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Abstract

Dendrolanguage generating systems form a fairly-broad class of tree-manipulating
systems and have many applications in the fields of logic, linguistics and automata
theory.

In this paper, various types of dendrolanguage generating systems are proposed
and their properties are studied: a hierarchical studies on dendrolanguages, relations
to dendro-automata which are acceptors of dendrolanguages, closure properties of
dendrolanguages under several operations on trees, decidable problems concerning
dendrolanguages, properties of two kind of dendrolanguage generating systems with
control and characterization of derivation trees of phrase structure grammars.
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1. Introduction

Many tree-manipulating devices, eg., tree generating regular system®™ and
tree automata', have been considered in logic, mathematical linguistics and
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automata theory. These devices are ordinarily defined sui generis, rather than
as special cases of a broad category that includes them all. This paper studies
“dendrolanguage generating systems”, a fairly broad class of tree-manipulating
systems. The systems will find their applications in many fields of logics, formal
language manipulations, automata theory and so on.

Some common mathematical terminologies and concepts are reviewed in
chapter 2. In chapters 3 we define several types of “dendrolanguage generating
systems” which we call context sensitive DS (CSDS), scattered context DS (SCDS),
context-free DS (CFDS), linear DS (LDS), right-linear DS (RLDS) and left-linear
DS (LLDS). These systems are natural generalizations of tree generating regular
systems and constitute a very similar hierachy to that of phrase structure
grammars as studied in chapter 5. We denote the respective families of the
dendrolanguages by T¢s, T s, Tor, T 1, T re and Fzz.  One of main results
is that T s2-T8c2-Tcr2 7127 rr, -J 1. Dendrolanguage generating systems
are considered as generators. As the corresponding accepters we introduce
dendroautomata in chapter 6. They are related to each other just like grammars
and automata. In chapter 7, many closure properties of dendrolanguages are
studied and some decidable problems concerning dendrolanguages are also
investigated in chapter 8. In chapter 9, a context-free dendrolanguage generating
system, called a state dendrolanguage generating system, is defined. Using this
system, we find an infinite hierarchy between .7¢r and .Z¢s. Another extension
of context-free dendrolanguage generating system, which is called a string-
dendrolanguage generating system, is studied in chapter 10, where we also find
that there exists another infinite hierarchy of dendrolanguages. Finally, in
chapter 11, a characterization of derivation trees of phrase structure grammars
are investigated as an application of our dendrolanguage generating systems.

2. Trees and basic definitions

In this chapter, several basic concepts, definitions and notations concerning
trees are introduced.

Definition 2.1. Let N be the set of positive integers. Let N* be the free
monoid generated from N under the operation « (concatenation). The identity of
N* is denoted by 0.

Let us define a relation < over N* as follows: For any m, #n in N* n=m
if and only if there exists /e N* such that n+l=m.

Definticnt 2.2. A subset D of N* is called a tree domain if and only if the
following conditions (i) and (ii) are satisfied:

(1) If meD then n=m implies n=D.

(2) If m-j€D then for any ieN such that i<j, m+i is contained in D.

An element of D will be called a node and if » and #+i is in D then the pair
(n, n+i) will be called a branch, in the sequel.

Example 2.1, D={0, 1, 2, 1+1, 1+2, 1+2+1, 1.2.2} is a tree domain, of which
topological representation is given in Fig. 2.1.

T This notation is well-known as “Dewey decimal notation®”,
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FI1G. 2.1. A topological representation of a tree
domain D given in Example 2.1.

Definition 2.3. The depth of a node n in D, denoted by d(n), is defined as
follows:

(1) d(0)=0,

(2) If n=m-+i then d(m+i)=d(m)+1 for all ieN
The depth of a tree domain D, which is denoted by d (D), is defined by

d(D) =max {d(n) |n € D} (2.1)
Definition 2.4. For a tree domain D, define a subset
D={n|ne D, n-1¢D} (2.2)
which will be called the leaf set of D.

Definition 2.5. The adjacency relation ~ on D is defined as follows: for any
m, n in D, m is adjacent to »n and denoted as m~n, if and only if (1) m=n or
(2) there exists x in D such that m=x+d1edae -+ «d1 (I=1) and n=xejieiz~ - -+ *jk
(k=1), where (i) ji=#+1, (ii) jr=1 or 0 (2=7=k) and (iii) for each i (2=¢=<10),
lg=max {i|xet1s -++ sig.1i€ D, iEN}.

Definition 2.6. A ranked alphabet (r.a.) is a pair (£, ¢), where 2 is a finite
set of symbols and ¢ is a mapping from 2 into Nu {0}, which will be called a
ranking mapping. For a symbol A in &, if ¢(A) =r€ (NU{0}), it means that A
has rank 7.

Let us denote the set of symbols A with rank i by @i, ie, Qi={A|A€,
o(A)=i}. It should be noted that if i+j then 2;N2j=¢ (empty). In the sequel,
we will simply write 2 for r.a. (2, o).

Definition 2.7, A tree over r.a. 2 (ie, (2, ¢)) is a mapping from a tree
domain D into 2, ie.,

t:D-Q (2.3)

such that for any neD, ¢(#(n)) =max {i{|n-i€D}, which means that the rank of
the symbol assigned to a node # is equal to the degree of the node 7, i.e., the
number of branches connected to the node .

Definition 2.8. Depth of a tree is that of the tree domain.

Example 2.2, Let us consider the tree domain D of Example 2.1 and r.a. 2=
{X, Y, a}, where ¢(X)=0¢(Y)=2 and ¢(a)=0. A mapping : D2 is a tree, where
t10)=X, t(1)=X, {(1:2) =Y, £(1-1) =g, £(1+2-1)=qa, #(1:2+2)=¢ and #(2)=a. This
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FIG. 2.2. A topological representation of a tree of
Example 2.2.

tree ¢ is topologically represented in Fig. 2.2. The depth of ¢ is 3.

It is often convenient to introduce an alternative representation of a tree:
consider a tree ¢: D—®. If t(n)=X then we denote it by (», X), which means
that a symbol X is assigned to a node »n by ¢: D-~2. Then the tree ¢ with a
tree domain D, which is denoted by #p, can be represented by

tp=1{(n, X)lne D, t(n) =X} (2.4)
For an example, the tree of Example 2.2 is represented by
tD={(0, X), (1, X), (1.21 Y), (]-'1’ a)’ (1'2.1’ a)r (1'2'21 a)) (2) a)}'

On the other hand, we will write D; to represent the tree domain of a tree ¢ in
order to distinguish it from the others.

Furthermore, we introduce linear representations of a tree, prefix and suflix
notation.

Notation 2.1. For a tree t: D-2, u(t) stands for a prefix notation of ¢, and
o(t) a suffix notation of t.

We can recursively obtain a prefix notation x(#) and a suffix notation ¢(¢)
as follows: If a tree ¢ is

k
tn, = {(0, XD} U H{(i-n, V)|(n, Y) ety

where ¢n, (i=1, ..., k) is a tree, then

u(t) = pttn,) = Xultp,) pltp) - + + ulin,) (2.5)
and

¢(t) =o(tp,) = @(tn) ¢(tp,) - - - @(tp,) X. (2.6)

If tis tn, ={(0, X)} then x(#) =X and ¢() = X.

Example 2.3. The prefix notation of the tree ¢ of Example 2,2 can be obtained
as followsT:

¥ & is the topological representation of a tree {(0, @)}.
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X
X a X X
wtr=u (2 D> ):Xu(a/>y\)u(d)=XX,u(iz)#(a/\;Z)a
a a a a

=XXaYu(d) pla)a=XXaYaaa

The suffix notation ¢(#) =aaaYXaX is obtained similarly.

Here, it should be noted that since 2iN2;j=¢ (i=j), any tree over a ranked
alphabet 2 can be uniquely determined from its prefix notation (or suffix notation).
Thus, a tree and its prefix notation (or suffix notation) have one to one cor-
respondence.

3. Dendrolanguage generating systems

Brainerd introduced a tree generating system which he called tree generating
regular system ', and characterized generation trees of the context-free languages.
In this chapter, we introduce more general tree generating systems including
the Brainerd’s one as a special case of ours. This system will be called dendro-
language generating system. In the later chapters, it will play a fundamental
role in developing our discussions.

A tree t: D—-Q is called a finite tree if its tree domain is finite. Let us
denote the set of all finite trees over r.a. 2 by .o and the set of all finite trees
with depth less than or equal to k by 7.  Now, let us define dendrolanguage
generating system.

Definition 3.1. A context-sensitive dendrolanguage generating system (abbreviated
CSDS) is a 5-tuple

S=(L, V, 2, P, &), (3.1)

where each of five entries are as follows:

(1) £2: a finite ranked alphabet (2, ¢).

(2) V<@: a set of terminal node symbols.

In the followings, 2~ V is denoted by A, which will be called set of nonterminal
node symbols. Here, we assume that

o) =0 for all A€ 4. (3.2)F

(3) 2 is the subset of V such that F={a|s(a)=0, a= V}, which will be called
a set of leaf node symbols.

