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Chapter L. Introduction

The most typical realistic control systems are subjected to persistently acting, unknown,
unmeasurable external disturbances. Further the systems are often required to maintain their
outputs at nonzero constant set points, or make their outputs follow some reference inputs
which are not known beforehand. Systems with these properties are called servomechanism
systems, and the problem of designing such systems is called a servomechanism problem. In
classical control theory, this problem is almost standard, and solutions to the problem are well
established, although most applications of the results are limited to scalar systems. In modern
treatments of multivariable systems, however, the problem has been often overlooked. As the
results, considerably larger steady state errors have often been found in systems designed by
modern linear control theory than in conventional control systems.

One of the main purposes of this article is to discuss a servomechanism problem by giving
multivariable versions of ¢ type ¢ feedback system ’ concept, on which many conventional
servomechanism theory have been based. These versions will be shown to enable us to design
servomechanism systems by a method which is conceptually similar to the classical one. To this
subject, we shall devote two chapters; the first one for the case of reference inputs, and the
second one for the case of disturbances. Further, in this article, a more general servomechanism
problem will be discussed, in which reference inputs and external disturbances are completely
arbitrary provided that they are describable by some linear autonomous differential equations.
Necessary and sufficient conditions for the existence of state feedbacks that assure convergence
of outputs to zero will be derived.

Chapter II. Type [¢,,..., {m] Feedback Systems .....
Reference Inputs Case

The “type £ feedback system” concept is often utilized in conventional control theory,
and proved to be very useful for designing single-input, single-output servomechanism systems,
and for identifying asymptotic behaviors of such systems. The purpose of this chapter is to
extend some such results which are known for scalar systems to multivariable systems.

More specifically, as an extended concept of the type £ feedback system, a type [£;,....2m]
feedback system (; in short, type [¢;,...,8m] f.s.) is defined. Here the integers 2 (i=1, ..., m)
are defined to indicate that the i-th output of an m-input, m-output unity feedback system
(Fig. 2-1) will follow without steady state error the i-th reference input, which is a polynomial
function of t , up to degree &£;-1. Based on this definition the next two problems are
considered and solved. The first is: (i) Given a system of the form of Fig. 2-1, where either
the open-loop transfer function matrix or its state equations are known, then what is a
convenient way to know the type of the feedback system (; that is the integers & ) ? The
second is; (ii) Given an r-input, m-output controllable observable linear time-invariant plant,
how can a type [{;,....2m] f.s. be synthesized ?

Another important concept which is introduced in this chapter is one of type [K,....km]
transfer element (; in short, type [ki,....km] t.e.). The concept will be seen in the subsequent
developments of the study to play an essential role in solving both problems (i), (ii) indicated
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above.

Almost all the results in this paper will be stated in state space, whereas, in conventional
control theory, they are described in frequency domain. This is only because doing so is in
many cases more convenient for multivariable systems.

In the literature, Wiberg [1] and ;Sandell and Athans [2] have defined type L multivariable
feedback systems, and have discussed similar problems. However, their definition is inadequate
for multivariable systems, since their definition does not reflect the fact that asymptotic
behaviors of the individual outputs (representing in general different physical quantities, such
as velocity, position, or pressure) are not equal. Moreover in [1] and [2], to identify the type
of a given feedback system, a fairly tedious numerical operations — trial and error com-
putations, inversions of matrices containing the variable s, and computations of characteristic
polynomials of transfer function matrices — have been required. These difficulties do not occure
in the present method. As for the synthesis problem alone, a vast related litarature (e.g., [11,
[3]-[10]) exists, although most of the works are intended not for extending classical design
procedures which utilize the type ¢ feedback system concept, but for extending the state space
method in regulator problems to include servomechanism problems. Sandell and Athans [1]-
have considered the problem on the basis of the type L multivariable feedback system concept,
Davison’s results in [3] can also be regarded to be based on the same concept, since m
defferential equations which generates m reference inputs have been assumed to be the same.
Youg and Willems [4] have considered the problem for the case L = 1.

2.1 Definitions

In this section, two definitions are introduced: a type [kj,...km]fs., and a type
[9,....m] t.e.. The relationship existing between the two definitions will be clarified in
Section 2.2. Now let us first give the definition of a type [£;,...,4m] fis..

Y e Y
" @: > So >

Fig. 2-1. m-input, m-output unity
feedback systems.

Given the system of Fig, 2-1, which is assumed to be asymptotically stable when +(t) = 0.
So represents a linear time-invariant m-input, m-output system, and the output y, the reference
input 7, and the error e are m-vectors. The error function corresponding to a reference input

Y(t) and the zero initial state of So will be denoted by e[y/#)]. Then, type [2,....4m] fs.is
defined as

Definition 2-1: Let the reference input of the form
YDA U e, (2-1)

be applied to the system of Fig, 2-1, where €; is the i-th unit vector, dim € = dimyg =m,
U(t) the unit step function, and ? "'=0.
Let.

l: 4max j:lgm ely/(t)]=0, j:G,l,Z,...}

r=1,, m.
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Then the system of Fig, 2-1 is called a type [;,....4m] f.s..

: If m=1, the above definition coincides clearly with the classical one for single-input,
single-output systems. In [1] and [2], Wiberg, and Sandell and Athans have call the system in

Fig. 2-1 a type L feedback system. The connection between the two definitions is expressed by

L =minils,- -, lal (2-3)

It should be noted that a synthesis problem exists which have a solution if the asymptotic
characteristics of the outputs are individually specified, but does not have a solution if the
specification is given on the basis of type L feedback system concept. A trivial example is the
following: The plant has transfer function matrix G(s) = diag [s_i‘l’s_f‘l]' It is desired
to construct a feedback system such that y(t}>110,y2(2)~0, where 1), is an arbitrary constant.
Clearly, this problem has a solution. However, we cannot construct a type one feedback system,
since, to do this, the relation

yz(t)‘é’/'zo

also must be satisfied for an arbitrary constant r,,.
Notice also that if

5ot ip—1
7(t): Z auti,"', 2&' nu;tj (2—4)

-0 j=0
in Fig. 2-1, then we have

lim ely(¢)] = 0.

Therefore, a type [¢;,...0m] f.s. is asymptotically decoupled to the reference input (2-4).

Next, we shall give the definition of a type [ky,....km] t.e.. According to the definition to
be proposed, it will be seen that every r-input, m-output linear time-invariant system is classified
into type [ki,...km] te.. Two equivalent expressions of the definition will be given; the first
correspondes to the case where a system is described by the state equations, and the second
correspondes to the case where a system is described by the transfer function matrix.

In the first case, a system S is described by the equations

r = Ax+ Bu ' (2-5a)

y = Cx+ Du (2-5b)
where the state x is an n-vector, the input u an r-vector, the output y an m-vector, A, B, C, and
D are constant matrices of appropriate dimensions. It is assumed that (2-5) represents only the
observable and controllable part of the system S. To state the definition in this case, it is
necessary to bring (2-5) by an appropriate coordinates transformation into the following

canonical form:
{jia Aa O Xa1 (Ba
-4 )

L Z» 0 As ) LB
y=1Ca Colfxa)+ Du (2-6b)
Ll‘b N

where every eigenvalues of Aa are zero, |Ap| #0, dim x4 =n,, and dim xp = ny,.
Throughout this paper, the following notations will be used:
(i) To any matrices X and Y such that products YX and XX are defined,
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(Y

YX
ALY, X1A ; (2~7)

YX!
(i) Given a matrix X=[X; X, ....Xg], where X;j represents the i-th row or the i-th row-
submatrix of X, 1IX denotes the matrix

X,

X
Xin {2-8)

Lx
Definition 2-2a : Let the observable and controllable part of an r-input, m-output system S be

described by (2-5). Let (2-5) be equivalent to (2-6). Then system S is call a type [k, skl
t.e., where

inérank Amk‘[ C(ZsAlZ] —rank A™! Pca» Aa]
= na—rank A™ '['Cq Adl.

