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Abstract

When a user retrieves information from databases, it is often required to pro-
tect the privacy of the user. Quantum private information retrieval (QPIR)
is a protocol in which a user retrieves one of multiple messages from non-
communicating multiple servers by downloading quantum systems without
revealing which message is retrieved to any individual server. Symmetric
QPIR is QPIR with server secrecy in which the user only obtains the re-
trieved message but no other information of other messages.

This thesis investigates the fundamental communication limit of symmet-
ric and non-symmetric QPIR and constructs the optimal QPIR protocols
achieving the communication limit. The communication cost of a QPIR pro-
tocol is evaluated by the QPIR rate defined as the ratio of the size of one
message to the whole dimension of the downloaded quantum systems. The
supremum of the QPIR rate, called the QPIR capacity, characterizes the
communication limit of QPIR.

Assuming that the servers share prior entanglement, we prove that the
symmetric and non-symmetric QPIR capacities are 1 regardless of the num-
ber of servers and messages. We construct a rate-one protocol with only two
servers. This capacity-achieving protocol outperforms its classical counter-
part in the sense of the capacity, server secrecy, and upload cost. The strong
converse bound is derived concisely without using any secrecy condition. We
also prove that the capacity of multi-round QPIR is 1.

As a variant of QPIR with stronger security requirements, t-private QPIR
is a protocol in which the identity of the retrieved message is kept secret
even if at most t servers may collude to reveal the identity. We prove that
the symmetric and non-symmetric t-private n-server QPIR capacities are
min{1, 2(n− t)/n} for any 1 ≤ t < n. We construct a capacity-achieving
QPIR protocol by the stabilizer formalism and prove the optimality of our
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protocol. The proposed capacity is also greater than the classical counterpart.
Finally, we give a symmetric (n−1)-private QPIR protocol with bipartite

entangled states. The protocol has the QPIR rate dn/2e−1, which implies
that it is capacity-achieving for an even number of servers n. The protocol
is practical since the bipartite entangled states are reliably generated with
current quantum technology compared to multipartite entangled states.
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Chapter 1

Introduction

1.1 Private information retrieval

Information security is one of the main concerns in the modern information
era. Especially, with the advancing technology of the big data analysis and
the recommendation systems, the importance of user’s privacy is increasing
when the user access to databases. For example, the recommendation sys-
tems such as for the videos, the products, and the social network contents
are based on the access information of users and the collected information
often results in some unintentional leakage of users’ privacy. For such cases,
it is required to protect the privacy of the user who retrieves information
from databases.

Introduced by Chor, Goldreich, Kushilevitz, and Sudan [5], Private Infor-
mation Retrieval (PIR) is a cryptographic protocol in which a user retrieves
a message from server(s) without revealing which message is retrieved to
any individual server. In addition to its direct application, PIR is related
to other cryptographic protocols such as the oblivious transfer [6, 7], the
secure multiparty computation [8,9], and the secret sharing [10,11]. Further-
more, PIR is also related to an error-correcting code, called locally decodable
codes [12–15].

As depicted in Figure 1.1, a PIR protocol is described as follows. Sup-
pose that a server contains a classical message set M1, . . . ,Mf . A user wants
to retrieve one of the messages from the server. Let K be the index of the
targeted message, i.e., the user wants to retrieve MK . The user uploads
queries Q(1), . . . , Q(r) and downloads answer A(1), . . . , A(r) from the server
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Chapter 1. Introduction

Server User

1. prepare messages
M1, . . . ,Mf 2. choose index K ∈ [f]

5. retrieve MK

3. upload queries
Q(1), . . . , Q(r)

4. download answers
A(1), . . . , A(r)

Figure 1.1: One-server PIR protocol.

interactively. The user finally decodes MK . For the secrecy of the user’s
request, it is required that the server obtains no information of the target
index K. Though this problem seems impossible at first glance, there is a
trivial solution: if the user downloads all messages from the server, the user
obtains the targeted message MK and the server cannot know which mes-
sage is requested. This trivial solution lacks practicality since it is inefficient.
Unfortunately, Chor et al. [5] proved that this trivial solution is optimal for
communication efficiency. To be precise, they evaluated the communication
efficiency by the communication complexity, which is the sum of informa-
tion bits transmitted between the user and the servers, and showed that the
optimal communication complexity is linear to the size of all messages.

Despite this negative result, there have been mainly two approaches to
reduce the communication efficiency: PIR with computational assumptions
[16–18] and PIR with multiple servers [15, 19–22]. In the first approach,
PIR has been considered with the computational assumptions such as the
difficulty of quadratic residuosity problem [16] and the phi-hiding assumption
[17]. On the other hand, this thesis focuses on PIR with multiple servers.
Multi-server PIR considers the case where each of multiple servers contains a
copy of all messages with it is assumed that the servers do not communicate
with each other. It has been discussed from the first paper of PIR by Chor et
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al. [5] and they proposed the following one-round protocol with two servers,
which improves the communication complexity significantly.

Protocol 1.1. Suppose that each of two servers, namely Server 1 and Server
2, contains a copy of all messages M1, . . . ,Mf ∈ {0, . . . ,m− 1}, and the two
servers are forbidden to communicate with each other. For retrieving MK,
the user prepares two queries Q1 and Q2 as subsets of {1, . . . , f} such that
(Q1 − Q2) ∪ (Q2 − Q1) = {K} and sends Qi to Server i. Each of Server
i returns the answer Ai =

∑
j∈Qi

Mj to the user, where the summation is
with respect to the addition modulo m. Finally, the user can obtain ±MK =

A1 − A2, where the sign is determined by whether K ∈ Q1 or K ∈ Q2.

Since any subset of {1, . . . , f} is described by an f-bit sequence, the up-
load cost of the above protocol is 2f bits in total and the download cost is
2 logm bits in total. Thus, Protocol 1.1 has the communication complexity
2f + 2 logm, which is significant improvement from f logm bits of the trivial
solution. The paper [5] and the following works [15,19,20] have also improved
the communication complexity with more servers. Similar to Protocol 1.1,
most of the multi-server PIR protocols have been constructed with one-round
communication. Thus, if it is not specified, we consider the multi-server PIR
as the multi-server one-round PIR throughout the thesis.

In PIR, the user may obtain some information on the n− 1 non-targeted
messages. For example, in Protocol 1.1, the user obtains partial sums of non-
targeted messages from the answers A1 and A2. Therefore, it is preferable
to consider the server secrecy in which the user obtains no information other
than the targeted message. PIR with the server secrecy is called symmetric
PIR, which is also called Oblivious Transfer (OT) [6,7] in the one-server case.
In other words, the symmetric PIR with multiple servers can be considered
as a distributed version of OT. OT is an important cryptographic protocol
because the free uses of an OT protocol construct an arbitrary secure multi-
party computation [8, 9]. The one-server symmetric PIR is impossible from
the impossibility of OT with information-theoretic security and Gertner et
al. [23] proved that the symmetric PIR does not exist even with multiple
servers. However, Gertner et al. [23] constructed a symmetric PIR protocol
with the assumption of shared randomness among multiple servers.

Furthermore, one critical weakness of the multi-server PIR is the assump-
tion of no communication between servers. In the practical application of the
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Chapter 1. Introduction

PIR protocols, some of the servers may communicate and collude to identify
the user’s request. The t-private PIR [5,14,21,22] is PIR with stronger user
secrecy, called user t-secrecy or t-privacy, in which the identity of the tar-
geted message is unknown to any collection of t servers. In t-private PIR, it
is assumed that the user does not know which servers are colluding but only
knows the number of colluding servers t.

1.2 Information-theoretic approach to PIR

With its origin by Claude Shannon [24], one of the main goals of the informa-
tion theory is to survey the asymptotic behavior of information-processing
tasks when information resources are available asymptotically many times.
For instance, the source coding considers the asymptotic compression rate
for arbitrarily large sequences of i.i.d. random variables, and the channel
coding considers the asymptotic transmission rate when a given channel can
be used arbitrarily many times.

In a similar sense, Chan, Ho, and Yamamoto [25] started to consider
the multi-server one-round PIR when the message size can be arbitrarily
large. For the measure of communication efficiency, they only considered
the download cost because any one-round PIR protocol can be modified so
that the query cost is negligible to the message size. To see this, suppose
that the queries are prepared originally for a logm-bit message. Then, the
user can reuse the same query k times for retrieving a (k logm)-bit message
for arbitrary natural number k. Thus, the upload (query) cost can be made
negligible by increasing the message size arbitrarily large for the fixed query.

Furthermore, to characterize the asymptotic communication limit of PIR,
Sun and Jafar [26] defined the PIR rate of a protocol as the ratio of the size
of one message to the number of total downloaded bits and the PIR capacity
as the supremum of the PIR rate for fixed numbers of servers and messages.
They derived the PIR capacity for n servers and f messages as

C =
1− 1/n

1− (1/n)f
, (1.1)

which is greater than the PIR rate 1/f of the trivial solution of downloading
all messages. The PIR capacity approaches 1 as the number of servers n goes
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Chapter 1. Introduction

to infinity. The paper [27] proposed a capacity-achieving PIR protocol with
the minimum upload cost and message size in a class of PIR protocols.

PIR capacities have also been derived in many other settings [28–40].
The symmetric PIR capacity is 1 − n−1 [28], the t-private PIR capacity is
(1−t/n)/(1−(t/n)f) [29], and the symmetric t-private PIR capacity is 1−t/n
[30]. The papers [31–37] have considered PIR with coded databases, where
each server contains coded symbols of the messages instead of a copy of
all messages. When the messages are coded by an (n, k) Maximum Distance
Separable (MDS) code, the PIR capacity is (1−k/n)/(1−(k/n)f) [31]. Multi-
round PIR has also been studied in [38] and the capacity was proved to be
the same as the PIR capacity derived in [26].

1.3 Quantum private information retrieval

There has been growing interest in quantum information theory as a mean to
overcome the limitations of existing communication technologies. Above all,
there has been a great deal of interest in enhancing security such as quantum
key distribution [41, 42], quantum zero-knowledge proof [43], quantum fin-
gerprinting [44], quantum secret sharing [45], quantum bit commitment [46].

As one direction of quantum secure protocols, Quantum PIR (QPIR) has
been studied [47–55]. The papers [47–54] have considered the case where
two-way quantum communication is allowed, i.e., the queries and the an-
swers are quantum information. Let s be the number of bits in the database,
i.e., the total size of all messages. When the server does not deviate from the
protocol, Le Gall [48] proposed a one-server QPIR protocol whose commu-
nication complexity is O(

√
s), and Kerenidis et al. [49] improved this result

to O(poly log s). However, Baumeler and Broadbent [50] showed that for a
stronger adversarial model, called specious server model, the trivial solution
of downloading all messages is again optimal for one-server QPIR. To be
specific, in the specious server model, the server can perform any malicious
operations as far as they are not noticed by users, and they showed that the
communication complexity is at least O(s) in this model. For multi-server
QPIR, Kerenidis and de Wolf [51] proposed a two-server QPIR protocol with
communication complexity O(s3/10), and they [52] proved that quantum sym-
metric QPIR can be constructed without shared randomness among servers.

The key resource to make the advantages of quantum communication
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is quantum entanglement. The quantum enhancements in one-server QPIR
[48,49] and multi-server symmetric QPIR [52] are achieved by generating and
using entanglement between the user and the servers. For better advantages,
the papers [49, 53] considered one-server QPIR with prior entanglement be-
tween the user and the server. With the prior entanglement, Kerenidis et
al. [49] constructed a QPIR protocol for honest server with communication
complexity O(log s), and Aharonov et al. [53] proved that the trivial solution
is also optimal for the specious adversary.

1.4 Contributions and organization

The main contribution of the thesis is to give an information-theoretic ap-
proach to QPIR for the first time. This thesis considers the QPIR problem in
the communication model in which the queries are classical, the answers are
quantum, and the prior quantum entanglement is shared among the servers.
On this communication model, this thesis derives various QPIR capacities
and construct capacity-achieving QPIR protocols. In Chapter 3, we derive
that the symmetric and non-symmetric one-round QPIR capacities are 1 and
construct a capacity-achieving symmetric QPIR protocol with two servers.
In Chapter 4, we prove that the symmetric and non-symmetric multi-round
QPIR capacities are also 1, which implies that the multi-round communica-
tion does not help QPIR. In Chapter 5, we extend the result of Chapter 3
to the t-private QPIR capacities. We prove that the symmetric and non-
symmetric t-private QPIR capacities are 1 if less than half of the servers
collude and 2(n−t)/n if more than half collude. We also construct a capacity-
achieving symmetric t-private QPIR protocol by stabilizer formalism, which
requires multipartite entanglement as prior entanglement. In Chapter 6, we
construct another capacity-achieving symmetric (n− 1)-private QPIR proto-
col only with bipartite entanglement.

Table 1.1 summarizes and compares the derived QPIR capacities with
classical counterparts. As in Table 1.1, the derived QPIR capacities are
greater than the PIR capacities. Furthermore, the QPIR protocols proposed
in this thesis also have advantages over the classical PIR protocols, which
will be explained in each chapter.

Throughout this thesis, the communication model of QPIR is classical
queries, the quantum answers, and the prior quantum entanglement among
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the servers. Our model has an advantage over to that of the previous QPIR
studies, which considered two-way quantum communication. Our model as-
sumes weaker conditions since if the quantum upload is allowed, the user can
upload an entangled state to all servers. In our model, the user only needs to
have the measurement apparatus but does not need to create and manipulate
the quantum states.

This thesis also discusses the strong converse bounds for the first time in
the PIR studies. The proofs of both classical and quantum PIR capacities
consist of the achievability proof, which gives the existence of a capacity-
achieving protocol, and the converse bound, which gives a tight upper bound
of the PIR rate. In existing classical PIR studies, the converse bounds have
been proved for the case where the error probability approaches zero. The
converse bounds of this type are called weak converse bounds. However, the
weak converse bounds do not preclude the trade-off between the capacity and
the error probability, i.e., the capacity may increase if we allow some level
of errors. Thus, only with the weak converse bound, it is an open problem
if there is such trade-off. The strong converse bound proves that there is
no such trade-off between the capacity and the error. To be precise, the
strong converse bound is the tight upper bound of the rate when any error
probability less than 1 is allowed. This thesis gives the first approach to the
strong converse bounds on PIR.

The remainder of the thesis is organized as follows. Chapter 2 is the
preliminary chapter. Chapter 2 introduces the mathematical framework of
quantum information theory, the quantum information measures, and the
stabilizer formalism.

In Chapter 3, as quantum extensions of the classical PIR capacities [26,
28], we show that the symmetric and non-symmetric capacities of QPIR are
1. For the achievability of the capacity, we propose a rate-one QPIR protocol
with perfect security and finite upload cost. As the converse part, we show
the strong converse bound that the rate of any QPIR protocol is less than 1

even with no secrecy, no upload constraint, and any error probability.
In Chapter 4, we show that the capacities of symmetric and non-symmetric

multi-round QPIR are 1. Since the rate-one protocol in Chapter 3 achieves
the multi-round QPIR capacity, Chapter 4 only proves the weak converse
bound on the multi-round QPIR capacity, i.e., the upper bound when the
error probability is asymptotically zero.
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Chapter 1. Introduction

Table 1.1: Capacities of classical and quantum PIRs

Classical PIR
Capacity

Quantum PIR Capacity

PIR
1− n−1

1− n−f
[26]

1 ‡

[Chapter 3]
Symmetric PIR 1− 1

n
[28] †

Multi-round
PIR

1− n−1

1− n−f
[38]

1

[Chapter 4]Symmetric
multi-round

PIR
-

t-Private PIR
1− t/n

1− (t/n)f
[29]

min

{
1,

2(n− t)

n

}
‡

[Chapter 5]Symmetric
t-private PIR

1− t

n
[30] †

∗ n, f ≥ 2: the numbers of servers and messages, respectively.

† Shared randomness among servers is necessary.

‡ Capacities are derived with the strong converse bounds.

In Chapter 5, we derive the symmetric and non-symmetric t-private QPIR
capacities for any t less than the number of servers n. As a main result, we
prove that the t-private QPIR capacity is min{1, 2(n − t)/n} for 1 ≤ t < n.
Especially, when at most half of the servers collude, i.e., 1 ≤ t ≤ n/2, the
capacity is 1 even if we require the strongest security condition in which
the protocol has zero-error, perfect user t-secrecy, and perfect server secrecy.
For the proof, we construct the capacity-achieving protocol by the stabilizer
formalism and present the converse bounds for 1 ≤ t ≤ n/2 and n/2 < t < n,
respectively.
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In Chapter 6, we propose a symmetric (n−1)-private QPIR protocol with
bipartite entangled states. Whereas the protocol of Chapter 5 requires mul-
tipartite entanglement among all servers as prior entanglement, this protocol
only requires multiple copies of bipartite entangled states instead of a large
entangled state.

Chapter 7 summarizes the results of this thesis and discusses open prob-
lems.
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Chapter 2

Preliminaries

2.1 Mathematical framework of quantum in-
formation theory

In this section, we introduce the mathematical framework of quantum infor-
mation theory from the four postulate of quantum systems, quantum states,
quantum operation, and measurement. Most of the contents in this section
have appeared in my master thesis [4] and more detailed introduction in-
cluding the physical motivations of the postulates can be found in [65], [66],
and [67].

2.1.1 Quantum system and quantum state

A quantum system is described by a Hilbert space H, which is a complex
vector space with standard inner product 〈·, ·〉 : H×H → C. Throughout this
thesis, we only consider the quantum systems as finite-dimensional Hilbert
spaces H which is isomorphic to Cd for some positive integer d.

Postulate 1 (Quantum system). Any quantum system is described by a
finite-dimensional Hilbert space.

We use the bra-ket notation to describe vectors in H and vectors in the
dual space H∗. From one-to-one correspondence between H and H∗, for any
vector |x〉 := (x1, . . . , xd)

> in H, there is a unique vector 〈x| ∈ H∗ defined by

〈x|y〉 :=
d∑
i=1

x̄iyi ∀y ∈ H.
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For a square matrix X on H, the Hermitian transpose is denoted by
X∗ = X̄>. A matrix X on H is called a Hermitian matrix if X = X∗. A
Hermitian matrix X is called positive definite if

〈x|X|x〉 > 0 for any |x〉 ∈ H,

and it is denoted byX > 0. Similarly, a Hermitian matrixX is called positive
semidefinite if

〈x|X|x〉 ≥ 0 for any |x〉 ∈ H,

and it is denoted by X ≥ 0.
Quantum states are defined by density matrices.

Definition 2.1 (Density matrix on H). A square matrix ρ on H is called a
density matrix on H if

Tr ρ = 1 and ρ ≥ 0.

Postulate 2 (Quantum state). Any state of a quantum system H is described
by a density matrix on H.

A quantum state is called pure state if its rank is 1 and a state which
is not pure is called a mixed state. We sometimes treat a pure state as a
unit vector since rank-one density matrices ρ = |ψ〉〈ψ| on H has a one-to-
one correspondence with unit vectors |ψ〉 in H. Since a quantum state is a
Hermitian matrix, it can be diagonalized and therefore, any mixed state can
be represented by a probabilistic mixture of pure states. We denote by S(H)

the set of states on a quantum system H and by M(H) the set of square
matrices onH. Since S(H) is a convex set, pure states are the extreme points
of S(H).

2.1.2 Composite system and state

Consider the case where we treat multiple quantum systems simultaneously.
A composite system is given as a tensor product of the quantum systems,
e.g., the composite system of HA and HB is given as HA ⊗HB.

Throughout this thesis, we use single lettered subscripts to differentiate
quantum systems, e.g. HA,HB, . . . and multi-lettered subscript to denote
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composite systems, e.g. HAB := HA⊗HB. Furthermore, we use the notation
|xA, xB〉 := |xA〉 ⊗ |xB〉 ∈ HA ⊗HB.

States on a composite system are defined in the same way as states on
a single system. Note that the states are not necessarily the tensor product
of those in each subsystems. When a state is written as tensor products
of states on subsystems, it is called seperable states, i.e., a state ρ is called
separable if

ρ =
∑
i

piρ
i
A ⊗ ρiB,

∑
i

pi = 1, pi ≥ 1,

where ρiA and ρiB are states on HA and HB, respectively. States which are
not seperable are called entangled states.

For any state ρ in HAB, the states ρA := TrB ρ and ρB := TrA ρ are called
reduced states, where the partial trace TrB (TrA) is defined as follows.

Definition 2.2 (Partial trace). Let {|eBi 〉} be a basis of the system HB. For
any X ∈M(HAB),

Tr
B
X :=

∑
i

(I ⊗ 〈eBi |)X(I ⊗ |eBi 〉),

or alternatively, TrB : HAB → HA is a linear operator such that

Tr
B
X ⊗ Y := X TrY, ∀X ∈M(HA), Y ∈M(HB).

Given any ρ ∈ S(HA), a state ρ̃ ∈ S(HAR) is called an extension of ρ if

Tr
R
ρ̃ = ρ.

Especially, if an extension ρ̃ of ρ is a pure state, the state ρ̃ is called a
purification of ρ.

The completely mixed state and maximally entangled states are commonly
used states in quantum information theory. The completely mixed state of a
d-dimensional space H is defined by

ρmix :=
1

d
I ∈ S(H).

LetHA andHB are d-dimensional quantum systems. Pure states onHA⊗HB

are called maximally entangled states if the reduced states on HA and HB

are the completely mixed states. The completely mixed states are written as
d∑
i=1

1√
d
|ei, fi〉 ∈ HA ⊗HB,
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where {|ei〉 | i = 1, . . . , d} and {|fi〉 | i = 1, . . . , d} are bases of HA and
HB, respectively. The maximally entangled state is a purification of ρmix and
conversely, the completely mixed state ρmix is the reduced state of maximally
entangled states.

2.1.3 Quantum operation

Quantum operations describe dynamics of quantum systems. In this sub-
section, we will define quantum operations by completely positive and trace-
preserving maps based on natural conditions that quantum operations should
satisfy.

In the following, we consider quantum operations as maps κ from S(HA)

to S(HB) and characterize three natural conditions that κ should satisfy.
First, we consider the condition of affinity and linearity. A map f is called
an affine map if

f(px1 + (1− p)x2) = pf(x1) + (1− p)f(x2), p ∈ [0, 1].

Since a mixed state is a probabilistic mixture of other states, it is natural
that a quantum operation acts in the same way on the states composing
the mixed state. That is, when ρ1 and ρ2 are states on HA, the quantum
operation κ should satisfy the following condition of affine maps:

κ(pρ1 + (1− p)ρ2) = pκ(ρ1) + (1− p)κ(ρ2), p ∈ [0, 1].

Condition 1 Quantum operations are affine maps.

We further assume a similar but stronger condition, linearity.

Condition 1’ Quantum operations are linear maps.

Next, we consider the condition of positivity. A positive map is a map that
maps a positive semidefinite matrix to a positive semidefinite matrix. Since
quantum states are positive semidefinite matrices, the quantum operations
should be positive maps.

Condition 2 Quantum operations are positive maps.

Let ιCn be the identity operation on S(Cn). We can consider κ ⊗ ιCn as a
quantum operation from S(HA ⊗Cn) to S(HB ⊗Cn) and κ⊗ ιCn should be
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positive from Condition 2. When κ⊗ ιCn is a positive map, the operation κ
is called n-positive map. When κ is n-positive for any dimension n, the oper-
ation κ is called a completely positive map. Therefore, quantum operations
should be completely positive maps.

