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Summary

[t is shown that a same equation on the vorticity in flow is derived from both
axisymmetric theory and secondary flow theory, but the value of trailing vortex or
streamwise vorticity cannot be obtained from this equation. The condition which
decides the strength of trailing vortex in axisymmetric theory is expressed by the
flow equation downstream of blade row. In the case of secondary flow theory, the
strength of trailing vortex is decided from the boundary condition of the Trefftz
plane at the exit of blade row. The latter coincide with the former at the limit of
pitch = 0.

In the case of axisymmetric flow, provided the exit angle of blade row being
of free vortex type, we get the result that the streamwise vorticity is zero in the
downstream of blade row. This means that there exists no secondary flow in the
downstream. The same thing is applied on the straight cascade. Because this
result seems to be curious, verifications were tried from other angles.

1. Introduction

Axisymmetric theory (when the axial length of blade row is infinitesimally
small, actuator disc theory) and secondary flow theory are two representative
theories to approach the three-dimensional flow in axial-flow turbomachinery.
The fomer is understood to be a treatment of the case in which the tangential
variation of three-dimensional flow is ignored or the number of blades is infinite,
and the latter is thought to be a method to deal with the flow in blade passage and
the change of outlet flow caused by it. To clarify the connection of the both was
the main object of this report, but it became clear in the study that the particular
examination of the trailing vortex was the most important. Because results were so
unsuspected and considerations were concentrated on this point, the report was
entitled as shown.
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In axisymmetric theory or actuator disc theory it is a problem how much
trailing vortices are contained in the outlet flow of blade row, and a few answers
were presented, > """ but we could not find any one which was theoretically satis-
factory, and we must notice that we cannot get the trailing vortex from an
ordinary handling of the axisymmetric equation.

On the other hand the character of trailing vortex is known pretty well in the
secondary flow theory.*® Therefore, it is generally supposed that if we bring this
theory into infinitesimally small pitch form we can get the answer to the above
problem. Taking an opinion that to have infinitesimally small pitch is same as to
take the averaged value along the tangential direction and making such trials, we
find, to our surprise, the trailing vortex disappeared. In fine we cannot get the
trailing vortex.

Special considerations are needed to get the trailing vortex, and circumstances
not to be able to get the trailing vortex and ways to get it are discussed in this
report, together with considerations on the relation between axisymmetric theory
and secondary flow theory.

Only the flow in the stationary blade row is treated in the report. Although
treatments about the moving blade row may be possible by uses of the idea of
relative energy *° (in axisymmetric theory) and the consideration of secondary flow
in moving blade, they are problems to be solved in the future. Assumptions of
inviscid and incompressible flows are also employed.

Notation and Co-ordinate

Co-ordinates and components of velocity and vorticity are defined as shown
in Fig. 1.
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Fig. 1 Co-ordinate

a pitch of stagnation stream lines

a distance of stagnation stream lines or wakes (see Fig. 3)
B a half of blade span

g gravity acceleration

H total enthalpy

n normal co-ordinate to meridional stream line
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radial co-ordinate

absolute velocity

velocity component

co-ordinate in Trefftz plane

co-ordinate in Trefftz plane

axial co-ordinate

circulation

angle of stream line in axisymmetric stream surface (see Fig. 3)
boundary layer (shear flow layer) thickness (see Fig. 4)
co-ordinate in Trefftz plane

tangential co-ordinate

inclination angle of vortex line (see Fig. 3)

co-ordinate in Trefftz plane

density

normal co-ordinate to the stream line in axisymmetric stream surface
stream function in Trefftz plane at the blade row exit

vorticity
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Subscripts

before blade row
behind blade row

axial

at exit of blade row
meridional

passage vortex

along stream line
trailing vortex

trailing edge

T(F) trailing filament vortex
T(S) trailing shed vortex

0 tangential

T normal to stream line in axisymmetric stream surface

FHeT g 0P -

2. Axisymmetric Theory

Wizsl‘iscenus published a theory easy to understand on the axisymmetric
theory, " and we follow it.