Remark 2-1: TIrrespectively of what coordinates transformation is chosen to obtain (2-6), the
integers kj are uniquely defined, since the two representations (Ca, Aa) and (Ca, Aa) which
originate from two different coordinates transformations are related by some nonsingular

Y=

(2-9)

constant matrix Ta as Ca = CaTa and Aa = Ta" AaTa,

Often, multivariable systems are described by the transfer function matrices. In such cases,
it is desirable to state the definition of a type [ky,...,.ky] t.e. in the following form:
Definition 2-2b: Let G(s) be an mxr proper rational transfer function matrix of a linear time-
invariant r-input, m-output system S. Define G,(s) and Gp(s) uniquely as

Gls) = Gal )+ Gul s) (2-10)

where the strictly proper rational matrix Gy(s) has its every pole at s=0, and proper rational
matrix Gp(s) has no poles at s=0. Then, the system S is called a type [Ki,...,km] t.e., where
kA8 Gds)]—61'Gus) .

(2-11)
6 [ - ] denotes the McMillan degrees of proper rational matrices.

The equivalence of the two definitions 2-2a and 2-2b can be verified by constructing a
minimal realization of G(s). The simple proof is omitted.
Remark 2-2: The following give one easy way to compute the right-hand side of (2-11).
Expand Ga(s) into its partial fractions
Gd s) = Ga1/3+ """ -+ Gag/sp v Gap:k: 0.
Define matrix I'[Gds)] as (2-12)
Ga] ............ Gaa

F[Ga(é‘”é szz ...... Gay O

(2-13)
Ga,
Matrix F[iGa(s)] is similarily defined. Then [11], the righthand sides of (2-11) equals to

rank I'lGds)|—rank I'l‘Gds)].
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2.2 Unity Feedback Systems Containing a Type[ ky,...km] t.e. in Cascade

In this section, we investigate asymptotic properties of an unity feedback system indicated
in Fig. 2-2, in which Sc and Sy denote an m-input, r-output, and an r-input, m-output linear
time-invariant systems respectively. For simplicity, it is assumed that the systems Sc and Sy are
completely characterized by controllable and observable state equations; in other words, by
transfer function matrices. The next theorem states the results:

7fe=uc Yc— UL y
\ — —)
+ 4 ) ’) SC SL 7
Fig. 2-2. Unity Feedback System containing a type [, ¢x]t.e. in cascade.

Theorem 2-1: Let Sy in Fig. 2-2 be a type [Ki,...,.km] t.e.. Then, for any S, provided that the
closed-loop system is asymptotically stable, the unity feedback system in Fig. 2-2 is of type
[2,....4m], where ; are integers satisfying the inequalities

li= ki t=1..., m (2-14)

If, in addition, it is assumed that none of the eigenvalues of the representation of S is located
at zero; in other words, the transfer function matrix of S¢ has no poles at s=0, the inequalities
(2-14) are replaced by the equalities.

This theorem is fundamental, in the sence that it serves as a key to the solution to both
problems (i) a» (ii) which are indicated at the introduction of this chapter. In fact, the solution
to problem (i) follows immediately from it (; see below, Theorem 2-2). In section 2.3, we shall
show that problem (ii) also can be solved by making use of this theorem.

Now, identifying Sq in Fig. 2-1 with S, in Fig. 2-2 and setting S¢=Im in Fig. 2-2, we have
Theorem 2-2: Let the closed-loop system of Fig. 2-1 be asymptotically stable when ¥=0.
The unity feedback system indicated in Fig.2-1 is of type [£;,....%m] if and only if S is a type
[21.....4m] tee.

This theorem enable us to know the type of the unity feedback system from computations on
So. When Sq is described by the state equations, use Definition 2-2a, and when Sq is
described by the transfer function matrix, use Definition 2-2b and Remark 2-2.

Proof of Theorem 2-1: We represent Sc and Sg by the following equations:

Su:xe = Awx,+ Bius, (2-15a)
y = Cux.+ Diu. {2-15b)
S¢ Ze = Acxc+ Beue (2-16a)
ye= Cexet Deue {2—-16b)

, which are observable and controllable by the assum ption.
The dimensions of the vectors X , X¢, Y1, Y¢» Up, and uc are ny , nc, m, r, 1 and m respectively.
Among the variables yp , ... , Y, the following relations exist:

Y=Y, W= Yo, Uc=e=7y—y. (2-17)

We describe the polynomial reference input 7{ (t) also by the state equations
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z=Fz (2-18a)
yi=Hz (2-18b)
where
01 -
1 (2~19a)
F=[ l}j
() ceenen 0 _l_
H=¢]l1 0 0| (2-19b

where €j is the i-th unit m-vector.
Then, to prove the first assertion of the theorem, it is necessary to show, with the aid of

(2-15)-(2-19), that, if <k in (2-18) and (2-19),
lim ¢(4) =0

for x; (0)=0, x¢ (0)=0, and any z(0). To do this, annex (2-15) to (2-18), and use (2-17).
The result is

(2-20)

gé: A §+ Bu,. (2-21a)
- Cé — Dy (2-21b)
where
o X 4. _ Al, O - Bl‘
&= - LA = 0 F . B.= 0 » -’2“22)

é:l_Cl.. H|

System (2-21) is not in general observable (; notice that unobservable states of (2-21) do not
influence the output e(t) ). In fact, we have the lemma (Proof is in appendix):

Lemma 1: Let S; bea type [K;,...km] t.e., then the rank of the observability matrix for (2-21)
is given by

rank Am-’ I{C, Al = ln,_ if 0= J= ks l.77.(2"‘]9), (2~23a)
mtlaf j=ki4+1 ini2-19) . (2-23b)

Using this lemma and the fact that (CpL,Ayp) is observable (; that is, rank AL"! [CL.AL] =np),
it is easy to see that, if 1<j<kj, a ny x (ng +j) transformation matrix

T= ”n, ’ Tzl
exists such that
TA= AT C=~C,T. (2—25)
Therefore, by setting £ = T, we have the following observable representation of (2-21):
€= At + B, (2-26a)
e=—Ci¢ — Do (2-26b)

Equations (2-26) together with (2-16) and (2-17) describes the dynamics of e(t), but, as is easily
seen, the characteristic polynomial corresponding to these equations is the same as the closed-
loop system’s. So, we see that £(1), xc(t), e(t),y; (t) »0as t->co, since from the assumption the
closed-loop system is asymptotically stable. Therefore, (2-20) holds for any x; (0), and 2(0).
This proves the first assertion of the theorem.
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Now, to prove the second assertion, let j=kj+1 in (2-20). It is desired to show that
lim e()%0 (2-27)

for some z(0). Since j=kj+1 in this case, a (ny+1) x (ny 1j) transformation matrix

(b T
T= i (2-28)
0 iz

exists from Lemma 1 such that
TA=(A4, f\T.. C=[—CuRIT
(2-29)
[o’ 0 J
whege Tz, is an ny x j matrix, tz,aj-vector, fy an ny-vector, and h an m-vector. Then, if we set
£=T¢ , one of the observable representation of (2-21) is obtained as

£=(A f,,]g - [ BL]u,. {2-30a)
o 0 o}
e = l.“‘C:,‘ h}f — Dy, (2-30b)

Thus, in this case, the dynamics of e(t) is seen to be described by (2-16), (2-17), and (2-30).
Every mode of (2-30) is observable, whereas one mode which correspondes to the zero
eigenvalue is clearly uncontrollable. This mode remaines uncontrollable even in the tandemly
connected system of (2-30) and (2-16). Also, it remains observable, since from the assumption
every mode of (2-16) is nonzero. Therefore, on noting further the fact that controllability and
observability properties of linear systems are not affected by output feedbacks, we know that,
even if the output feedback uc=e [(2-17)] is introduced to the tandemly connected system,
the output e(t) of (2-30) (; that is, the output error) containes the observable but uncontrollable
mode which correspondes to zero eigenvalue. This means {l_r,“w e(t)#0 for some £(0) and z(0),
that is for some x;(0), x(0), and z(0). But, since the influence of xp(0) and xc(0) on e(t)
decays to zero by the assumed closed-loop asymptotic stability, therefore lim e(t)#0 for some
s s . (=
z(0). This is the desired result.