(4)Tt P is a finite subset of \U.7aX +* X T X.TaX -+ X T qo(m: afinite
=1

! times ¢ times

T This assumpution means that nonterminal node symbols can appear only at leaf nodes
and so generation rules can be applied only to leaf nodes which rewrite the nodes by
appropriate trees.

7T oax -+ x5a means a direct product of / sets of 4.
—_—

1 times
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positive integer), called a set of dendrolaguage generating rules. An element
(S1, S2, ..., S, by to ..., 8y in P is called dendrolanguage generating rule (or
simply, rule) and usually written as (s, sz, ..., 81) > (t1, £, ..., £1). Since si(1=i=])
.7, means from the assumption (3.2) that si={(0, %)} for some A in 4, we
will often write (Ay, Ao . .., d) =, by - . ., £) instead of (s, sz, ..., 81) > (4, 2
RN /)

(5) Ao=4: an initial nonterminal node symbol.

Definition 8.2. Let S=(2, V, 2, P, ) be a CSDS. For any « and § in Z,
we write a=s>8 (or a==>f when S is understood) if there exist x;=2* (0=i<)),
gied (1<i<]) and # (1=i<!l) such that the following three conditions (1), (2)
and (3) are satisfiedt:

1) pla)=x&121- x1-1€11,

2(B) =xo0pu(t1) x1+ + - 211 (1) 21,

(2) (&, ..., &N~ (t, ... ,4) is in P, and

(3)TT CIZ(;(&) ~ g (&) ~ - 'q:a(El):
where @,(£) denotes a node » to which the symbol ¢ is assigned, i.e,, the node
n such that (n, &) in ap, the representation of « in the form of (2.4). (Here, it
should be noted that q=.(&) is in the leaf set D, of «.)

Next, for any « and B in o, we write a=25p8 if ejther a=8 or there exist
«, ..., ar such that ao=«a, ar=F and ai=>a;. for each i (0=i<r-1).

Definition 3.3. Let S=(8, V, 3, P, %) be a CSDS, then the subset of .7,
T(S) = {t| o=t € T v}

is called a context-sensitive dendrolanguage (abbreviated CSDL). T(S) is said to
be generated by S. Each tree in 7(S) is said to be gemerated (from io).
An example of a CSDS:

Example 3.1. Consider S= (£, V, 2, P, 2) specified as follows:

(1) 9= & ¢, & 9 7,7, ¢ A, a}, where 2,=0— {A}, 2.={4}.
2) V={A4, a}, Z={a}.
3)* P=1{(1) Q) -~ A4&¢), (2) () - (4aa), (3) (&) ~>(a),

(4) (&, & - (An'y, A,

5) (&, 7) - (&, B), 6) (&, )~ &),

(1) (&, 7 -(& &), (8) (&, &)~ 9,

9 (€ 8- 0, (10) & &= 9,

T 0% denotes the set of all strings of elements in the alphabet 2, including the empty
string e.

T Ce(€1) ~Ta(és) ~ -+ + ~Ta(£1) means that Te(£1) ~ Te(&2), Ta(f2) ~ Tal(fs), .. ., and Fa(§1-1)
’*’Q:nc(fl)-

* Because of the limitation of space, the generation rules are given by using the prefix

A
notations. For example, (1) - (A£'¢") means (4) ~( /\ y and (&, &) — (Av'y, Am') means

A A iy 2!
@&, -0 N\, N\
7 17 7'
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(11) (&, &) - (Ay'y, A7),
(12) (7, &)= (3, Av7),
(13) (7, &)= (g, Ag)}.

This system S is a CSDS and generates a CSDL

A
TS =it ¢t = %A , n=1}
A A
N N
27‘

The generation process of a treeT ¢ (u(t) = A%*Aa*A%a*Aa?) in T(S) is illustrated
in Fig. 3.1,

/(>\ 5 6 /<>\ 7 m(u)m
x(1)£ 5(4) () Y ! () €]
R

! a a aa

uu

F1G. 3.1. The topological representation of the generation process of a tree # (u(f)
= A%a?Aa®A%aAa®?). The numbers attached to the arrows==> means the
rule numbers used there.

Let us define several special cases of CSDS in the following. The first is
scattered-context dendrolanguage generating system.

Definitiontt 3.4. Let S=(2, V, 2, P, 4) be a CSDS. If missing the adjacency
condition (3) of definition 3.2, we call S a scattered-context dendrolanguage genera-
ting system (abbreviated SCDS) When clearer distinction is desired we write a
SCDS, . The subset 7(5) of F» generated by SCDS is called a scattered-
context dendrolanguage (SCDL).

In the following three definitions, let S= (2, V, X, P, 2,) be a CSDS.

Definition 8.5. If P is a finite subset of .9y x.Zq, i.e., each rule of P is in
the form (2)- (#), &€€4, t=.9q, then S is called a contexi-free dendrolanguage
generating system (CFDS). A subset T(S) of .7% generated by a CFDS, S is
called a contexi-free dendrolanguage (CFDL).

T For a symbol string x, 2™ means an n times concatenated string of x.
T The idea of SCDS is originated from Greibach and Hopcroft!%.
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Definitiont 3.6. If each rule of P is in the form (£)- (), €4, p(H)E
(V*AV*U V), ie, a tree in the righthand side of each rule contains at most
one nonterminal node symbol, then S is called a linear dendrolanguage generating
system .(LDS). The subset T(S) generated by a LDS, is called a linear dendro-
language (LDL).

Definition 3.7. If each rule of P is in the form (£)— (8), €4, pu(t) (VAU V™)
then S is called a right-linear dendrolanguage generating system (RLDS). . The
subset 7(S) generated by a RLDS, S is called a right-linear dendrolanguage
(RLDL).

A left-linear dendrolanguage generating system (LLDS) and a left-linear dendro-
language (LLDL) can be defined in a similar way.

Here, it should be noted that, in the cases of CFDS, LDS, RLDS and LLDS,
we do not need the adjacency condition (3) of Definition 3.2, since each rules
of these dendrolanguage generating system has only one nonterminal node symbol .
in its lefthand side. Thus, we need the adjacency condition only for a CSDS.

In the followings, these dendrolanguage generating systems and dendrolangua-
ges will be generically named dendrolanguage generating system (DS) and dendro-
language (DL), respectively. Two DS, S; and S. are said to be equivalent and
written S;=S. if and only if 7(S)=T(S:), ie., DL's generated by them are the
same.

In closing of this chapter, some examples of DS and DL are given:

Example 3.2. An example of RLDS:
S=(, V, 5, P, 1),

where 2=1{2, A, a}, 20=1{1, a}, @2={A}, V={A, a}, ¥={a} and P= {(2) ~ (Aal),
(A) > (Aaa)}.
A generation process of a tree #(u(t)= (Aa)a) is shown in Fig. 3.2.

A A
/\:Q />A\=' A
>\=a N a a
a b a

FIG. 3.2. A topological representation of the generation
process of a tree #(u(t)=(Aa)%a) in T(S).

The RLDL, 7(S) generated by this S is given by
T(S) ={t|u(t) = (Aa)"a, n=1}.
Example 3.3. An example of LDS:
S=(®2,V, 2 P2,

where 2=1{1, A, a}, Qo= {4, a}, :={A}, V={A, a}, X={a} and P={(1)~(Aala),
(X))~ (a)}.

T V+ denotes VV*, which is a set of all strings over an alphabet V not containing e.
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T(S)={t| (1) = (Aa)"a”**, n=0} is the LDL generated by the LDS, S. An
element #(u(f) =(Aa)%e*) in T(S) is shown in Fig. 3.3.

A
a A a
FI1G. 3.3. A topological representation of
a/tA\a tHp()=(Aa)al).
a

Example 3.4. An example of CFDS is given as follows:
(1) =14, A, a}, 2o=12, a}, 2.=1{A4}.

(2) V={A, a}, Z=la).

(3) P={(2)=(a), (1) = (A}

This CFDS generates a CFDL
T(S) = {¢t| D:y<il, 2}F, Yme D, tim) = a, "ne (Di— Dy, t(n) = A},

which is a set of all binary trees whose leaf nodes have a symbol ¢ and the
other nodes A as shown in Fig. 3.4,

A
A 2 FIG. 3.4. A topological representation of a
a tree Hp(t)=A%Aa®) in T(S).

a a

Example 3.5. The following DS is an example of SCDS:
§=(9, V, 5 P, 1), where

D 2=1,¢ A, a b}, =10, % a, b}, 2,=1A}.
(2) V={A, a, b}, T=a, b}.
(3) P={(2) »(A88), (& &) > (Aas, Aad), (3, &) > (Abs, Ab2),

(&, &) > (Aaa, Aaa).
This SCDS, § generates a SCDL

T($) = ] p(d) = A(xAaa)?, x= ({A)+3)%).

The generation process of a tree #(u(f) =A(AaAbAaa)?) in T(g) is given in
Fig. 3.5.

a a a a
Fi1G. 3.5. A topological representation of a generation process of a tree

Hu(t)=A(AaAbAaa)?) in T :9").
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Here, it should be noted that since we need not consider the adjacency
condition (3) of Definition 3.2, we can apply, say, a rule (& &)-(Aas, Aaf) to
the third tree of Fig.3.5. This is impossible if the DS of this example is considered
as a CSDS, S and so the adjacency condition must be taken into consideration.
In this case, we have T'(S)={¢|u({)=A(Aaa)?} as easily understood.