Let us consider two closely adjacent meridional streamlines as shown in
Fig. 2, and let the total enthalpies along these two streamlines be H and H + dH.
Then we have

oH

dH= (aa)ldm = (‘ﬁ)zdnz = constant 2-1)

on

Therefore

E-@)% =
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Fig. 2. The blade system and meridional stream lines

From the condition of continuity, we get

T1Wmi _ 220N,
T'eWme - ,Oldnl (2—3)
2,6
Next relationship was also got by Wislicenus.

gg%= |V x| (2—4)

This is valid at both stations 1 and 2.
From equations (2—2), (2—3) and (2-4)

& & e
x| | Vx| (2-5)
011 W 020 2Wm2
or
Weorwmi — Wmiwsr _ Wee@Wmz— Wmzwez (2__5’)
211 Wma 0202 Wm2

This is the equation correlating conditions before and behind the blade row in the
axisymmetric theory.

But, we must be careful about the fact that we cannot get the component
of w, parallel to V, from equation (2—5) or (2—5%). This is because the vector
product of two vectors which are parallel to each other is zero. Therefore, the
vortex shed from a system such as the trailing vortex cannot be obtained from this

axisymmetric equation.

For the convenience of comparison with the secondary flow theory, we
take the incompressible flow assumption and a case in which the meridional
streamline can be regarded to be parallel to the axis. From (2-5") we have

Weorwar — Warwer _ Werwaz— Wazws2
I'Wa I'2Waz

and using next relations

=

&1 82

- Wez _
— tan 7, e —tan 7 (2—-6)

we get the following equation after a readjustment.
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Lo | War — Wer  War _
r|+r‘. tany = rz+rztanyz (2 7)

3. Secondary Flow Theory

The flow pattern of blade system is illustrated in Fig. 3. This is the develop-
ment of the flow shown in Fig. 2 along the stream line. Following the ordinary
secondary flow theory, we start with assumptions that the vorticity in flow being
small and the streamline distortion being also small.

Vortices in the flow are known to be consisted of

(1) passage vortex (vorticity) which is the result of the vorticity w; in the
upstream being changed to w,p after passing through the blade passage,

(2) trailing filament vortex which is produced by w; being cut by the blade
profile, and

(3) trailing shed vortex which is produced by the spanwise (r—wise) variation
of circulation of blade.
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Fig. 3 The flow pattern through the blade system

3.1 Passage Vortex
Expressing components of w; and w,, parallel and normal to the stream by
suffixes s and 7, we have from reference (7) or (8),

wepr __COSY: I'»
wir COSH I' (3-1)

This can be easily obtained from the Helmholtz’s vortex law expressing that the
vortex drifts with the flow. And we have
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wzes __ COSY: T2

wre cosy 1, 1A% (-2)

K, can be obtained if we know the flow in blade passage or the time difference
needed by a particle on a stagnation stream line to pass through blade upper or
lower surfaces. But since this is not an urgent matter to be known, we leave it
intact.

3.2 Trailing Filament Vortex
Denoting the strength of trailing filament vortex by I'1(F) (the strength of
trailing vortex contained in unit span),

I'np, = T @epT A'zAz (3—3)

where A, A, is the distance related to time difference needed by a particle on a
stagnation stream line to pass through blade upper and lower surfaces and indicated
in Fig. 3. Because times needed by particles to pass C, B, and C,B, are same, we
get

C:B: _ C:B:
T:—\z7—f (3—4)
And
C.B; = a,siny + a;cosn - tann (3-5)
Condition of continuity is
Vicosy-a,-dri= V,cos7.- a,-dr; (3-6)
or
Wai _ I2drs @
Waz_rxdrl (3 6 )
And
AzA, = a;siny+a.cos % tanx. — C.B. (3-7)

Using equations (3—4), (3—5) and (3—6) we have

' s . i .
AzA?:al[r_:31ﬂ72+_;210572'tan}(2—Sln% cosy rdr: _cos'x
1

r
tanx dry

C0S 7 r.dr. cosy ]I"zder (3-8)

From this equation and (3—1), (3—2) and (3-3) I'r(F) becomes

Trn = — 122008 [ singz Is _siny 0dr: | wws _ wis COSH &] (3-9)
COSKTy oSy r:dr, ' wir w1z COSY: I2dr;
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The passage vortex (vorticity) is a distributed vortex in the flow and the
trailing vortex is a vortex existing in the wake of blade. But, if we consider from
axisymmetrical view points, the trailing vortex must be considered to be distri-
buted in 6 (or 7) direction. Let w,1(F) be the vorticity of distributed I'T(F),
then

WarE = FT{FJ
20087, (3—10)
Using (3—9) we get
__[siny r: sinnr.dr ] cosy ridr: -
warm w"[cosy, i cospradr: J T % cosy rodr, | P G-1D)