2.3 Synthesis
Consider the rp-inpul, m-output observable and controllable plant

Se: xp= Axe+ Bu» (2-31a)
y = Cxp+ Dur (2-31b)

where the state xp is an np-vector, the input up an r-vector, and the output y an m-vector.
It is desired to synthesize an unity feedback system such that

(i) the i-th output y; (i=1, ... , m) tracks, without steady statg error, polynomial reference

inputs whose degrees are less than or equal to Qi—l, where Qi are integers to be specified

by the designers, and
(ii) the resulting closed-loop system has preassigned stable eigenvalues.

To the problem formulated, we propose the following synthesis procedure:
The procedure consists of the following three steps:
(a) Examine the type of the plant. Here, the plant (2-31) is assumed to be a type[Ky,...km]t.e.
(b)  As the result of (a), if kig;z‘.‘ for all i, this step is unnecessary. If ki<f2i for some i, then
in this case, construct a cascade compensator S so that the tandemly connected system SP-SQ’

where Sp is followed by Sq, is to be a type [k];,...,krlr‘,]t.e., and kli'292 i for all i.
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(c) Construct a second controller Sy so that the specification (ii) is met.

,r>SR:>SQ—>Sp .>

Fig. 2-3. Synthesis ot a type [f.. ¢n] feedback system.

Fig. 2-3 indicates a system which is constructed by the method just proposed. From
Theorem 2-2 and the indicated procedure, it is seen that, if each step is performed successfully,
the resulting system is a type [k]; kL] f.s., and satisfies specifications (i) and (ii).

Step (a) can be performed from Definition 2-2a. Soon after, it will be shown that a
compensator S is obtainable, under appropriate conditions, such that Sp.S is observable and
controllable. Therefore, (c) reduces to the well known problem of assigning poles of closed-loop
systems by output feedbacks, and, therefore, we can use the results, say in [12], [13].
Thus the only step which requires detailed consideration is (b).

In the following, we shall give a theorem which enable us, if it is used repeatedly, to
construct a compensator SQ. To present the theorem, let (2-31) be transformed by a coodinates
transformation into its following equivalent equations:

j:/»,, :"l'ﬂ O Xr, Bl‘a (2- 32&)

o,) L0 A N

X, Apg XLy, 'y p :
y = { Cl',7~ C,-,,}{xp(, ] + I)Uf' 2 32b‘

Xy

where the subindices a, b are used to imply the same as in Section 2.1, dim Xpa=Npys and
dim Xpy=npp. In the subsequent discussion, subscript P in Ap,,..., Np, Wwill be dropped for
national convenience. Notice that, from Definition 2-2a and the assumption on (2-31),
the following hold.

k:=rank A" '[Ca Ad — rank A" '['Ce Adl (2-33)
fori=1, ..., m. To state the theorem, two matrices are defined as follows:

- [As« Ba) ‘

Ag = LO 0 J Crz =|Ca D-Cuds IBI)’ (2-34)

where the dimensions of A and C are (n,+rp) X (ntrp) and m x (na+rP) respectively.
Theorem 2-3: Assume that the rp-mput m-output plant (2 31) is a type [k;,....km] t.e. and is
equivalent to (2-32). Then, (i) if and only if the vector calA i is independent of the rows of IW,
where

A ([ Co Ak, Ad)

A ([ G, Ak, Ad]
W=

Am [ G AR%, Al
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where éaj are the j-th rows of Cp, a compensator Sq, of the form

Xe=1v (2-36a)
Yo = CaZat W (2-36b)

exists, where the state x, and the input v are scalars, the output y_ the input w, and c_ are
. q q

rp-vectors, such that the following hold:

(1) The tandemly connected system SP'SQi’ where uP=yq, preserves the controllability and

the observability of the plant,

(2) Sp.Sgyisa type [Ki,...kin] t.e., where kj =kj+1 for j=i, and kj SKS kj+ 1 for j#.

(if) If the condition in (i) is satisfied, ¢q in (2-36) is obtained to satisfy (1) and (2) by solving

the following equations:

......... == (2'37)
L ‘W Cq 0

[ Ca ASY[ o 1

where C_ is an n_-vector, and 0 is the zero (j‘?éi (naz —kjt1))-vector.
Proof: Consider the tandemly connected system SP-SQi- From the assumption on Sp,
Sp.Sqjis equivalent to the system described by

L Aa O Baca) (xn, Bea 0 N
Edi Ze, |=| 0 Ay Buey || 2w | +| By 0 {u] (2-382)
Lo 0 0 0 %o 0 v
y=I[Cu Co Decol (z) +Duw
ey (2-39)
La

To put these equations in the form of (2-32), define
I 0 O Lrg
27=|0 O I||xzn (2-40)
Lo I o) lxg
where —ApatBpeg=0, ie., a = Ap! Bpeq. It is easily shown that

Aa BaCa 0 B. O X rg

p=10 0 0|7+ 0 1]||xn (2-41a)
0 0 As By a) Lx,

y =[Ca (D-CoAy ' Bulca, Culn+ Duw. (2-41b)

Therefore, from the definition, SPSQi isa type [K{ ,...,kg]t.e., where

k,=rank A™[Ca Asl-E—rank A™['Ca Ad-E (2-42)

where I 0 )
E= f (2-43)

(0] CqJ
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Permutating the rows of the matrices in (2-42), it becomes

k, = rank PE—rank ’'PE (2-44)
where )
A" Ca s Aal _
- - (2-45)
P= A"a[ Ca, Aa \
Are| Ea,, f’;a }

Now, we shall prove the theorem by making use of the following facts, whose proof will be
found in Appendix of this chapter:
(a) Any one of the first k;j rows of the submatrix Ana[éaj, Ag]- Eof PE cannot be represented
as a linear conbination of the other rows of PE,
(b) The (kj+1)- (k +3)-,..., (n,+1)-th rows of Ana[éaj, Aa)* E are linearly dependent on the
rows of 'WE.
(¢) kjgkj <kj+1,j=1,..,m

To prove the necessity, assume that Sp.S; is a type [..., kit+l,...] t.e.. Then from (2-44)

ki+1=rank PE-—rank ‘PE. (2-46)
, each terms in the right-hand side of which are computed from (a) as
rank PE=) k+rank WE (2-47)
m
rank ‘PE = Z k;+rank ‘WE (2-48)
Thus, from (2-46) we have
rank WE—rank ‘WE=1. (2-49)

But, from (b), every row of A'a k [CalAal Aa]E except calAklE is linearly dependent on the
rows of IWE. Therefore, from (2-49), cmAalE must be hnearly independent of the rows
of IWE. Therefore CalAkl is linearly independent of the rows of iW.
Sufficiency will be proved by showing that (ii) is true. Chose ¢ to satisfy (2-37).
This is always possible by the assumption. It is now desired to show that Sp.Sq; is a type
[ki,....km] t.e., where k]<kJ§kJ+l for j#i and kj=kjtIfor j=i,and is observable and controllable.
The first relanons on k were proved in (c) The second relation is obtained as follows:

= rank PE—rank ‘PE (; from (2-44))

= k¢+rank WE-rank ‘WE (; from (2-47), (2-48)) (2-50)
Ca,-A‘:i
= k.+ rank E~rank ‘WE (; from (b)) (2-51)
Ltb‘l
0 0D 1)
= k(+rank | e 0| —rank X (; from (2-37) and (2-43))
- (2-52)
=k:+1, (2-53)

where X = 1W[I,,,0]. Notice that eqgs. (2-37), (2-43), and elementary column operations were
used to derive (2-52).
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From (2-38) or (2-41), it is easy to see that S SQ is controllable. Observe that this does
not depend on the choice of Cq: To prove that SpSq; is also observable, it suffices to show that

Ao Bacq
![CG. (D+ CbAb"Bb)Cfl]u , (2‘54)
(

o 0
is observable, for Ay and [0 a Bacq] in (2-39) do not have eigenvalues in common and (CpiAp)
is observable. The observability matrix of (2-54) is given by PE, the rank of which can be
computed as follows: From (a), and Lemma 2-2 in Appendix,

rank PE rank P [I,,0]"

- Zk + rank WE — Z ket rank Wik,. 0] )

=rank WE—rank ‘Wlla, 0]’ 2-55)
which is equal to one from (2-43) and from the assumption on c_ of the theorem. From (2-45),
we also have rank P[ln,,0]'= rank A"a[Cy,A,], which is equal to n,, since (c Aa) is observable.