4. Canonical form of DS

In this chapter, we present a canonical form of DS. It will help us in the
discussions in the following chapters.
First, we prepare several lemmas and corollaries.

Lemma 4.1. For arbitrary DS, S= (&, V, 2, P, 1), there exists an equivalent
DS, Si=(2:, V3, 31, Py, 4) such that P is a finite subset of (.75, % T q,) U (T 4,
X T aX . Ta,x.Ta). Thatis, Siis a DS such that 7(S)=7(S) and any rule
of P is in either form of

(&) > (4.1)

or
(5:'1. 52) . (tl, tz), (4-2)

where &, &, &, Ty, and ¢, 4, . € T a,

Proof We construct DS, S; from S as follows:
First, let A' be the new nonterminal node symbol set defined by

A =10, j1i: GGy ooy ) >y oo oy ) in P, 1Si< 4P, 2555~ 1}, 43T

where we assume that rules in P are appropriately numbered. Putting 2=
QU A, Vi=V, 51=23, =2, we determine P, as follows: For each 7 : (i, ..., iz)
>, ..., ty) in P, 1Si< 4P,

(i) if ;=2 then it is contained in P,
and

(ii) if =3 then the following (/;—1) rules are contained in P;:

(hsy 12) > (8, [4, 2D
([, 71, 2+ > (5, [4, j+11); 2=j<Li—2 (4.4)
([ix ll'—l]; ;'li) _)(tlf-l, tl()
From the above construction procedure, we can directly know that S; is a
DS having the required property of this lemma.

Here, we should note that this lemma is trivial for CFDS, LDS, RLDS, and
LLDS, since they have only the type of rules in the form of the first in (4.1).

Lemma 4.2. For any DS, S=(8, V, -2, P, 1), there exists an equivalent DS,
So=(2s, V2, 32, P2, %) of which rules satisfy the following conditions:

(i) For any rule of type (&) - (¢#) in P, the tree ¢ is in F(qg,-5, or in .7,
(ii) For any rule of type (£, ..., &) ~>(t, ..., #), I=2 in P, the trees #

i &P denotes the number of elements of P.
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(1=i<]) are in j(Q,—E?)-

Proof Let an arbitrary DS be S=(2, V, 3, P, 2).
We define a mapping 7 : 2-(2-23) U {9<|as 3} by

7(X)=X for any X in (2-2)

4.5)
n(a) =94 for any a in 3 (

The mapping 7 can be extended to 2%-((2-2)U{nslacs F})* through the
conventional way, i.e., for any x=Xys 2%, X2, ye2% 7(x)=9(X)9(»).

Using the help of this mapping, we construct a DS, S:=(2;, Vi, 22 P, 22)
from S as follows: First, put 2:=2U {yzlacs 2}, Vo=V, 2:=23, i»=A Next, P: is
constructed by the following two rules:

(i) For all rule (&), ... ,0~>(t, ..., 8) in P, (&, ..., 80>t ... .t
is contained in P, where u(¢}) =%(u(#;)) for all 4, 1<i<l.

(ii) For all 9¢ in {ya|as2}, (74) > (&) is contained in P..

As easily known from the construction rules (i) and (ii), S. satisfies the
conditions (i) and (ii) of this lemma. It is also obvious that T(S)=7(S.).

Combining the Lemmas 4.1 and 4.2, we can obtain the following corollary:

Corollary 4.1. For any DS, S=(2, V, X, P, 2) there exists an equivalent DS,
Ss=(2s, Vs, Tz, Ps, 2s) of which rules are in either one form of the following
three:

(i) (&)~(a), (4.6)
(i) (-, 4.7
(iii) (41, &) - (4, 1), (4.8)

where &, &, & in 4;, a in 25 and ¢, £, £ in T (q,-3,)-

Next, let us introduce a concept of order of DS. Let S=(@2, V, X, P, 1) be
a DS. If, for any rule (2, ...,&)~> (4, ..., #) in P, the depths d(#) of i (1=
i=l) are less then or equal to », then we say that the DS, S has order n.

Lemma 4.3. Let S be a CSDS of order n. Then, if #=2, there exists an
equivalent CSDS, S’ of order (n—1).

Proof Put S=(2, V, 5, P, 2). From the S we construct a CSDS, S’'= (&2,
V', 2, P', ') as follows:
(1) P’ is constructed by the following rules: For each rule

Gy oo 8Dyl t) (4.9)

in P, (i) if d(#)<n for all i (1=i<I), it should be contained in P’, (ii) otherwise,
i.e., if there exist some f#’s such that d(#)=n, then

[€-TTPR -7 PN ¢ 2 A 1)) (4.10)

should be contained in P’, where if d(#;) <n, then ¢!=¢ and if d(#) =n, then ¢!
is determined as follows:

(a) the tree domain Dy, = {m|d(m) =1, me Dy},

(b) #(0) =#(0), (c) for m(=0) in Dy, t:(m) is t:(m) if ¢(t;(m)) =0
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and is &im if o(#:(m)) 0. Furthermore, coressponding to the last cases, i.e., the
cases of ¢(¢i(m)) =<0, the rules

(Eim) ~ (sim) (4.11)

should be included in P’, where Ds,, = {n|n& N*, m+«ne Dy} and sim(n) = ti(m-n).

(2) £' is the union of 2 and the set of variables &in's introduced in the above,
Vi=V, X=3" and A'=4.

As easily known from the above construction procedure of S’, it is a CSDS
with order (n~1) and S' is equivalent to S, i.e., T(S')=T(S).

The following two lemmas can be proved in the same way as Lemma 4.3.

Lemma 4.4. For any SCDS of order n (n=2), there exists an equivalent
SCDS of order (n-—1).

Lemma 4.5. For any CFDS of order n (n=2), there exists an equivalent
CFDS of order (n—1).

Repetitive applications of Lemmas 4.3, 4.4 and 4.5 deduce the following
corollary.

Corollary 4.2. For any DS which is CSDS, SCDS or CFDS, there exists an
equivalent DS of order 1 which is of the respective type of DS.

Next, turning our attention to LDS, RLDS and LLDS, we find that such a
fine result as above can not hold for them.

Lemma 4.6. There exists an RLDL which can be generated by an RLDS of
order n but not by any RLDS with order less than n.

Proof Consider the following RLDS, S: For any #n(=1),
S™=y(Q,V, 5 P2 (4.12)

where 2={£}UV, V={(X, Y3, Yo, ..., Yu-1, a}, S={a}, 1=¢ and P is constituted from
the following two rules:

(é)"’(t); ,u(t)—:XYle, e e ey Yn_la{;‘ (4. 13)
(&) > (&) (4.14)

Here, ¢(X) =2, ¢(Yi)=1 (1Zign-1), o(a) =c (&) =0.
Obviously, the DL, T(S™) generated by S™ of (4.12) is an RLDL generated
by an RLDS of order ». But, this DL can not be generated by any RLDS of

n - .
‘/\Q?;/ ’ FI1G. 4.1. A typical example of trees con-
a

Y

tained in T(S™) of Lemma 4.6.
a
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order (n—1). This can easily be understood by considering the DL, T(S™),
which contains trees shown in Fig. 4.1. That is, if we want to generate T(S ™)
by a DS, S’ of order less than n, then some rules of S’ should contain more
than one nonterminal node symbols in their right-hand side. But such a DS can
not be an RLDS.

Similar discussions as above yield the following lemmas:

Lemma 4.7. There exists an LLDL which can be generated by an LLDS of
order n but not by any LLDS of order less than .

Lemma 4.8. There exists an LDL which can be generated by an LLDS of order
n but not by any one of order less than .

Now, combining Corollaries 4.1 and 4.2, we directly prove the following
theorem:

Theorem 4.1, For any CSDS (SCDS), there exists an equivalent CSDS (SCDS),
S=(8, V, 2, P, 2) of which rules are in forms of the following three:

(i) & =»(®»; ¢in d=92-V, ain 3, (4.15)
(ii) ) =»@); £1in 4, £ in .Tia-s), (4.16)T
(i) (&1, 8=y, £ &, £ in A, 4, £ In T ia-r). (4177

Note that an explicit representation of the types (ii) and (iii) of rules is as
follows:

(ii-1) (E)»(/N) ; Xin V=23, 8 &, ..., & in 4, k21, (4.18)

~
& &bk

(ii-2) (&)~ & 5in 4, (4.19)
X Y
(iii-1) (¢, 9) > ( ) ); X, Yin V-3, (4.20)
& G & M m-em £ & in 4,
7, 77 in 4,
(1=igk, 1<j<D),
(iii-2) (&, 7)-( &, ) ; Yin V-3, (4.21)
/k £, & in 4,
7, 75 in 4,
(1=j=0),
(iii-3) (&, 7)~ (/f\ , 1) Xin V-2, (4.22)
£ 52:'.':.& £, & in 4,
7, min 4,
(1=ighk),
(Hi-4) (&, D) =4, )5 & &, » 7 in 4. (4.23)

T fig_z) means the set of all finite trees over r.a. (2—2) of which depth is less than or
equal to 1.
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A slight consideration with an appropriate introduction of distinct nonterminal
node symbols asserts that by using only the rules of types (ii-1) and (iii-4) we
can construct a set of rules equivalent to (iii-1), (iii-2) and (iii-3). Furthermore,
we can take the set of rules (£, ¢) - (%, &), (&, &)~ (¢, ) for all ¢ in 4 instead
of (ii-2). Thus, we have the following theorem, which may be called a normal
form theorem for CSDS and SCDS.