3.3 Trailing Shed Vortex
Denoting the strength of trailing shed vortex by I't¢s) and the blade cir-
culation by I', we have
dr

I =4y (3—12)

Let us consider this vortex to be distributed like the trailing filament vortex, then
its vorticity w,1(s) becomes

wZ'ns‘=i§'~‘~ (3—]3)
aC0S 7%,

3.4 Vorticity in the Downstream
We express the vorticity in the downstream of blade system by w,, then we
have

was = wees + worr, + Wi, (3—14)
and using (3—11)
_ siny ridr,  sinp Q] cosy rudr, 3—15
@es ‘”"[cos;@ radr: cosn Til 9 cosys radrs T @S ( )

It is worth noticing that k, is not contained in this expression.
Because the trailing vortex has no component normal to the stream, w,r
becomes same as 7 component of the passage vortex. We get from (3—1)

COSy: I'z (3—16)

Wer = Warr — W
r 2Pr 'rCOS"A r

In the case of axial-flow machine, expressions using wq and wg are more
convenient than wg and w;. Relations which are
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wrs = waiCOSH — wolsin)ﬁ (

[ (3-17)

Wit = waiSIN 71 + weiCOS Y

and

waz = w2sCOSYe + w2:SiN%e l

(3—-19)
We2 == w:2sSINY2 + w2:COS }’z[

are used together with equation (3—67) to rewrite equations (3—15) and (3—16),
then we get

War = Wa1 WAL 4 75,COS 2 (3-19)
W21

L2 erssing (3-20)

rz ““aﬁ :'
—_ 2 E_—_—t— ; + @
Wez2 — Wal [1"‘ tan 4] . tan 72 a1 T

Eliminating w,,/wa; from (3—19) and (3—20), we get

Wor | war — Weoz | War _

r, T tany =4 S any, (3-21)
The trailing shed vortex has disappeared in the process of introduction of

this equation. We can understand from this situation that the trailing shed vortex

cannot be obtained from the secondary flow solution alone.

4. Interim Considerations

We can find a perfect coincidence of equations (2—7) and (3—21). And it
was shown in the course of derivations that the strength of trailing shed vortex
could not be determined.

Although the coincidence of results from axisymmetric theory and secondary
flow theory is natural because they start from the same physical law, it may be
worth noticing that thinking about the assumptions of distributing trailing
vortex in f§—direction or taking the averaged value in §—direction in the secondary
flow theory without assuming the infinitesimally small blade pitch we can get the
coincidence of results of both theories.

In the next place it is an important matter that we could not get the strength
of trailing vortex in the above analyses. The trailing vortex are decided in the
real turbo-machine provided the geometry of blade row and the inlet flow are
given. It was hoped, therefore, to get it by the analysis we did, but it was not so.
Let us examine its reason in following paragraphs.

The comparison in the above was limited to the case’ in which meridional
stream lines could be considered being parallel to the axis, but the extension of
results to the case being not parallel is hoped to be possible.

5. Determination of the Trailing Vortex
It is an idea of secondary flow theory that the strength of total trailing
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vortex is decided by spanwise velocities induced by the passage vortex at walls of
passage (upper and lower surfaces of blades). In the case of axisymmetric solution,
the author will show that this is determined from the condition at blade row exit
(exit flow direction).

Vortices in the flow just behind the blade row are consisted of passage vorticity
wyp and trailing vortex Iy (I't = 'y + I'rs)) (if we consider the trailing
vortex being distributed, it is trailing vorticity w,, ), and the direction of flow is
equal to the exit direction of blade row and given by v,.. Vorticities parallel to
the flow (s-direction) and normal to the flow and the span (7-direction) are
respectively.

Was = we2ps + wer (5— 1)

Wt = Wapr (5-2)

For the sake simplifying explanation, let us consider a case in which radial
component of velocity can be neglected, then we have

ws = waCOSY — weSIiny
} (5-3)
Wr = waSIiny + weCOSY
_OWs | Wy
wa — ar '1 r l
' (5-4)
_ OWa
“o =" or ]
Wa=Vcosy
} (5-5)
We=—Vsiny

From these we get following equations just behind the exit of blade row,

wes = _Vze‘a‘a%_VTz:COS%e'Sinyze (5—6)

wre = — 20— Viegipty,, (5-7)
(where subscript e which must be attached to w was omitted.) From equations
(5—1), (5=2), (5—6) and (5—7) we get