Therefore .
' rank PE = na+1, (2-56)

which proves that (2-54) is the observable pair. This completes the proof of Theorem 2-3.
The next theorem presents a sufficient condition for one in Theorem 2-3-(i).
Theorem 2-4: If Sp in Theorem 2-3 satisfies

A B
rank =n+m
c D

, then the condition in Theorem 2-3-(i) is satisfied for every i=1, ... , m.
Proof: Since (2-31) is equevalent to (2-32) and since |Ap|#0, it is easily verified that

(2-57) = rank (A« 0O Bq] = (Aa 0 Ba

0 A ‘ As 0

Ca { 0O D- CbA!; Bo
= rank [Aa Ba 1 :

Co D-CsAs ' By
Therefore

a Ba
rank [ J = naetm
Ca D-CyAy'B, (2-58)
, which implies that the matrix in the left-hand side has full row rank. So,
rank P = rank A™[C.. Aa
0 In A B
= r-ank ........................ ‘
Amn‘[Cn‘ Au]l 0 Ca D‘CvolBo
=rank A™'[C., Aul+m
, and, similarly,
rank ‘P =rank A™ '['Ca, Aal +m—1. (2-59)

Thus, from (2-33),
rank P —rank ‘P= k.+ 1
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Using this, we can complete the proof almost in the same manner as was done in proving, from
(2-46), the necessity in Theorem 2-3-(i), and, so, omit the rest of the proof.

2.4 Examples

In this section two examples are given to illustrate the theory of this chapter.
Example 2-1 : It is desired to find the type of a stable unity feedback system which has the
following open-loop transfer function matrix:

[(—6—%93)/83 (—=1—s%)/s* }
(1+12s+3s%)/s* 01/s+1
Theorem 2-2 and Definition 2-2b are applied. According to (2-10), expand G(s) into the form

) {(—6—}‘98)/82 *1/32}{0 -1 }
G =1 nesyst 0 3 01/5+1).
Then, T'[Ga(s)] and I'[* Ga(s)]in (2-14) become, respectively, as

(0 0 9 -4 —6 0 (1201000
[ 12 0o 1 0 00 tlooooo

Gls) =

9 A =6 0 e 000000
1 0 0 0

g g o
0 0 i :

Therefore, from (2-14)
kv =rank I'[Gds)]—rank I'['Gds)]=4—2=2

Similarly, we have ko=1.

Thus, the system is a type [2,1] fis.. It should be observed that the detailed asymptotic
properties have been derived with less computational efforts than in [1] and [2].
Example 2-2 : Given the two-input, two-output controllable observable plant

01:0) 0 0 ,
ol Lo {01;1} %1 o}
rr =10 0: X+ U p, = : x, U,y -
i J R : c VT T T e (2-60)

looi1 U1

it is desired to construct an unity feedback system such that y;— 19, Y2-+T20, Where ryoandra
are arbitrary constants.

On partitioning the matrices in (2-60) as indicated, and on applying Definition 2-2a, we see
that the plant is a type [0 Al] t.e.. So, a compensator SQ in step (ii) is needed. To apply
Theorem 2-3, the vector 853 A} = &4, and the matrix 'W must be computed. In this example,
they are: o =101 0—1]

- i [0 11 O}
1 — ng~1 @ Aa =
W= arrle 0010

Thus, &,; is independent of the rows of 'W, so that the condition in Theorem 2-3-(i) is
satisfied. From Theorem 2-3-(ii), and solving (2-37), we have the compensator

0
SQ::'I’,'q:'Uv yq:<ml>xQ+w' (2'61)
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The tandemly connected system of (2-60) and (2-61) is observable and controllable, and is at
least a type [ 1 1 ] te.. In fact, on applying again Definition 2-2a, we can verify that
SpSq isatype [ 1,2 ] te. Finally, by constructing a compensator Sg in step (i) to SpSq
so that the closed-loop specifications are met, we have a desired system.
Appendix

To prove Lemma 2-1, the next lemma is needed.
Lemma 2-2 : Let S, which is described by (2-5), be a type [Kki,....km] t.e., and let (2-5) be state
equivalent to (2-6). The following hold for every i=1, ...,m ;
(i) Ifs e[0,..ki-1], the row cuiAJ of AN LC, A,] is linearly independent of the other
rows of AT1[C,, A,].
(i) If s e[kj,..., ng-1], the row vector caiA; is linearly dependent on the rows cajAgj :
=1, .., kL it L mand sk, ng- 1

Proof : It is enough to prove for the case i=1. From Definition 2-2a.

kv=rank A™7'[Cs, A.]—rank A" '['C., Ad] (A-D)

Permutating the rows of the matrices, (A-1) becomes

Ana“‘[Cam Aa] A"““[Cae, Aa]
AM_‘[Caw Aa]
k1= rank —rank
Am“l[Cam, Aay] Am“‘[Cam, Aa] . (A-2)

To prove (i), assume that v is the smallest integer such that cg; AY-" is obtained as a linear
combination of the other rows of AMa’! [CaA,l-
Then, we can write caAY™" as

Cay ;'1 = Z,Bt CalAl+ 7;0):) Ca,,-Az, (A'B)
Lend+ ), )

0
where §; and 7(jt) are constants.
Notice that Ala=Alatl= =0, since every eigenvalue of Ay is zero. So, postmultiplying
(A-3) by AV gives

N —1
Ca A=) )y o d! (A-4)
=0

=2

where 7 n;itu) are some other constants. By multiplying by successively lower powers of A,
and substituting the results into the right-hand side of (A-3), we see that the rows ca1 AY,
-Cat Anal gre linearly dependent on the rows of Ana’l[’Ca,Aa]. From this and (A-2), and
on noting that if cy; AJ is dependent on the rows of Ana'l[lca,Aa] for some j, ¢y, ATl
ca Ait2, .. are dependent on the same set of rows, v must be equal to k;. Thus,
(i) has been proved.

Now if we use the result just provea, it is easy to see, from (A-2), that

4770 o, AR, Ad) At g, AR, A7)

na~—ka~1 2 ) .
rank A ?CazA“ A pank : =0

A [Cag AR, Al At can AS, Ad]
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, which proves that every row of AParki-l [calA}a(l, Ag] is linearly dependent on the rows of
Alake-1 [caz A§2, Agl,.., Alakmr] {camAkm,Aa] , and therefore proves (ii).

Proof of Lemma 1 : Since the left hand-side of (2-23) remains unchanged by a trans-
formation of the form : TAT™, CT™, A;p and Cy in (2-22) can be assumed to be of the forms,

A 0
) [Cl.aa Cl,b] (A'(—))

0 Aia
where the subindices a, b are used to indicate the same as in (2-6), and the sizes of A;, and
A;y are ny, xnp , and ny ¢ x 0y y, respectively. Then, the left-hand side of (2-23) can be written
as

rank (A" = Cra. Aral P A" = Cro, Al P A™ [ H, F]

, which is equal to
rank (A" [—Cia, Ara) (4™ [H, Fl] +rank [A™ 7= Cu, Awll  (A-6)

since Ay, and F have no eigenvaluse in common with Ayy, (; see [14]). On noting that rank
AnLﬂ'l[-CLb ,Arp]=np, since (Cp,ALp) is observable, and that

I .
A hy, F) = { } A F1=0
o]

where hi the i-th row of H, we obtain,
(Am‘d”l[“‘ Crai» Aual A by, F ]

(A-6) = rank [ AR ILIN é + e
Lﬂm“j?‘[ficl‘a, Al 1AM~ FlJ
(Anj‘l[’“CLai? Aa] Ll
= rank ; AMT =oAL, Ao 10 |t T

...A.t ......................... :..bj (A_7)

If lfjfkiin(AJ), the first term in the last equation of (A-7) remains unchanged even if the term
1. is removed from it, since every row of Al [-cLai, Aa] is linearly independent of the other
rows from Lemma 2-2. Therefore, in this case, the first term of (A-7) equals to ny,, and the
right-hand side of (2-22) equals to ny,+nyy, =ny, which proves (2-23a).
Eq. (2-23b) is similarly proved from Lemma 2-2 and (A-7).