Condition 2’ Quantum operations are completely positive maps.

The last condition is the trace-preserving property. The resultant state
κ(ρ) should be traced to 1 since it is a density matrix.

Condition 3 Quantum operations are trace-preserving maps.

To summarize, quantum operations should satisfy the above Conditions 1’,
2’, 3. The maps satisfying these three conditions are called Completely Posi-
tive and Trace-Preserving (CPTP) maps. Quantum information theory pos-
tulates that the set of CPTP maps is the same as the set of quantum opera-
tions.

Postulate 3. Any quantum operations are described by CPTP maps.

An example of quantum operations is κU(ρ) := UρU∗ for a unitary matrix
U . By the operation κU , a pure state |ψ〉 is mapped to the pure state U |ψ〉.

The CPTP maps are characterized by the following theorem.

Theorem 2.1 (Equivalent conditions of CPTPmaps). For a map κ : S(HA)→
S(HB), the following conditions are equivalent. The dimensions of HA and
HB are denoted by dA and dB, respectively.

1. κ is a CPTP map.

2. κ is a trace-preserving and (min{dA, dB})-positive map.

3. (Stinespring representation) Let HB be a dB-dimensional quantum sys-
tem. There exist a pure state ρ0 ∈ HBC and a unitary matrix U on
HA ⊗HB ⊗HC such that

κ(ρ) = Tr
AC
U(ρ⊗ ρ0)U∗.

4. (Choi-Kraus representation) There exists a set {Fi}dAdBi=1 of linear maps
from HA to HB satisfying

∑
i FiF

∗
i = IA such that

κ(ρ) =
∑
i

FiρF
∗
i .
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The Stinespring representation implies that quantum operations are the
same as applying a unitary operation and reducing to the subsystem.

2.1.4 Measurement

Measurement on a quantum system is an essential tool to extract information
from the quantum state. If a measurement is performed on a system, the
measurement outcome is obtained probabilistically and it also disturbs the
state of the system. Therefore, to model a measurement, it needs to describe
both of probabilistic behavior of outcomes and change of states.

Given a set Ω of measurement outcomes, we describe a measurement by
a set of maps κΩ := {κω | ω ∈ Ω} such that the probability to obtain ω ∈ Ω

is Trκω(ρ) and the resultant state is

1

Trκω(ρ)
κω(ρ).

Similar to the conditions for quantum operations, the maps {κω | ω ∈ Ω}
should satisfy the following conditions.

Condition 1 κω are linear maps.

Condition 2 κω are completely positive (CP) maps.

Condition 3
∑

ω∈Ω Trκω(ρ) = 1.

The set of maps κω that satisfies the Conditions 1, 2, 3 are called an
instrument.

Definition 2.3 (Instrument κΩ). A set κΩ = {κω | ω ∈ Ω} of linear CP
maps is called an instrument if

∑
ω κω is a CPTP map.

The last postulate of quantum information theory is given as follows.

Postulate 4 (Measurement). Any measurement is described by an instru-
ment κΩ := {κω | ω ∈ Ω}. When a measurement κΩ is performed, the prob-
ability to obtain ω ∈ Ω is Trκω(ρ) and when the outcome is ω, the resultant
state is (1/Trκω(ρ))κω(ρ).

When we are only interested in the outcome of the measurement, we
consider the measurement as a Positive Operator-Valued Measure (POVM).
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Definition 2.4 (Positive operator-valued measure (POVM) MΩ). A set of
matrices MΩ := {Mω ∈ M(H) | ω ∈ Ω} is called a POVM on the quantum
system H if ∑

ω

Mω = IH and Mω ≥ 0 for any ω ∈ Ω.

Given a state ρ and a POVM MΩ = {Mω | ω ∈ Ω} on H, the probability
for obtaining ω is Tr ρMω. When all POVM elements are orthogonal projec-
tions, i.e.,M2

ω = Mω andM∗
ω = Mω, the POVM is called a Projection-Valued

Measure (PVM). We sometimes regard an orthonormal basis {|ei〉} of H as a
PVM since it has a one-to-one correspondence with the PVM {|ei〉〈ei|}. We
call the PVM of a basis the basis measurement.

For more details of measurement processes and state reduction, we refer
to [68–70].

2.1.5 Classical resources in quantum information theory

Given a fixed basis of a quantum system, we call a quantum state classical if
it is diagonal with respect to the basis. A discrete random variable X with
values X and a distribution pX are described by a classical state∑

x∈X

pX(x)|x〉〈x|. (2.1)

Sampling of X corresponds to the basis measurement of {|x〉 | x ∈ X}. For
a function f , the random variable f(X) is described by∑

x∈X

pX(x)|f(x)〉〈f(x)| =
∑

y∈f(X )

pf(X)(y)|y〉〈y|, (2.2)

where pf(X)(y) =
∑

x:f(x)=y pX(x). The change of random variable X 7→
f(X) can be described by the following CPTP map which maps (2.1) to (2.2):
Stinespring representation with ρ0 = |f(x0)〉〈f(x0)| and U =

∑
x,y |x〉〈x| ⊗

|g(x, y)〉〈y| for some x0 ∈ X and some function g such that g(x, f(x0)) = f(x)

and f(X ) = {g(x, y) | y ∈ f(X )} for any x.
When a quantum state ρX ∈ S(H) is prepared depending on the random

variable X, the state on the composite system of H and X is described by

ρHX =
∑
x∈X

pX(x)ρx ⊗ |x〉〈x|. (2.3)
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The state (2.3) is often called a Classical-Quantum (CQ) state. The reduced
state on H is the averaged state

∑
x∈X pX(x)ρx and the reduced state on X

is (2.1). Thus, the probability to sample X = x is pX(x) and the resultant
state after sampling of X = x is ρx.

2.2 Information measures and inequalities

In this section, we introduce quantum information measures and inequalities.
We will use these measures and inequalities in the later chapters for the
evaluation of the security for QPIR protocols and the converse proofs of
QPIR capacities.

2.2.1 Classical information measures and inequalities

Entropic measures

Let X be a discrete random variable with values in X and the distribution
p = {px}x∈X . The Shannon entropy is defined as

H(X) = H(p) := −
∑
x∈X

px log px. (2.4)

When p is a two-valued distribution {p1, 1− p1}, H(p) is characterized by p1

and thus we define the binary entropy function as

h2(p1) := H(p) = −p1 log p1 − (1− p1) log(1− p1). (2.5)

For random variables X and Y , the conditional entropy is defined as

H(X|Y ) := H(XY )−H(Y ) (2.6)

and the mutual information is defined as

I(X;Y ) := H(X)−H(X|Y ) (2.7)

For random variables X, Y with possible values in {0, . . . , n− 1}, the Fano’s
inequality is given as [56]

H(X|Y ) ≤ ε log(n− 1) + h2(ε), (2.8)

where ε := Pr[X 6= Y ].
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Distance measures

Given two probability distributions p = {px}x∈X and q = {qx}x∈X , the vari-
ational distance is defined as

d(p, q) :=
1

2

∑
x∈X

|px − qx| (2.9)

and the relative entropy is defined as

D(p‖q) :=

{∑
x∈X px(log px − log qx) if supp(p) ⊂ supp(q)

∞ otherwise,
(2.10)

where supp(p) := {x ∈ X | px 6= 0}. The variational distance is a metric on
the set of quantum states but the relative entropy does not satisfy the axioms
of a metric because D(p‖q) 6= D(q‖p), in general. However, the variational
distance and the relative entropy are related by the Pinsker’s inequality [57]

2d2(p, q) ≤ D(p‖q). (2.11)

With the relative entropy, the mutual information is written as

I(X;Y ) = D(pXY ‖pX × pY ). (2.12)

2.2.2 Quantum information measures and inequalities

Quantum entropic measures

Any quantum state ρ is diagonalized as ρ =
∑

i pi|i〉〈i| for a probability
distribution {pi}i. For a state ρ =

∑
i pi|i〉〈i|, the von Neumann entropy is

defined by

H(ρ) := Tr ρ log ρ = H({pi}), (2.13)

where H(·) in the last term denotes is the Shannon entropy defined in (2.4).
For any state ρ ∈ S(A⊗ B), we use the notation

H(A)ρ := H(Tr
B
ρ), H(B)ρ := H(Tr

A
ρ),

H(AB)ρ := H(ρ).
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For any state ρ ∈ S(A⊗ B ⊗ C), the quantum conditional entropy, quantum
mutual information, and quantum conditional mutual information are defined
as

H(A|B)ρ := H(AB)ρ −H(B)ρ, (2.14)

I(A;B)ρ := H(A)ρ +H(B)ρ −H(AB)ρ, (2.15)

I(A;B|C)ρ := I(A;BC)ρ − I(A; C)ρ. (2.16)

If there is no confusion, we denote H(·)ρX := H(·)ρHX
and I(·)ρX := I(·)ρHX

for classical-quantum states defined in (2.3).

Distance measures

The trace distance of ρ and σ on H is defined as

d(ρ, σ) :=
1

2
Tr |ρ− σ| (2.17)

and the quantum relative entropy is defined as

D(ρ‖σ) :=

{
Tr ρ(log ρ− log σ) if supp(ρ) ⊂ supp(σ),

∞ otherwise,
(2.18)

where supp(ρ) := {|x〉 ∈ H | ρ|x〉 6= 0}. Similar to the classical case, the trace
distance is a metric on the set of quantum states but the quantum relative
entropy does not satisfy the axioms of a metric. Moreover, the quantum
Pinsker inequality [65, Eq. (3.53)] relates the trace distance and the quantum
relative entropy as

2d2(ρ, σ) ≤ D(ρ‖σ). (2.19)

With the quantum relative entropy, the quantum mutual information is writ-
ten as

I(A;B)ρ = D(ρ‖ρA ⊗ ρB), (2.20)

where ρA and ρB are reduced states of ρ on A and B, respectively.
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Quantum relative Rényi entropy and data-processing inequalities

For s ∈ (−1, 0) ∪ (0,∞), the quantum relative Rényi entropy [60] is defined
as

D1+s(ρ‖σ) :=

{
1
s

log Tr ρ1+sσ−s if supp(ρ) ⊂ supp(σ) or s ∈ (−1, 0),

∞ otherwise.

By limiting s to 0, we obtain the quantum relative entropy as

lim
s→0

D1+s(ρ‖σ) =
d

ds
log Tr ρ1+sσ−s|s=0 = D(ρ‖σ) (2.21)

Thus, we consider the quantum relative entropy as the quantum relative
Rényi entropy for s = 1.

The quantum relative Rényi entropy satisfies the data-processing inequal-
ity with respect to CPTP maps κ [65, Eq. (5.56)] and measurementsM [65,
Eq. (3.23)]:

D1+s(ρ‖σ) ≥ D1+s(κ(ρ)‖κ(σ)) for s ∈ [−1, 1], (2.22)

D1+s(ρ‖σ) ≥ D1+s(P
M
ρ ‖PMσ ) for s ≥ −1, (2.23)

where PMρ and PMρ are probability distributions after the measurementM =

{Mi}i on ρ and σ, respectively, i.e.,

PMρ =
∑
i

(Tr ρMi) · |i〉〈i|, PMσ =
∑
i

(Tr σMi) · |i〉〈i|.

When the state on A⊗B is ρAB, a measurement is performed on the system
B, and the measurement outcome is described by the random variable X, we
have

I(A;B)ρAB ≥ I(A;X)ρAX
(2.24)

from (2.20) and (2.23).

Fannes-type inequalities

Fannes-type inequalities evaluate the difference of the entropy, the condi-
tional entropy, and the mutual information by the trace distance. Let

η0(x) :=

{
1/e if 1/e < x,

−x log x if 0 < x < 1/e,
(2.25)
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and ε := 2d(ρ, σ). When ρ and σ are the states on d-dimensional space A,
the Fannes inequality [58] is

|H(A)ρ −H(A)σ| ≤ ε log d+ η0(ε). (2.26)

When ρ and σ are the states on A⊗ B, the Alicki-Fannes inequality [59] is

|H(A|B)ρ −H(A|B)σ| ≤ 4ε log d+ 2h2(ε). (2.27)

Combining (2.26) and (2.27), we have [65, Eq. (5.105)]

|I(A;B)ρ − I(A;B)σ| ≤ |H(ρ)−H(σ)|+ |H(A|B)ρ −H(A|B)σ| (2.28)

≤ 5ε log d+ η0(ε) + 2h2(ε). (2.29)

2.3 Notation

For any set T , we denote by |T | the cardinality of the set T . For any quantum
system H, dimH denotes the dimension of H. The matrix In denotes the
n× n identity matrix and IH denotes the identity matrix on H. PrX [f(X)]

is the probability that X satisfies the condition f(X). The set of integers is
denoted by Z and Zd := Z/dZ for any integer d.
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Chapter 3

Capacity of Quantum Private
Information Retrieval

This chapter investigates the fundamental communication limit of symmetric
and non-symmetric multi-server QPIR and constructed an optimal protocol
achieving the communication limit. We considered the communication model
in which the user sends classical query and the servers return quantum an-
swers but the servers share prior entanglement before the protocol starts.
The communication efficiency of a QPIR protocol is evaluated by the QPIR
rate defined as the ratio of the size of one message to the total dimension of
the downloaded quantum systems. Higher QPIR rate implies higher commu-
nication efficiency and an upper bound of QPIR rates is 1 from definition.
The maximum of QPIR rates, called the QPIR capacity, characterizes the op-
timal communication efficiency of QPIR. In this chapter, we prove that the
symmetric and non-symmetric QPIR capacities are 1. Capacity 1 implies
that symmetric QPIR can be achieved with the same efficiency as retrieval
without secrecy.

To be precise, we evaluate the security of a QPIR protocol with three
parameters: the retrieval error probability, the user secrecy in which the
identity of the queried message is unknown to any individual server, and the
server secrecy in which the user obtains no more information than the tar-
geted message. The main theorem of this chapter is that the QPIR capacity
is 1 regardless of whether it is of exact/asymptotic security and with/without
the restriction that the upload cost is negligible to the download cost. For
the achievability of the capacity, we propose a rate-one QPIR protocol with
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Table 3.1: Comparison of protocols in Chapter 3 and [27]

QPIR protocol PIR protocol [27]

Server secrecy Yes No

Capacity 1
1− n−1

1− n−f

Condition for
capacity 1

n ≥ 2 n→∞

Upload cost 2f bits n(f − 1) log n bits

Possible message
sizes

{`2}∞`=2 {`n−1}∞`=2

∗ Server secrecy is the property that the user obtains no information other than

the targeted message.

† n, f: the numbers of servers and messages, respectively.

‡ Upload cost is the total bits which are sent to the servers.

perfect security and finite upload cost. The proposed QPIR protocol can be
considered as a quantum version of Protocol 1.1. For the converse bound, we
give the strong converse bound, which proves that the rate 1 is optimal even
if any error probability is allowed and no security is guaranteed.

The capacity-achieving protocol has several remarkable advantages com-
pared to the classical PIR protocol in [27] whose upload cost and message
size are minimized (see Table 3.1). First, our protocol is a symmetric QPIR
protocol, i.e., the user obtains no information from messages other than the
retrieved one. This contrasts with the protocol in [27] that retrieves some
information of the other messages. Second, our protocol keeps the secrecy
against the malicious user and servers. That is, the user cannot obtain more
information than the targeted message even if the user sends malicious queries
to the servers, and the servers cannot obtain the identity of the user’s tar-
geted message even if the servers return malicious answers. Third, the rate
1 of our protocol is greater than the rate (1− n−1)/(1− n−f) of the protocol
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in [27]. Fourth, our protocol achieves the capacity with only two servers.
That is, in the sense of the QPIR capacity, there is no benefit to using more
than two servers. On the other hand, in the protocol in [27], the capacity
is strictly increasing in the number of servers and strictly decreasing in the
number of messages, and an infinite number of servers are needed to achieve
the capacity 1. Fifth, our protocol needs the upload of 2f bits whereas the
protocol in [27] needs (n(f − 1) log n)-bit upload. Last, our protocol exists
if the message size m is the square of any integer, but the protocol in [27]
requires the message size m to be the (n− 1)-th power of any integer.

The converse proofs of the QPIR capacities are much simpler than those of
the PIR capacities [26,28]. Whereas the papers [26,28] used several entropy
inequalities based on the assumptions on the PIR problem, our converse
bounds are concisely derived without using any secrecy conditions but by
focusing on the download step of QPIR protocol.

The remaining of this chapter is organized as follows. Section 3.1 presents
the formal definition of the QPIR protocol and capacity and proposes the
QPIR capacity theorem. Section 3.2 constructs the rate-one QPIR protocol
and analyzes the security of our protocol against the malicious user and
servers. Section 3.3 proves the converse bound.

3.1 QPIR protocol and capacity theorem

In this section, we formally define the QPIR protocol and its capacity and
presents the capacity theorem.

3.1.1 Formal definition of QPIR protocol

In this thesis, we consider QPIR with multiple servers described as follows
(Figure 3.1). Let n, f,m be integers greater than 1. The participants of
the protocol are one user and n servers. The servers do not communicate
with each other and each server contains the whole set of uniformly and
independently distributed f messages M = (M1, . . . ,Mf) ∈ {1, . . . ,m}f . Let
A′1, . . . ,A′n be d′-dimensional Hilbert spaces. The state of A′1 ⊗ · · · ⊗ A′n is
initialized as ρprev, and is distributed such that the j-th server servj contains
A′j. The user chooses the index of the targeted message K to retrieve the
K-th message MK , where the distribution of K is uniform and independent
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User

Target Index: K ∈ {1, . . . , f}

serv1

M1

M2
...
Mf

serv2

M1

M2
...
Mf

· · ·

servn

M1

M2
...
Mf

Prior Entanglement ρprev

MK ∈ {1, . . . ,m}
Q1

Q2 Qn

A1 A2
An

ρMQ

A′1 A′2 A′n

Figure 3.1: Quantum private information retrieval protocol with multiple
servers. The composite system of the servers is initialized to an entangled
state ρperv.

of the message M1, . . . ,Mf .
To retrieve the K-th message MK , the user chooses a random variable

Ruser in a set Ruser and encodes the queries for retrievingMK by user encoder
Encuser:

Encuser(K,Ruser) = Q = (Q1, . . . , Qn) ∈ Q1 × · · · × Qn,

where Qj is the set of query symbols to the j-th server for any j ∈ {1, . . . , n}.
The n queries Q1, . . . , Qn are sent to the servers serv1, . . . , servn, respec-
tively. LetA1, . . . ,An be d-dimensional Hilbert spaces andA := A1⊗· · ·⊗An.
After receiving the j-th query Qj, each server servj applies a CPTP map Λj

from A′j to Aj depending on Qj,M1, . . . ,Mf and sends the quantum system
Aj to the user. With the server encoder Encservj

, the map Λj is written as

Λj = Encservj
(Qj,M1, . . . ,Mf),

30



Chapter 3. Capacity of Quantum Private Information Retrieval

and the received state of the user is written as

ρMQ := Λ1 ⊗ · · · ⊗ Λn(ρprev) ∈ S

(
n⊗
j=1

Aj

)
. (3.1)

the user decodes the received state by a decoder, which is given as a POVM
Dec(K,Q) := {YK,Q(w) | w ∈ {1, . . . ,m}} on A1 ⊗ · · · ⊗ An dependently
of the variables K and Q. The protocol outputs the measurement outcome
W ∈ {1, . . . ,m}.

Given the numbers of servers n and messages f, the above QPIR protocol
of message size m is described by the four-tuple

Ψ
(m)
QPIR := (ρprev,Encuser,Encserv,Dec)

of the prior entanglement, user encoder, server encoder, and decoder, where
Encserv := (Encserv1 , . . . ,Encservn).

3.1.2 Security measures

For any j ∈ {1, . . . , n}, we denote user(Ψ
(m)
QPIR) and servj(Ψ

(m)
QPIR) by the

information of the user and the server servj at the end of the protocol Ψ
(m)
QPIR,

respectively. The security of a QPIR protocol Ψ
(m)
QPIR is evaluated by the error

probability, the server secrecy, and the user secrecy, which are defined as

Perr(Ψ
(m)
QPIR) := Pr

W,K,Q
[W 6= MK ], (3.2)

Sserv(Ψ
(m)
QPIR) := I(M c

K ; user(Ψ
(m)
QPIR)|K), (3.3)

Suser(Ψ
(m)
QPIR) := max

j∈{1,...,n}
I(K; servj(Ψ

(m)
QPIR)), (3.4)

where M c
K := (M1, . . . ,MK−1,MK+1, . . . ,Mf). If Sserv(Ψ

(m)
QPIR) = 0, the non-

targeted messages M c
K are independent of the user information. Similarly, if

Suser(Ψ
(m)
QPIR) = 0, the index of the targeted message K is independent of any

individual server’s information.

Remark 3.1. We evaluate the error of a protocol by the error probability
Perr(Ψ

(m)
QPIR). This is because the messages M and the index of the targeted

message K are randomly chosen, and even ifM and K are fixed, the protocol
is defined in Section 3.1.1 outputs the outcome W probabilistically. Notice
that even if M and K are fixed, the queries Q are randomly chosen and
the decoder Dec(K,Q) is a quantum measurement, which gives the output
randomly.
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3.1.3 Costs and QPIR rate

We define the upload cost, the download cost, and the QPIR rate of a protocol
Ψ

(m)
QPIR by

U(Ψ
(m)
QPIR) :=

n∑
j=1

log |Qj|, (3.5)

D(Ψ
(m)
QPIR) :=

n∑
j=1

log dimAj, (3.6)

R(Ψ
(m)
QPIR) :=

logm

D(Ψ
(m)
QPIR)

. (3.7)

The upload cost, the download cost, and the QPIR rate defined respectively
as the size of the whole query set Q1 × · · · × Qn, the total dimension of
the downloaded quantum systems A1 ⊗ · · · ⊗ An, and the ratio of the size
of the retrieved message MK over the download cost. When the base of
the logarithm is two, the QPIR rate means the number of retrieved bits per
download of one qubit (i.e., a 2-dimensional Hilbert space) and it evaluates
the communication efficiency of the protocol. From definition, the QPIR rate
R(Ψ

(m)
QPIR) is upper bounded by 1. Since the QPIR rate of the trivial solution

is 1/f, QPIR protocols are expected to have QPIR rates greater than 1/f.