9 V .
‘—Vzc‘ézliz‘:‘ — r—zzeCOSVze * SINY2e = wees + wer (5-8)

. aVZe - _\Lz_g . 2 .
ar, r S1N” Y2e = waer (5'—9)
Since according to the assumption mentioned above we can consider rp = 1,
we can get w,, 7 from equation (3—1) and V, ¢ from equation (5—9). We can have,

therefore, wyps + w,, from equation (5—8). If we want to get wjps and way se-
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parately, we get at first w,p5 with the aid of the knowledge of flow in blade
passage and then get w,;, but provided that we know w,,s + w,r we can get
the vorticity components just behind blade row from equations

waz={wszprs + w21)COS P2e + WorrSiNYze
(5-10)

wer= — (wzps + war) SiNYze + w2prCOSP2e

If there exists an assumption that the distortion of flow is smail, these can be
regarded immediately as the vorticity components in the downstream.

Thus we have been able to get the vorticity (or trailing vortex) in the down-
stream by the consideration of conditions just behind the exit of blade row.

5.1 Special Cases
As a special case, let us consider a case in which v,¢ is of free vortex type i.e.

tanyze = (5-11)

T,
where K is a constant.
Substituting this into (5—8) we have

0= wops + wor (5—-12)

Of course same result is also obtained in the case of straight cascade. Accordingly,
we recognize that in axisymmetric condition the free vortex type of blading or
the straight cascade has no streamwise vorticity or so-called secondary flow in the
downstream of blade row. This result coincide with the result obtained by Preston.”
The author wants to suggest to say this as the vortex rectification of cascade.

5.2 The case of Cascade of Infinitesimal Blade Pitch

We have found that there exists no secondary vorticity in the downstream of
blade row, provided the exit flow angle is of free vortex type equation (5—11)
Is it possible to say the same thing when we consider the secondary flow theory?
Let us examine it here about the straight cascade having infinitesimally small
blade pitch.

When the pitch of blade becomes infinitesimally small, the flow component
normal to blade surfaces in blade passage and at the exit of blade row (trailing edge)
is negligiblly small (this component is finite when the pitch is finite). Namely,
we can consider the secondary velocity normal to the main flow and the span
being zero. We may be able to think, therefore, that the flow angle Y2e just
behind the blade row exit is same as the exit angle of blade row (and v, may be
taken as same as the exit flow angle of two-dimensional cascade of blade row.......
but we need further sufficient considerations to say this, and this is not the
problem of the present report).

As aforesaid, we take the idea that the strength of total trailing vortex is
decided by spanwise velocities induced by the passage vortex at upper and lower
surfaces of blades. Let us take the straight cascade to simplify the consideration,
and note the Trefftz plane at the exit which is illustrated as shown in Fig. 4(a).

W2rs can be generally regarded being constant in y-direction and the function
of x, but let us consider it having constant value w in the range of § as illustrated
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Fig. 4 The vorticity in rectangle

in Fig. 4 (b) and (c). When w,,s is a function of x, we can think it being combi-
nations of cases in which w and § take varieties of values, and, therefore, the idea
of constant w has no fear that it lose generality.

x and y components of velocity in this rectangle can be expressed, using the
stream function ¢, as follows,"

Sores = (5-13)
Awy=—2 (5-14)

oy
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o
N (5-15)

When the flow in straight cascade is bilaterally symmetrical along the span,
we can treat the problem with a half of rectangle as illustrated in Fig. 4 (b). The
problem is to solve the equation (5—13) under the boundary condition that y=0
at four sides of the rectangle. The solution has already obtained. [see the
Appendix] AWr which corresponds to the trailing vortex is,

A‘VT = (_a—S[_}).V‘-U

ay
=%§wﬂ:2‘—r11—2 Sin(nz%)'[l—cos(nmg)]-tanh(%fg) (5-16)
In the case of infinitesimal pitch i.e. a° = o we have,
wai—;a’wiglﬁsin(n%)‘[l—cos(nzr%)] (5-17)

On the other hand, w ~ X relation shown in Fig. 4(c) can be expressed by
the Fourier’s series,” as

= A5 han(omg) 1 - cs(or) =19

We have finally

Awr=% =52 (0<x<5)
(5-19)
=0 (6 <x=B)
The strength of trailing vortex in unit span is
I'n= —24Aw-r
and if we regard this being distributed along pitch direction, we get
w2t = -I:‘,T— = —ws (0<xX<0)
s (5-20)
=0 (6<x=B)
where
w2prs — W
We have, therefore, the following relation
weps T war = 0 (5—21)

which is quite same as equation (5—12).