Proof of (a), (b), (¢) in Section 2.3 :
Observe that the s-th row of A"8{G,5,A,] E has the form

lcawds™, cadiBelE @ jZ2,

[ca. di—cuds'BaJE : j=1. (A-8)

Therefore, if we restrict our attention on the first n, element of rows, (a) is clear from Lemma
2-2.
From the same lemma, constant row vectors St exist such that
ca AT = B AMAMVI[CG!AQIV Aa]'
IS

w4

From this and (A-8), the (kjt+s)-th row of Ana[éaj ,Aa] E (s22) can be written as
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[ Caj Agj&‘%!, CajAg“SMz Ba} E

/

= Z/S’l [A’““kt“l{cazAa‘”s”‘, Ad), A cu ARt AalB.|E (A-9)
t=J

Comparing this with the rows of JW and noting again A™a=0, we have (b). The inequalities
in (c) follows immediately from (2), (b) and (2-44).

Chapter III Type[Q:,....2p]Feedback Systems ....
Disturbance inputs Case

Almost any realistic control systems will be in the environment where external dis-
turbances exist. Among them, disturbances that drift over fairly long time interval, such
as variations of atomospheric temperature in process control systems, variations of loads in servo
systems, etc., have especially unfavorable influences upon steady state performances of control
systems. To such disturbances, we shall invoke the argument that they are approximately
representable as some polynomial functions of time, such as the step or ramp functions
(; This is quite common in engineerings). Then, this enable us to formulate problems that are
quite analogus to the ones discussed in Chapter II. By replacing reference inputs in Definition
2-1 with disturbances, we shall define type [¢ 1,...,52?} feedback systems, where the subscript p
denotes the numbers of disturbances. Based on the definition, algorithms will be derived to
compute the integers ¢,...¢p in the case where either open-loop transfer function matrix or
its state equations are known.

3.1 Definition of a type [Ly,...,.8p] system to disturbance inputs
In this section, the definition of a type [£;,...¢p] system to disturbance inputs is given.
To introduce the concept, consider the unity feedback single-input, single-output system,

Wi W2 W3

7+ + + Y.
5 dels) M2 gols) 2

Fig. 3-1. Single-input, single-output feedback system with disturbances.

indicated in Fig. 3-1, whose closed-loop system is asymptotically stable and transfer functions
gc(s), go(s) can be written in the forms

ki;[(s—kzn—) k'ﬁ(sﬁ-zL)

-
[

g s) =

b
&
I

1

=3

UL (s+pi) s”H(s-#;;;)

1

-~
[}
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where £, 20 and —2j, —zi and —p;, —p; are the non-zero finite zeros and poles of gc(s), go(s),
respectively. In the classical control theory, this system is called a type O system, a type &
system or a type (2+Q) system to disturbance inputs w,, w, or ws, respectively. This state-
ment can be expressed briefly by calling the system in Fig. 3-1 as a type [0, £, 2+Q] system
to the disturbance inputs wy, w,, wa. Now in this way any m-inputs, m-outputs unity feedback

system can be classified as follows:
)

So )

Fig. 3-2. m-input, m-output feedback system with
p-dimensional disturbances.
Definition : Suppose that unity feedback m-inputs, m-outputs system, indicated in Fig. 3-2is
asymptotically stable and is subjected to disturbance inputs w (=[w1.,...,wp]).
By assuming that
w(?) = wilt) AV UlDes, (3-1)

where e is the i-th unit vector, dim ej=dim W3 dim w=p, U(t) the unit step functions, and
t"'= 0, define the integers £y,....%p by the equatlons

1.4 max 1 lim elwi(t)l =0, j=0,1,2,...1. (3-2)
i=1,...,p
Then, the system is called a type [2,,... Qp] feedback system to the vector disturbance w.
In the Definition, e [w] ()] denotes the error that originates when the initially rest
system of Fig. 3-2 is subjected to the disturbance w3(t)
Clearly from the definition, and from the superp051t10n property of linear systems, we

see that a type [%,...8p] feedback system to the disturbance w can asymptotically reject

disturbances of the form
i~y lp” 1

w(i)z[ZmiZ’,.,., Z awt’} (3-3)

i=0 Ji=0
, where ajj (i=1,...,p,j= 1,...,%1) are arbitrary constants.

32 Atype [%,...8p] system to disturbances

In this section, methods for determining a type of a closed-loop system will be derived.
The m-inputs, m-outputs unity feedback system, to be considered is indicated in Fig. 3-2, whose
open-loop characteristic is represented by

z= Ax+ Bu+ Dw )
y= Cx+ Ew (3-4)
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where x is an n vector describing the state of the system, u is an m-vector of control inputs,
and w is a p-vector of unmeasurable disturbance inputs. A,B,C,D,E are matrices of appropriate
dimensions. It is assumed that (A,B) are controllable, (A,C) are observable and that the closed-
loop system is asymptotically stable. It is also assumed that the reference inputs? are identically
zero. The frequency domain structure of the system can be written in the form

yls) = G s)uls) +1G:ls) + E]

= ClsI-A) ' Buls) + [ClsI-4) ' D + Elw(s). (3-5)
Now, let us consider the following question:
Given (3-4) or (3-5), how can the integers £ be computed?
To answer this, set

wit) = wilt)= Gzl (3-6a)

z(i) = Fzlt) (3-6b)
where —
G=¢el10 0]

F=(0 1 .‘ (3-7a)

AN j (3-7b)

It is clearly seen that P_‘;r.,‘., e[W J(l)] 0 if and only if thﬁl e [w J(t)] 0. On noting this, we
shall first derive the implicit condmon that guarantees llm e[wJ(t)] 0.
Substituting (3-6) into (3-4), we obtain

5 {A. D(}][x] {B}
= + u Qs
(Z] 0. F = 0 (3 8a)

=[C., EGI(x (3-8b)
]
Define
fi:[A. DG] c=IC, EG]
0. F (3-9)
and
g =rank A" [C, A] (3-10)

Then it is clearly seen that the integer q depends on the number j in (3-7), and ‘that q satisfies
m=g=n+J (3-11)

because by the assumption (A,C) are observable,
Lemma 3-1 : Necessary and sufficient condition that guarantees tlm e [w—‘(t)] 0 isq=n;.
Proof : Suppose q>n,. Then the observable part of (3-8) can be wrltten in the form

77‘::{14.0’1:}?7'*’[8]” (3-12a)
0 ao 0

=C
v=n (3-12b)
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where

T

z),

fA, am) C)| are observable,
z

XLO . DIZEJ;

dim n = q.

and a matrix T satisfies the equation
T{A, DG = A an}T
0, F J L 0 Q22

From (3-13) and the form of T, oy, has unstable eigenvalues of F [15]. Therefore system
(3-13) has unstable uncontrollable modes which are observable. These uncontrollable modes
remain observable under the output feedback u=-y, soe=-y»0as oo,
Now, suppose q=n1. Then (3-12) becomes
5= Ap+ Bu (3-14a)
y=Cn. (3-14b)
By the control law u=-y and from the assumed stability of the unity feedback system (3-4),
it follows e=-y -0 as t>oo.
This completes the proof.
From this lemma, we can easily derive a computational algorithm of ¢;, for the case
where open-loop system is described by (3-4).
Theorem 3-1 : Assume that the open-loop transfer characteristics of the system in Fig. 3-2 is
described by (3-4).  The system is of type [;,....8p] to the disturbance inputs w, in which
9 are the integers determined by the equations

(3-13)

l;=max {j; rank Li=n! (3-15a)
C e;
CA Cd: [<43

=] caA CAd; Cd: e (3-15b)