3.1.4 QPIR capacity

The QPIR capacity is the optimal QPIR rate when the numbers of servers
and messages are fixed. We define the QPIR capacity with constraints on
the security measures and upload cost. The asymptotic security-constrained
capacity and the exact security-constrained capacity are defined with α ∈
[0, 1) and β, γ, θ ∈ [0,∞] by

Cα,β,γ,θ
asymp := sup

(3.8)
lim inf
`→∞

R(Ψ
(m`)
QPIR),

Cα,β,γ,θ
exact := sup

(3.9)
lim inf
`→∞

R(Ψ
(m`)
QPIR),

where the supremum is taken for sequences {m`}∞`=1 such that lim`→∞m` =∞
and for sequences {Ψ(m`)

QPIR}∞`=1 of QPIR protocols to satisfy either (3.8) or (3.9)
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given by

lim sup
`→∞

Perr(Ψ
(m`)
QPIR) ≤ α, lim sup

`→∞
Sserv(Ψ

(m`)
QPIR) ≤ β,

lim sup
`→∞

Suser(Ψ
(m`)
QPIR) ≤ γ, lim sup

`→∞

U(Ψ
(m`)
QPIR)

D(Ψ
(m`)
QPIR)

≤ θ,
(3.8)

and

Perr(Ψ
(m`)
QPIR) ≤ α, Sserv(Ψ

(m`)
QPIR) ≤ β,

Suser(Ψ
(m`)
QPIR) ≤ γ, lim sup

`→∞

U(Ψ
(m`)
QPIR)

D(Ψ
(m`)
QPIR)

≤ θ.
(3.9)

The parameters α, β, γ, θ are the upper bounds of the error probability,
server secrecy, user secrecy, and upload cost, respectively. The two capacities
Cα,β,γ,θ

asymp , Cα,β,γ,θ
exact are defined as the supremum of QPIR rates for all QPIR pro-

tocols satisfying the upper bounds asymptotically and exactly, respectively.
Since any protocols satisfying the upper bounds α, β, γ, θ exactly also satisfy
the bounds asymptotically, for any α ∈ [0, 1) and β, γ, θ ∈ [0,∞], we have
the inequality

C0,0,0,0
exact ≤ Cα,β,γ,θ

exact ≤ Cα,β,γ,θ
asymp ≤ Cα,∞,∞,∞

asymp . (3.10)

By the definition with these four parameters α, β, γ, θ, we consider both
symmetric and non-symmetric QPIR capacities at the same time. If (α, γ) =

(0, 0), the capacities C0,β,0,θ
exact and C0,β,0,θ

asymp are the QPIR capacities with perfect
security and if (α, β, γ) = (0, 0, 0), the capacities C0,0,0,θ

exact and C0,0,0,θ
asymp are the

symmetric QPIR capacities with perfect security.

3.1.5 Capacity theorem

The main theorem of this chapter is given as follows.

Theorem 3.1 (QPIR capacity). The capacity of the quantum private infor-
mation retrieval for f ≥ 2 messages and n ≥ 2 servers is

Cα,β,γ,θ
exact = Cα,β,γ,θ

asymp = 1,

for any α ∈ [0, 1) and β, γ, θ ∈ [0,∞].
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Proof. In Section 3.2, we will prove C0,0,0,0
exact ≥ 1 by constructing a rate-one

symmetric QPIR protocol. On the other hand, Cα,∞,∞,∞
asymp ≤ 1 for any α ∈

[0, 1) is trivial upper bound but we give a formal proof of this bound in
Section 3.3. Then, the inequality (3.10) implies the theorem.

Note that the capacity does not depend on the number of messages f and
the number of servers n. This contrasts with the classical PIR capacity [26],
which is strictly decreasing for f and strictly increasing for n. Moreover,
the capacity does not depend on the security constraints, i.e., there is no
trade-off between the capacity and the constraints α, β, γ, θ. Furthermore,
the theorem implies that the symmetric QPIR capacity is 1.

Remark 3.2. In our QPIR model, we assumed that the messagesM1, . . . ,Mf

are uniformly at random. However, the assumption is necessary only for
proving the converse bounds. Without the assumption, our QPIR protocol
has no error and achieves perfect server and user secrecies.

Remark 3.3. We also assumed that the systems A′1, . . . ,A′n are same di-
mensional and the same for A1, . . . ,An. Indeed, we can prove Theorem 3.1
without this assumption. However, we give this assumption for simplicity
and since it is necessary for the converse proof of t-private QPIR capacity
(Chapter 5), which uses the same formal definition of the protocol.

3.2 Construction of QPIR protocol

In this section, we construct a rate-one two-server QPIR protocol with per-
fect security and negligible upload cost. Our protocol is constructed if the
message size m is the square of an arbitrary integer `. Then, by taking
m` = `2, the sequence {Ψ(m`)

QPIR}∞`=1 of our protocols achieves the rate 1 with
perfect security and negligible upload cost, which implies

C0,0,0,0
exact ≥ 1. (3.11)

In the following, we give preliminaries on quantum operations and states in
Section 3.2.1 and construct the QPIR protocol in Section 3.2.2.
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3.2.1 Preliminaries for protocol construction

For an arbitrary integer ` ≥ 2, let H be an `-dimensional Hilbert space
spanned by an orthonormal basis {|i〉 | i ∈ Z`}. Define a maximally entangled
state |Φ〉 on H⊗H by

|Φ〉 :=
1√
`

`−1∑
i=0

|i〉 ⊗ |i〉.

For a, b ∈ Z`, the generalized Pauli operators on H are defined as

X :=
`−1∑
i=0

|i+ 1〉〈i|, Z :=
`−1∑
i=0

ωi|i〉〈i|, (3.12)

where ω = exp(2π
√
−1/`), and the discrete Weyl operators are defined as

W(a, b) := XaZb =
`−1∑
i=0

ωib|i+ a〉〈i|. (3.13)

These operators satisfy the relations

ZbXa = ωbaXaZb, (3.14)

W(a1, b1)W(a2, b2) = ωb1a2W(a1 + a2, b1 + b2), (3.15)

W(a, b)∗ = ωbaW(−a,−b). (3.16)

We use the following double-ket notation [61] for denoting pure states by
matrices: For any matrix T :=

∑`−1
i,j=0 tij|i〉〈j| on H,

|T⟫ :=
`−1∑
i,j=0

tij|i〉 ⊗ |j〉 ∈ H ⊗H. (3.17)

With this notation, the maximally entangled state is written as

|Φ〉 =
1√
`
|I⟫.

Since T> =
∑`−1

i,j=0 tij|j〉〈i|, it holds |T⟫ = (T ⊗ I)|I⟫ = (I ⊗ T>)|I⟫. More-
over, for any unitaries U, V on H, we have

(U ⊗ V )|T⟫ = |UTV >⟫, (3.18)

(U ⊗ U)|I⟫ = |UU∗⟫ = |I⟫. (3.19)
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For the maximally entangled state |Φ〉 on H⊗H, the Pauli operation W(a, b)

on the first (second) quantum system H can be translated to the operation
W(−a,−b) on the second (first) quantum system H by

(I ⊗W(a, b))|Φ〉 = (W(a, b)> ⊗ I)|Φ〉
= ((W(a, b)∗ ⊗ I)|Φ〉 = ωab(W(−a,−b)⊗ I)|Φ〉. (3.20)

With the basis given in the following proposition, we construct the mea-
surement in our QPIR protocol.

Proposition 3.1. The set

MZ2
`

:= {(W(a, b)⊗ I)|Φ〉 | a, b ∈ Z`}

is an orthonormal basis of H⊗H.

Proof. Since W(a, b)⊗ I is a unitary matrix for any a, b ∈ Z`, all elements in
MZ2

`
are unit vectors. Then, it is sufficient to show that every different two

vectors in MZ2
`
are mutually orthogonal: for any different (a, b), (c, d) ∈ Z2

` ,

((W(a, b)⊗ I)|Φ〉)∗(W(c, d)⊗ I)|Φ〉 = 0. (3.21)

Since W(a, b)∗W(c, d) = ωb(a−c)W(c− a, d− b), the left-hand side of (3.21) is
written as

ωb(c−a)〈Φ|(W(c− a, d− b)⊗ I)|Φ〉.

Moreover, for any x, z ∈ Z`, we have

〈Φ|(W(x, z)⊗ I)|Φ〉 =
1

`

`−1∑
i=0

〈i|W(x, z)|i〉 (3.22)

=
1

`

`−1∑
i=0

ωiz〈i|i+ x〉 (3.23)

= δ(x,z),(0,0) (3.24)

Thus, Eq. (3.21) holds for any (a, b) 6= (c, d), which implies the desired
statement.
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3.2.2 Construction of QPIR protocol

In this section, we propose a rate-one two-server QPIR protocol with perfect
security and negligible upload cost. This protocol is constructed from the
idea of the classical two-server PIR protocol in [5, Section 3.1].

In this protocol, a user retrieves a messageMK from two servers serv1 and
serv2. Each server contains a copy of the messagesM1, . . . ,Mf ∈ {0, . . . , `2−
1 =: m`− 1} for an arbitrary integer `. By identifying the set {0, . . . , `2− 1}
with Z2

` , the messages M1, . . . ,Mf are considered to be elements of Z2
` . We

assume that serv1 and serv2 possess the `-dimensional quantum systems A1

and A2, respectively, and the maximally entangled state |Φ〉 in A1 ⊗ A2 is
shared at the beginning of the protocol.

Protocol 3.1. The QPIR protocol for retrieving MK is described as follows.

Step 1. [Preparation] Depending on the index of the targeted message K,
the user chooses a subset Ruser of {1, . . . , f} uniformly. Let Q1 :=

Ruser and

Q2 :=

{
Q1 \ {K} if K ∈ Q1,

Q1 ∪ {K} otherwise.

Step 2. [Query] The user sends the queries Q1 and Q2 to serv1 and serv2,
respectively.

Step 3. [Download] serv1 calculates H1 :=
∑

i∈Q1
Mi ∈ Z2

` and applies
W(H1) on the quantum system A1. Similarly, serv2 calculates H2 :=∑

i∈Q2
Mi and applies W(H2) to the quantum system A2. The state

on A1 ⊗A2 is (W(H1)⊗W(H2))|Φ〉.

serv1 and serv2 send the quantum systems A1 and A2 to the user,
respectively.

Step 4. [Retrieval] The user performs a POVM

Dec(K,Q) = {YK,Q(a, b) | a, b ∈ Z`}

on the received state ρW,Q, where each POVM element YK,Q(a, b) for
the outcome (a, b) is defined by

YK,Q(a, b) := (W(a, b)⊗ I)|Φ〉〈Φ|(W(a, b)∗ ⊗ I)
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if K ∈ Q1, and

YK,Q(a, b) := (W(−a,−b)⊗ I)|Φ〉〈Φ|(W(−a,−b)∗ ⊗ I)

otherwise. The user obtains the measurement outcome (a, b) as the
retrieval result.

Protocol 3.1 is analyzed as follows.

Error probability

The protocol has no error as follows. Note that H1 = H2 + MK if K ∈ Q1,
and H1 = H2 −MK otherwise. After Step 3, the state on A1 ⊗A2 is

W(H1)⊗W(H2)|Φ〉

=
ω∓bMK

aH2

√
`

(W(±MK)⊗ I)(W(H2)⊗W(H2))|I⟫ (3.25)

=
ω∓bMK

aH2

√
`

(W(±MK)⊗ I)|I⟫ (3.26)

= ω∓bMK
aH2 (W(±MK)⊗ I)|Φ〉,

where H2 = (aH2 , bH2) and MK = (aMK
, bMK

) ∈ Z2
` . The equality (3.25)

is derived from W(H1) = W(±MK + H2) = ω∓bMK
aH2W(±MK)W(H2) and

the equality (3.26) is from (3.19). Therefore, in Step 5, the measurement
outcome is MK ∈ Z2

` with probability 1.

User secrecy and server secrecy

Perfect user secrecy follows from that of the protocol [5, Section 3.1]. Note
that even if the collection of Q1 and Q2 depends on K, each of Q1 and Q2

is individually independent of the index K. Thus, perfect user secrecy is
obtained.

Perfect server secrecy is obtained because the received state of the user
is (W(±MK)⊗ I)|Φ〉, which is independent of the messages except for MK .

Costs and QPIR rate

The upload cost is U(Ψ
(m`)
QPIR) = 2f log 2 since two subsets Q1 and Q2 of

{1, . . . , f} are uploaded and each subset of {1, . . . , f} is expressed by f bits.
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The download cost is D(Ψ
(m`)
QPIR) = log dimA1⊗A2 = log `2 = logm`. There-

fore, the rate is

R(Ψ
(m`)
QPIR) =

logm`

D(Ψ
(m`)
QPIR)

= 1,

and U(Ψ
(m`)
QPIR)/D(Ψ

(m`)
QPIR) goes to zero as m` →∞.

3.2.3 Security against malicious operations

In the previous subsection, we showed that the protocol in Section 3.2.2
has perfect security when the user and the servers follow the protocol. In
this subsection, we prove that the protocol in Section 3.2.2 also guarantees
the server and user secrecies even if the servers or the user apply malicious
operations. Namely, we consider two malicious models: the malicious server
model and the malicious user model.

The malicious server model considers the case where the servers apply
malicious operations to obtain the index of the targeted message K but the
user follows the protocol, i.e., the query generation and the recovery by the
user are the same as the protocol in Section 3.2.2. Our protocol is secure
against this model since each of Q1 and Q2 is individually independent of the
index K and the servers obtain no more information from the user except
for Q1 and Q2. Therefore the servers cannot obtain any information of K by
malicious operations.

The second security model is the malicious user model, where the user
sends malicious queries to the servers to obtain the non-targeted message
in addition to the targeted message MK . That is, the user sends malicious
queries Q = (Q1, Q2) to retrieve the message MK and some information
of M c

K = (M1, . . . ,MK−1,MK+1, . . . ,Mf). Similar to the malicious server
model, we assume that the servers follow the protocol. Our protocol is also
secure against this model since the user downloads the m`-dimensional quan-
tum system and the user is assumed to obtainMK ∈ {0, . . . ,m`−1}. That is,
the user cannot obtain more information than MK . This security is precisely
proved by the following relation:

I(A;M c
K |MK , K,Q)ρMQ

= 0, (3.27)

where A = A1 ⊗A2.
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Proof of Eq. (3.27). Since the user obtains the message MK , we have

H(MK |A, K,Q)ρMQ
= 0. (3.28)

Eq. (3.28) is equivalent to

H(A,MK |K,Q)ρMQ
= H(A|K,Q)ρMQ

. (3.29)

The relation (3.29) implies the following relations:

0 ≤ H(A|MK , K,Q)ρMQ
(3.30)

= H(A,MK |K,Q)ρMQ
−H(MK |K,Q) (3.31)

= H(A|K,Q)ρMQ
− logm` ≤ 0. (3.32)

The equality in (3.32) follows from the condition (3.29), the independence
between MK and (K,Q), and the uniform distribution of MK . The last
inequality in (3.32) follows from dimA = logm`. Therefore, we have

H(A|MK , K,Q)ρMQ
= 0 (3.33)

which implies (3.27).

3.3 Strong converse bound

In this section, we prove the converse bound

Cα,∞,∞,∞
asymp ≤ 1 (3.34)

for any α ∈ [0, 1).
For the proof, we prepare the following proposition from [65, Eq. (4.66)].

The proof of Proposition 3.2 is reorganized in Appendix A.

Proposition 3.2 ( [65, Eq. (4.66)]). Consider the scenario that a classical
message w ∈ {0, . . . ,m − 1} is encoded as ρw and it is decoded by the the
decoding measurement {Y (w)}mw=1. Define the average error probability by
Perr = (1/m)

∑m
i=1 Tr ρwY (w). Then, for any s ∈ [0, 1] and any state σ such

that supp(ρ) ⊂ supp(σ), we have

(1− Perr)
1+sms ≤ 1

m

m∑
w=1

Tr ρ1+s
w σ−s. (3.35)
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We introduce the following notation. By replacing the notation of ρMQ

defined in (3.1), let ρmk,z be the quantum state on the composite system⊗n
j=1Aj, where mk is the message to be retrieved and z := (mc

k, q) for the
collection mc

k of other m − 1 messages and the collection q of queries. Let
σz := (1/m)

∑m
mk=1 ρmk,z.

Applying Proposition 3.2 with (s, ρw, Y (w), σ) := (1, ρmk,z, Yk,q(w), σz),
we have

(1− Perr,z(Ψ
(m)
QPIR))2m ≤ 1

m

m∑
mk=1

Tr ρ2
mk,z

σ−1
z , (3.36)

where Perr,z(Ψ
(m)
QPIR) is the error probability when z is fixed. Furthermore, we

can bound the RHS of (3.36) as

1

m

m∑
mk=1

Tr ρ2
mk,z

σ−1
z ≤

1

m

m∑
mk=1

Tr ρmk,zσ
−1
z

= Trσzσ
−1
z = Tr I =

n∏
j=1

dimAj (3.37)

Combining (3.36) and (3.37), the error probability is upper bounded as

1− Perr(Ψ
(m)
QPIR) = 1− EZPerr,Z(Ψ

(m)
QPIR) (3.38)

≤

√∏n
j=1 dimAj

m
. (3.39)

For any sequence of QPIR protocols {Ψ(m`)
QPIR}∞`=1, if Ψ

(m`)
QPIR satisfies

R(Ψ
(m`)
QPIR) =

logm`

log
∏n

j=1 dimAj
≥ 1 (3.40)

for any sufficiently large `, we have∏n
j=1 dimAj

m`

→ 0.

Hence, by (3.39), 1− Perr(Ψ
(m`)
QPIR) approaches zero, which implies (3.34).
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Capacity of Multi-Round
Quantum Private Information
Retrieval

In Chapter 3, we considered the case where the user and the servers commu-
nicate only one round. In this chapter, we consider the QPIR problem when
the user and the servers communicate multiple times. When multi-round
interaction is allowed, the user and the servers may choose their encoders
and decoder depending on the information obtained in the previous rounds.
Thus, multi-round QPIR is not reduced to one-round QPIR and it is expected
to achieve higher QPIR rate in general.

The strength of the models of multi-round protocols differs depending
on whether the user’s and servers’ memories are classical memory or quan-
tum memory. With classical memories, the user and the servers record only
classical information. On the other hand, when quantum memories are avail-
able, they can regard their quantum memories as the environment systems of
quantum operations and measurements, and thus a kind of quantum side in-
formation becomes available. Since the classical information can be recorded
in the quantum memory, the model with quantum memories includes the
model with classical memories. To survey the model with stronger resources
as possible, in this chapter, we consider that the user and the servers have
quantum memories.

The main question in this chapter is as follows.
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Enc
(1),Q[1],M
serv

ρprev

M

K

User
Servers

Enc
(2),Q[2],M
serv

Dec(1),K,Q[1]

Dec(2),K,Q[2]

B,M

Q1

C, K,Q[1]

B,M,Q[1]

A1 A2

Q2

C, K,Q[2]

B,M,Q[2]

MK

Figure 4.1: Information flow in 2-round QPIR protocol. The servers have all
messages M = (M1, . . . ,Mf) and the user retrieves the K-th message MK .

Question 1. Is the multi-round QPIR capacity with local quantum memories
strictly higher than the one-round QPIR capacity derived in Chapter 3?

Since multi-round QPIR with quantum memories generalizes the model in
Chapter 3, one may expect a positive answer to the question. Furthermore,
there exists a one-server multi-round QPIR protocol which has better com-
munication complexity than any one-server one-round QPIR protocols [48].
On the other hand, one may also conjecture the answer negatively because
there have been many negative results in similar scenarios: The classical
multi-round PIR capacity is the same as the one-round capacity [38]; In
classical one-sender one-receiver multi-round communication protocols, the
feedback does not increase the capacity [62].

In this chapter, we answer Question 1 negatively: the multi-round QPIR
capacity is 1. The proof idea is to use the trivial upper bound 1 of the
QPIR rate as we remarked in Section 3.1.3. This chapter essentially gives
the formal proof of this trivial upper bound for the multi-round case. Sec-
tion 4.1 formally defines the multi-round QPIR protocol as a generalization
of the protocol description in Section 3.1.1 and proposes the capacity the-
orem. Section 4.2 proves the weak converse bound that any multi-round
QPIR protocol has rate at most 1. Then the achievability of the capacity is
guaranteed by the protocol in Section 3.2.2, which has the QPIR rate 1. The
weak converse bound in Section 4.2 also applies to the one-round QPIR in
Chapter 3.
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4.1 Multi-round QPIR protocol and capacity
theorem

4.1.1 Formal definition of multi-round QPIR protocol

For any positive integer r, we give the formal description of the r-round QPIR
protocol Ψ

(m,r)
QPIR. The information flow of the quantum systems is depicted in

Figure 4.1. When r = 1, the protocol description is equivalent to the protocol
defined in Section 3.1.1.

Let n, f,m be integers greater than 1. Each of the servers serv1, . . . , servn
contains the whole copy of the uniformly and independently distributed f

messages M = (M1, . . . ,Mf) ∈ {1, . . . ,m}f . The j-th server servj possesses
a quantum system Bj as local quantum register and the n servers share an
entangled state ρprev on the quantum system B := B1 ⊗ · · · ⊗ Bn.

The user chooses the index of the targeted message K ∈ {1, . . . , f} uni-
formly and independently of the messagesM1, . . . ,Mf . The user prepares the
query Q1 = (Q1

1, Q
1
2, . . . , Q

1
n) depending on K. The user has a local quantum

register C where the state is initialized depending on K and Q1.
For i ∈ {1, . . . , r}, the i-th round is described as follows. Let Qi

j be the
query to servj at round i, and we denote Qi := (Qi

1, . . . , Q
i
n) and Q

[i]
j :=

(Q1
j , . . . , Q

i
j). The query Qi for round i is determined at round i − 1. The

user sends Qi
j to the j-th server servj. Depending on Q[i]

j andM , each server

servj applies a CPTP map Enc
(i),Q

[i]
j ,M

servj from Bj to Aij ⊗ Bj. That is, when
the collection of the encoders is written as

Enc(i),Q[i],M
serv :=

n⊗
j=1

Enc
(i),Q

[i]
j ,M

servj ,

the state ρBM on B is encoded as

ρA
iB

M := Enc(i),Q[i],M
serv (ρBM),

where Ai := Ai1⊗ · · · ⊗Ain. Each server transmits the system Aij to the user
and the received state of the user is the reduced state

ρA
i

M := Tr
B
ρA

iB
M . (4.1)
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If i < r, the user applies a quantum instrument Dec(i),K,Q[i]

= {Y i
Qi+1}Qi+1∈Qi+1

from Ai⊗C to C depending on K and Q[i] := (Q1, . . . , Qi), where Qi+1
1 ×· · ·×

Qi+1
n is the set of queries at round i+1 and Qi+1 is the measurement outcome.

Then round i ends and round i + 1 starts. If i = r, i.e., at the final round,
the user applies a POVM Dec(r),K,Q[r]

= {YK,Q(w)}mw=1 on Ar ⊗ C depending
on K and Q[r] and outputs the measurement outcome W ∈ {1, . . . ,m}.