Theorem 4.2. For any CSDS (SCDS), there exists an equivalent CSDS (SCDS)
of which rules are in either one form of (4.15), (4.18) or (4.23). That is,

X )
() (&)~ (&), (i) (é)—),/I\) (iii) (&, ) - (&, 7))
& Ez::‘.fk

Similarly, taking account of the definition of CFDS and using Corollaries 4.1
and 4.2, we obtain the following theorem:

Theorem 4.3. For any CFDS, there exists an equivalent CFDS, S= (82, V, %, P,
2) of which rules are in either form of the following two:

i) B)=»(@; €in 4=2~V, ain 3, (4.24)
() (€)Y~ ( X ) ; £ & in 4, (1<i<h), (4.25)
& Lot Xin V-3, k=1,

Proof It is an immediate result of application of Corollaries 4.1 and 4.2 to
a CFDS that we can construct an equivalent CFDS of which rules are in the
forms of (4.15), (4.18) or (4.19). Deletion of the type of (4.19) from them can
be verified by the same way of Theorem 4.4 in page 50 of Hopcroft and Ullman'®.

Concerning LDS, RLDS and LLDS, we can not have such normal form
theorems, because of Lemmas 4.6, 4.7 and 4.8. Thus, we will take those of
Definitions 3.6 and 3.7 as their normal forms.

5. Families of dendrolanguages

In the previous chapters, several types of dendrolanguage generating systems,
i.e., CSDS, SCDS, CFDS, LDS, RLDS and LLDS were introduced. The dendro-
language generating power of these systems is a fundamental and important
point to be revealed if we attempt an application of them to the formal language
theory. It is, of course, very interesting in itself.

In this chapter, this problem is discussed and it is shown that there exists
a hierarchy of dendrolanguages which is very closely related to that of the phrase
structure languages. Let each of Trr, Tz1, T1, Tor T sc and J¢s denote
the family of RLDL, LLDL, LDL, CFDL, SCDL and CSDL, respectively. Then,
it will be shown that the proper inclusion relations

Tty T11e T1e T erFT scETcs

hold. This is one of the main results of this chapter.
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First, the following theorem is a direct result of the definitions.

Theorem 5.1. (1) There exists a DL, T in both Tz, and 1z

(ii) There exists a DL, T in .Zg; but not in 7 1.

(iii) There exists a DL, T in .97z but not in . xs.
Thus, we know that .7 z.N.7zz%¢ and that Tz, or J 1, can not be contained
in the other.

Proof (i) Let V be {A, a}, where ¢(a)=0 and ¢(A)=1. Consider a DL, T
over a r.a. V defined by

T={tult) =A%, n=1) (5.1)

This DL, T can obviously be generated by either an RLDS or an LLDS. Thus,
T is in both .7 r; and J 1.

(ii) and (iii) As easily understood, the RLDL, 7'(S) of Example 3.2 cannot
be generated by any LLDS. Conversely, we can easily give an example of an
LLDL which can not be generated by any RLDS similarly to Example 3.2.

Here we should note that .7z and .71 are closely related. That is, if a
DL, T is an RLDL, then T'={t|¢(#)=pn(#)*% teT} is an LLDLT. Conversely, if
T is an LLDL, then 7'={¢|z(t)=¢()*, teT} is an RLDL.

Now, we denote the families of regular!®, linear'?, context-free'?, scattered-
context™, and context-sensitive languages!® by £z, L1, -Ler, Lsc and Les,
respectively. Then, we can find useful relations between DL’s and these languages,
as stated in the following theorem. This theorem is a generalization of the
Theorem 3.16 of Brainerd® which asserts that if 7' is a CFDL then the set of
prefix notations of the trees in 7' is a context-free language. Here we use some
helpful notations: For any DL, 7, z(7) denotes the set of prefix notations
{u(t) |t T} and for any family of DL, .7, u(9)={p(T)|T€.7}. As for the
suffix notation ¢, ¢(7) and ¢(.7) are similarly defined.

Theorem 5.2. (i) p(Tr)F-Lr, (p(fu,) E.Lr (5.2)
(ii) w(T)GELn ¢(T1)SFZL1 (5.3)
(iil) u(Ter)FLer, gﬂ(jcr) FZLer (5.4)
(iv) u(Tsc)FLse, 0(Tsc) L sc (5.5)
(V) 2(Tes) FLes, (T cs)ELes (5.6)

Proof First, we consider (i)~ (iv). Let S=(®2, V, %, P, 2) be an arbitrary
SCDS. For this S, we can construct a scattered-context grammar G= (2, V, P/, 2)
as follows: For each rule (&, &, . ..,&0) >, foy - .., &) in P let a rule (&, &,

e = (plt), u(t), ..., n(#)) be contained in P' of G. Then, it is easily
known that L(G)={u(t) |t T(S)}=n(T(S)). Thus, for any SCDL, 7, x(7) is in
S sc. Hence, u( T gc) &L sc.

The same techniques as the above can be applied to (i), (ii) and (iii) and
it is proved that u(Zer) S Ler, #(T 1) €Lz, and p(Fr) €. L.

Next, we show the proper inclusion for each case.

First, DL, 7T'={t| p(f) =ww®c, we {4, B}*, ¢(A)=0(B) =1, ¢(c) =0} is not SCDL

+ Here, for any string w of symbols, w® means the reverse of w.



16 Hidenori Ito et al.

and its prefix notation x(7) is CFL'. Hence, (.9 sc) &.%sc. ~ Next, a DL, T=
{tlp(ty =XA"cB", n=1, ¢(X)=2, 6(A)=0(B) =1, o¢(c) =0} is not CFDL but
SCDL and its prefix notation x(7) is CFL. Hence, u(.cr) & -Lor.
A DL, T=it|pt) =XAMcXA"c ++ - XA™cc, k=1, m, . .., ne=1} is not
RLDL but CFDL and its prefix notation x(7) is regular. Hence, u(.7z1) &.-Lx.
Similarly to RLDL, we obtain u(.97) &2z

Concerning (v), it is sufficient to see that for each rule (£, ..., &) >4,
..., 4 in P of CSDS, S= (2, V, 5, P, l), the inequalities
D=l pt)], 1=ig]) (5.7)

hold, where |w| denotes the length of a string w. Thus, it can easily be understood
that for any SCDS, S, we can construct a linear bounded automaton® A4 such that
p(T(S))=M(A), where M(A) is a set of strings accepted by A®. This means
that #(Z¢s) ©.%cs. On the other hand, there exists a DL, 7= {t|u(t) =ww"c,
we{A, B}* ¢(A)=0(B)=1, ¢(c)=0} which is not CSDL and whose prefix notation
#(T) is CFL. Hence, p(.7¢s) &-Les.

In the case of suffix notation ¢, we can similarly prove that ¢(.7.1) G .Zn,
(T L) F L1, o(Ter) FLer, go(jsc‘)g.fsc and ¢(T¢s) F-Lcs.

Using Theorem 5.2, we can easily prove the following theorem:

Theorem 5. 3. Trey T1Ls-T1%5 T erSe T sc (5.8)

Proof From definitions of DS’s, it is obvious that .Zgr, T1.C.91C. T erC
T sc. First, consider a DL of Example 3.3. This DL, 7(S) is such one that
u(7(S)) is in .z but not in .%“x. Thus, the fact .¥»%.%r and (i) of Theorem
5.2 asserts that there exist a DL which is in .97, but neither in .z, nor in .7 1.
With the fact that 1 & L er F-"sc and Theorem 5.2, similar discussions also
prove that .7 :%.7cr& .7 sc, where Examples 3.4 and 3.5 can work well.

This and the following theorem show not only that there exists a hiearchy
very similar to that of phrase structure languages but also that there exists a
good correspondence between the families of DL and those of phrase structure
languages.

Theorem 5. 4. TS T ca (5.9)

Proof This theorem is proved by showing that for any SCDS, S=(2, V, J,
P, %) we can construct a CSDS, S’ such that 7(S)=T(S’).

From Theorem 4,2, with no loss of generality we can assume that each rule
of P is in one form of the three types (i), (ii) and (iii) of Theorem 4.2. The
CSDS, S'=(&2', V, &, P', 2) can be constructed as follows: Each rule in P, of
type (i) and (ii) of Theorem 4.2, should be contained in P’. For each rule of
type (iii), the following rules should be contained in P': That is, for a rule (i,
}'.z) —*(61, &2),

@) Gy ) =Gy [n, ) for all 7 in A= 2~ V, (5.10)
2) ([ .Zzl &) > (4, L&, 1.0 for all £, 7 in 4, (5.11)
(3) ([n, 7o, &) > ([0 91, &) for all 7 in 4, (5.12)
@ (& [T 73) ~ (T £, %) for all £, 7 in 4, (5.13)

(5) (iy, [Ty 21) > (&, 3) for all 7 in A (5.14)
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where 1., 1, [4, i1, [7,, 7] are new nonterminal node symbols.

