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Introducing a pole singularity :
r=(1/27) im(1/s), e=+/ X242 (A22)
g—=0

the limit process of X, ¥, Z—0, i. e. the approach of P to T, gives

LL}_ . ® 7ZdY, . +1 A
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and

ML}__ . = XdY, +1 X
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X, ¥ ,Z-0
b—0)

It is found that L and M are pole singularities combined with functions of the
path angle ¥, which is defined in Fig. 10.