Similar to Section 3.1.1, the security of the protocol is evaluated by the
the error probability, the server secrecy, and the user secrecy defined by

Perr(Ψ
(m,r)
QPIR) := Pr

W,K,Q1
[W 6= MK ],

Sserv(Ψ
(m,r)
QPIR) := I(M c

K ; user(Ψ
(m,r)
QPIR)|K),

Suser(Ψ
(m,r)
QPIR) := max

j∈{1,...,n}
I(K; servj(Ψ

(m,r)
QPIR)),

where user(Ψ(m,r)
QPIR) and servj(Ψ

(m,r)
QPIR) are the information of the user and the

server servj at the end of the protocol Ψ
(m,r)
QPIR, respectively. Given the QPIR

protocol Ψ
(m,r)
QPIR, we define the upload cost, the download cost, and the QPIR

rate by

U(Ψ
(m,r)
QPIR) :=

r∑
i=1

log |Qi|, (4.2)

D(Ψ
(m,r)
QPIR) :=

r∑
i=1

log dimAi, (4.3)

R(Ψ
(m,r)
QPIR) :=

logm

D(Ψ
(m,r)
QPIR)

. (4.4)

Now, we define the r-round QPIR capacities with four parameters. The
capacities are defined in the same way as Section 3.1.4 but we use the su-
perscript r to denote that they are the r-round capacities. For an error
constraint α ∈ [0, 1), server secrecy constraint β ∈ [0,∞], user secrecy con-
straint γ ∈ [0,∞], and upload constraint θ ∈ [0,∞], the asymptotic security-
constrained r-round capacity and the exact security-constrained r-round ca-
pacity are defined as

Cα,β,γ,θ,r
asymp := sup

(4.5)
lim inf
`→∞

R(Ψ
(m`,r)
QPIR),

Cα,β,γ,θ,r
exact := sup

(4.6)
lim inf
`→∞

R(Ψ
(m`,r)
QPIR),
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where the supremum is taken for sequences {m`}∞`=1 such that lim`→∞m` =∞
and for sequences {Ψ(m`,r)

QPIR}∞`=1 of r-round QPIR protocols to satisfy either
(4.5) or (4.6) given by

lim sup
`→∞

Perr(Ψ
(m`,r)
QPIR) ≤ α, lim sup

`→∞
Sserv(Ψ

(m`,r)
QPIR) ≤ β,

lim sup
`→∞

Suser(Ψ
(m`,r)
QPIR) ≤ γ, lim sup

`→∞

U(Ψ
(m`,r)
QPIR)

D(Ψ
(m`)
QPIR)

≤ θ,
(4.5)

and

Perr(Ψ
(m`,r)
QPIR) ≤ α, Sserv(Ψ

(m`,r)
QPIR) ≤ β,

Suser(Ψ
(m`,r)
QPIR) ≤ γ, lim sup

`→∞

U(Ψ
(m`,r)
QPIR)

D(Ψ
(m`,r)
QPIR)

≤ θ.
(4.6)

Since multi-round model allows more options for the QPIR task, we have the
following inequality from definition: for any r ≤ r′,

Cα,β,γ,θ,r
exact ≤ Cα,β,γ,θ,r′

exact , (4.7)

Cα,β,γ,θ,r
exact ≤ Cα,β,γ,θ,r′

exact . (4.8)

However, it is not trivial from definition whether the inequalities (4.7), (4.8)
are strict or not.

4.1.2 Capacity theorem

The multi-round QPIR capacity is derived as follows.

Theorem 4.1 (Multi-round QPIR capacity). Let r be any positive integer.
The r-round QPIR capacity for f ≥ 2 messages and n ≥ 2 servers is

C0,β,γ,θ,r
exact = C0,β,γ,θ,r

asymp = 1 (4.9)

for any β, γ, θ ∈ [0,∞].

Proof. Eq. (4.9) is proved by the following inequalities:

1 ≤ C0,0,0,0,r
exact ≤ C0,β,γ,θ,r

exact ≤ C0,β,γ,θ,r
asymp ≤ C0,∞,∞,∞,r

asymp ≤ 1.

The first inequality holds by applying the rate-one QPIR protocol in Sec-
tion 3.2.2 repetitively r times. The second, third, and fourth inequalities
follow from the definition of the capacities. The last inequality is proved in
Section 4.2. Therefore, we obtain the theorem.
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For one-round case (r = 1), the capacity result also applies to the QPIR
model of in Section 3.1.1. Differently from Theorem 3.1, Theorem 4.1 proves
only for the case where error probability goes to 0 (i.e., α = 0). Theorems 3.1
and 4.1 prove that the inequalities (4.7), (4.8) are indeed equalities when error
probability is asymptotically 0.

4.2 Weak converse bound

We prove the converse bound

C0,∞,∞,∞,r
asymp ≤ 1. (4.10)

Our proof comes from the fact that the multi-round QPIR protocol can
be considered as a case of the Classical-Quantum (CQ) channel coding with
classical feedback [63]. In the CQ channel coding with classical feedback, the
sender encodes a classical messageM as a quantum state and sends the state
over a fixed channel N . The receiver performs a decoding measurement on
the received state and returns the measurement outcome to the sender. the
sender and the receiver iterate this process r times while using the previous
measurement outcomes for encoding and decoding. At the end of the proto-
col, the receiver receives the classical message M . The paper [63] proved the
capacity of this problem when the sender and the receiver have their local
quantum registers, respectively. The paper [63] also considered the energy
constraint E that for a given Hamiltonian H on the input system of N , the
input states ρ1, . . . , ρr to the channel N should satisfy

∑r
i=1 Tr ρiH ≤ E. The

CQ channel capacity is characterized by the following proposition.

Proposition 4.1 ( [63, Theorem 4]). Let N be a quantum channel, r be the
number of communication rounds, m be the size of the message set, H be the
Hamiltonian acting on the input system of N , E be the energy constraint,
and ε be the error probability. Suppose the sender and the receiver have
local quantum registers, respectively. Then for the CQ channel coding with
classical feedback and energy constraint, we have the following inequality:

(1− ε) logm ≤ sup
ρ:Tr ρH≤E

rH(N (ρ)) + h2(ε). (4.11)

The multi-round QPIR protocol can be considered as a case of this prob-
lem where the channel N is the identity channel and there is no energy
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constraint. To see this fact, we consider the the collection of the servers as
the sender and the user as the receiver of the CQ channel coding, and focus
on the communication of a classical message from the collection of the servers
to the user. The servers sends to the user the systems Ai over the identity
channel and the user sends queries Qi to the servers as the measurement
outcome on Ai. The servers and the user have B and C as local quantum
registers, respectively. At the end of the protocol, the user obtains the classi-
cal targeted message MK . Therefore, we can consider the multi-round QPIR
protocol as a CQ channel coding with classical feedback.

By the similar proof of [63, Theorem 4], we have the following proposition.

Proposition 4.2. Consider the CQ channel coding of a classical message
M ∈ {1, . . . ,m} from the sender to the receiver by sending quantum systems
A1, . . . ,Ar sequentially over the identity channel and assisted by classical
feedback. We assume that the sender and the receiver have local quantum
registers, respectively. Let ρAi

M be the state on Ai. For the uniformly chosen
message M and the decoding output W , we define the error probability ε :=

Pr[M 6= W ]. Then we have the following inequality

(1− ε) logm ≤
r∑
i=1

H(ρA
i

M ) + h2(ε) (4.12)

≤
r∑
i=1

log dimAi + h2(ε), (4.13)

where h2(·) is the binary entropy function defined in (2.5).

For completeness of our thesis, we give a proof of Proposition 4.2 in
Appendix B.

Remark 4.1. Proposition 4.2 is slightly different from [63, Theorem 4].
First, whereas [63, Theorem 4] considers an energy constraint on the quantum
channel, Proposition 4.2 assumes no energy constraint. Second, whereas [63,
Theorem 4] considers the repetitive uses of a fixed quantum channel N ,
Proposition 4.2 considers each use of the identity quantum channels over
A1, . . . ,Ar. Even with these differences, we can apply the same proof steps
of [63, Theorem 4] and the first inequality of [63, Eq. (35)] is the inequality
(4.12).
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Now we prove the weak converse bound. We choose an arbitrary sequence
{Ψ(m`,r)

QPIR}∞`=1 of r-round QPIR protocols to satisfy ε` := Perr(Ψ
(m`,r)
QPIR) → 0 as

` → ∞. Considering the collection of the n servers as the sender and the
user as the receiver of Proposition 4.2, we can apply Proposition 4.2 to the
r-round QPIR protocol Ψ

(m`,r)
QPIR with the classical message MK ∈ {1, . . . ,m`},

transmitted quantum systems A1, . . . ,Ar, and classical feedback Q1, . . . , Qr.
In this case, ε and m of Proposition 4.2 is substituted by ε` and m`, i.e.,
Eq. (4.13) is written as

(1− ε`) logm` ≤
r∑
i=1

log dimAi + h2(ε`). (4.14)

Therefore, we have

lim
`→∞

R(Ψ
(m`,r)
QPIR) = lim

`→∞

logm`∑r
i=1 log dimAi

≤ 1, (4.15)

which implies (4.10).
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Chapter 5

Capacity of Quantum Private
Information Retrieval with
Colluding Servers

The multi-server QPIR model considered in Chapter 3 has a critical weakness
that the assumption of no communication among servers is too restrictive. By
relieving this assumption, this chapter considers t-private QPIR in which the
identity of the retrieved message is kept secret even if at most t servers may
communicate and collude. We derive the t-private QPIR capacity for any t

less than the number of servers n. The formal definition of QPIR protocol
is the same way as Chapter 3. The t-private QPIR capacity is defined with
three security parameters: error probability, server secrecy, user t-secrecy.
As a main result, we prove that the symmetric and non-symmetric t-private
QPIR capacity is min{1, 2(n − t)/n} for 1 ≤ t < n. Our result implies that
even if some servers collude, as far as the number of colluding servers is less
than half (t ≤ n/2), the remarkable result of QPIR capacity 1 still applies to
the t-private case.

The derived quantum capacity is strictly greater than the classical sym-
metric t-private PIR capacity (n − t)/n in [30], and when more than half of
the servers collude (i.e., n/2 ≤ t), the derived quantum capacity is exactly
twice the classical capacity. In addition, compared to the classical t-private
PIR capacity (1− t/n)(1− (t/n)f) [29], our quantum capacity is greater when
t < n/2 or (n/t)f > 2, where the latter inequality satisfied when the number
of messages f are large enough.
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Our result implies that symmetric bn/2c-private QPIR can be constructed
without sacrificing any communication efficiency since the capacity is 1 for
1 ≤ t ≤ n/2. Moreover, QPIR with more servers may obtain the stronger
secrecy against collusion. This result contrasts with Chapter 3 that the sym-
metric (1-private) QPIR has no advantage to increase the number of servers
since a two-server protocol achieves the capacity. The proposed protocol in-
cludes the protocol in Chapter 3 as an example of symmetric 1-private QPIR
protocols.

The outline of our protocol is described as follows by the stabilizer for-
malism. Given a subspace V of an even dimensional vector space, let V⊥J

be its orthogonal space with respect to the symplectic bilinear form. In the
stabilizer formalism, the stabilizer is described by a subspace V such that
V ⊂ V⊥J and the state is prepared on the stabilized subspace. When the
Weyl operator W̃(s, t) := X(s)Z(t) is applied, in the decoding process, an
appropriate quantum measurement outputs the outcome (s, t) + V⊥J , which
is a partial information of the Weyl operator. With this fact, we design our
QPIR protocol so that the servers share an entangled state on the stabilized
subspace, the servers apply Weyl operators depending on the queries and
messages, and the user performs the measurement to obtain the targeted
message. Here, for guaranteeing the security, we choose the subspace V and
the queries to satisfy the following three conditions. 1) The queries to any
t servers are independent of the user’s request (for user secrecy). 2) When
the Weyl operator applied by the servers is W̃(s, t) on the whole composite
system, the targeted message has one-to-one correspondence with the value
(s, t) + V⊥J (for correctness). 3) The information of other messages is in
V⊥J (for server secrecy). The main difficulty of the protocol construction is
to find an appropriate vector space V which generates the properties 1), 2),
and 3). The problem reduces to the search of a symplectic matrix with a
linear independence condition in row vectors and a symplectic orthogonality
condition in column vectors. We concretely constructs the symplectic matrix
satisfying those conditions.

The remainder of this chapter is organized as follows. Section 5.1 defines
the security and the QPIR capacity and presents the t-private QPIR capac-
ity theorem. Section 5.2 is the preliminary section for protocol construction.
With the stabilizer formalism defined in Section 5.2.1, we present a com-
munication protocol for classical messages by stabilizer formalism and give
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User

Target Index: K ∈ {1, . . . , f}

serv1

M1

M2
...
Mf

· · ·

servt

M1

M2
...
Mf

servt+1

M1

M2
...
Mf

· · ·

servn

M1

M2
...
Mf

Prior Entanglement ρprev

MK ∈ {0, . . . ,m− 1}

Colluding Servers

Q1

Qt
Qt+1

Qn

A1 At At+1 An

ρMQ

A′1
A′t A′t+1 A′n

Figure 5.1: Quantum private information retrieval protocol, where t servers
collude to know the target index K. The user does not know which t servers
collude. The only difference from Figure 3.1 is that at most t servers may
collude.

a fundamental lemma for protocol construction. Section 5.3 constructs the
capacity-achieving symmetric t-private QPIR protocol. The proposed proto-
col has no error, perfect user secrecy, and perfect server secrecy. Section 5.4
presents the converse bounds of the capacity result. We present three upper
bounds of the capacity depending on the number of colluding servers and the
security parameters.

5.1 QPIR protocol and capacity theorem

For t-private QPIR, the protocol is identically defined as the QPIR proto-
col Section 3.1.1, but the security and the capacity are defined differently.
Therefore, throughout this chapter, we use the protocol description in Sec-
tion 3.1.1, and in this section, we define the security measures and present the
t-private QPIR capacity theorem. The t-private QPIR protocol is depicted
in Figure 5.1.
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5.1.1 Security measures

Given the number of colluding servers t ∈ {1, . . . , n−1}, the security measures
are defined as follows. In this chapter, we assume that all servers and the
user follow the protocol and do not deviate from the protocol. Under this
assumption, we consider the security of the QPIR protocol as follows. Let
W ∈ {1, . . . ,m} be the protocol output, M c

k be the collection of all messages
except for Mk, Sn be the symmetric group of {1, . . . , n}, i.e., the set of all
permutations on {1, . . . , n}, and Qπ,t := (Qπ(1), . . . , Qπ(t)) for π ∈ Sn. The
security of a QPIR protocol is evaluated by the error probability, server
secrecy, and user t-secrecy defined as

Perr(Ψ
(m)
QPIR) := max

(∗)
PrW [W 6= mk|M = m,Q = q,K = k] (5.1)

Sserv(Ψ
(m)
QPIR) := max

(∗)
I(M c

k ;A|Q = q,K = k)ρMq
(5.2)

S(t)
user(Ψ

(m)
QPIR) := max

π∈Sn
I(K;Qπ,t), (5.3)

where the maximum (∗) is taken for all m = (m1, . . . ,mn), q ∈ Q1 × · · · ×
Qn, k ∈ {1, . . . , f} such that Pr[K = k,Q = q] 6= 0.

The error probability Perr(Ψ
(m)
QPIR) is the worst-case probability that the

protocol output W is the targeted message of the user. The server secrecy
is the property that the servers’ information of the non-targeted messages
are kept secret from the user. That is, the server secrecy Sserv(Ψ

(m)
QPIR) mea-

sures the independence between the non-targeted messages and the quantum
systemsA that the user obtains. Since we assumed that the servers do not de-
viate from the protocol, servj only obtains Qj but not the other information.
Therefore, the user t-secrecy S(t)

user(Ψ
(m)
QPIR) is defined as the mutual informa-

tion between the target index K and the queries Qπ,t to any t servers. We
define these security measures for the worst-case of all messages m, queries
q, and the target index k.

Remark 5.1. The server secrecy is also written as

Sserv(Ψ
(m)
QPIR) = max

(∗)
I(M c

k ;A|Q = q)ρMq
. (5.4)

This equation follows from I(M c
k ;A|Q = q)ρMq

= I(M c
k ;A|Q = q,K = k)ρMq

which is derived from the independence between K and M c
kA when Q = q is

fixed.
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Remark 5.2. When a QPIR protocol Ψ
(m)
QPIR satisfies Perr(Ψ

(m)
QPIR) ≤ α and

Sserv(Ψ
(m)
QPIR) ≤ β for sufficiently small α, β ≥ 0, the condition Pr[K = k,Q =

q] 6= 0 implies Pr[K = i, Q = q] = 0 for any k 6= i ∈ {1, . . . , f}. Otherwise, we
derive a contradiction as follows. If Pr[K = k,Q = q] · Pr[K = i, Q = q] 6= 0

for some k 6= i, the server secrecy Sserv(Ψ
(m)
QPIR) ≤ β implies I(M c

i ;A|Q =

q,K = i)ρMq
, I(M c

k ;A|Q = q,K = k)ρMq
≤ β. However, we have the follow-

ing contradiction

(1− α) logm− h2(α)
(a)

≤ I(Mk;A|Q = q,K = k)ρMq

(b)
= I(Mk;A|Q = q)ρMq

≤ I(M c
i ;A|Q = q)ρMq

(b)
= I(M c

i ;A|Q = q,K = i)ρMq
≤ β,

from Fano’s inequality and two equalities with (b) is from the independence
of K and (M1, . . . ,Mf ,A) when Q = q is fixed. Since β can be chosen to be
an arbitrary small number, these inequalities imply that the message size m

is also sufficiently close to zero, which is a contradiction.

5.1.2 t-Private QPIR capacity

For fixed numbers of servers n and messages f, we define the t-private QPIR
capacity. The capacities are defined similar to Section 3.1.4 but we use the
subscript t to denote that they are the t-private capacities. For any α ∈ [0, 1)

and any β, γ, θ ∈ [0,∞], the asymptotic and exact security-constrained t-
private QPIR capacities are defined by

Cα,β,γ,θ
asymp,t := sup

(5.7)
lim inf
`→∞

R(Ψ
(m`)
QPIR), (5.5)

Cα,β,γ,θ
exact,t := sup

(5.8)
lim inf
`→∞

R(Ψ
(m`)
QPIR), (5.6)

where the supremum is taken for sequences {m`}∞`=1 such that lim`→∞m` =∞
and for sequences {Ψ(m`)

QPIR}∞`=1 of QPIR protocols to satisfy either (5.7) or (5.8)
given by

lim sup
`→∞

Perr(Ψ
(m`)
QPIR) ≤ α, lim sup

`→∞
Sserv(Ψ

(m`)
QPIR) ≤ β,

lim sup
`→∞

S(t)
user(Ψ

(m`)
QPIR) ≤ γ, lim sup

`→∞

U(Ψ
(m`)
QPIR)

D(Ψ
(m`)
QPIR)

≤ θ,
(5.7)
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and

Perr(Ψ
(m`)
QPIR) ≤ α, Sserv(Ψ

(m`)
QPIR) ≤ β,

S(t)
user(Ψ

(m`)
QPIR) ≤ γ, lim sup

`→∞

U(Ψ
(m`)
QPIR)

D(Ψ
(m`)
QPIR)

≤ θ.
(5.8)

5.1.3 Capacity theorem

The following theorem is the main result of this chapter.

Theorem 5.1 (t-private QPIR capacity). The capacity of t-private QPIR
with n ≥ 2 servers and f ≥ 2 messages is derived for any α ∈ [0, 1) and any
β, γ, θ ∈ [0,∞) as follows:

Cα,β,γ,θ
asymp,t = Cα,β,γ,θ

exact,t = 1 if 1 ≤ t ≤ n

2
, (5.9)

C0,β,0,θ
asymp,t = Cα,0,0,θ

exact,t =
2(n− t)

n
if

n

2
< t < n. (5.10)

The capacity-achieving QPIR protocol is constructed in Section 5.3 for
n/2 ≤ t < n. The protocol obtains zero-error (Perr(Ψ

(m)
QPIR) = 0), perfect

server secrecy (Sserv(Ψ
(m)
QPIR) = 0), and perfect user t-secrecy (S(t)

user(Ψ
(m)
QPIR) =

0). Since the user (n/2)-secrecy guarantees the user t-secrecy for 1 ≤ t < n/2,
the constructed protocol for t = n/2 is also the capacity-achieving protocol
for 1 ≤ t < n/2. The converse bounds are given in Section 5.4.

Note that if t ≤ n/2, the capacity is 1 and independent of n and f,
which is similar result as the QPIR capacity without colluding servers in
Chapter 3. When t > n/2, the capacity is twice the symmetric PIR capacity
(n−t)/n and is still independent of the number of messages f. As discussed in
the introduction and Table 1.1, the t-private QPIR capacity is greater than
the classical counterparts. Furthermore, we prove in Appendix C that the
capacity result is the same even if we change the definition of the security
measures as the average measures for all files m, queries q, and target indexes
k.

Remark 5.3. In the definition of the protocol, we assumed the condition
that the target index K and the messages M1, . . . ,Mf are chosen uniformly.
Indeed, this condition is necessary only for the proof of converse bounds.
Even if the distributions are arbitrary, the protocol in Section 5.3 guarantees

55



Chapter 5. Capacity of QPIR with Colluding Servers

that any t-servers obtains no information about K and the user obtains no
information of non-targeted messages, except for the information obtained
from the underlying distributions of K and M1, . . . ,Mf .

Remark 5.4. In Chapter 3, we defined the error probability (3.2) as the
average error probability. On the other hand, this chapter defines the error
probability (5.1) as the worst-case error probability. From the definitions,
the QPIR capacity with the worst-case error is less than the QPIR capacity
with the average error. However, this chapter extends the result of Chapter 3
by proving that the 1-private QPIR capacity with worst-case error is also 1.

Remark 5.5. The capacity (5.10) is derived for the case where any server
secrecy β ∈ [0,∞) is allowed. However, one may notice that for some param-
eters (n, t, f), the capacity (5.10) is smaller than the capacity (1− (t/n))/(1−
(t/n)f) [29] of classical t-private PIR without server secrecy. For instance,
when (n, t, f) = (4, 3, 2), the capacity (5.10) is 0.5 and the capacity in [29] is
0.57. This follows from the fact that the capacity (5.10) is derived for finite
β but the capacity in [29] is derived for the case where the β is allowed to be
infinite.

5.2 Preliminaries for protocol construction

In this section, we give preliminaries for our protocol construction in Sec-
tion 5.3. Section 5.2.1 introduces the stabilizer formalism and Section 5.2.2
presents a protocol for classical messages constructed defined from the sta-
bilizer formalism. Section 5.2.3 gives a fundamental lemma for th and e
construction of our QPIR protocol.

5.2.1 Stabilizer formalism over finite field

In this subsection, we introduce the stabilizer formalism for finite field. Sta-
bilizer formalism gives an algebraic structure for the quantum information
processing. We use this formalism for the construction of the QPIR protocol.
Stabilizer formalism is often used for quantum error-correction. At the end
of this subsection (Remark 5.6), we give a brief review of quantum stabilizer
error-correcting code with the notation introduced in this subsection. More
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detailed introduction of the stabilizer formalism and stabilizer codes can be
found at [71–74].

Let Fq be a finite field whose order is a prime power q = pr and H be
a q-dimensional Hilbert space with a basis {|i〉 | i ∈ Fq}. We define trx :=

TrTx ∈ Fp for x ∈ Fq, where Tx ∈ Fr×rp denotes the matrix representation of
the map y ∈ Fq 7→ xy ∈ Fq by identifying the finite field Fq with the vector
space Frp. For a, b ∈ Fq, we define two unitary matrices on H

Xq(a) :=
∑
i∈Fq

|i+ a〉〈i|, Zq(b) :=
∑
i∈Fq

ωtr bi|i〉〈i|,

where ω := exp(2π
√
−1/p). For a = (a1, . . . , an),b = (b1, . . . , bn) ∈ Fnq , and

w = [a,b] ∈ F2n
q , we define a unitary matrix on H⊗n

W̃(w) = W̃(a,b) := Xq(a1)Zq(b1)⊗ Xq(a2)Zq(b2)⊗ · · · ⊗ Xq(an)Zq(bn).

The Heisenberg-Weyl group is defined as

HWn
q :=

{
cW̃(w) | w ∈ Fnq , c ∈ C

}
. (5.11)

For x,y ∈ Fnq , we denote 〈x,y〉 := tr
∑n

i=1 xiyi ∈ Fp and define a skew-
symmetric matrix J on F2n

q by

J =

(
0 −In
In 0

)
.