The CSDS, S’ constructed in the above manner generates just the DL, 7(S5).

Note that this theorem corresponds to the theorem of Greibach and Hopcroft®,
which states that .%7scS.%"cs, and then the proofs for them are very similar.
Thus, the reader may complete the details of the proof outlined above, if he
wants.

Here, the problem whether Zsc is a proper subfamily of .Z¢s or not, ie,
whether .73 %.Z¢s or not, is left as an open problem. But, note that if it be
true that .7 sc .7 ¢s then we can prove that % sc & .%"¢s, which is an open problem
of Greibach and Hopcroft®®.

Thus, we have the main result of this chapter that T g, TG TS5 Tors
T scS.Z¢s. Finally, we present some results about order » DL, which is defined
as a DL generated by a DS with order »n. We denote the families of RLDL,
LLDL, LDL, CFDL, SCDL, and CSDL which are generated by the respective DS
of order n by 7%, 78, I, T&, T and TP, respectively. Then,
Corollary 4.2 asserts that .7 =. 7% =.T¢cr, T9= 9% =T s and T =7
= .9 ¢sfor any integer n=1. But, from Lemmas 4.6, 4.7 and 4.8, we must conclude
that for any n=l, 7% "¢.98, T VST, and IV VE Y. Thus, we
know that there exists an infinite hiearchical structure in 9z, .91 and .94,
respectively. On the other hand, it can easily be shown that .75, .99 & 7
for any #=1. An infinite hiearchical structure between .9 ¢r and .9 ¢s will be
discussed in later chapters.

6. Dendro-automata

In the previous chapters, we have discussed the DS’s as the dendrolanguage
generators. For these generators, it is meaningful to consider the corresponding
acceptors of DL’s. In this chapter, we introduce dendro-automata as the dendro-
language acceptors and reveal the relations between DS’s and the dendro-automata.
Nondeterministic and deterministic behaiviour of dendro-automata are also dis-
cussed.

First, we define several types of dendro-automata:

Definition 6.1. A nondeterministic context-sensitive dendro-automaton (abbreviated
N-CSDA) is a 5-tuple

A=(K,V, 2 4, F) (6.1)

where each of five entries are as follows:

(1) K: a nonempty and finite set of symbols, which is called a set of states.
We also define rank of symbols p in K, which is assumed to be 0,
i.e., o(p)=0 for all p in K.

(2) V: a ranked alphabet.

3) 2 (=VNKCK): a set of leaf symbols. From the definition of K, for
any symbol « in 5, ¢(a)=0.

(4) 4: T ko X * 0t xfmw)%.?w’, =1, (6.2)

{ times

I times

a mapping from 9 xur x -+ x.7 gy into the set of all subsets of
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T k-3 % - x.T w-%. Usually we represent § by writing the list of

the forms

6(t17 tZ, o s 0y tl)—_—{(j?l, i)z, e ey ﬁl)} (6.3)
which means that the ordered I-tuple (#, 2, ..., 1) of trees in T xur
can be reduced to any [-tuple (P, Ps, - . ., D) in (P, Do - . ., DD},

where p; is not in 3 but in (K~ 2) and $; is a tree {(0, pi)}.

(5) F: a distinct subset of (K~—J2), which is called the set of final states.

In the above definition, if § is a mapping from 7 (z—» X *** X7 kur) into
27 E) s« v« x 27" then an N-CSDA, A is called a quasi-deterministic context-
sensitive dendro-automaton (Q-CSDA). If ¢ is a mapping from .7 @ur x ++ x .7 ®ur)
into .7 (-3 x---x.7 x-5, then an N-CSDA, A is called a deterministic context-
sensitive dendro-automaton (D-CSDA).

Now, define the accepting of N-CSDA:

Definition 6.2. Let A=(K, V, 5, 6, F) be an N-CSDA. For any trees a and
B in .7 wury, we write al58 (or only al—B when A is understood) if there exist
xe (KU V)y* (0gig)), pie (K—-2) (1=i<l), and tie I xor (1=5t=l) such that the
following three conditions (1), (2) and (3) are satisfied:

(1) wla) =xou(t) xe « ~x— u(t) %,
w(B) =mpixie * *xi-pi1xs

@) (D Doy ... DDESWH, by oo, B

BT Fp(p) ~Fa(pa) ~ =+ = ~Fp(p1)

Next, for any « and § in .7 wur), we write «l*g if either a=p or there exist
ao, ..., ar such that ao=«a, ar=F and a;l~ai+; for each i (0Sisr-1).

Definition 6.8. Let A= (K, V, 3, 8, F) be an N-CSDA. The subset of .77,
M(A) ={te Tv|t!ED, pe F} (6.4)

is called a DL accepted by N-CSDA, or a mondeterministic context-sensitive DA
dendrolanguage (N-CSADL).

If 4 is a Q-CSDA, then M(A) is called a quasi-deterministic context-sensitive
DA dendrolanguage (Q-CSADL). The DL, M(A) accepted by a D-CSDA is called
a deterministic context-sensitive DA dendrolanguage (D-CSADL).

Now, let us introduce several types of DA as special cases of N-CSDA.

Definition 6.4, Let A=(K, V, %, 8, F) be an N-CSDA. When missing the
adjacency condition (3) of Definition 6.2, we call A a non-deterministic scattered-
context dendro-automata (N-SCDA). Similarly, A is called a quasi-deterministic
scattered-context dendro-automata (Q-SCDA) or a deterministic scattered-context dendro-
automata if it is a Q-CSDA or a D-CSDA, respectively.

In the following three definitions, let A=(K, V, 2, &, F) be a N-CSDA.

Definition 6.5. 1f ¢ is a mapping 7 (xur) 27&=)  then A is called a non-

T Refer to Definition 3.2.
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deterministic context-free dendro-automaton (N-CFDA). If ¢ is a mapping 7 xum —
-7 -3 then A is called a deterministic context-free dendro-automaton (D-CFDA).

Definition 6.6. If the domain of § is a subset .F%=% of {{t&.7 wun |u(t)e
(VH(K-2)V*UV*+}and if §: .72 527E) then A is called a nondeterministic
linear dendyo-automaton (N-LDA). If §: F9%m2is Tk 5 then A is called a
deterministic linear dendro-automaton (D-LDA).

Definition 6.7. If the domain of ¢ is a subset 79" 7L of {te . T wum|p() e
VH#(K=3)UV#*} and if §: .7 * 5272 then A is called a nondeterministic
right linear dendro-automaton (N-RLDA), If §: .Z9%mRL 5 F . then A is called
a deterministic right linear dendro-automaton (D-RLDA).

A nondeterministic left linear dendro-automaton (N-LLDA) and a deterministic
left linear dendro-automaton (D-LLDA) can be defined similarly.

Each DL accepted by N-CFDA, D-CFDA, N-LDA, D-LDA, N-RLDA, D-RLDA,
N-LLDA and D-LLDA is called nondeterministic context-free DA dendrolanguage
(N-CFADL), deterministic context-free DA dendrolanguage (D-CFADL), nondeter-
ministic linear DA dendrolanguage (N-LADL), deterministic linear DA dendrolanguage
(D-LADL), nondeterministic right linear DA dendrolanguage (N-RLADL), deter-
ministic vight linear DA dendrolanguage (D-RLADL), nondeterministic left linear
DA dendrolanguage (N-LLADL), deterministic left linear DA dendrolanguage (D-
LLADL), respectively.

In the followings, these dendro-automata, introduced by Definitions 6.1, 6.4~
6.7, will be generically called dendro-automata (DA).

Example 6.1, Let A=(K, V, %, 6, F) be a DA, where K={p}U2Z, V={A4,a},
F={a}, 6(A)=2, d(a)=0(p)=0, F={p} and o is defined by

A A
3,/ )=» and 6(/\)=.f>-
a a a p

This is a D-RLDA and we can easily know that
M(A)={t|p(t)=(Aa)"a, n=1}.

The accepting process of #(x(¢) = (Aa)’a) by A is illustrated in Fig. 6.1, and the
readers easily conceive that it is a reverse process of the generation of ¢ by the
RLDS, S of Example 3.2, which is shown in Fig. 3.2.

Here we note that the D-RLADL, M(A) is equal to the DL of Example 3.2.

FIG. 6.1. The accepting process of #u(t)=(Aa)a).
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Similarly, we can construct D-LDA, D-CFDA, D-SCDA and N-CSDA which accepts
precisely the DL’s generated by the DS of Example 3.3, the CFDS of Example
3.4, the SCDS of Example 3.5 and the CSDS of Example 3,6. Generally each
family of DL’s accepted by D-RLDA’s, D-LDA’s, D-CFDA’s, N-SCDA’s and N-
CSDA’s coincides with each one of RLDL’s, LDL’s, CFDL’s, SCDL’s and CSDL'’s,
respectively. The proofs for these are given in the followings. The families of
DL’s accepted by N-CSDA, Q-CSDA, D-CSDA, N-SCDA, Q-SCDA, D-SCDA, N-
CFDA, D-CFDA, N-LDA, D-LDA, N-RLDA, D-RLDA, N-LLDA and D-LLDA will
be denoted by A%¥s, MEs, MEs, MEs, M, Mk, M ME, MY, AT,
MYy Mur, MY and A2, respectively.