......................................... ‘ei
CAmfFl CA”:*-J-‘Z I PRRRTERIEN] CA"*W‘d[
where
E:[ez,..,, epJ, D:[dl).”‘,dp] (3'16)

Note : In this chapter, e; and d; will be used to denote the columns of the corresponding
matrices. In Chapter I, symbol d; was used to denote the i-th row of D.
Proof : By substituting (3-7) and (3-9) into (3-10), and on noting

kE+1

l
[1,0---0]JF*=[lo---010---0] if 02k=j—1

0 if j<k
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we obtain
C EG
CA CDG+ EGF
g = rank | CA® CADG+ CDGF+ EGF?
............... ;1,:‘“._‘2.“
CAnu«)—\ CA m‘)'—k—zDGFk+ EGva|+j—l
k=0

C e; 0 0 O
CA Cd: € 0

= rank cA? CAd: Cd: ex._.
CA‘h-i—l CA mg-2 d‘ ............... e

=rank Li (3-17)

From this and Lemma 1, we obtain (3-15a).
Now, to consider the case where systems are described by transfer function matrices,
we shall prove the following lemma:
Lemma 3-2 : The following three conditions are equivalent.
@ q=m
(i) There exists an n;x (n, +j )-matrix U which satisfies the equation

Ce' = Cotty. (3-18)
(iii) There exists an n; x j-matrix U which satisfies the equation
[ClsI—A) "D+ EIG(sI—F)" = Cls[— A)U. (3-19)

Proof :
< (i) = (ii) > If (i) is true, there exists a matrix T such that

C=CT, TA=AT,

(; see the proof of Lemma 1.)
Then the following equations are derived.:

Ce™ = é([+ﬁt+$/§’t’+-~)
=ClI+At+57 A0+ )T
= Ce"T

<(ii)—(i)> Differentiate the both hand sides of (3-18) successively and put t=0, then

CAi= CA'U: i=0,1,2 -
c

Therefore, n =g = rank C /i

=rank | C A|U
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< rank C 1
C A

J

= Th

<(ii) > (iii)> Take the Laplace transform of (3-19) and rewrite A, C using (3-9). Then the
equivalence of (ii) and (iii) can easily be verified.
With the help of the two lemmas, the following theorem can be proved.
Theorem 3-2: Let &,... % be the integers defined below ( (3-20)-(3-24) ). Then an m-inputs,
m-outputs unity feedback system, shown in Fig. 3-2 is a type [%;,...,.%p] system to disturbance
inputs Wi Wp. _ o
l;=max lk;; rank M=rank [M: Nu] (3-20)

where fd, ﬁﬂd are constant matrices defined from the open-loop transfer function matrices

G1(s), G2(s)+E as follows:
Gils) = ClsI-4)'B

1
VM, -
=), 5+ Gils)

(3-21)
7y él_}_}—};( ) (23 dp
Gz(s)—{zsf BEUA Z 7+ hols)] (3-21)
I‘{[l 1‘/‘{2 ...... Ml
~ M: M. M
M= (m IXml)
M (3-23)
hl0) + eq = h 0N/ (R 1)!
da U
: ha(0) + e
&Lk — diTi dil
0 :
: " de,
0 0 (3-24)

where G, (s),’ﬁi(s) have no poles at the origin.

Proof :

Using the definition of the type and lemma 3-2-(iii), it can be easily verified that £; is the
maximal integer ki such that there exists a vector v which satisfies the equation
[Asi— A)"di+e[}§7i = ClsI— A)"v. , (3-25)
In Appendix I it will be shown that the condition for the existence of a vector v in (3-25) is
equivalent to the condition which guarantees the existence of a vector ¥V which satisfies the
equation



T4 Shigeyuki Hosoe and Masami Ito

ds; . Ni k=13
Z J+ ki eki + h (Ic?) tee hL( (O))‘
Los s s k—1)'s (3-26)
= ClsI— A)7'D
where AN1 R 61 satisfy the following conditions,
(i)  There exists a matrix B; such that (A,, B ) are controllable,
- - - L
(i) Cils—4)B,=) L (3-27)
=1 s'
Now put -~ -
Bi=(In}, A = 0 O
0 Im "".‘
0 In 0
and
C = [MA Mey ..., M, i
Then (3-26) becomes .
T di, e ;Lx(O) iLtml_U<0)
SN sn T e T T h=1ts
:[Mh-~‘y Ml] Im/s O 1;4 (3'28)
L/st
L/st  In/s

On comparing both sides of this equation, and from the remark given at the beginning of the
proof we have (3-20).

3.3 Relation to a type [ky,...,kp] transfer element

In this section the results obtained in Section 3.2 will be applied to a feedback system
shown in Fig. 3-3, which is a special case of Fig. 3-2, and a much simpler criterion which
resembles the one for a single-input, single-output system will be developed.

+ W y

- Gols)

Fig. 3-3. m-input, m-output feedback system with
simple structure with respect to disturbances.
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Consider the m-inputs, m-outputs unity feedback system, indicated in Fig. 3-3, whose
closed-loop system is asymptotically stable. It is supposed that tandem system of Go(s)
followed by Ge(s) maintains controllability and observability.

The minimal realizations of Ge(s), Go(s) are written in the form

Gel8): e = Acxe + Beue (3-29a)
Ye = Cee (3-29b)
Gol 8) 1 2o = Aexa + Bolto {3-30a)
Yo = CoXo + Dollo (3-30b)

Comparing these with (3-4), we get
[ Ac 0 - B«) 0
a=(% ) ma (™). b
1BOCc, Ao, ‘\O 7 nBo,
C:(DoCc, Co') ., E =D
By these relations, the condition (iii) of Lemma 3-2 is rewritten as follows;
Condition (iv): There exist matrices Uy, U, such that
Gols)G(sI—F)™
= Go( S)Cc( SI"AC)"] U, + Co( 81—449)71 U1 .

Then it is clear that the following condition (v) is a sufficient condition to condition (iv).
Condition (v) : There exists a matrix U; such that

Il

(3-32)

GlsI—=F)" = CelsI= 4.7 Us. (3-33)

Then the following theorem is obtained.
Theorem 3-3: In the me-inputs, m-outputs unity feedback system indicated in Fig. 3-3, if
Ge(s) is a type [,...,8p] transfer element, the system is at least a type [21,...,8p] system to
the disturbance input w.

Moreover if p=m, and if Go™' (s) exists and Go(s) has no zeros at the origin, then the
systemis a type [¢;,...,4m] system to the disturbance input w.

Proof :

Following the development given in the proof of Lemma 2-1, and using the definition of
a type [2,...8p] te., it is easily shown that if Ge(s) is a type [%,..,%p] transfer element,
condition (v) holds for ki = & (i=1,...,p).
Then the first half statement of the theorem is obviously true.

If Go ™' (s) exists, (3-32) can be rewritten in the form

GlsI—-F)™
= Cc(SI—Ac)""I&H' Go'l(8> CO(SI‘“ Ao)—1 l‘,N]z .

From Appendix II, Go ™" (s)C(sI-A)™! has no poles at the origin. Therefore condition (v) is a
necessary and sufficient condition to condition (iv). This completes the proof.

Remark : We can apply Theorem 3-2 to the synthesis problem as follows:

(i)  Given transfer function matrices G, (s), G, (s) indicated in Fig. 3-4, where G, (s) is a type
[21,....8p] transfer element.
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w

u +

\ . Yy
=) Gls) - Gs)

Fig. 3-4. Plant with disturbances.

(ii) It is required to design a tandem connection compensator G3(s), indicated in Fig. 3-5,
such that the obtained closed-loop system becomes at least a type [2;° ,...,on] system to the
disturbance input w.

w
Y + Y

- Ga(s)F—G2(s) [T Gis) ‘

14

~

Fig. 3-5. Synthesis of a type [£,, 6] system to
the distarbances W.

Using the method obtained by in Chapter II, we can easily design a transfer function
matrix G5 (s) such that G,(s) - G3(s) is a type [Qlc,..‘,Qpc] transfer element, where QiCEQi"
for i=1,...,p, and that the closed-loop system indicated in Fig. 3-5 is asymptotically stable.