Since Xq(a)Zq(b) = ω− tr abZq(b)Xq(a), for any (a,b), (c,d) ∈ F2n
q , we have

W̃(a,b)W̃(c,d) = ω〈(a,b),J(c,d)〉W̃(c,d)W̃(a,b), (5.12)

W̃(a,b)W̃(c,d) = ω〈b,c〉W̃(a + c,b + d). (5.13)

A commutative subgroup of HWn
q not containing cI for any c 6= 0 is called

a stabilizer. A subspace V of F2n
q is called self-orthogonal with respect to the

bilinear form 〈·, J ·〉 if

V ⊂ V⊥J := {w ∈ F2n
q | 〈v, Jw〉 = 0 for any v ∈ V}.

We can define a stabilizer from any self-orthogonal subspace of F2n
q by the

following proposition.
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Proposition 5.1. Let V be a self-orthogonal subspace of F2n
q . There exists

{cv ∈ C | v ∈ V} such that

S(V) := {W(v) := cvW̃(v) | v ∈ V} ⊂ HWn
q (5.14)

is a stabilizer.

For completeness, we give the proof of Proposition 5.1 in Appendix D.

Proposition 5.2. Let V be a self-orthogonal d-dimensional subspace of F2n
q

and S(V) be a stabilizer defined from V. For the quotient space F2n
q /V

⊥J , we
denote the elements by [w] = w + V⊥J ∈ F2n

q /V
⊥J .

1. All elements W(v) ∈ S(V) are simultaneously and uniquely decomposed
as

W(v) =
∑

[w]∈F2n
q /V⊥J

ω〈v,Jw〉PV
[w] (∀v ∈ V), (5.15)

where {PV
[w]} are orthogonal projections such that

PV
[w]P

V
[w′] = 0 for any [w] 6= [w′], (5.16)∑

[w]∈F2n
q /V⊥J

PV
[w] = IH⊗n . (5.17)

2. Let HV
[w] := ImPV

[w]. For any w,w′ ∈ F2n
q , we have the relation

W(w)HV
[w′] = HV

[w+w′]. (5.18)

3. For any [w] ∈ F2n
q /V

⊥J ,

dimHV
[w] = qn−d. (5.19)

For completeness, we give the proof of Proposition 5.2 in Appendix E.
We use the decomposition in the following corollary in our protocol con-

struction.

Corollary 5.1. By (5.17) and (5.19), the quantum system H⊗n is decom-
posed as

H⊗n =
⊗

[w]∈F2n
q /V⊥J

HV
[w] =W ⊗ Cqn−d

, (5.20)
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whereW is the qd-dimensional subspace with the basis {|[w]〉 | [w] ∈ F2n
q /V

⊥J}
such that HV

[w] = |[w]〉 ⊗ Cqn−d
:= {|[w]〉 ⊗ |v〉 | |v〉 ∈ Cqn−d}. With this de-

composition, the relation (5.18) is written as

W(w)|[w′]〉 ⊗ Cqn−d

= |[w + w′]〉 ⊗ Cqn−d

. (5.21)

Proof. Eq. (5.20) follows from (5.17) and (5.19) and Eq. (5.21) follows di-
rectly from the relation (5.18).

We also have the following lemma.

Lemma 5.1. For any w,w′ ∈ F2n
q , we have

W(w′)
(
|[w]〉〈[w]| ⊗ Iqn−d

)
W(w′)

∗
= |[w + w′]〉〈[w + w′]| ⊗ Iqn−d .

Proof. Let X := W(w′)
(
|[w]〉〈[w]| ⊗ Iqn−d

)
W(w′)∗. Since X2 = X and

X∗ = X, the matrix X is an orthogonal projection. Since |[w+w′]〉 ⊗Cqn−d

is an invariant subspace of X and rankX = dim |[w + w′]〉 ⊗ Cqn−d
= qn−d,

the matrix X is the orthogonal projection onto |[w + w′]〉 ⊗ Cqn−d , which
implies the lemma.

Remark 5.6. In terms of quantum stabilizer code, the space HV
[0] = |[0]〉 ⊗

Cqn−d is called the code space, which is the stabilized space by the action of
the group S(V). In other words, from (5.15), the code space HV

[0] is the inter-
section of eigenspaces of S(V) with eigenvalue 1. In quantum stabilizer code,
a message state is prepared in the code space HV

[0]. If an error W(e) is ap-
plied, the encoded state on HV

[0] is changed to a state on HV
[e] by (5.18). Then,

the error correction is preformed by obtaining the identity of the subspace
HV

[e] by the measurement {PV
[e] | [e] ∈ F2n

q /V
⊥J} on H⊗n and performing the

recovery operation W(−r) for some r ∈ [e], which maps from HV
[e] to HV

[0].
This error correction is performed correctly if e− r ∈ V since the combined
operation of the error and the correction is W(−r)W(e) = W(e− r) and
the code space HV

[0] is invariant with respect to the operation W(e− r) if
e− r ∈ V. However, if e− r ∈ V⊥J \ V, the error correction is not correct.

Remark 5.7. Lemma 5.1 is equivalent to considering the state on Cqn−d as
completely mixed state ρmix = Iqn−d/qn−d. If the state ρ on Cqn−d is not the
completely mixed state, there always exists an operation W(w′) such that ρ
is changed to another state ρ′w′ as

W(w′)(|[w]〉〈[w]| ⊗ ρ)W(w′)
∗

= |[w + w′]〉〈[w + w′]| ⊗ ρ′w′ .

For example, we have ρ 6= ρ′w′ for [w] = [0] and some w′ ∈ V⊥J \ V.
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|[(a,b)]〉〈[(a,b)]| ⊗ ρmix on H⊗n =W ⊗ Cqn−d

receiver

Apply
Xq(a1)Zq(b1)

Apply
Xq(a2)Zq(b2)

· · ·
Apply

Xq(an)Zq(bn)

|[0]〉〈[0]| ⊗ ρmix on H⊗n =W ⊗ Cqn−d

[(a,b)]

H H H

H H H

Figure 5.2: Protocol 5.1.

5.2.2 Communication protocol for classical messages by
stabilizer formalism

In this section, we propose a communication protocol for classical messages
from n players to a receiver. The protocol is constructed by the stabilizer
formalism. We will construct our t-private QPIR protocol in Section 5.3 by
modifying the protocol in this subsection.

In the following protocol, n players encode (a1, b1), . . . , (an, bn) ∈ F2
q and

the receiver decodes

[(a,b)] = [(a1, . . . , an, b1, . . . , bn)] ∈ F2n
q /V

⊥J ,

where V is a self-orthogonal subspace of F2n
q . The protocol is depicted in

Figure 5.2.

Protocol 5.1. Let V be a self-orthogonal d-dimensional subspace of F2n
q and

S(V) be a stabilizer associated with V. By Corollary 5.1, we decompose

H⊗n =
⊗

[w]∈F2n
q /V⊥J

HV
[w] =W ⊗ Cqn−d

. (5.22)

The following protocol consists of a receiver and n players, namely, player
1, . . . , player n.
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1. [Distribution of entangled state] The state of H⊗n =W⊗Cqn−d is
initialized as |[0]〉〈[0]| ⊗ ρmix, where ρmix is the completely mixed state
on Cqn−d, i.e., ρmix = (1/qn−d) · Iqn−d. The n subsystems of H⊗n are
distributed to the n players, respectively.

2. [Message encoding] For each s ∈ {1, . . . , n}, the player s applies
Xq(as)Zq(bs) to the distributed system H and sends the system H to the
receiver.

3. [Message decoding] The receiver applies the PVM MV = {PV
[w] |

[w] ∈ F2n
q /V

⊥J} on H⊗n, where [w] is the measurement outcome asso-
ciated with PV

[w]. �

In the above protocol, Lemma 5.1 implies that the receiver receives the
state |[(a,b)]〉〈[(a,b)]| ⊗ ρmix. Thus, the receiver obtains

[(a,b)] = [(a1, . . . , an, b1, . . . , bn)] ∈ F2n
q /V

⊥J

as the measurement outcome but no more information than [(a,b)]. Note
that if the initial state of Cqn−d is not ρmix, some more information of (a,b)

can be leaked to the receiver since the final state on Cqn−d may depend on
(a,b). See Remark 5.7 for more detail.

In Section 5.3, we will construct our QPIR protocol by modifying Proto-
col 5.1. For fulfilling the QPIR task, we will choose a suitable self-orthogonal
subspace V and design query structures and server encoders in Section 5.3.

5.2.3 Fundamental lemma for protocol construction

In this subsection, we prepare a lemma for the QPIR protocol construction,
which is necessary for guaranteeing the secrecy.

In the statement of the following proposition, we use an algebraic exten-
sion of a finite field. When α is a root of some polynomial over a field F,
an algebraic extension F(α) is the smallest field containing F and α. Any
algebraic extension of a finite field Fq is another finite field. See [75] and [76]
for details. We denote F(α1, . . . , αn) := [F(α1, . . . , αn−1)](αn).

Proposition 5.3. Let Fq′ be the finite field of order q′ and Fq be the algebraic
extension Fq′(α1, . . . , αk−2), where αi 6∈ Fq′(α1, . . . , αi−1) for any i. Given
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two positive integers r < k, define a matrix A = (aij) ∈ F(k−r)×r
q such that

a11 = 1, (5.23)

aij ∈ Fq′(α1, . . . , αi+j−2) \ Fq′(α1, . . . , αi+j−3) if (i, j) 6= (1, 1). (5.24)

Then, any r row vectors of

Ā :=

(
A

Ir

)
∈ Fk×rq (5.25)

are linearly independent. In particular, when k = 2r, the square matrix
A ∈ Fr×rq is invertible.

Proof. Before we give the proof, we introduce the following notation: For
an n ×m matrix M = (mij), S ⊂ {1, . . . , n} and T ⊂ {1, . . . ,m}, define a
submatrix M(S, T ) := (mij)i∈S,j∈T .

Let S ⊂ {1, . . . , k−r} and T ⊂ {1, . . . , r} be subsets such that |S|+|T | =
r. Choose r row vectors of Ā as

Ā(S ∪ (k − r + T ), {1, . . . , r}) =

(
A(S, {1, . . . , r})
Ir(T, {1, . . . , r})

)
. (5.26)

The row vectors of Ā(S∪(k−r+T ), {1, . . . , r}) are linearly independent if and
only if A(S, T c) ∈ F|S|×|S|q is invertible, where T c := {1, . . . , r}\T . Therefore,
we show in the following that the determinant of A(S, T c) is nonzero.

From the definition of A in (5.24), the (|S|, |S|) element amaxS,maxT c of
A(S, T c) is in Fq′(α1, . . . , αmaxS+maxT c−2) \ Fq′(α1, . . . , αmaxS+maxT c−3) but
the other |S|2 − 1 elements are in Fq′(α1, . . . , αmaxS+maxT c−3). Thus, by the
cofactor expansion of the determinant, i.e., detM =

∑
j(−1)i+jmi,jMi,j for

a matrix M = (mij) and its i, j minor Mi,j, we have

detA(S, T c) = amaxS,maxT c · detA(S \ {maxS}, T c \ {maxT c}) + x (5.27)

with some x ∈ Fq′(α1, . . . , αmaxS+maxT c−3). If

detA(S \ {maxS}, T c \ {maxT c}) 6= 0,

then detA(S, T c) 6= 0. Thus, by induction, we have detA(S, T c) 6= 0 since
detA({minS}, {minT c}) = aminS,minT c 6= 0.
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Remark 5.8. Proposition 5.3 is a slight generalization of the construction
[64, Appendix A], which proposed the same construction only for aij = αi+j−2

in (5.24).

The following lemma is fundamental to guarantee the secrecy in our QPIR
protocol.

Lemma 5.2. Let n, t be positive integers such that n/2 ≤ t < n. Let Fq′ be
the finite field of order q′ and Fq be the algebraic extension Fq′(α1, . . . , αn+2t−2),
where αi 6∈ Fq′(α1, . . . , αi−1) for any i. There exist 2t linearly independent
vectors v1, . . . ,v2t ∈ F2n

q satisfying the following conditions.

(a) Let w1, . . . ,w2n be the row vectors of the matrix D = (v1, . . . ,v2t) ∈
F2n×2t
q . Then, wπ(1), . . . ,wπ(t), wπ(1)+n, . . . ,wπ(t)+n are linearly inde-

pendent for any permutation π in Sn.

(b) 〈vi, Jvj〉 = 0 for any i ∈ {1, . . . , 2n− 2t} and any j ∈ {1, . . . , 2t}.

Proof. Let S ∈ F2n×2n
q be a symplectic matrix, i.e., S>JS = J , and si ∈ F2n

q

be the i-th column vector of S. Then, the following v1, . . . ,v2t ∈ F2n
q satisfy

condition (b):

(v1, . . . ,v2n−2t) := (s2t−n+1, . . . , sn) (5.28)

(v2n−2t+1, . . . ,v2t) := (s1, . . . , s2t−n, sn+1, . . . , s2t). (5.29)

Therefore, in the following, we prove that there exists a symplectic matrix
S = (s1, . . . , s2n) such that the row vectors of S ′ := (s1, . . . , s2t) satisfy con-
dition (a).

First, we construct a symplectic matrix as follows. For convenience, let
α0 := 1. Define two square symmetric matrices A = (aij), B = (bij) ∈ Fn×nq

as

aij = αi+j−2, bij = αi+j−2+(2t−n), (5.30)

i.e.,

A =


α0 α1 · · · αn−1

α1 α2 · · · αn−2

...
... . . . ...

αn−1 αn · · · α2n−2

 , B =


α2t−n α2t−n+1 · · · α2t−1

α2t−n+1 α2t−n+2 · · · α2t

...
... . . . ...

α2t−1 α2t · · · αn+2t−2

 .
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Since the matrices (
In X

0 In

)
,

(
In 0

X In

)
(5.31)

are symplectic matrices for any symmetric matrix X, and the multiple of two
symplectic matrices is a symplectic matrix [74, Section 8.2.2], the matrix

S =

(
In +BA−1 B

A−1 In

)
=

(
In B

0 In

)(
In 0

A−1 In

)
(5.32)

is a symplectic matrix, where the inverse A−1 exists from Proposition 5.3.
With the notation B = (B1, B2) ∈ Fn×(2t−n)

q × Fn×(2n−2t)
q , we have

S ′ := (s1, . . . , s2t) =


In +BA−1 B1

A−1 I2t−n

0

 . (5.33)

Now, we prove that the row vectors of S ′ satisfy condition (a). Since
(i) the right multiplication of invertible matrices and (ii) elementary column
operations do not change the linear independence of the row vectors, we
manipulate the matrix S ′ in the following way:

S ′ =


In +BA−1 B1

A−1 I2t−n

0

 (i)−→


In +BA−1 B1

A−1 I2t−n

0


(
A 0

0 I2t−n

)

=


A+B B1

In
I2t−n

0

 =


A1 +B1 A2 +B2 B1

I2t−n 0 I2t−n

0 I2n−2t 0



(ii)−→


A1 A2 +B2 B1

0 0 I2t−n

0 I2n−2t 0

 (ii)−→


A1 B1 A2 +B2

0 I2t−n 0

0 0 I2n−2t

 =: S ′′,
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where A = (A1, A2) ∈ Fn×(2t−n)
q × Fn×(2n−2t)

q . By the above transformation,
the linear independence of the row vectors of S ′ is equivalent to that of S ′′.
Let

S ′′′ :=


A1 B1 A2 +B2

I2t−n 0 0

0 I2t−n 0

0 0 I2n−2t

 (5.34)

by adding the row vectors (I2t−n, 0, 0) to S ′′. If any 2t row vectors of S ′′′ are
linearly independent, then S ′′ and S ′ also satisfy the same property. Since
A1, B1, A2 +B2 are written as

A1 =

 α0 · · · α2t−n−1

... . . . ...
αn−1 · · · α2t−2

 ,

B1 =

 α2t−n · · · α4t−2n−1

... . . . ...
α2t−1 · · · α4t−n−2

 ,

A2 +B2 =

 α4t−2n + α2t−n · · · α2t−1 + αn−1

... . . . ...
α4t−n−1 + α2t−1 · · · αn+2t−2 + α2n−2

 ,

the matrix (A1 | B1 | A2 +B2) satisfies the conditions of Proposition 5.3. The
application of Proposition 5.3 to S ′′′ shows that any 2t row vectors of S ′′′ are
linearly independent. Thus, the matrix S ′ also satisfies the same property as
S ′′′, which implies condition (a).

Many studies in classical information theory have already studied the
matrices D ∈ Fn×tq whose arbitrary t (≤ n) row vectors are linearly in-
dependent, which is similar to condition (a) of Lemma 5.2. For instance,
matrices of this kind have been studied as a generator matrix of the max-
imum distance separable (MDS) codes [77] and have been widely used in
the construction of secure communication protocols, e.g., classical private
information retrievals [31,32,36], wiretap channel II [78], and secure network
coding [64,79].
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|[q>m]〉〈[q>m]| ⊗ ρmix on A =W ⊗ Cqn−d

user

k ∈ {1, . . . , f}

Apply
Xq(q

>
1Xm)Zq(q

>
1Zm)

serv1

Apply
Xq(q

>
2Xm)Zq(q

>
2Zm)

serv2

· · ·
Apply

Xq(q
>
nXm)Zq(q

>
nZm)

servn

|[0]〉〈[0]| ⊗ ρmix on A =W ⊗ Cqn−d

[q>m] = q>m + V⊥

∈ F2n
q /V

⊥ ' F2(n−t)
q

A1 A2
An

A1 A2

An

(q1X ,q1Z) (q2X ,q2Z) (qnX ,qnZ)

Figure 5.3: Optimal t-Private QPIR protocol. m = (m>1 , . . . ,m
>
k )> and

q = (q>1X , . . . ,q
>
nX ,q

>
1Z , . . . ,q

>
nZ)> are the collections of messages and queries,

respectively.

5.3 Construction of QPIR protocol with collud-
ing servers

In this section, by combining Protocol 5.1 and Lemma 5.2, we construct the
capacity-achieving QPIR protocol for n ≥ 2 servers, f ≥ 2 messages, and
n/2 ≤ t < n colluding servers. The protocol is depicted in Figure 5.3. For
collusion of 1 ≤ t < n/2 servers, the protocol for t = n/2 is the capacity-
achieving protocol.

Let n ≥ 2, f ≥ 2, and n/2 ≤ t < n. For the construction of the protocol,
we choose a prime power q and a basis v1, . . . ,v2n of F2n

q such that the first
2t vectors v1, . . . ,v2t satisfy the conditions of Lemma 5.2. Let

V := span{v1,v2, . . . ,v2n−2t} ⊂ F2n
q .

Then, from condition (b) of Lemma 5.2, the subspace V is self-orthogonal
with respect to 〈·, J ·〉, V⊥J = span{v1, . . . ,v2t}, and

F2n
q /V

⊥J = {[w] := w + V⊥J | w ∈ span{v2t+1, . . . ,v2n}}.

Let

D1 :=
(
v1 v2 · · · v2t

)
∈ F2n×2t

q , (5.35)

D2 :=
(
v2t+1 v2t+2 · · · v2n

)
∈ F2n×2(n−t)

q . (5.36)
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We assume that the vectors v1, . . . ,v2n are publicly known to the user and all
servers. Each server contains all messages m1, . . . ,mf ∈ F2(n−t)

q . We denote
m := (m>1 , . . . ,m

>
k )> ∈ F2(n−t)f

q .

Protocol 5.2. The t-private QPIR protocol for retrieving mk is constructed
as follows.

Step 1. [Preparation] Let A1, . . . ,An be q-dimensional Hilbert spaces. From
Corollary 5.1, the quantum system A := A1⊗· · ·⊗An is decomposed
as A = W ⊗ Cq2t−n, where W = span{|[w]〉 | [w] ∈ F2n

q /V
⊥J}. The

state of A is initialized as

|[0]〉〈[0]| ⊗ ρmix,

where ρmix := (1/q2t−n) · Iq2t−n, and is distributed so that the j-th
server has Aj for j = 1, 2, . . . , n.

Step 2. [Query] The user randomly chooses a matrix R ∈ F2t×2(n−t)f
q with the

uniform distribution. Let Ek := (δi,j−2(n−t)(k−1))i,j ∈ F2(n−t)×2(n−t)f
q ,

where δx,y = 1 if x = y and δx,y = 0 if x 6= y. That is, Ek is the block
matrix whose k-th block is I ∈ F2(n−t)×2(n−t)

q and all other blocks are
zero. Let

q = (q>1X , . . . ,q
>
nX ,q

>
1Z , . . . ,q

>
nZ)>

:= (D1, D2)

(
R

Ek

)
= D1R +D2Ek ∈ F2n×2(n−t)f

q .

The user sends the query (qjX ,qjZ) ∈ F2(n−t)f
q × F2(n−t)f

q to the j-th
server for j = 1, 2, . . . , n.

Step 3. [Download] For each j = 1, 2, . . . , n, the j-th server applies

Xq(q
>
jXm)Zq(q

>
jZm)

to Aj and sends Aj to the user.

Step 4. [Retrieval] The user applies the PVMMV = {PV
[w] | [w] ∈ F2n

q /V
⊥J}

on A, where [w] is the measurement outcome associated with PV
[w].

The measurement outcome of the user is denoted by [wout]. In the
expansion wout =

∑2n
i=1 civi, the user outputs (c2t+1, c2t+2, . . . , c2n) ∈

F2(n−t)
q .
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The performance of Protocol 5.2 is analyzed as follows.

Error probability

We show that the user obtains mk without error. Let

w′ := q>m (5.37)

= (q>1Xm, . . . ,q>nXm,q>1Zm, . . . ,q>nZm)> ∈ F2n
q . (5.38)

The state after the servers’ encoding is

W(w′)(|[0]〉〈[0]| ⊗ ρmix)W(w′)∗ = |[w′]〉〈[w′]| ⊗ ρmix, (5.39)

where the equality follows from Lemma 5.1. Thus, the measurement outcome
[wout] is [w′]. Note that we have

F2n
q 3 w′ = q>m (5.40)

= D1Rm +D2Ekm (5.41)

= D1Rm +
2n−2t∑
i=1

mk,iv2t+i (5.42)

and the first term D1Rm of (5.42) is a vector in V⊥J , which implies

[wout] = [w′] = w′ + V⊥ =
2n−2t∑
i=1

mk,iv2t+i + V⊥ =

[ 2n−2t∑
i=1

mk,iv2t+i

]
.

Thus, the user obtains (c2t+1, c2t+2, . . . , c2n) = (mk,1, . . . ,mk,2(n−t)) = mk

without error.

Server secrecy

The protocol has perfect server secrecy because from (5.39), the state after
the servers’ encoding is |[w′]〉〈[w′]| ⊗ ρmix, which is independent of the non-
retrieved messages.

Remark 5.9. The server secrecy is not perfect if the prior entangled state
is |[0]〉〈[0]| ⊗ ρ for some non completely mixed state ρ. As remarked in
Remark 5.7, if |[0]〉〈[0]| ⊗ ρ is the initial entangled state, the state ρ may be
changed depending on the servers’ operation W(w′), i.e.,

W(w′)(|[0]〉〈[0]| ⊗ ρ)W(w′)
∗

= |[w′]〉〈[w′]| ⊗ ρ′w′ (5.43)

for some state ρ′w′ . Thus, the user may obtain some information of w′ from
the state ρ′w′ , i.e., some information of the non-targeted messages is leaked.
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User secrecy

To discuss the user secrecy of Protocol 5.2, we introduce the following no-
tations. We denote vi = (v1,i, . . . , v2n,i)

> ∈ F2n
q for i = 1, . . . , 2n. For any

permutation π in Sn, we denote

vi,π :=



vπ(1),i

...
vπ(t),i

vn+π(1),i

...
vn+π(t),i


∈ F2t

q ,

D1,π := (v1,π, . . . ,v2t,π) ∈ F2t×2t
q ,

D2,π := (v2t+1,π, . . . ,v2n,π) ∈ F2t×2(n−t)
q .