The relations among these which are directly followed from the definitions
are summarized in Fig. 6.2.

D D D
M LLy %ZL;&/%LQ(/%(FQV%?CS;M{;S

Nl ni
Nl ni nl N Ak A
n n

MYy MIS MIC MEpS M3 Ms
FIG. 6.2. Some relations among the families of DL’s accepted by DA’s.

Lemma 6.1. For any N-CSDA, A= (K, V, 5, é, F), there exists a CSDS, S=
(9, V, 3, P, &) such that M(A)=T(S).

Proof Consider a CSDS, S=(&, V, %, P, &) which is effectively constructed
from a given N-CSDA, A= (K, V, J, ¢, F) as follows: Let V and 5 for S and A
be the same, and put 2=KU VU {4} and A(=2-V)=(K—2)U {A}. P is theset of
rules determined as follows:

() If (s, ..., p) is contained in 6(4, . . ., #) then the rule (i, . . ., 2) =
(¢4, . .., #1) should be an element of P.

(ii) For all elements f of F, (iy) ~ (f) should be in P.

From the construction procedure of S described above, it is obvious that for
any « in v, lo—>a if and only if there exist f in F such that al% 7. Thus,
M(A)=T(S).

Lemma 6.2. Let S=(@, V, 5, P, %) be an arbitrary CSDS. Then, we can
construct an N-CSDA, A= (K, V, =, 8, F) such that 7(S)=M(A4).

Proof The N-CSDA, A can be effectively constructed as follows: First, put
K=(2—-V)UZ and let V and 5 for both S and A be the same. And put F= {4d}.
The function ¢ is determined as follows: Let X, .. s be the set {(£,, ..., &)l
(&1, o .., &)= (ty ..., t) in P}, which is the set of all left hand sides of the
rules in P of which right hand sides are (¢, ...,#). Then the function § is
defined by

ot - .. , 1) =Xty tn (6.5)

where if X, ...t =¢ then 6(#, . . . ,#) = ¢, which means that ¢ is undefined for
the (4, ..., #).
The construction procedure of A asserts itself that for any « in I, b= a
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if and only if ali,. Thus, 7(S)=M(A).
These two Lemmas 6.1 and 6.2 directly yield the following theorem:

Theorem 6.1. T cs= M is
Similar discussions to the above give us the following theorems:

Theorem 6.2. T s = M.
Theorem 6.3. . Ter= Mir.
Theorem 6.4. T = _#7.

Theorem 6.5. ,_731, = g/rf/}\;L, jl,[, = <//{2L
From Theories 5.3, 5.6 and Theories 6,1~6. 5, the following corollary results.

Corollary 6.1. M3, MG ALG MG MY MEs.

Next, we discuss about quasi-deterministic and deterministic behaiviours of
DA. For two DA’s A, and A, if M(A)=M(A:) then A, and A. are said to be
equivalent.

Theorem 6.6. For any Q-CSDA, A¢=(Ky, V, X, 0o, Fg), there xists an equivalent
D-CSDA, Ap=(Kp, V, 2, 6p, Fp).

Proof The D-CSDA, Ap equivalent to A, can be constructed as below:

Put K,=2" and Fp={QreKp|QfNF=¢}. The function §p is defined as
follows:

If for (4, ..., 8 & Tixgum X * * * X T (xgur such that

wlt) =xipl P xhay  (1=iD (6.6)

where xje (V- 23)* (1=i<], 0=j<h() and pie K, (1=i<], 1=j=<h(i),
we have

Golty, ..., =py, ..., 0D, ..., PDEQX - XQ, QCSKy (6.7)
then we determine
Ot oo, ) =(Qy ..., Q)EKpx +++xKp (6.8)
for all (#, ... ,#) € T xpury X * * * X T (xpury such that
p(t) =25 Qixi~ + + Qi Xy (1=iD) (6.9)

where QN {piix¢ (1=i<l, 1<j<h(D)).

Such a construction of Ap is a so-called subset construction. Thus, a similar
technique to the case of finite automata® can prove that M(Ag)=M(Ap) and
the detailed proof is left to the reader.

Similarly we can also prove the following theorems:

Theorem 6.7. For an arbitrary Q-SCDA, A, there exists an équivalent D-
SCDA, Ap.

Theorem 6.8. For an arbitrary N-CFDA, Ay, there exists an equivalent D-
CFDA, Ap.
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Theorem 6.9. For an arbitrary N-LDA, N-RLDA, and N-LLDA, there exists
an equivalent D-LDA, D-RLDA, and D-LLDA, respectively.

These theorems can be proved by the same way as Theorem 6.6, but easier
than it. Theorem 6.8 corresponds to Theorem 1 of Thatcher®. Tree automaton
of Thatcher® is differently defined from our CFDA. But they are essentially
the same. That is, by using techniques similar to that used to derive our
Theorem 4.3, we can know that the family of DL’s accepted by CFDA’s precisely
coincides with that of DL’s accepted by tree automata. Moreover, we can know
that for any CFDS in normal form, which is given in Theorem 4.3, the con-
struction procedure of equivalent CFDA, which is similar to that of N-CSDA,
will give a CFDA which becomes a tree automaton through a slightly modified
interpretation. Similar statements can also stand for CSDA and SCDA. That
is, because of Theorem 4.1 or 4.2, we can construct CSDA and SCDA in the
form similar to tree automata of Thatcher. But, these discussions can not be
cases of LDA, RLDA and LLDA, because of Lemma 4.6, 4.7 and 4.8.

From Theorems 6.6~6.9, we can obtain the following corollaries:

Corollary 6.2. L/i{/g.‘z:%{)s, ‘//Z/gc =—<//fgc
Corollary 6.3. M= Mcr, ML= M1, Mir= ML

and A%L= AL
Finally, we summarize in Fig. 6.3 the relations among many families of DL’s
obtained in this chapter.

L//L/ Zf, L//[zll uf‘{,/ 2 </l{_/ll')lv' L/l/[i)f M??
Il I

I I f I M M
Nl Nl

<//['2L t//{:;’;l, '-/[}L’ s///cp <//{f¥c c/é/fs
1l il il i il 1l

T L, jmg‘yr_gfcpgjscgjcs

FIG. 6.3. Relations among the families of DL’s.

The problems whether ..# & =.#% or not and whether #¢s=.#7s or not
are left open. They may be equivalent to that of equivalence of deterministic
and nonderterministic linear bounded automata'®. The solution for the former
would also be a solution for the latter.t

7. Closure properties of dendrolanguages

In this and the next chapters, we discuss about the further properties of
dendrolanguages. That is, we define several operations on dendrolanguages and
investigate the closure properties under them. In the next chapter, we discuss
some decision problems on dendrolanguages.

Definition 7.1. For any two subsets 71 and T: of .9v, the union of them is

t Refer to Chapter 12, where sc¢s (and Ji(Yy) can characterize the family of the set of
derivation trees of the context-senstive grammars.
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defined by
T1UT2={t|tET1 or tETz} (71)

Theorem 7.1. All families of Tz, T, T1, Ter, . Tsc and T ¢s are closed
under union.

Proof Let Si= (£, Vi, 31, Py, &) and S:=(2:, Vs, 32, P2, 22) be arbitrary DS'’s
of the identical type. Then, we can construct a DS, S; from them such that
T(S5)=T(S)UT(S:) by the similar way to the case of the conventional theory
of phrase structure languages.

There is no loss of generality in assuming that (2,— V1) N (2:—V)=¢. Then,
the DS, Ss= (2, Vi, s, Ps, 1a) constructed as follows is certainly the one such
that 7(Ss) =T(S1) U T(S:z): Let ;s be a symbol not in 2,U Q;, and put 2:={2s} U
2:U2: and Py = {23’-’21, 23“’ 22} UP UP,.

That the DS, S; is of the same type as S: and S: is obvious from the deter-
mination of Ps.

Definition 7.2. The reverse of a tree ¢, denoted by #7%, is defined by
¢@") = (u(e)* (7.2)1
For any subset T of 7y, T% is defined as
T ={t"te T} (7.3)

and is called the reverse of 7.

Theorem 7.2. .9 rr and .11 is not closed under reverse.

Proof Suppose .7 g. is closed under reverse, then .7 5. = {THIT & T rit =.7 re.
On the other hand, from definition 3.7, we know that .75, =.9 ;. Thus, .7 rs
= .9 .1, which is a contradiction to Theorem 5.1.

Theorem 7.3. Each family of .z, .7 ¢r, .7 sc and .7 ¢s is closed under reverse.

Proof Let S=(8, V, X, P, 2) be an arbitrary SCDS. Consider a CSDS, S'=
(2, V, 2, P!, 1) of which set of rules P' is determined by: For each rule (2,
ey A=ty .. h) in P, let the rule (A4, . .., i)~ (F ..., ¢)) be in P’
Then, it is obvious that 7(S) = 7%(S").