Another method of verification to attain to the same result is explained in
the Appendix.

The treatment mentioned in the above was on the straight cascade of in-
finitesimal pitch, but it is unquestionable that same results are expected to be
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obtained on the stationary blade row of axial-flow machine.

6. Conclusions

We have found that the same equation on flow vorticity is obtained by both
the axisymmetric theory and the secondary flow theory. But we can not get the
streamwise vorticity from this equation.

It is the equation of flow in the downstream of blade row which determine
the strength of trailing vortex in the axisymmetric theory, and the strength is
calculated from the flow condition just behind the exit of blade row.

In the secondary flow theory, it is the boundary condition of Trefftz plane
at the blade row exit which determine the strength of trailing vortex, and it
coincides with the result of axisymmetric theory when we consider the limiting
case of pitch & 0 on the straight cascade.

In the axisymmetric theory, if the exit angle of blade row is of free vortex
type, we get the result that the streamwise vorticity in the downstream of blade
row is zero, that is, there exists no secondary flow. The situation is same on the
straight cascade. A same result is obtained from the secondary flow theory in the
limiting case of pitch — 0 on straight cascade. Because of the curiosity of the
result, the author has tried another proof from different angle in the Appendix.
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8. Appendix
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Fig. A-1. The vorticity in rectangle

The flow in a rectangle in which the vortex ex1sts as illustrated in Fig. A-l
can be expressed by the stream function as follows,"

o X
¢G= —ZZ—Sm(nﬂ*B)a,)foBsin(nné)M

T n= .
"1 sin h(nnﬁ

X [[;ysin h(nzrg)-sin h(nzr%!_)-w(f n)dn

+ _/y.a'sin h(nzr%)'sin h(nn%—q)'w(&v)dﬂ}

When w is constant in y-direction and the function of x alone, we have

= _ZZL_f w(&)sin nzr%)

= sin h(nn-—

X {sin h(nnal—g—z)j:ysin h(nzré)dn
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. vy [ . a'—p
+ sin h(n”B)/; sin h(nn B )dn ]
Integrations in { ] can be done easily, and in the condition shown in Fig. 4,
namely,
wlé) = w 0<E<SH
wl&)= 0 0<é=B

we have the integration on & as
fonw(§)sin(nn§->d§ = wﬂﬂsin(nné)df

- o]

Therefore, we have after calculations
ZBZwZ #sin(nn%) ‘[1 -—cos(nzr%) ]
n=1 )

b=—2
sin h(m%)+sin h({l”gl_%x)' (A1)

X |1— ;

. a

sinh (nng)
The spanwise velocity Awy at the blade trailing edge, which corresponds
to the trailing vortex, is
_ _(84) _2B 1. ( x

Awr= (ay>y~n s @ _)nlen(n”B)

, (A-2)
x[l—cos(nng)]'tan h(%%)

And y-component of induced velocity Awy at any point is

- _Zﬁwilz cos(nﬂ%{) '[1 "COS("”%) ]

o1 sin h(nzr%)+ sin’h(nna;y) (A-3)
sin h(nn%)

Let us now examine the circulation along the path ABCDA in Fig. A-2,
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Fig. A-2. The vorticity in rectangle

2AWT'AX+'£QAWy(X+AX)dy +]; koy(x)dy
= wa AX (A—-4)

and consider the limiting case of a’ - o. The first term becomes from equation
(A-2)

; _ 2B {11 . '

(11.1!})1 Awr = ?w’;?sm(nn%)-[1—003(117%) ]

<55 =[5 (A-5)

Concerning second and third terms, the inside of [ ] of equation (A—3) becomes

[ _sin h(nn%-)-%sin h(n”a'gY) [ cosh[%(y—%)’

E————y | o)
_ 2sin h( ) Sm*j(néral—z_‘y) = [2sin (3 Y ) -sinh( 25T |
cosh(nn-;Tg)

where we note that 0<y<a’
Therefore, we have

| szECOS(nn%)‘{ 1"‘C05(n"‘%)]

n=1

o[ (8] "9

lim | 4w <(

R
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Now (A—4) becomes
24w AX = wa' AX
or
a'w
2
This is quite same as equation (5—19)

Awr =

(A=T)