The user t-secrecy is proved as follows. Let π be an arbitrary permutation
in Sn. The queries to the π(1)-th server, . . . , π(t)-th server are written as

(qπ(1)X , . . . ,qπ(t)X ,qπ(1)Z , . . . ,qπ(t)Z)> = D1,πR +D2,πEk ∈ F2t×2(n−t)f
q .

Since condition (a) of Lemma 5.2 implies rankD1,π = 2t, i.e., D1,π is invert-
ible, when R is uniformly at random in F2t×2(n−t)f

q , the distribution of

(qπ(1)X , . . . ,qπ(t)X ,qπ(1)Z , . . . ,qπ(t)Z)>

is the uniform distribution on F2t×2(n−t)f
q . Therefore, the colluding servers

obtain no information of the index of the targeted message k since the ma-
trix R is unknown to the colluding servers and is uniformly at random in
F2t×2(n−t)f
q .

Costs and QPIR rate

The message size is m = |F2(n−t)
q | = q2(n−t). The download cost and upload

cost are

D(Ψ
(m)
QPIR) = log dim

n⊗
j=1

Aj = n log q,

U(Ψ
(m)
QPIR) = log |F2(n−t)f×2n

q | = 4nf(n− t) log q.
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The QPIR rate is

R(Ψ
(m)
QPIR) =

logm

D(Ψ
(m)
QPIR)

=
2(n− t)

n
,

which achieves the QPIR capacity in Theorem 5.1.

5.4 Converse bounds

The converse bounds of Theorem 5.1 are written for any α ∈ [0, 1) and any
β, γ, θ ∈ [0,∞) as

Cα,β,γ,θ
asymp,t ≤ 1 if 1 ≤ t ≤ n

2
, (5.44)

Cα,0,0,θ
exact,t ≤

2(n− t)

n
if
n

2
< t < n, (5.45)

C0,β,0,θ
asymp,t ≤

2(n− t)

n
if
n

2
< t < n. (5.46)

The proof idea of the converse bounds (5.45), (5.46) is explained intu-
itively with Figure 5.4 as follows. By the secrecy conditions, the state on⊗t

j=1Aπ(j) from the colluding servers is independent of the message infor-
mation, which will be precisely stated in Lemma 5.4. With this fact, the
state on

⊗t
j=1Aπ(j) can be considered as a shared entanglement between

the user and the non-colluding servers. That is, the downloading step of
the protocol (Figure 5.4-(a)) can be considered as the entanglement-assisted
communication of a classical message (Figure 5.4-(b)). Since the capacity of
the entanglement-assisted classical communication for the identity channel
is two times the dimension of the transmitted quantum systems, the PIR
capacity is upper bounded by 2(n − t)/n and the tightness of this bound is
guaranteed by the QPIR protocol in Section 5.3. The bound (5.44) is proved
by noting that the retrieved message size cannot exceed the dimension of
downloaded quantum systems.

The remainder of this section is organized as follows. In Section 5.4.1, we
prepare lemmas necessary for the converse proofs. In Sections 5.4.2, 5.4.3,
and 5.4.4, we present the proofs of (5.46), (5.45), (5.44), respectively.

Throughout this section, we fix an arbitrary π ∈ Sn without losing gen-
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User

Colluding servers
(t servers)

Non-colluding servers
(n− t servers)

At Atc

Qt
Qtc

Prior Entanglement

(a) Downloading step of QPIR protocol. The user shares Qt with col-
luding servers and Qtc with non-colluding servers.

User

Non-colluding servers
(n− t servers)

Atc

Shared
Entanglement

Qtc

(b) Entanglement-assisted communication of classical
message with shared randomness Qtc . Note that the
user know Q but not which query Qtc the non-colluding
servers contain.

Figure 5.4: Proof idea of converse bounds. By the secrecy conditions, the
downloading step (a) can be considered as (b). Here, we denote At :=⊗t

j=1Aj, Atc :=
⊗n

j=t+1Aj, Qt := (Q1, . . . , Qt), and Qtc := (Qt+1, . . . , Qn).
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erality and use the notation

Qt := (Qπ(1), . . . , Qπ(t)), (5.47)

Qtc := (Qπ(t+1), . . . , Qπ(n)), (5.48)

At :=
t⊗

j=1

Aπ(j), (5.49)

Atc :=
n⊗

j=t+1

Aπ(j). (5.50)

We also denote by ρMQt the state on At of the t-colluding servers after the
servers’ encoding. For random variables X and Y , we denote by pX the
probability distribution of X, by pX|Y the distribution of X conditioned by
Y , by pX|Y=y the distribution of X conditioned by Y = y. We sometimes
denote pX=x = Pr[X = x] and pX=x|Y=y = Pr[X = x|Y = y] for simplicity.

5.4.1 Lemmas for converse bounds

We prepare two lemmas. The security conditions (5.1), (5.2), and (5.3) give
the following bounds.

Lemma 5.3. The server secrecy Sserv(Ψ
(m)
QPIR) ≤ β implies

I(M c
k ;AQ|K = k)ρMQ

≤ β. (5.51)

The user t-secrecy S(t)
user(Ψ

(m)
QPIR) ≤ γ implies

max
i 6=k∈{1,...,f},π∈Sn

d(pQt|K=k, pQt|K=i) ≤
√

2fγ, (5.52)

where d(·, ·) is the variational distance d(p, q) := (1/2) ·
∑

j |pj − qj| for
probability distributions p, q.

Proof. The relation (5.51) is proved as follows:

I(M c
k ;AQ|K = k)ρMQ

= I(M c
k ;A|Q,K = k)ρMQ

+ I(M c
k ;Q|K = k)ρMQ

= I(M c
k ;A|Q,K = k)ρMQ

(5.53)

=
∑
q

pQ=q|K=k · I(M c
k ;A|Q = q,K = k)ρMQ

≤ β,
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where the equality (5.53) holds because Q is independent of M c
k .

The relation (5.52) is proved as follows. For any π ∈ Sn and any k ∈
{1, . . . , f}, we have

γ ≥ I(K;Qt) = D(pKQt‖pK × pQt) =
1

f

∑
k′

D(pQt|K=k′‖pQt)

(a)

≥ 2

f

∑
k′

d2(pQt|K=k′ , pQ) ≥ 2

f
d2(pQt|K=k, pQt),

where the inequality (a) follows from Pinsker’s inequality (2.11). Thus, for
any i, k ∈ {1, . . . , f}, we have√

2fγ ≥ d(pQt|K=k, pQt) + d(pQt , pQt|K=i) (5.54)

≥ d(pQt|K=k, pQt|K=i), (5.55)

which implies (5.52).

In the converse proofs, we will only use the evaluation given in Lemma 5.3
instead of the conditions Sserv(Ψ

(m)
QPIR) ≤ β and S

(t)
user(Ψ

(m)
QPIR) ≤ γ. We also

prepare the following lemma.

Lemma 5.4. If a QPIR protocol Ψ
(m)
QPIR satisfies Sserv(Ψ

(m)
QPIR) ≤ β and

S
(t)
user(Ψ

(m)
QPIR) ≤ γ, then for any k ∈ {1, . . . , f}, we have the relation

I(Mk;At|Qt, K = k)ρMQt
≤ β + g(m, γ) (5.56)

after the servers’ encoding, where

g(m, γ) := 10
√

2fγ logm + η0(2
√

2fγ) + 2h2(2
√

2fγ). (5.57)

Here, η0(·) and h2(·) are defined in (2.25). In particular, when γ = 0, we
have

I(Mk;At|Qt, K = k)ρMQt
≤ β

for any k ∈ {1, . . . , f}.

Proof. Let k 6= i ∈ {1, . . . , f}. We obtain the lemma as follows.

I(Mk;At|Qt, K = k)ρMQt
(5.58)

≤ I(Mk;AtQt|K = k)ρMQt
(5.59)

(a)

≤ I(Mk;AtQt|K = i)ρMQt
+ g(m, γ) (5.60)

≤ I(M c
i ;AQ|K = i)ρMQ

+ g(m, γ) (5.61)
(b)

≤ β + g(m, γ). (5.62)
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The inequality (b) follows from (5.51).
The inequality (a) is derived as follows. When we define

ρ̃MQt|k :=
∑
m,qt

(1/mf) · pQt=qt|K=k · |m, qt〉〈m, qt| ⊗ ρmqt

for k ∈ {1, . . . , f}, the inequality (5.52) implies that

d(ρ̃MQt|k, ρ̃MQt|i) ≤
√

2fγ (5.63)

for any i 6= k ∈ {1, . . . , f}, where d(·, ·) is the trace distance d(ρ, σ) :=

(1/2) · Tr |ρ − σ| for quantum states ρ, σ defined in (2.17). Thus, Fannes
inequality for mutual information (2.29) implies that

|I(Mk;AtQt|K = k)ρMQt
− I(Mk;AtQt|K = i)ρMQt

| ≤ g(m, γ),

which yields the inequality (a).

Lastly, we prepare the following lemma, which is fundamental for the
proof of the weak converse bound (5.46).

Lemma 5.5. Let Ψ
(m)
QPIR be a t-private QPIR protocol such that

Sserv(Ψ
(m)
QPIR) ≤ β, (5.64)

S(t)
user(Ψ

(m)
QPIR) ≤ γ, (5.65)

Perr(Ψ
(m)
QPIR) ≤ min{1/2, 1− 10

√
2fγ}. (5.66)

Then, the protocol Ψ
(m)
QPIR satisfies

logm ≤
2(n− t) log d + β + η0(2

√
2fγ) + 2h2(2

√
2fγ) + h2

(
Perr(Ψ

(m)
QPIR)

)
1− Perr(Ψ

(m)
QPIR)− 10

√
2fγ

,

where η0(·) and h2(·) are defined in (2.25).

Proof. We prove the lemma by four steps.
Step 1: First, we prepare the following notation. Fix K = k arbitrar-
ily. Let ρmk,m

c
k,q

be the quantum state on the composite system
⊗n

j=1Aj,
where mk is the message to be retrieved, mc

k is the collection of non-retrieved
f − 1 messages, and q is the collection of queries. Note that in view of Fig-
ure 5.4-(b), the targeted message mk corresponds to the classical message
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and the query q determines the decoding algorithm, but the non-targeted
messages mc

k are independent of mk and q. Therefore, we only consider, in
the following, the averaged states

τmk,q :=
1

mf−1

∑
mc

k

ρmk,m
c
k,q
, σq :=

1

m

m∑
mk=1

τmk,q. (5.67)

Considering the entire system A as a bipartite system At ⊗ Atc , let τ ′mk,qt

and σ′qt be the reduced density matrices of τmk,q and σq on At, respectively.
Depending on k and q, we denote the decoding POVM by {Yk,q(w)}w∈{1,...,m}.
Then, we define

Rq :=
1

m

m∑
mk=1

|mk〉〈mk| ⊗ τmk,q, (5.68)

Sq :=
1

m

m∑
mk=1

|mk〉〈mk| ⊗ σ′qt ⊗ I/d
n−t, (5.69)

Yk,q :=
m∑

mk=1

|mk〉〈mk| ⊗ Yk,q(mk). (5.70)

Step 2: In this step, we derive the inequality

(1− Perr,k(Ψ
(m)
QPIR)) logm ≤ EQD(RQ‖SQ)+h2

(
Perr,k(Ψ

(m)
QPIR)

)
, (5.71)

where Perr,k(Ψ
(m)
QPIR) := PrW,Mk

[W 6= Mk|K = k].

The data-processing inequality for quantum relative entropy (2.23) with
respect to the two-valued measurement {Yk,q, I − Yk,q} is written as

D(ρ||σ) ≥ D(Pρ||Pσ)

= −h2(Pρ(1))− Pρ(1) logPσ(1)− Pρ(2) logPσ(2), (5.72)

where

Pρ = {Pρ(1), Pρ(2)} = {Tr ρYk,q,Tr ρ(I − Yk,q)}, (5.73)

Pσ = {Pσ(1), Pσ(2)} = {Tr σYk,q,Tr σ(I − Yk,q)}. (5.74)

For the states Rq and Sq, we have

PRq = {PRq(1), PRq(2)} = {Perr,k,q(Ψ
(m)
QPIR), 1− Perr,k,q(Ψ

(m)
QPIR)},

PSq = {PSq(1), PSq(2)} =

{
1

m
, 1− 1

m

}
,
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where Perr,k,q(Ψ
(m)
QPIR) := PrW,Mk

[W 6= Mk|K = k,Q = q]. Here, PSq is
independent of k and q. Applying (5.72) to the states Rq and Sq, we have

(1− Perr,k,q(Ψ
(m)
QPIR)) logm = PRq(2) logPSq(2)−1 (5.75)

≤ D(Rq‖Sq) + h2(PRq(1)) (5.76)

= D(Rq‖Sq) + h2

(
Perr,k,q(Ψ

(m)
QPIR)

)
. (5.77)

Taking expectation with respect to Q and using the concavity of h2, we have

(1− Perr,k(Ψ
(m)
QPIR)) logm = EQ(1− Perr,k,Q(Ψ

(m)
QPIR)) logm (5.78)

≤ EQD(RQ‖SQ)+h2

(
Perr,k(Ψ

(m)
QPIR)

)
, (5.79)

which is the desired inequality (5.71).
Step 3: Next, we derive the inequality

EQD(RQ‖SQ) ≤ 2(n− t) log d + I(Mk;At|Qt, K = k)ρMQt
. (5.80)

The inequality (5.80) is derived by

EQD(RQ‖SQ) = EQ
1

m

m∑
mk=1

D

(
τmk,Q

∥∥∥∥σ′Qt
⊗ I

dn−t

)
(a)
= EQ

1

m

m∑
mk=1

(
D

(
τmk,Q

∥∥∥∥τ ′mk,Qt
⊗ I

dn−t

)
+D(τ ′mk,Qt

‖σ′Qt
)

)

= EQ
1

m

m∑
mk=1

D

(
τmk,Q

∥∥∥∥τ ′mk,Qt
⊗ I

dn−t

)
+ I(Mk;At|Qt, K = k)ρMQt

(b)

≤ 2(n− t) log d + I(Mk;At|Qt, K = k)ρMQt
.

The equation (a) can be shown as follows.

D

(
τmk,Q

∥∥∥∥σ′Qt
⊗ I

dn−t

)
= Tr τmk,Q

(
log τmk,Q − log

(
σ′Qt
⊗ I

dn−t

))
= Tr τmk,Q

{
log τmk,Q − log

(
τ ′mk,Qt

⊗ I

dn−t

)
+ log

(
τ ′mk,Qt

⊗ I

dn−t

)
− log

(
σ′Qt
⊗ I

dn−t

)}
= D

(
τmk,Q

∥∥∥∥τ ′mk,Qt
⊗ I

dn−t

)
+D(τ ′mk,Qt

‖σ′Qt
).
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The inequality (b) can be shown as follows. We diagonalize the state τmk,Q =∑
i pi|φi〉〈φi| and denote by ρi the reduced density matrix of |φi〉〈φi| on At.

Then,

D

(
τmk,Q

∥∥∥∥τ ′mk,Qt
⊗ I

dn−t

)
≤
∑
i

piD

(
|φi〉〈φi|

∥∥∥∥ρi ⊗ I

dn−t

)
= log dn−t +

∑
i

piH(ρi) ≤ 2 log dn−t,

where the last inequality is proved from H(ρi) = H(ρ′i) ≤ log dn−t for the
reduced density matrix ρ′i of |φi〉〈φi| on Atc .
Step 4: Lastly, we prove Lemma 5.5. Combining Eq. (5.71), Eq. (5.80),
and Lemma 5.4, we have

(1− Perr,k(Ψ
(m)
QPIR)) logm

≤ 2(n− t) log d + I(Mk;At|Q,K = k)ρMQ,t
+ h2

(
Perr,k(Ψ

(m)
QPIR)

)
≤ 2(n− t) log d + β + g(m, γ) + h2

(
Perr,k(Ψ

(m)
QPIR)

)
= 2(n− t) log d + β + 10

√
2fγ logm + η0(2

√
2fγ) + 2h2(2

√
2fγ)

+ h2

(
Perr,k(Ψ

(m)
QPIR)

)
Then, rewriting the above inequality, we obtain Lemma 5.5 as

logm ≤
2(n− t) log d + β + η0(2

√
2fγ) + 2h2(2

√
2fγ) + h2

(
Perr,k(Ψ

(m)
QPIR)

)
1− Perr,k(Ψ

(m)
QPIR)− 10

√
2fγ

(c)

≤
2(n− t) log d + β + η0(2

√
2fγ) + 2h2(2

√
2fγ) + h2

(
Perr(Ψ

(m)
QPIR)

)
1− Perr(Ψ

(m)
QPIR)− 10

√
2fγ

,

where (c) follows from Perr,k(Ψ
(m)
QPIR) ≤ Perr(Ψ

(m)
QPIR) < 1/2.

Remark 5.10. In Step 2, we condition on Q = q and then take expectation
with respect to Q. The reason why we condition on Q = q is that the states
and the decoder are determined depending on the value of Q. Thus, to derive
(5.75) which relates the error probability and quantum relative entropy, we
need to condition on Q = q. On the other hand, we need to take expectation
on Q in (5.79) because we need to recover Qt as a random variable to apply
the user secrecy condition I(K;Qt) ≤ γ. To be precise, we use the user
secrecy condition I(K;Qt) ≤ γ in the proof of Lemma 5.4 and we apply
Lemma 5.4 in Step 4.

77



Chapter 5. Capacity of QPIR with Colluding Servers

5.4.2 Weak converse bound for t > n/2 with user secrecy

In this subsection, we prove the converse bound (5.46). We choose a sequence
of QPIR protocols {Ψ(m`)

QPIR}∞`=1 such that

(α`, β`, γ`) := (Perr(Ψ
(m`)
QPIR), Sserv(Ψ

(m`)
QPIR), S(t)

user(Ψ
(m`)
QPIR))

satisfies

lim sup
`→∞

α` = 0,

lim sup
`→∞

γ` = 0,

lim sup
`→∞

β` = β.

Let d` be the dimension of Aj (∀j ∈ [n]) for the protocol Ψ
(m`)
QPIR. Then, for

any sufficiently large ` such that α` ≤ min{1/2, 1 − 10
√

2fγ`}, Lemma 5.5
gives

logm` ≤
2(n− t) log d` + β` + η0(2

√
2fγ`) + 2h2(2

√
2fγ`) + h2(α`)

1− α` − 10
√

2fγ`
.

Hence, the asymptotic QPIR rate satisfies

lim
`→∞

R(Ψ
(m`)
QPIR)

= lim
`→∞

logm`

n log d`

≤ lim
`→∞

2(n− t) log d` + β` + η0(2
√

2fγ`) + 2h2(2
√

2fγ`) + h2(α`)

(1− α` − 10
√

2fγ`)n log d`

=
2(n− t)

n
,

where the last equality follows from the relation (α`, β`, γ`, d`)→ (0, β, 0,∞)

as `→∞. Thus we obtain the converse bound (5.46).

5.4.3 Strong converse bound for t > n/2 with perfect
secrecy

In this subsection, we prove the strong converse bound (5.45) for t > n/2

with perfect secrecy Throughout this subsection, we use the notation given
in Step 1 of the proof of Lemma 5.5.
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The converse bound (5.45) is the bound with the assumption of perfect
secrecy, i.e., Sserv(Ψ

(m)
QPIR) = 0 and S

(t)
user(Ψ

(m)
QPIR) = 0. With perfect secrecy,

we have the following corollary of Lemma 5.4.

Corollary 5.2. Suppose Sserv(Ψ
(m)
QPIR) = 0 and S(t)

user(Ψ
(m)
QPIR) = 0. Then, the

relation
I(Mk;Aπ(t)|Qt, K = k)ρMQt

= 0

holds for any k ∈ {1, . . . , f} after the application of the server encoder. That
is, the state on the system Aπ(t) does not depend on the message Mk.

We give a simple direct proof for this corollary in Appendix F.
Now, we prove Eq. (5.45). Let Sserv(Ψ

(m)
QPIR) = 0 and S

(t)
user(Ψ

(m)
QPIR) = 0.

We consider the case where arbitrary K = k, Q = q, and π ∈ Sn are fixed.
Since Corollary 5.2 guarantees that the reduced density matrix τ ′mk,qt

on At

does not depend on mk, we denote it by τ ′qt . Applying Proposition 3.2 with

(s, ρw, Y (w), σ) :=

(
1, τmk,q, Yk,q(w), τ ′qt ⊗

I

dn−t

)
,

we have

(1− Perr,k,q(Ψ
(m)
QPIR))2m ≤ 1

m

m∑
mk=1

Tr τ 2
mk,q

(
τ ′qt ⊗

I

dn−t

)−1

. (5.81)

Given mk and q, consider the decomposition τmk,q =
∑

x px|ψmk,q,x〉〈ψmk,q,x|.
Let ρ′qt,x be the reduced density matrix of |ψmk,q,x〉〈ψmk,q,x| on At, i.e., τ ′qt =∑

x pxρ
′
qt,x. Then,

Tr τ 2
mk,q

(
τ ′qt ⊗

I

dn−t

)−1

(a)

≤
∑
x

px Tr(|ψmk,q,x〉〈ψmk,q,x|)2

(
ρ′qt,x ⊗

I

dn−t

)−1

=
∑
x

px Tr |ψmk,q,x〉〈ψmk,q,x|
(
ρ′qt,x ⊗

I

dn−t

)−1

= dn−t
∑
x

px Tr ρ′qt,x(ρ
′
qt,x)

−1 = dn−t
∑
x

px Tr I = d2(n−t), (5.82)

79



Chapter 5. Capacity of QPIR with Colluding Servers

where (a) follows from the application of the data-processing inequality (2.22)
to the choice

s := 1,

ρ :=
∑
x

px|x〉〈x| ⊗ |ψmk,q,x〉〈ψmk,q,x| ∈ S(X ⊗A),

σ :=
∑
x

px|x〉〈x| ⊗ (ρ′qt,x ⊗ I/d
n−t) ∈ S(X ⊗A),

κ := Tr
X
.

Combining (5.81) and (5.82), we have

(1− Perr,k,q(Ψ
(m)
QPIR))2 ≤ d2(n−t)

m
. (5.83)

Let {Ψ(m`)
QPIR}∞`=1 be an arbitrary sequence of QPIR protocols such that the

QPIR rate greater than 2(n− t)/n for any sufficiently large `, i.e.,

R(Ψ
(m`)
QPIR) =

logm`

log dn`
>

2(n− t)

n
, (5.84)

which is equivalent to

logm`

log d
2(n−t)
`

> 1. (5.85)

Here, d` is the dimension ofAj (∀j ∈ [n]) for the protocol Ψ
(m`)
QPIR. From (5.85),

d
2(n−t)
` /m` goes to 0, and then from (5.83), the probability 1−Perr,k,q(Ψ

(m`)
QPIR)

approaches 0. Since

1− Perr(Ψ
(m`)
QPIR) ≤ 1− Perr,k,q(Ψ

(m`)
QPIR), (5.86)

we have 1− Perr(Ψ
(m`)
QPIR)→ 0, which implies (5.45).