3.4 An Example

Let us consider the steady state characteristic of the two-inputs, two-outputs unity
feedback stable system, indicated in Fig. 3-6, to the disturbance inputs w; , w,. The frequency
domain structure of the system can be written in the form

Wi W2
+ I+y|
o & T T

Yo

+

wn

+
++
9]

+
N
N~

Fig. 3-6. Example.



On Steady-State Characteristics 77

1

{91(8)1: *_S(S+1) s 0 {M(S)}
2 1 2(s)
Yels) sls+2) 7 (s+1)(s+2) s
1
s+1 1 ’LUx(S)
! (s)
e R

Matrices M, ﬁll, ﬁzl defined in theorem 3-2 can be written in the form

M=1{1. 0 &]11—{1 &21:[1}
Lo ! 0.

2, L2
Therefore the systemisa type [ 1,0 ] system to the disturbance inputs wy, w2.
Appendix 1

It can be assumed that A is in Jordan form. Only a special case where A has only two
Jordan blocks is proved. General cases can be treated similarly. So, set

A’——{J),O}
0, J

01 i Al T

where

Corresponding to the division of A, matrices and vectors C, B, di, vin (3-25) are divided as follow;

C:(Cx, CZ}? B:{Bx]
B,

- -

C;(sI—JJ"dr—“—‘TZ‘,dy

From (3-5) and (3-22), we obtain

o
[
oy
|
=
1
Q1
i
~ Ty
&
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Then by substituting these equations, (3-25) can be rewritten as follows:

. c o, hal0)
) g tm t g T
" ;li'k"—“ (0)
+ k=D's + h s)
= ClsI—J) 'v + Q(SI“J!)_I‘UZ. ( )
he h (0 . A-2
where  hd s) = hsgf) - %,8) — ——(-;t——‘—_—%)!—; has no poles at the origin.

On minding that the j-th column of (1/ski) (sI-J;)™! can be written in the form

1. 1 9

1| s—A (s—A)" i
§F 1 0
O s—A 0

(j—1)!

it is easily seen that a vector d exists such that
hi(8) = ClsI—J.)'d.
Put v,=d in Eq. (A-2). Then Eq. (A-2) can be rewritten in the form
' du o hd0)

N tow togm T
f;s"‘"'m) - . -1
+ ——(k,—l)‘s = CI(SI Jl) Ui
C dis _Ci /;.(0) .
o SJvk.: + Skt + Sk‘t +
RA0) A
fee W1 - -1
+ (ki—1ls el sI—=J) '

With the help of the following lemma, we can put

J, =A;,Cy =C, in (A-3). This completes the proof.
Lemma (Simple proof is omitted):

If (A;, By, Cy), (A;, B;, C;) are controllable realization of the same transfer function,
that is

Cl(SI -_ Al)-lBl = Cg(SI — Az)_le,
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then there always exist matrices V; , V, such that

CilslI—A) ' = ColsI—A:) 7' WA
Cal sI— Ax) ' = Cal sI—A) Vs

Appendix II

1t will be shown here that if Go(s) has no zeros at the origin, Gg' (s)Co(sI—Ao)"* has no
poles at the origin. To prove this, the system matrix introduced by Rosenbrock [11] will be
used.
. Let [A,B,C, D(s)] be a minimal realization of Go’! (s) (=C(sl — &Y' B + D(s)),where
D(s) is a polynomial matrix. Then A has no eigenvalues at the origin by the assumption
that Go(s) has no zeros at the origin (see also Rosenbrock [11]). It is clear that the following
system matrix

[ sl-A. —BCG . BD, ‘
L0 sl=4 i B |
T e e ) (A4

gives rise to a transfer function matrix Go ' (s) Go(s) (=I;n). Multiply this system matrix by a
unimodular polynomial matrix of the form
I 20 1
L0 Ms) P In )
where M(s) is a polynomial matrix such that
M(s) (ST = Ao) = D(s)Co = —Co
and Cy is an appropriate constant matrix.
The system matrix (A-4) now has the form

sl—A , —BC, . BDs

O > SI_ A 0 Bo
PR JUSTIN SR SRS A
~C . =G M($)Bst Dls)Ds (4-6)
and gives rise to the same transfer function matrix I
Then it is apparent that the system matrix
sI-4, —BCo : BD, )
: |
0, sl—A i Bo | (A-T)
~C , =G 0 J

gives rise to a transfer function matrix Om'

Since the system matrix (A-7) is in state-space form, there exists a nonsingular matrix
H; such that SI"A . —BGC, BD,

—1
{H’ OJ 0 L sl—As B [H 0}
0 In :
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sI—/i , 0 0

= * y SI—Ao : Bs
.‘..; ................... ;, ....... (A'S)
-C , 0 0

where (1’5: s é) are observable, (ﬁo , ﬁo ) are controllable and A hasno eigenvalues at the origin.
On the other hand Go ' (s)Co(sI — A )™ is obtained by a system matrix

sI-A, —BCe : 0
0 ,sl—4 . I
—C , -Dis)C + 0 )

The similar transformations that were applied to the system matrix (A-4) reduce the system
matrix (A-8) to the form

sI—A , 0 *
¥k N SI—'/io *
-C , 0 P M(s) )/

Since A has no eigenvalues at the origin, Go ™' (s)Co(sI — Ag) ™" has no poles at the origin.
Chapter IV Zeroing the Output by State Feedback

In the previous two chapters, servomechanism problems have been discussed for the case
that reference inputs and disturbances inputs are described as polynomial functions of t. The
results obtained should be most practical in engineering applications, since, in engineerings,
it is quite common that actual inputs are approximately represented as low-order polynomials
in time over sufficiently short intervals of time. However, some practical needs [17] and also
theoretical interest (in greater part) propose the following generalization of the problem:

Let ¢ be a linear time-invariant system representation described by the equations

x(t) = Ax(t)+ Bult) , x(0) = xs
ylt) = Cx(i)+ Dult)

where x(t) is an n-vector, u(t) an r-vector, y(t) an m-vector and A, B, C, and D are respectively
constant matrices of dimension nxn, nxr, mxn and mxr.

It is required to find a state feedback such that y(t)-0 as t=o°. The result to be obtained
has applications to the problem of tracking command signals and rejecting disturbances.
An example is the following : It is desired to make the output of a controlled system Sy, which
is given by the equations .

&(t) = Relt)+ Spli)

wlt) = Te(H) + Unlt),

(4-2)

track the output of a command system Sz, which is given by the equations
(B =Gel)
p(t)=Hel(t) .

This problem is equivalent to the problem of stabilizing the output of composite system Ss,
which is represented by the equations

Sz:
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£ (1) RO [ &(D) S
RN

) 0 GJLg() 0

(t) —p()]= [T—H]{E(i)] + Un(1) .
e(2)

S. P. Battacharyya and J. B. Pearson [5] geometrically solved this problem when D=0.
L. M. Silverman and H. J. Payne [16] discussed the conditions to maintain the output of a
linear system at zero. In this chapter, first, the unobservable subspace of a linear system is

considered. Using the result, the problem of stabilizing the output is solved. A condition for
the system ¢ to be stabilizable is algebraically derived, because of convenience for applications.

4.1  Unobservable Subspace
Applying a state feedback

wl?) = Fali) + () (4-3)

to system , where v(1) is an r-vector, ¥ becomes y which is represented by the equations
x(t) = A+ BF)xz{t) + v(1)
y(t) =(C+DF) x(t)+v().

Then the unobservable subspace of linear system ¥ is defined as follows:
Definition:
The vector space Vg defined by

Vrd Jx; (C+ DFN A+ BF)'x=0

i=0,1,2,...,(n—1)1

is called the unobservable subspace of system ¢ (under the state feedback u = Fx+v).

In general, the unobservable subspace Y changes by selections of F. Moreover, the
matrix F which gives a fixed unobservable subspace is not uniquely determined. So, the class
of matrices which give an unobservable subspace V will be denoted by F(y). Then the following
theorem is established.
Theorem 4-1:

System ¢ has always the maximal unobservable subspace. That is to say, for some F, and
any F, unobservable subspaces satisfy following relations:

(4-4)

I/FQUFOA_ Ymazx (4-5)

Moreover, Ymax = N(Lg) and ~Da" §a_}3elongs to F(Wmax), B B _
where N(Lg) is the null space of Lg, Dy is the generalized inverse of Dy, Lg, Dy and Cy are
the matrices that are defined in reference [16].