The proofs for T sc, .7 ¢r and .71, are similar to the above.

Next, we define some mappings on the set of trees and discuss the closure
properties under these mappings.

Definition 7.3. A relabeling mapping 1 from the set of trees over an alphabet
V1 into that over V3, that is,

I: ._/a'—rl—%_grvz (7.4)

is defined by: for any t= .7,
1 For a string w, w® is the reverse of w. ‘That is, for any x in 2U {¢}, XF=X and for
w=Xx in 0¥, wl=xFX,
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I =t'e Ty, (7.5)

where if u(f) =Xu(t)---p(ts) then p(t")=I(X)p(I(t))- - p(I(tx)). Here, (X)EV2
and ¢(X) =0(I(X)).

Definition 7.4. A mapping Huy : Iv,».7 v, which is called a finite tree
substitution, is defined as follows: For any ¢ in .7v,,

Huw(t) =t'e Ty, (7.6)
where if p(f) =Xu(f) -+ - p(tm) then p(t') =Hum (X) p(Hom(H))-- ~p(Hy(tm)). Here,

How(X) € .T7, if 6(X)=0 \

_ (7.7)
Ho(X) = Vs and o(X) = o(Hm (X)), if o(X)%0 |

Definition 7.5. A mapping F : .7 v, > .7y, called a tree substitution, is defined
by: For any ¢ in .9y,

F(t) = T: S T v, (7.8)
where if p(2) =Xpu(t) - -p(tm) then p(Ty)=F(X) p(F(t1)) - - p(F(tm)). Here,

FX)=TxS. Ty, if o(X)=0
(7.9)

FX)=V,, if o(X) %0
Example 7.1. Consider Ti= {¢|u(t)=(Aa)"cd" n=1}, where ¢(A) =3, and

a(a)=a(b)=0(c)=0.
(a) If we define a mapping I by

I[(A) =B, I(a)=d, I(b)=¢ and I(c)=f,
where ¢(B)=3, ¢(d)=0(e)=0(f)=0, then for a tree # such that u(#)=(Aa)*cb?
we have I(#,) =ti, where u(¢1) = (Bd)*fe’ and I(T)) =“k,i I(t) = {tlutt) = (Bd)"fe",

n=1}.
(b) If we define Hy, by

H(z;(A) =B; ¢(B) =3,
Hpy(a) =ta, plta) =CBdefg; o(C) =2, ¢(d) =ale) =a(f) =0a(g) =0,
H(z)(b) =e, fl(z)(C) =f

then for a tree #, we have Hu(#) =), where u(t.) = (BCBdefg)*fe* and Hyy(T:)
= \U Hu () ={t| u(t) = (BCBdefg)"fe", n=1}.

tin Ty

(c) Define a mapping F by

F(a) =Ta={tlult) = (Bd) ", n=1},
F(b)=Ts={t|ul) =C"gf", n=l},
F(c)=Te={tlp@t)=E", n=1}; o(E) =1,
F(A)=A
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and we have F(£) = {t|u(t) = (A(Bd)”%)*E™h(C'gf? n, m, (=1} and F(Th)=
{t|p(t) = (A(Bd)"e)* E™h(C'gf")*, n, m, k, [=1}.

As known from Definitions 7.3, 7.4, 7.5 and Example 7.1, a relabeling mapping
is a special case of finite tree substitution, which is also a special case of tree
substitution. The finite tree substitution and tree substitution correspond to
homomorphism and substitution in the conventional mathematical theory of
languages9'®, respectively.

Theorem 7.4. All families of Trr, Tz, T 1, Ter, T sc and F¢s are closed
under relabeling mappings 1.

Proof For a given CSDS, S; and a relabeling mapping 7, consider a CSDS,
S, of which rules are ones produced by applying 7 to both sides of rules in the
given ones. The CSDS, S. certainly generates just the set I(7°(S1)). For the other
families of DL’s, the proof can be done in the same way as above.

Theorem 7.5. Each family of .Z¢s, T sc, Ter, T, T re and 1z is closed
under finite tree substitution H for any n=1.

Proof For a given CSDS, Si=(2;, V3, 241, P1, A4) and a given finite tree sub-
stitution Hy : .9v,—».7 v,, consider a CSDS, S:= (2:, V2, 3% P», %) determined
as follows:

(1) 2.=4UV, where 4, =2,— V1,

(2) V. is the alphabet used to define .77v,,

(3) Zy=lalas V., ola) =0},

(4) For each rule (&1, ..., &) > (t, ..., #) in P,
let the rule (¢, ..., &) (1, ..., t) be contained in P,, where #}= Hn(t;) for
each i. Here, we extend H from 9 v,—». 7, to T o,~.7 o, by adding the rule
Hyy(8) =£ for any & in 4, (7.10)
to (7.7).
(5) 12=l|.

Then, it is obvious that for any tree generating process i ;%n‘, there exists
one such that }'.rs—i:?H(,.,(t). Conversely, for any 12%19, there exists Al%ﬁ’ such
that H, (') =¢t. Thus, T(S:) =Hum(T(S1)).

The similar considerations proves the assertions for .Zs and Zcp.

For .Z;, . 9r and 911, we have known that they are closed under the
mapping H, but we can prove the following theorem by noting how the DS,
S: was constructed in the above proof and by refering to Lemmas 4.6, 4.7 and
4,8.

Theorem 7.6. There exists an LDL, 7 generated by an LDS with order m
and a mapping H such that Huy(7) can be generated by an LDS with order
(n+m) but not by any one with order less than (n-+m). The same statement
for RLDL and LLDL also hold.

Theorem 7.7. Each family of .Z¢s, .9 sc and .Z¢cr is closed under tree sub-
stitution F.

Proof Let S= (2, V1, 21, Py, A1) and F be an arbitrarily given CSDS and tree
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substitution, respectively. For each symbol ¢ in 3, let Se= (24, Va, Fa, Pa, Aa)
be a CSDS such that F(a)=Tz=T(Sa). With no loss of generality, we can assume
that (2a— Va) N (26— V) =¢ if axb, and that (2¢— Va) N (L1~ V1) =¢ for all a in 2.
We define a mapping %2 : 2,~ (2, U LJ2 {1q}) as follows:
aE

h(£)=£¢ for each & in 4 (=2,—V))

h(a) =2q for each a in 3 (7.11)

h(X) =X for each X in (V,—3)

And we extend %~ to 27— (2, U é}z {Aa)* by h(e) =e and 2(Xx) = h(X)h(x) for X

in &, and x in 2.
Now, we determine a CSDS, S:= (2, V2, X, Pi, 42) as follows:

(1) .(22=.QIU gzga, Vz= VxU U Va, 22-‘—‘ U za, ]2=11

a=>11 GEZ)
(2) P2={(él, oo o ,él)_)(t{, - ,t;)l(él, e s« 3 é[)—’(tl, “ .. ,tl) in P1 and
pt) =h(u(F))), 1=i<hi U Y Pa
=%

That the CSDS, S: generates just the DL, F(T'(S))) is easily known from the
above determination of S..
The proofs for .7sc and .7 ¢r are similar to the above.

Theorem 7.8, Any of .75, .7 p, and .7 1r, are not closed under tree substitu-
tion F.

Proof Refer to (c) of Example 7.1, where T\, Ta, Tb and T are LDL’'s but
F(T) ={t|p@)=(ABd)"e)*E"h(C'gf")*, n, m, k, I=1} is not LDL. Thus, T
is not closed under tree substitution F. For .z and .71, we can easily find
such examples, too.

Lemma 7.1. For any tree substitution F such that F(X)=7Tx of (7.9) is an
RLDL (LLDL), and for any RLDL (LLDL) 7, x(F(7)) (¢(F(T))) is contained
in jn.

Proof From Theorem 5.2, we know that for any RLDL, T, p(7) is in Zx.
On the other hand, it is obvious from definitions of F and substitution' that
we can find a substitution = such that

n(F(T))=7(p(T)).

Thus, since .r is closed under substitution, x(F(7)) is in Lz
Similar proof also stands for LLDL.

Theorem 7.9. For any tree substitution F of Lemma 7.1, and for any DL, T
in Fgr or .1z, F(T) is in .Z¢r. But, there exists a CFDL, T for which we can
not find any RLDL (or LLDL), 7 and any F such that F(7')=T.

Proof Similarly to the proof of Theorem 7.7, for any RLDL or LLDL Ty
and any F, we can construct a CFDS, S such that 7'(S)=F(T:). This proves
the first half of the theorem.

On the other hand, consider the CFDL, 7 of Example 3.4 of which prefix
notation p(7%) can not be in .z Thus, Lemma 7.1 verifies the remainder.



Hierarchical Studies of Dendrolanguages 27

8. Some decision problems concerning dendrolanguages

In this chapter, we discuss some decision problem concerning dendrolanguages.
The first is so-called membership problem for N-CSDA.

Theorem 8.1. Let A=(K, V, 5, 6, F) be an N-CSDA. Then, for any tree
te.9y, it is decidable whether ¢ is in M(A) or not.