5.4.4 Strong converse bound for t ≤ n/2

In this subsection, we prove the strong converse bound (5.44) for t ≤ n/2.
Throughout this subsection, we also use the notation given in Step 1 of the
proof of Lemma 5.5.
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The bound (5.44) is proved similar to Chapter 3 as follows. Fix K = k

and Q = q. Let σq := (1/m)
∑m

mk=1 τmk,q. Applying Proposition 3.2 with

(s, ρw, Y (w), σ) := (1, τmk,q, Yk,q(w), σq),

we have

(1− Perr,k,q(Ψ
(m)
QPIR))2m ≤ 1

m

m∑
mk=1

Tr τ 2
mk,q

σ−1
q . (5.87)

Then,

1

m

m∑
mk=1

Tr τ 2
mk,q

σ−1
q ≤

1

m

m∑
mk=1

Tr τmk,qσ
−1
q = Tr I =

n∏
j=1

dimAj. (5.88)

Combining (5.87) and (5.88), we have

(1− Perr,k,q(Ψ
(m)
QPIR))2 ≤

∏n
j=1 dimAj

m
. (5.89)

Let {Ψ(m`)
QPIR}∞`=1 be an arbitrary sequence of QPIR protocols such that the

QPIR rate of Ψ
(m`)
QPIR is strictly greater than 1 for any sufficiently large `, i.e.,

R(Ψ
(m`)
QPIR) =

logm`

log dn`
> 1, (5.90)

where d` is the dimension of Aj (∀j ∈ [n]) for the protocol Ψ
(m`)
QPIR. Then,

Eq. (5.90) implies that

dn`
m`

=

∏n
j=1 dimAj

m`

→ 0.

Hence, from (5.89), for any k and q, 1−Perr,k,q(Ψ
(m`)
QPIR) approaches zero. Since

1− Perr(Ψ
(m`)
QPIR) ≤ 1− Perr,k,q(Ψ

(m`)
QPIR), (5.91)

we have 1− Perr(Ψ
(m`)
QPIR)→ 0, which implies (5.44).
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Chapter 6

Quantum Private Information
Retrieval with Colluding Servers
by Bipartite Entangled States

The t-private symmetric QPIR protocol in Section 5.3 required a multipartite
entangled state as prior entanglement. However, because of limitation in
current quantum technology, it is hard to generate and control multipartite
entangled states compared to bipartite entangled states. Thus, it is desirable
to construct a protocol with bipartite entangled states instead of multipartite
entangled states.

In this chapter, we construct the (n−1)-private QPIR protocol with bipar-
tite entangled states. The protocol in this chapter achieves (n − 1)-private
QPIR capacity derived in Theorem 5.1 and has the following advantages
compared to the protocol in Section 5.3. First, our protocol only requires
multiple copies of bipartite entangled states whereas the protocol in Sec-
tion 5.3 requires multipartite entanglement as prior entanglement. Since the
bipartite entanglement is more reliably generated with current technology,
our construction is more suitable for the implementation on quantum devices
than the protocol in Section 5.3. Second, our protocol is more constructive
than the protocol in Section 5.3. Our protocol is a combination of two sim-
ple protocols: quantum teleportation [80] and superdense coding [81], which
have been experimentally realized in [82,83] and [84,85], respectively. On the
other hand, the protocol in Section 5.3 is constructed with more sophisticated
method of stabilizer formalism. Thus, our protocol is more accessible to the
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experimentalists and the theorists who are not familiar with the stabilizer
formalism.

The protocol in this chapter is a generalization of the QPIR protocol
in Chapter 3. The protocol in Chapter 3 extended the classical two-server
PIR protocol [5] by the idea of superdense coding [81]. Similarly, our protocol
extends an (n−1)-private PIR protocol explained below by the idea of super-
dense coding [81] and quantum teleportation [80]. The classical (n−1)-private
PIR protocol we extend is described as follows. Let (logm)-bit messages
M1, . . . ,Mf be contained in each of n servers and the queries Q1, . . . , Qn−1

be independently and uniformly chosen subsets of {1, . . . , f}. To retrieve the
K-th message, the user chooses Qn which satisfies

⊕n
j=1 Qj = {K}, where

⊕
is the symmetric difference, and sends the queries Q1, . . . , Qn to each server.
For each j ∈ {1, . . . , n}, the j-th server returns Hj :=

∑
i∈Qj

Mi to the user
and then the user can retrieve MK =

∑n
j=1Hj, where both summations are

with respect to the addition modulo 2. The protocol is private because the
collection of any n − 1 variables in Q1, . . . , Qn is independent of the target
index K.

The protocol in this chapter has several remarkable properties. First,
our protocol is a symmetric QPIR protocol. Second, the upload cost of
our protocol is nf bits, which is linear for the number of servers n and the
number of messages f but independent of the message size m. Third, our
protocol requires the message size m = 22`, i.e., 2` bits, for any positive
integer `, whereas the (n − 1)-private classical PIR protocol in [29] requires
the message size m = qn

f depending on n and f for a sufficiently large prime
power q.

Following the conference paper of this chapter [2], the paper [55] proposed
a QPIR protocol for coded and colluding servers which works for any [n, k]-
MDS code and secure against t-collusion with t = n − k. Their protocol is
an extension of the QPIR protocol of this paper by the combination with
the classical PIR protocol [32] and it achieves better rates than the classical
counterparts [32,36].

The rest of the paper is organized as follows. Section 6.1 presents the
main theorem. Section 6.2 is preliminaries for the protocol construction and
Section 6.3 constructs the QPIR protocol with n− 1 colluding servers.
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6.1 Main theorem

Let |Φ〉 := (1/2)(|00〉 + |11〉) and one copy of the state |Φ〉 is counted as an
ebit. The main theorem of this chapter is as follows.

Theorem 6.1 ((n− 1)-private symmetric QPIR protocol with bipartite en-
tanglement). For (n − 1)-private symmetric QPIR with any n ≥ 2 servers
and f ≥ 2 messages, there exists a QPIR protocol with the rate dn/2e−1, per-
fect security, nf-bit upload cost, 2`-bit messages for any integer ` ≥ 1, and
(b3n/2c − 2) ebits as prior entanglement.

Note that the protocol in this section achieves (n−1)-private QPIR capac-
ity derived in Theorem 5.1 when the number of server n is any even number.
Compared to the capacity-achieving protocol in Section 5.3, which requires
one n-partite entangled state, the protocol in this section needs only many
copies of bipartite entangled state (ebits) as prior entanglement. Section 6.3
constructs the protocol that achieves the performance given in Theorem 6.1.
When n = 2, the protocol in Section 6.3 corresponds to the protocol in
Chapter 3.

6.2 Preliminaries for protocol construction

In this section, we prepare two simple protocols to describe our QPIR proto-
col. Throughout this chapter, we consider the unit quantum system H as a
qubit, i.e., a two-dimensional Hilbert space spanned by an orthonormal basis
{|0〉, |1〉}. Thus, we use the notations X,Z,W(a, b), |T⟫,MZ2

2
of Section 3.2.1.

Note in the following that W(a, b) on a qubit is a real matrix and therefore
W(a, b) = W(a, b) and W(a, b)∗ = W(a, b)>.

6.2.1 Quantum teleportation with an operation

First, we give a modified version of the quantum teleportation protocol [80],
where an operation W(c, d) is performed on H3 before the quantum telepor-
tation protocol starts.

Protocol 6.1. Suppose that Alice possesses two qubits H1 and H2, Bob pos-
sesses a qubit H3. The state on H1 is ρ and Alice and Bob share |Φ〉 ∈

84



Chapter 6. QPIR with Colluding Servers by Bipartite Entangled States

H0

Reference

H1

Alice

H2 H3

Bob

|y〉 |Φ〉
W(c, d)

MZ2
2
7→ (a, b)

H0 H3

(I ⊗W(c, d)W(a, b))|y〉

Apply W(a, b) on H3

H0 H3

(−1)ab+bc+da(I ⊗W(c, d))|y〉

Figure 6.1: Change of states in quantum teleportation protocol with an op-
eration W(c, d) on H3 (Protocol 6.1). The symbol MZ2

2
7→ (a, b) implies

that the PVM MZ2
2
is applied on H1 ⊗H2 and the measurement outcome is

(a, b) ∈ Z2
2.

H2 ⊗H3. Quantum teleportation protocol with an operation is given as fol-
lows.

Step 1. Bob applies the unitary operation W(c, d) on H3.

Step 2. Alice applies PVM MZ2
2
on H1 ⊗ H2 and sends the measurement

outcome (a, b) to Bob.

Step 3. Bob applies the unitary W(a, b) on H3.

The resultant state on H3 is W(c, d)ρW(c, d)∗ and it preserves the entan-
glement. Note that Protocol 6.1 requires two-bit transmission from Alice to
Bob. The protocol without Step 1 in Protocol 6.1 is the quantum teleporta-
tion protocol [80].
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Analysis of Protocol 6.1

We show that the resultant state on H3 is W(c, d)ρW(c, d)∗ and it preserves
the entanglement (see Figure 6.1).

Let H0 be a qubit and |y〉 =
∑1

i,j=0 yij|i, j〉 ∈ H0 ⊗H1 be a purification
of the state ρ. Before the protocol starts, the state on H0⊗H1⊗H2⊗H3 is

|z〉 :=
1√
2

1∑
i,j,r=0

yij|i, j, r, r〉. (6.1)

If the measurement outcome is (a, b) in Step 2, the state on H0 ⊗H3 at the
end of Step 2 is

2 · (IH0 ⊗ 〈Φ|(IH1 ⊗W(a, b))∗ ⊗W(c, d))|z〉 (6.2)

=
1∑

i,j=0

yij(−1)jb+jd+ad|i, j + a+ c〉

= (−1)ad
1∑

i,j=0

yij(−1)j(b+d)|i, j + a+ c〉

= (−1)ad(IH0 ⊗W(a+ c, b+ d))|y〉
= (IH0 ⊗W(c, d)W(a, b))|y〉, (6.3)

where the multiplicand 2 in (6.2) is the normalizing multiplicand. At the end
of Step 3, the state on H0 ⊗H3 is

(−1)ab+bc+da(IH0 ⊗W(c, d))|y〉, (6.4)

which is an identical state to (IH0 ⊗ W(c, d))|y〉. Therefore, the resultant
state on H3 is W(c, d)ρW(c, d)∗ and it preserves the entanglement.

Remark 6.1. Even in case that the order of Step 1 and Step 2 is reversed,
the state before and after the operation W(a, b) is identical to (6.3) and (6.4).

6.2.2 Two-sum transmission protocol

Consider there are three parties Alice, Bob, and Carol. By the following
protocol, Carol receives the sum of Alice’s information (a, b) ∈ Z2

2 and Bob’s
information (c, d) ∈ Z2

2.
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Protocol 6.2. Suppose that the joint state of two qubits H1 and H2 is the
maximally entangled state |Φ〉 and Alice and Bob possess H1 and H2, respec-
tively. The two-sum transmission protocol is given as follows.

Step 1. Alice and Bob apply W(a, b) on H1 and W(c, d) on H2, respectively.

Step 2. Alice and Bob send the quantum systems H1 and H2 to Carol, re-
spectively.

Step 3. Carol performs the PVM MZ2
2
and obtains the measurement outcome

(e, f) as the protocol output.

In Protocol 6.2, the output (e, f) is (a + c, b + d), which can be proved
trivially from (3.15) and (3.20). The protocol requires two-qubit transmission
each from Alice and Bob.

6.3 QPIR protocol with n− 1 colluding servers

In this section, we propose a QPIR protocol that achieves the performance
given in Theorem 6.1 for any n ≥ 2 servers. In our protocol, we consider
each server contains the following message set. Given two arbitrary integers
` ≥ 1 and f ≥ 2, the message set is given by the collection of 2`-bit messages
M1, . . . ,Mf ∈ Z2`

2 and Mi for any i ∈ {1, . . . , f} is denoted by

Mi = (M
(1)
i , . . . ,M

(`)
i ) ∈ (Z2

2)×`.

Section 6.3.1 presents our (n−1)-private QPIR protocol with three servers
(n = 3) and ` = 1 as the simplest case. Then, by using Protocol 6.2 and the
idea of the protocol in Section 6.3.1, Section 6.3.2 presents our protocol for
any n servers and any `.

6.3.1 Construction of protocol for n = 3 and ` = 1

Protocol 6.3. Our QPIR protocol for 3 servers with messages M1, . . . ,Mf ∈
Z2

2 is described as follows (see Figure 6.2).

Step 1. [Preparation] The servers serv1, serv2, serv3 possess one qubit
H1, two qubits HL

2 , HR
2 , and one qubit H3, respectively. The initial

states on both of H1⊗HL
2 and HR

2 ⊗H3 are the maximally entangled
state |Φ〉.
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H1

serv1

HL
2

serv2

HR
2 H3

serv3

W(H1) W(H2) W(H3)

|Φ〉 |Φ〉

MZ2
2
7→ (a, b)

H1 H3

(−1)φ(I ⊗W((a, b) +
∑3

j=1Hj))|Φ〉

Apply W(a, b) on H3

H1 H3

(−1)φ
′
(I ⊗W(

∑3
j=1 Hj))|Φ〉

Figure 6.2: Two-private QPIR protocol for three servers and ` = 1. MZ2
2
7→

(a, b) implies that the PVM MZ2
2
is applied onHL

2⊗HR
2 and the measurement

outcome is (a, b) ∈ Z2
2. The values φ, φ′ ∈ Z2 are determined by (a, b), H1,

H2, and H3.

Step 2. [Query] Let K be the index of the message to be retrieved. Choose
two subsets Q1 and Q2 of {1, . . . , f} independently and uniformly at
random. Define Q3 by

Q3 := Q1 ⊕Q2 ⊕ {K}.

For each j ∈ {1, 2, 3}, the user sends the query Qj to servj.

Step 3. [Download] For each j ∈ {1, 2, 3}, the server servj calculates

Hj :=
∑
i∈Qj

Mi. (6.5)

The server serv1 (serv3) applies W(H1) to H1 (W(H3) to H3) and
transmits H1 (H3) to the user. The server serv2 applies W(H2)

on HL
2 , performs the PVM MZ2

2
on HL

2 ⊗ HR
2 , and transmits the

measurement outcome (a, b) ∈ Z2
2 to the user.
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H(p)
1

serv1

W(H
(p)
1 )

HL,(p)
2

W(H
(p)
2 )

serv2

HR,(p)
2

HM,(p)
2

W(G
(p)
2 )

MZ2
2
7→ G

(p)
2

HL,(p)
3

W(H
(p)
3 )

serv3

HR,(p)
3

HM,(p)
3

W(G
(p)
3 )

MZ2
2
7→ G

(p)
3

H(p)
4

serv4

W(H
(p)
4 )

User

|Φ〉 |Φ〉 |Φ〉

|Φ〉

Figure 6.3: Download step of (n− 1)-private QPIR protocol for four servers
and any integer 1 ≤ p ≤ `. For any j ∈ {2, 3}, MZ2

2
7→ G

(p)
j implies that

the PVM MZ2
2
is applied on HL,(p)

j ⊗HR,(p)
j and the measurement outcome is

G
(p)
j ∈ Z2

2. The snake shape arrow indicates the transmission of a qubit.

Step 4. [Retrieval] The user applies W(a, b) on H3 and performs the PVM
MZ2

2
on H1 ⊗H3, and the output of the protocol is the measurement

outcome W ∈ Z2
2.

Analysis of Protocol 6.3

First, we show the correctness of the protocol. The state ofH1⊗HL
2⊗HR

2 ⊗H3

before the PVM at Step 3 is

(W(H1)⊗W(H2))|Φ〉 ⊗ (I ⊗W(H3))|Φ〉 (6.6)

= (−1)φ0(W(H1 +H2)⊗ I)|Φ〉 ⊗ (I ⊗W(H3))|Φ〉, (6.7)

where φ0 ∈ Z2 is determined depending on H1 and H2. After the PVM at
Step 3 with the measurement outcome (a, b), the state on H1 ⊗H3 is

(W(H1 +H2)⊗W((a, b) +H3))|Φ〉 (6.8)

= (−1)φ
′
0(I ⊗W((a, b) +H1 +H2 +H3))|Φ〉, (6.9)
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where φ′0 ∈ Z2 is determined by (a, b), H1, H2, H3. Thus, after the user’s
operation at Step 4, the state on H1 ⊗H3 is

(I ⊗W(H1 +H2 +H3))|Φ〉. (6.10)

(Alternatively, we can also obtain the same result (6.10) by considering the
servers and the user apply Protocol 6.1 for (c, d) := H3 and |y〉 := (W(H1)⊗
W(H2))|Φ〉 = (−1)φ0(I ⊗W(H1 + H2))|Φ〉.) Therefore, the user obtains the
measurement outcome ŴK =

∑3
t=1Ht = WK , which implies the correctness

of our protocol.
The user secrecy follows from the fact that any two of H1, H2, H3 are

independent of the target index K. The server secrecy follows from the fact
that the user’s information is (MK , a, b) which is independent of any message
except for MK .

The upload cost is nf = 3f bits because each of Q1, Q2, Q3 is written by
f bits. In the protocol, the user downloads 2 qubits and 2 bits but we count
the download cost as 4 qubits since we only count quantum communication
in our QPIR model and one qubit conveys one bit at most. The message size
is 2` = 2 bits. Therefore, the QPIR rate is 2/(n + 1) = 2/4.

6.3.2 Construction of protocol for n servers

In this subsection, we present our protocol for any n ≥ 2 servers and any
` ≥ 1. The idea of our protocol construction is described as follows. The
number of servers n are generalized to be arbitrary by using the idea of the
three-server protocol in Section 6.3.1. In this generalization, it is necessary
for servers to transmit the sum of measurement outcomes to the user, and it
is performed efficiently by using the two-sum transmission protocol (Protocol
6.2). The index ` is increased by using the same query repetitively until the
protocol retrieves the entire message.

Protocol 6.4. Our protocol for n servers is described as follows (see Figure
6.3).

Step 1. [Preparation] For each p ∈ {1, . . . , `}, prepare the following quan-
tum systems and states. The servers serv1 and servn have qubits
H(p)

1 and H(p)
n , respectively. For each j ∈ {2, . . . , n − 1}, the server

servj has three qubits HL,(p)
j , HR,(p)

j , HM,(p)
j . If n is odd, we consider
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the server servn−1 has only two qubits HL,(p)
n−1 , HR,(p)

n−1 . The maximally
entangled state |Φ〉 is shared between each of the following bipartite
systems:

• H1 ⊗HL,(p)
2 ,HR,(p)

n−1 ⊗Hn,

• HR,(p)
2 ⊗HL,(p)

3 ,HR,(p)
3 ⊗HL,(p)

4 , . . . ,HR,(p)
n−2 ⊗H

L,(p)
n−1 ,

• HM,(p)
2j ⊗HM,(p)

2j+1 for any j ∈ {1, . . . , bn/2c − 1}.

Step 2. [Query] Let K be the index of the message to be retrieved. Choose
subsets Q1, . . . , Qn−1 of {1, . . . , f} independently and uniformly at
random. Define Qn by

Qn :=
n−1⊕
j=1

Qj ⊕ {K}.

The user sends the query Qj to servj for each j ∈ {1, . . . , n}.

Step 3. [Download] For each j ∈ {1, . . . , n}, depending on the query Qj,
the server servj calculates

Hj = (H
(1)
j , . . . , H

(`)
j )

:=
∑
i∈Qj

Mi =

∑
i∈Qj

M
(1)
i , . . . ,

∑
i∈Qj

M
(`)
i

. (6.11)

Then, for each p ∈ {1, . . . , `}, the servers perform the following pro-
cess.

a) The server serv1 (servn) applies W(H
(p)
1 ) to H1 (W(H

(p)
n ) to

H(p)
n ) and transmits H(p)

1 (H(p)
n ) to the user.

b) For each j ∈ {2, . . . , n − 1}, the server servj applies W(H
(p)
j )

on HL,(p)
j and performs the PVM MZ2

2
on HL,(p)

j ⊗ HR,(p)
j whose

measurement outcome is denoted by G(p)
j ∈ Z2

2.

c) For each j ∈ {1, . . . , bn/2c − 1}, the servers serv2j and serv2j+1

transmit the sum G
(p)
2j + G

(p)
2j+1 to the user by the two-sum trans-

mission protocol (Protocol 6.2) with qubits HM,(p)
2j and HM,(p)

2j+1 .

d) If n is odd, servn−1 transmits G(p)
n−1 ∈ Z2

2 to the user.
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Step 4. [Retrieval] For each p ∈ {1, . . . , `}, the user performs the following
process.

a) For any j ∈ {1, . . . , bn/2c − 1}, the user receives the sum G
(p)
2j +

G
(p)
2j+1 by Download Step c). If n is odd, the user obtains G(p)

n−1

additionally.

b) The user applies W(
∑n−1

j=2 G
(p)
j ) on H(p)

n .

c) The user performs the PVM MZ2
2
on H(p)

1 ⊗H
(p)
n whose measure-

ment outcome is denoted by W (p) ∈ Z2
2.

The protocol output is W = (W (1), . . . ,W (`)) ∈ (Z2
2)×`.

Protocol 6.4 is analyzed as follows.

Error Probability

Let p be any element of {1, . . . , `}.
As shown in the next paragraph, at the end of Download Step, the state

on H(p)
1 ⊗H

(p)
n is

(−1)φ
(p)
n

(
I ⊗W

(
n∑
j=1

H
(p)
j +

n−1∑
j=2

G
(p)
j

))
|Φ〉, (6.12)

where φ(p)
n ∈ Z2 is determined depending on H(p)

1 , . . . , H(p)
n , G(p)

2 , . . . , G(p)
n−1.

Then, at the end of Retrieval Step b), the state on H(p)
1 ⊗H

(p)
n is

(−1)φ̃
(p)
n

(
I ⊗W

(
n∑
j=1

H
(p)
j

))
|Φ〉, (6.13)

where φ̃(p)
n ∈ Z2 is determined depending on H

(p)
1 , . . . , H(p)

n , G(p)
2 , . . . ,

G
(p)
n−1. Thus, at Retrieval Step c), the measurement outcome is M (p) =∑n
j=1 H

(p)
j = M

(p)
K ∈ Z2

2, which implies that our protocol correctly retrieves
W

(p)
K . Since W

(p)
K is retrieved correctly for any p, the targeted message

WK = (W
(1)
K , . . . ,W

(`)
K ) is retrieved correctly.