To prove this theorem the following lemmas are needed.
Lemma 4-1:

When a system is given by equations

(1) = Ax(t) ., 20 =20 ,
ylt) = Cxlt) .

the output y(t) is identically zero on [ 0, o) if and only if the initial state x, belongs to
the unobservable subspace V, of the system.

Proof is omitted for easiness.
Lemma 4-2: (Silverman and Payne)
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System Y has the following properties.:
(i)  There exists an input u(t) such that y(t)=0 on [0, =) if and only if X, is in N(Lg).
(i) Let xo be in N(Lg). Then y(t)=0 on [0, o) if and only if u(t) can be expressed
as the output of the system
#1) = (A—BDi Ca)z (1) + BKol) (4-6a)
u(t) = — Da Caz(D) + Ko(D) (4-6b)
for some v(t) and 7(0)=xo, where K is a matrix whose columns form a basis for the null space
of Da.
Proof of Theorem 4-1.
First, y o+ 2 = N(Lg) will be proved. Suppose
—va aQ

L€V i

Applying the state feedback

w(?) = Do Caxlt) (4-7)
to system ¥, ¥ becomes as

#(t) = (A-BDs Cax(t) , x(0) = %0 | (4-82)

y(#) = (C-DDd Caal D) . (4-8b)
So, by lemma 4-1,

y(£) =0 on [0, oo]. (4-9)
Therefore from lemma 4-2-(i)

2o € MLs ) .

Conversely, suppose the relation (4-9) holds. Set v(t)=0 on [ 0, o) in equations
(4-6), it follows

#(1) = (A= BD:" Cal2(t), 2(0) = (4-10a)
u(#) = —Da Caz(t) . (4-10b)
Using the output of system (4-10) as the input of system y, it follows by lemma 4-2 ii) that
y() =0 on [0, o)
Comparing (4-10) with (4-8), it is seen that both x(t) and z(t) obey to the same equation and
that the initial states are the same, so
x(t) = 2(1) on [0 , =)
This means that u(t) determined by (4-10b) is just the state feedback (4-7). Therefore, from

lemma 4-1.
Lo €V 5 +z,

Next,V 3 .7, =VYmax will be proved by contradiction.
Suppose V 7 f ¢, snot the maximal unobservable subspace.
Then there exists an n-vector X, such that
‘ L&V, +e, ‘ (4-11)
Xo €EVrF (4-12)

for some F. Applying the state feedback
uld) = Fx()
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to system y, it follows from lemma 4-1 that
(i) =0 on [0, co)
Therefore, from lemma 4-2-(i),
20 € N(L, ) (4-13)

Since N(Lg) is equal toy - +r, the relation (4-13) contradicts to (4-11). Concludingly,

~lig ta

it has been proved that there exists the maximal unobservable subspace and it equals to
V -nete,  Itis clear from the above arguments that —Da+ CaeF(Vmax).
The proof is complete.

4.2 Stabilizing the Output
Choose FoeF(Umax) and write Ag = A+BF, and C, = C+DF,.
Under the state feedback

u(t) = Foxlt) +v(i), (4-14)
system ¥ becomes system ¢° written by the equations
4 (1) = Aox(t)+ Bolt), x(0) =z, (4-15a)
" y(t) = Cox(t) + Dol 1) (4-15b)

where v(t) is an r-vector. Let system ¢° be transformed to the observable canonical form.
By a transformation matrix T, the following systemy > ?is obtained.

[mM)
Txlt) =

Laal )
[x',(t) } ={A” 0 Hx,(t)] +(Bx}v(t]
12l ) A A x:( 1) L B. (4-16a)
¢t
y(t)=1C 0 I () )+ Dold) (4-16b)
[xz(t)]

Under this transformation, coefficient matrices satisfy the following relations
( An 0 ] TB [ Bl 1

TA T = =
T A 4., B.) (4-17)

CaT’l = [Cl 0]
Corresponding to the representation (4-16), the state of the systemy'> ? can be expressed as

[1'1(”] [II(UJ { 0 J
= B ~
l'z‘.t) J 0 X0 1) . (4 18)

The components x;(t) and x,(t), respectively, represent the observable and the unobservable
component. Then it is clear from the definition of systemy'* 2 that the vectors set

)
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is equal to the maximal unobservable subspace of the systemy'* %, namely, TVnax. Therefore
if new state feedback v(t)= G[xi(t)x2(t)]'is applied to the system Y2 where Gisany rxn
matrix, the observable component will be enlarged in general. From systemy'> 2 a completely
observable system ¢! is obtained as

#(t) = Auxi(t) + Biwli) (4-19a)

1,
. y(t)=C,x1(t)+Dv(t). (4-19b)
Then the following theorem can be concluded about the output stabilizing problem.
Theorem 4-2:

Whatever the initial state is, the output of the system U is stabilizable by a state feedback
if and only if the state of the system ' is stabilizable by a state feedback, that is to say,
there exists some Fy; such that the real parts of all eigenvalues of (Ay; + B1Fyy ) are negative.
Remark:

Note that the stabilizability of the state of the system does not depend on the special
selection of the transformation matrix T. (See (4-17))

To prove the Theorem 4-2 the following lemma is needed.

Lemma 4-3:
When a system is given by the equations
xlt) = Ax(t)
ylt) = Cxl 1),
the output tends to zero if and only if the observable component of the state tends to zero.

Proof is omitted for easiness.

Proof of Theorem 4-2

Let the state of the system ¥ be stabilizable by a state feedback

v(t) = Fuxd t) .
Then, whatever the initial state is, the output of the system ' ?is stabilizable by a state

feedback
v(t)=[Fu 0] {xx(t)]
x2( 1)

This shows that the output of system V¥ is stabilizable by a state feedback

ult )= (Fy+[Fu 0] Tlx(t),
whatever the initial state is. So sufficiency was proved.

Now, suppose the pair (A;;, By) is not stabilizable. Then, for some initial state Xo,
the state of the system ' never tends to zero by any state feedback and therefore by
any input. So it follows that the observable component of the state of the system ">  never
tends to zero under any state feedback when the initial state is [ x{o 0'], since the state
feedback to the system ¥'* ? results in enlarging the observable component as previously stated.
By lemma 4-3, the output of the system y'* ? does not tend to zero, too. So, the output of
the system ¥ is not stabilizable by any state feedback when the initial state is

)
X 0

The necessity was proved.

Theorem 4-2 gives the condition under which the output of the system is stabilizable by
a state feedback. But, in many cases, it is not sufficient only to assure the stability of the out-
put. It may be practically necessary that the output of the system is stabilizable at optional
speed. Then the following theorem can be stated by similar way to Theorem 4-3.
Theorem 4-3:

Whatever the initial state is, the output of the system v is stabilizable by a state feedback
at any speed if and only if the system Y1 is completely controllable.

Proof is omitted.



On Steady-State Characteristics 85
Chapter V Conclusion and Acknowledgement

The results obtained in this article constitute an extension of the conventional servo-
mechanism theory that utilize type ¢ system concept to multivariable problems. Specifically,
on the basis of the new concepts (; that is, the type [9;,....4,] feedback system concept, and
the type [£;.....0m] transfer element concept), we have developed a procedure for synthesizing
linear time-invariant multivariable servomechanism systems, and a method of finding the types
of unity feedback systems in the case where either open-loop transfer function matrices or their
state representations are known. In the both, type [¢;....,%y] transfer element concept has
been proved particularly useful. Further, in this article, a more general servomechanism
problem has been discussed by formulating the problem as the one of zeroing the outputs of
linear time-invariant systems. A necessary and sufficient condition for the existence of a state
feedback that assures convergence of outputs has been derived.

In concluding, the authors wish to thank Mr. Y. Yonemura and Mr. T. Ogawa for their
earnest cooperation in the course of this study.
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