Now, we prove (6.12). Since the operations of different servers are ap-
plied on different quantum systems, the order of the servers’ operations
can be arbitrary. Therefore, in the following, we consider that the servers
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serv1, . . . , servn apply the operations sequentially. At the end of the oper-
ation of serv1, the state on H(p)

1 ⊗H
L,(p)
2 is

|y1〉 :=(W(H
(p)
1 )⊗I)|Φ〉 =(−1)φ

(p)
1 (I ⊗W(H

(p)
1 ))|Φ〉, (6.14)

where φ(p)
1 is determined depending on H(p)

1 . Suppose that at the end of the
operations of servk for any k ∈ {1, . . . , n− 2}, the state on H1 ⊗HL,(p)

k+1 is

|yk〉 := (−1)φ
(p)
k

(
I ⊗W

(
k∑
j=1

H
(p)
j +

k∑
j=2

G
(p)
j

))
|Φ〉, (6.15)

where φ(p)
k ∈ Z2 is determined depending on H

(p)
1 , . . . , H(p)

k , G(p)
2 , . . . ,

G
(p)
k . Note that the operations of servk+1 corresponds to the steps 0 and 1

of Protocol 6.1 for |y〉 := |yk〉, (a, b) := G
(p)
k+1, and (c, d) := H

(p)
k+1. Therefore,

after the operations of servk+1, the state on H(p)
1 ⊗H

L,(p)
k+2 is

|yk+1〉 := (−1)φ
(p)
k+1

(
I⊗W

(
k+1∑
j=1

H
(p)
j +

k+1∑
j=2

G
(p)
j

))
|Φ〉, (6.16)

where φ(p)
k+1 ∈ Z2 is determined depending on H

(p)
1 , . . . , H(p)

k+1, G
(p)
2 , . . . ,

G
(p)
k and the system HL,(p)

k+2 denotes H(p)
n for the case k = n − 2. By the

mathematical induction, the state on H(p)
1 ⊗ H

(p)
n after the operations of

servn−1 is

|yn−1〉 = (−1)φ
(p)
n−1

(
I⊗W

(
n−1∑
j=1

H
(p)
j +

n−1∑
j=2

G
(p)
j

))
|Φ〉, (6.17)

and after the operation of servn, the state is

(−1)φ
(p)
n

(
I ⊗W

(
n∑
j=1

H
(p)
j +

n−1∑
j=2

G
(p)
j

))
|Φ〉, (6.18)

where φ(p)
n ∈ Z2 is determined depending on H(p)

1 , . . . , H(p)
n , G(p)

2 , . . . , G(p)
n−1.

Thus, we have Eq. (6.12).

User secrecy and server secrecy

The user secrecy is obtained because the collection of any n− 1 variables in
Q1, . . . , Qn is independent of the target indexK. Next, we consider the server
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secrecy. The user obtainsMK and G(p)
2j +G

(p)
2j+1 for any j ∈ {1, . . . , bn/2c−1}

and any p ∈ {1, . . . , `}. If n is odd, the user obtains G(p)
n−1 additionally. Note

that before the measurement by the server servj for j ∈ {2, . . . , n− 1}, the
state on HL,(p)

j ⊗ HR,(p)
j is the completely mixed state, which implies that

the measurement outcomes G(p)
j for all j are independent of any message.

Therefore, the user obtains no message other than MK .

Costs and QPIR rate

The upload cost is nf bits because each subset Q1, . . . , Qn of {1, . . . , f} is
written by f bits. For each p ∈ {1, . . . , `}, the user downloads n qubits H(p)

1 ,
HM,(p)

2 , . . . , HM,(p)
n−1 , H(p)

n if n is even, and downloads n−1 qubits H(p)
1 , HM,(p)

2 ,
. . . , HM,(p)

n−2 , H(p)
n and two bits G(p)

n−1 ∈ Z2
2 if n is odd. Since we only count

quantum communication in our QPIR model and one qubit conveys one bit
at most, the total download cost is n` qubits when n is even and (n + 1)`

qubits when n is odd. The message size is 2` bits, i.e., m = 22`. Therefore,
the QPIR rate is

R(Ψ
(m)
QPIR) =


2`

n`
=

2

n
if n is even

2`

(n + 1)`
=

2

n + 1
if n is odd.

(6.19)

Moreover, the sequence {Ψ(m`)
QPIR}∞`=1 of our protocols for m` := 22` achieves

the negligible upload cost with respect to the download cost, i.e.,

lim
`→∞

nf

n`
= lim

`→∞

nf

(n + 1)`
= 0.
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Conclusion

7.1 Summary

We characterized the information-theoretic optimal rate of QPIRs by deriving
the symmetric and non-symmetric QPIR capacities for non-colluding and
colluding servers. As a model of QPIR protocol, we considered the case
where each of the multiple servers contains a copy of all classical messages,
the servers share prior entanglement, and the user uploads classical queries to
the servers and downloads quantum answers from the servers. For a precise
analysis of the capacities, we defined two kinds of QPIR capacities for each
model: asymptotic and exact security-constrained capacities with the upload
constraints.

Chapter 3 proved that the symmetric and non-symmetric QPIR capacities
are 1 for any security constraints and any upload constraint. We constructed
a capacity-achieving rate-one protocol with only two servers when the mes-
sage size is the square of an arbitrary integer. The converse bound is proved
by focusing on the download step of QPIR protocols. Furthermore, Chap-
ter 4 also proved the capacity of multi-round QPIR is also 1 by the weak
converse bound.

Chapter 5 discussed symmetric and non-symmetric t-private QPIR. In t-
private QPIR, the protocol needs to guarantee the user t-secrecy in which any
collection of t queries contains no information of the user’s request. When
the number of colluding servers t is less than or equal to a half of the num-
ber of servers n, the capacities are exactly 1 whether considering the security
conditions or not and if t > n/2, the capacities are 2(n−t)/n with some secu-
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rity assumptions. For the proof of the capacities, we constructed a t-private
QPIR protocol with perfect security conditions by the stabilizer formalism.
We also derived the converse bounds, which complete the optimality of our
protocol.

Chapter 6 constructed a symmetric (n − 1)-private QPIR protocol with
bipartite entangled states. The protocol has the QPIR rate dn/2e−1, which
implies that it is capacity-achieving for an even number of servers n. We
constructed the protocol by using quantum teleportation and the two-sum
transmission protocol repetitively.

7.2 Open problems

It is an interesting open problem whether QPIR without prior entanglement
also has an advantage over the classical PIR counterparts. This thesis has
considered QPIR under the assumption of prior entanglement and the QPIR
capacities with prior entanglement are strictly greater than the classical PIR
capacities. The QPIR capacities without prior entanglement lie between the
QPIR capacities of this thesis and the classical PIR capacities. Therefore, it
should be studied whether the quantum PIR capacity is strictly higher than
the classical PIR capacity even without prior entanglement.

In Chapter 3, we assumed that the maximally entangled state can be
shared by several servers. That is, we have made no restriction for prior
entanglement. This setting is similar to the original studies [86, 87] for the
entanglement-assisted classical capacity for a noisy quantum channel because
they have no restriction for prior entanglement. A recent paper [88] de-
rived the entanglement-assisted classical capacity for a noisy quantum chan-
nel when prior entanglement is limited. For the extension, the paper [88]
invented several new methods, which are essential for this restriction. There-
fore, it is remained as a future problem to extend our result to the case when
the shared entangled state is restricted.

As another problem, we can consider the QPIR capacity when the chan-
nel from the servers to the user are noisy quantum channels. It is natural to
apply quantum error corrections to each noisy quantum channels and apply
our QPIR protocol over the virtually implemented noiseless channels by er-
ror correction. In this case, the transmission rate is given by the quantum
capacity of the noisy quantum channel. For the converse part, we can easily
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extend the discussion of converse bounds. In this extension, the obtained
upper bound of the transmission rate is the classical capacity of the noisy
quantum channel. Hence, this simple method does not yield the QPIR ca-
pacity with noisy quantum channels. Therefore, it is another challenging
problem to calculate the QPIR capacity with noisy quantum channels.

In Chapter 5, we only considered t-private QPIR with the most trivial
security model that the user and the servers follow the protocol and do not
deviate from the protocol. Thus, adversarial models as Section 3.2.3 need
to be discussed. t-Private QPIR capacity should also be discussed for the
multi-round case.

Following the capacity results [26, 28, 29, 36, 38] of classical PIRs, there
have been many extensions of classical PIR studies. PIR with coded storage
[31, 32, 89], the single-server PIR with weak privacy [90], and the single-
server PIR with side information [91, 92]. There have also been approaches
to apply the classical PIR to other problems, e.g., matrix multiplication [93]
and private set intersection [94]. The quantum extensions of these results
are also interesting open problems.
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Appendix A

Proof of Proposition 3.2

First, we prepare the following notations:

ρ̃ :=
1

m

m−1∑
w=0

|w〉〈w| ⊗ ρw,

σ̃ :=
1

m

m−1∑
w=0

|w〉〈w| ⊗ σ,

Ỹ :=
m−1∑
w=0

|w〉〈w| ⊗ Y (w),

M = {Ỹ , I − Ỹ }.

With these notations, we have

Tr ρ̃Ỹ =
1

m

m−1∑
w=0

Tr ρwY (w) = 1− Perr, (A.1)

Tr σ̃Ỹ =
1

m

m−1∑
w=0

Tr σY (w) ≤ 1

m
Tr σ

m∑
w=0

Y (w) =
1

m
. (A.2)

Combining (2.23), (A.1), and (A.2), we derive the desired inequality (3.35)
of Proposition 3.2 as

(1− Perr)
1+sm−s

(a)

≤ (Tr ρ̃Ỹ )1+s(Tr σ̃Ỹ )−s

≤ (Tr ρ̃Ỹ )1+s(Tr σ̃Ỹ )−s + (1− Tr ρ̃Ỹ )1+s(1− Tr σ̃Ỹ )−s
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= exp
(
sD1+s(P

M
ρ̃ ‖PMσ̃ )

)
(b)

≤ exp(sD1+s(ρ̃‖σ̃))

= Tr ρ̃1+sσ̃−s =
1

m

m−1∑
w=0

Tr ρ1+s
w σ−s,

where (a) is from (A.1) and (A.2) and (b) is from (2.23).
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Proof of Proposition 4.2

For the proof of Proposition 4.2, we follow the proof of [63, Theorem 4].
Before the proof, we prepare two lemmas from [63].

Lemma B.1 ( [63, Lemma 2]). Let τWFAB be a classical-quantum state such
that

τWFAB =
∑
w,f

p(w, f)|w, f〉〈w, f | ⊗ τAB|wf , (B.1)

where τAB|wf are pure states. LetM be one-way Local Operations and Clas-
sical Communication (LOCC) map from A⊗B to A′ ⊗B′ ⊗X, where X is
a classical system which is sent from B to A. Then, we have

I(W ;B′FX) +H(B′|WFX) (B.2)

≤ I(W ;BF ) +H(B|WF ). (B.3)

Lemma B.2 ( [63, Lemma 3]). Let τWFAB be a classical-quantum state de-
fined in (B.1). Then

I(W ;ABF ) +H(AB|WF ) (B.4)

≤ H(A) + I(W ;BF ) +H(B|WF ). (B.5)

For the proof, we formally describe the communication protocol as fol-
lows. We denote the local registers of the sender and the receiver before
the communication by B0 and C0. Let A0 = C. At round i ∈ {1, . . . , r},
the receiver applies a quantum instrument from Ai−1⊗Ci−1 to Ci depending
on Q[i−1] and sends the measurement outcome Qi to the sender Then, the
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sender applies a quantum operation from Bi−1 to Ai ⊗ Bi depending on W
and Q[i] := (Q1, . . . , Qi), and sends Ai to the receiver. After the final rth-
round, the sender applies a POVM on Ar ⊗ Cr depending on Q[r] and the
measurement outcome W is the decoding output.

Now, we prove Proposition 4.2. First, we have

(1− ε) logm
(a)

≤ I(M ;W ) + h2(ε) (B.6)
(b)

≤ I(M ;ArCrQ[r]) + h2(ε), (B.7)

where (a) is from Fano’s inequality (2.8)

H(M |W ) ≤ ε logm + h2(ε) (B.8)

and the uniform distribution of M , and (b) is from the data-processing in-
equality 2.29 for the decoding POVM. Then, it is enough to derive the in-
equality

I(W ;ArCrQ[r]) ≤
r∑
i=1

H(ρA
i

W ) (B.9)

for the proof of Proposition 4.2.
To derive (B.9), we apply Lemma B.1 and Lemma B.2 as follows. Note

that there is no constraint in the size of local registers. Thus, without losing
generality, we assume that the sender’s and the receiver’s local registers are
sufficiently large that the joint state on the entire protocol is always written
as pure states. Since the operations at each round can be considered as a
one-way LOCC map, we can apply Lemma B.1 for (W,F,A,B,A′, B′, X) :=

(M,Q[i−1],Bi−1,Ai−1 ⊗ Ci−1,Ai ⊗ Bi, Ci, Qi):

I(M ; CiQ[i]) +H(Ci|MQ[i])

≤ I(M ;Ai−1Ci−1Q[i−1]) +H(Ai−1Ci−1|MQ[i−1]).

Furthermore, applying Lemma B.2 with (W,F,A,B) := (M,Q[i],Ai, Ci). we
have

I(M ;AiCiQ[i]) +H(AiCi|MQ[i])

≤ H(Ai) + I(M ; CiQ[i]) +H(Ci|MQ[i]). (B.10)
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Combining the above two inequalities, we have

I(M ;AiCiQ[i]) +H(AiCi|MQ[i])

≤ H(Ai) + I(M ;Ai−1Ci−1Q[i−1]) +H(Ai−1Ci−1|MQ[i−1]) (B.11)

Applying the inequality (B.11) recursively, we obtain the desired inequality
(B.9) of Proposition 4.2 as

I(M ;ArCrQ[r])

≤ I(M ;ArCrQ[r]) +H(ArCr|MQ[r])

(c)

≤
r∑
i=2

H(Ai) + I(M ;A1C1Q1) +H(A1C1|MQ1)

(d)

≤
r∑
i=1

H(Ai) + I(M ; C1Q1) +H(C1|MQ1)

(e)
=

r∑
i=1

H(Ai),

where (c) is derived by applying (B.11) recursively for i = r, r − 1, . . . , 2, (d)

is from (B.10), and (e) is obtained as follows: I(M ; C1Q1) = 0 because the
receiver prepares the state of C1 ⊗Q1 independently of the sender’s message
M , and H(C1|MQ1) = 0 since the initial state of the local register C1 is a
pure state.
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QPIR capacity with average
security measures

In Section 5.1.1, we defined the security measures as the worst-case definition.
In this appendix, we show that the capacity does not changes even if we
change the definition of the security measures as for the average case.

Define the average security measures as

P̃err(Ψ
(m)
QPIR) := PrW [W 6= MK |MQK] (C.1)

S̃serv(Ψ
(m)
QPIR) := I(M c

K ;A|QK)ρMQ
(C.2)

S̃(t)
user(Ψ

(m)
QPIR) := Eπ∈SnI(K;Qπ,t), (C.3)

and QPIR capacities C̃α,β,γ,θ
exact,t and C̃α,β,γ,θ

asymp,t are defined the same as (5.5) and
(5.6) except that the security measures Perr(Ψ

(m)
QPIR), Sserv(Ψ

(m)
QPIR), S

(t)
user(Ψ

(m)
QPIR)

are replaced by P̃err(Ψ
(m)
QPIR), S̃serv(Ψ

(m)
QPIR), S̃(t)

user(Ψ
(m)
QPIR). Then, similar to

Theorem 5.1, the average capacity is derived as

C̃α,β,γ,θ
asymp,t = C̃α,β,γ,θ

exact,t = 1 if 1 ≤ t ≤ n

2
, (C.4)

C̃0,β,0,θ
asymp,t = C̃α,0,0,θ

exact,t =
2(n− t)

n
if
n

2
< t < n. (C.5)

For the achievability proof of (C.4) and (C.5), the QPIR protocol in Sec-
tion 5.3 achieves the capacity.

The converse bounds are also proved similar to the case of the worst-
case security. The converse bounds are written for any α ∈ [0, 1) and any

112



Chapter C. QPIR capacity with average security measures

β, γ, θ ∈ [0,∞) as

C̃α,β,γ,θ
asymp,t ≤ 1 if 1 ≤ t ≤ n

2
, (C.6)

C̃α,0,0,θ
exact,t ≤

2(n− t)

n
if
n

2
< t < n, (C.7)

C̃0,β,0,θ
asymp,t ≤

2(n− t)

n
if
n

2
< t < n. (C.8)

First, the converse bound (C.8) is proved by the same steps as Section 5.4
except for the following part. In Section 5.4, Eq. (5.77) is written as

(1− Perr,k,q(Ψ
(m)
QPIR)) logm

≤ D(Rq‖Sq) + h2

(
Perr,k,q(Ψ

(m)
QPIR)

)
.

and by taking the expectation of (5.77) with respect to Q, we obtain (5.79).
Similarly, we take the expectation of (5.77) with respect to K,Q and then,
we obtain

(1− P̃err(Ψ
(m)
QPIR)) logm

≤ EK,QD(Rq‖Sq|K) + h2

(
P̃err(Ψ

(m)
QPIR)

)
.

Then, by the similar steps as Section 5.4, the converse bound (C.8) is proved.
For the converse bounds (C.6) and (C.7), in the last steps of the proofs

in Sections 5.4.3 and 5.4.4, we replace (5.86) and (5.91) by

1− P̃err(Ψ
(m`)
QPIR) ≤ 1− inf

k,q
Perr,k,q(Ψ

(m`)
QPIR). (C.9)

Then, the converse bounds (C.6) and (C.7) are proved in the same way.
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Proof of Proposition 5.1

We concretely construct the subgroup S(V) as follows. From (5.12), all
elements of S(V) are commutative regardless of the choice of cv. Since I ∈
S(V), we set W(0) = I, i.e., c0 = 1. Then, it is enough to choose cv so that
S(V) satisfies the closure for the multiplication.

We choose {cv ∈ C | v ∈ V} as follows. For a fixed basis v1, . . . ,vd of
V, we choose cvi

as follows: if p > 2, choose cvi
as a p-th root of unity, i.e.,

cvi
= ωk for some integer k; if p = 2, choose cvi

as

cvi
= ±
√
−1
〈bi,ai〉

=

{
±1 if 〈bi, ai〉 = 0,

±
√
−1 if 〈bi, ai〉 = 1,

where ai,bi are vectors in Fnq such that (ai,bi) = vi. For any v =
∑

i aivi ∈
V, we choose cv by the relation

W(v) = W(v1)a1 · · ·W(vd)
ad . (D.1)

Next, we prove the closure for the multiplication in S(V) by the above
choice of cv. For any basis element vi, we have

W(vi)
p = cpvi

W̃(vi)
p (a)

= cpvi
ωp(p−1)〈bi,ai〉/2W̃(pvi) = cpvi

I = I. (D.2)

where (a) follows from (5.13). Then, we can confirm the closure for the
multiplication as

W(v)W(v′) = W(v1)a1 · · ·W(vd)
adW(v1)a

′
1 · · ·W(vd)

a′d (D.3)

= W(v1)a1+a′1 · · ·W(vd)
ad+a′d (D.4)

= W(v1)a1+a′1 mod p · · ·W(vd)
ad+a′d mod p (D.5)

= W(v + v′) (D.6)
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for any v,v′ ∈ V, where the equality (D.4) is from the commutative property
of S(V) and the equality (D.5) is from (D.2). Thus, S(V) is a commutative
subgroup of HWn

q not containing cI for any c 6= 0, i.e., a stabilizer.
Alternatively, if p > 2, the set S(V) is a stabilizer by choosing c(a,b) =

(ω(p+1)/2)〈a,b〉 since

W(a,b)W(c,d) = (ω(p+1)/2)〈(a,b),J(c,d)〉W(a + c,b + d)

for any (a,b), (c,d) ∈ Fnq and V is self-orthogonal.
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Proof of Proposition 5.2

Let V be a self-orthogonal d-dimensional subspace of F2n
q and S(V) be a

stabilizer defined by (5.14). Notice the following facts.

Fact 1) W(v)W(v′) = W(v + v′) for any v,v′ ∈ V by the closure for the
multiplication of S(V),

Fact 2) All eigenvalues of W(v) are in {ωk | k ∈ Fp}, since (W(v))p =

W(pv) = W(0) = Iqn for any v ∈ V.

Fact 3) All elements of S(V) are simultaneously diagonalized, since S(V) is
a commutative group.

First, we prove 1) of the proposition. By Facts 2 and 3, we have the
simultaneous decomposition of all elements W(v) ∈ S(V) as

W(v) =
∑

f :V→Fp

ωf(v)PV
f (∀v ∈ V), (E.1)

where the summation is taken for all maps f from V to Fp and {PV
f } are

orthogonal projections such that

PV
f P

V
f ′ = 0 for any f 6= f ′, (E.2)∑

f∈V∗

= IH⊗n . (E.3)

Let V∗ be the space of linear maps from V to Fp. Since Fact 1 implies
ωf(v)+f(v′)PV

f = ωf(v+v′)PV
f for any v ∈ V and f : V → Fp, we have PV

f = 0
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for any f 6∈ V∗. Thus, (E.1) is written as

W(v) =
∑
f∈V∗

ωf(v)PV
f (∀v ∈ V). (E.4)

Furthermore, the space V∗ is isomorphic to F2n
q /V

⊥J by the following identifi-
cation: we identify f ∈ V∗ and [w] := w+ V⊥J ∈ F2n

q /V
⊥J if f(v) = 〈v, Jw〉

for any v ∈ V. Therefore, we denote PV
[w] := PV

f if f and [w] are identical
and Eq. (E.4) is written as

W(v) =
∑

[w]∈F2n
q /V⊥J

ω〈v,Jw〉PV
[w] (∀v ∈ V), (E.5)

which implies 1) of the proposition. The uniqueness of the decomposition
(E.5) is from the uniqueness of the eigendecomposition.

Next, we prove 2) of the proposition. Let HV
[w] := ImPV

[w]. For any v ∈ V,
we have

W(v)W(w)HV
[w′]

(a)
= ω〈v,Jw〉W(w)W(v)HV

[w′] (E.6)
(b)
= ω〈v,J(w+w′)〉W(w)HV

[w′], (E.7)

where (a) is from

W(v)W(w) = ω〈v,Jw〉W(w)W(v),

which follows from (5.12), and (b) is from

W(v)HV
[w′] = ω〈v,Jw

′〉HV
[w′],

which follows from (E.5). Since (E.7) implies that W(v) maps W(w)HV
[w′]

to ω〈v,J(w+w′)〉W(w)HV
[w′], we have W(w)HV

[w′] ⊆ HV
[w+w′] from (E.5). Con-

versely, we also have W(−w)HV
[w+w′] ⊆ HV

[w′]. Thus, we have dimHV
[w′] =

dimHV
[w+w′] and therefore, obtain the desired relation W(w)HV

[w′] = HV
[w+w′].

Lastly, we prove 3) of the proposition. By 2) of the proposition, all spaces
HV

[w] have the same dimension. Therefore, we have

dimHV
[w] =

dimH⊗n

|F2n
q /V

⊥J |
=

dimH⊗n

|V|
= qn−d.
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Simple proof of Lemma 5.4 with
perfect security

We give the proof of Corollary 5.2, i.e., Lemma 5.4 with perfect secrecy.
Due to the user secrecy S

(t)
user(Ψ

(m)
QPIR) = 0, the uploaded information Qt is

independent of K. Since the ρMQt is determined by Qt, we have

I(Mk;Aπ(t)|Qt, K = k)ρMQt
= I(Mk;Aπ(t)|Qt, K = i)ρMQt

for any i 6= k ∈ {1, . . . , f}. Since server secrecy Sserv(Ψ
(m)
QPIR) = 0 implies

I(Mk;Aπ(t)|Qt, K = i)ρMQt
= 0 ∀i 6= k ∈ {1, . . . , f}, (F.1)

we have I(Mk;Aπ(t)|Qt, K = k)ρMQt
= 0 for any k ∈ {1, . . . , f}, which implies

Lemma 5.4.
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