Proof For arbitrarily given {€.7, ¢ is in M(A) if and only if there exists
at least a saquence of #=.7 xur) (i=1,...,#) such that (—#-+ «|—f;—7 and
feF. Thus, in the followings, for any .9 xury we will show by induction on
the depth of ¢ that we can determine in a finite number of steps whether there
exists such a sequence of # begining with #, or not.

First, if the depth of #, d(f)=0, then f{=a for some @ in 5. Thus, we can
decide that whether f is in F or not such that #/7.

Next, let ¢ be a given tree in .7 xur) of which depth d(#) =d. An application
of ¢ to ¢ yields #' such that #—#. Then, two cases occurs:

(i) Case d(¢')<d(¢): In this case, it is necessary only to assure that there
exists at most a finite number of different #' and that we can enumerate them
in a finite number of steps. But these are obvious from the finiteness property
of ¢ defined in Definition 6. 1.

(ii) Case where d(t")=d(¢): In this case, the tree domains D:; and D: are
same and thus ¢' is different from # only with respect to symbols assigned to their
leaf nodes. The number of such the distinct trees is at most 2%, where k=#K
and r=max {¢(X)|XeV}. Thus, by a finite number of steps, we can determine
if the tree f can be transformed to #’ such that d(¢")<d(f) and #*¢#'. If such
a tree " exists, the case is reduced to case (i). If otherwise, the tree can not
be accepted by A.

Thus, the induction that for any tree ¢ in .9 (xury of which depth is less
than d, we can determine if {7 and f€F, or not, by a finite number of steps
proves the theorem.

The following corollary is a direct result of Theorem 8. 1.

Corollary 8.1. The family of N-CSADL,”_#s is included in the family of
the recursive subsets of ..

The following two lemmas can be proved in a similar way to the case of
usual theory of languages and automata. The readers who wants to prove them
may refer to the text of Davis?, for example.

Lemma 8.1. All of the N-CSDA’s can be effectively enumerable.

Lemma 8.2. All of the trees of .7» can be effectively enumerable without
overlapping.

Using these two lemmas, we can prove the following theorem.

Theorem 8. 2. There exists a recursive subset of . 7» which can not be accepted
by any N-CSDA.

Proof Let Ai, A, ... be an enumeration of all N-CSDA’s and #, #, ... be an
enumeration of all trees in .7 without any overlappings. Consider a DL, T
which is defined by
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T={ti|tie«M(A;))}

which is certainly a recursive set as known from Corollary 8.1. But, this 7T
can not be accepted by any N-CSDA, because if there exist an N-CSDA which
accepts T, it contradicts to the fact that A, A, ... is an enumeration of all N-
CSDA.

Corollary 8.3. 4 % is a proper subfamily of the family of all the recursive
subset of .Tv.
This corollary is a direct result of Theorem 8.2 with Corollary 8.1.

Theovem 8.3. If A is a CFDA, then the following problems are decidable:
(i) Is M(A) empty? (ii) Is M(A) finite? (iii) Is M(A) infinite?

Proof The CFDA is essentially equivalent to the tree automaton defined by
Thatcher and Wright!?, of which theorem 7 corresponds to this theorem. Thus,
the proof is omitted.

Corollary 8.4. If A is LDA, RLDA or LLDA, then the problem whether (i)
M(A)=¢ (i) M(A) is finite or M(A) is infinite is decidable.

9. Dendrolanguage generating systems with sets of states

In this chapter we show an ex1stence of the infinite subfamilies .7, 773",
., .75 and 7Y between .7 ¢r and .9 s defined in chapter 3, that is,

Ter=T1T F TG FISET S =T s

aef

Each dendrolanguage of .75 is defined by a system, called a state dendrolanguage
generating system, which may be thought of as a context-free dendrolanguage
generating system with states.

9.1. State Context-free dendrolanguages
In this section, we will define a state contexi-free dendrolanguage generating
system (scf DS), which is an extention of a CFDS.

Definition 9.1. A scf DS is a 7-tuple

D=2, V, 2, K, P, po, 2o), where

(1) 2, V, X and A are same as in Definition 3.1.

(2) K is a nonempty finite set of states.

(3) po is a distinguished state in K, called an initial state.

(4) P is a finite subset of K x .7\, x Kx .7 q.

An element (p, &, g, )T of P is called a state dendrolanguage generating rule
(abbreviated rule) and is usually written (p, £) (g, ¢). An element of 2—V is
called a nonterminal node symbol (nns), and an nns ¢ is said to be applicable
under a state p if (p, &) > (g, t) is in P for some ¢ in K and some ¢ in ..

Deﬁmtzon .2. Given a scf DS, D= (82, V, 3, K, P, ps, k), let => be a relation
Kx. 7o defined as follows: Let p be in K and # in 7o, where p(t) =x8y. If

Té in a rule (p, £, g, t) is a tree {(0, é)}e 5.
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this & is the leftmost occurrence of nns in u(#) being applicable under p: and
(p1, &)= (P, 8) in P, then we write (p, H)==>(ps, ), where u(f) =xpn(s)y. If
this £ is the j-th nns in x(4), then we sometimes write =% instead of ==.

For a, =K x Tq, we write a==>8 if either «=4# or there exist aq, ..., ar
such that ao=a, ar=8 and ai=>ai. for each i (0=i=<r—1). The sequence ay,
.., ar is called a derivation and is denoted by ar=>a=>:--=>ar. The subset

of jr‘,
T(D)={te Tv|(po o)=>(g 1), g K} 9.1)

is called a s¢f DL and is said to be generated by scf DS, D.
Definition 9.3. Let D= (2, V, 2, K, P, po, k) be a scf DS and let » be a

positive integer. An n-limited derivation is defined as a derivation arlesaion>
.27 &, such that j(@)=n for each 7 (1=i=7). In this case we sometimes write

a5y instead of ae—>ar. A subset T(D; n) of .Zv is defined as follows:

TD; n)={te . Tv|(ps, 1o)=>(q, t) for some ¢ in K} (9.2)
Obviously we have
T(D; W) eT(D; n+1) (9.3)

for each positive integer .

Definition 9.4. A scf DS, D is said to be of degree n if and only if T(D)=
T(D; »n) for a positive integer n. A scf DL, T is said to be of degree = if there
exists a scf DS, D of degree n with T=T(D). If T(D; n)>=T(D) for all positive
integers », then D is said to be of infinite degree » and the scf DL, 7(D) is of
infinite degree w.

For each positive integer », let .75 be the family of all scf DL’s of degree

n, and . 7% be that of degree w. Put 7% = .71

n=1

By the definitions, it is obvious that
T TP c T T (9.4)

9.2. Relations of s¢f DS to DS
In this section, we will show that

j7cr=jcy and j.sucr=c_7cs

First, by Definitions 3.5 and 9.1, it is obvious that .7"2.7c». Conversely, for
any scf DS, D we can easily construct a CFDS, Scr such that 7(D; 1)=T(Scr).
Hence, we obtain the following theorem.

Theorem 9.1. T3 = T¢p.

Theorem 9.2, For any scf DS, D and for any integer n=1, T(D; n) is a scf

¥ 7% means the family of all scf DL’s of finite degree and ' that of all scf DL’s,
which contains a scf DL for which we can not define any finite degree.
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DL of degree n, i.c., there exists a scf DS, D' such that 7(D; »n) = T(D'; n)
=T(D").

Proof Let D=(R, V, 3, K, P, po, 20). Then, consider a scf DS, D'=(2', V,
3, K', P', (po, 1), do) such that 2'=02U{Zl1€2-V}, K'=Kx{1,2,...,ntU
PlpeKix{1,2,...,nU{f}, f&K and P' is defined as follows:

(1) If (p, 1) —>(q, t) P then ((p, ), &)= ((g, 7), {) is in P’ for each i (1<i
=n).

(2) If £ is not applicable under p, then ((p, 7), &)= ((p, i+1), &) is in P’
for 1<i=n—1 and ((p, n), &) - (f, &) is in P

(3) For each £in 4 and p in K, ((p, 9, &)= (%, i—1), &), (22i=n) and
(p, 1), &)= ((p, 1), &) are in P

From the above construction of scf DS, D', we can easily prove that 7(D; »)
=T(D'; n)=T(D").

Corollary 9.1. A scf DL, T is of degree = if and only if 7=7(D; ») for some
scf DS, D.

Next, we show that .75 is identical to .Z¢s.

Theorem 9.3. T3 = T cs.

Proof First it is obvious that any scf DL is a CSDL. Now, let S=(&, V, %,
P, %) be a CSDS. Without loss of generality, by Lemma 4.7 we may assume
that P consists of the following forms: (a) (i, i) — (4, &), (B) (i) = (&), ()
()‘1) g (ta), where /J()fl), ,u(tz) (= V’A*, /l(ts) (=S

Let 2'=2U {Xj2eA}u{d'|2e4}, where X, 2"EA. Let K={f}UuAd=x2"U {p:|0
<i<2}, where 2" is a set of sequences on £ of which length is m and  is a finite
integer. Let D=(2', V, 2, K, P, p, 2), where P' consists of the following rules:

(1) (P, &) > (po, & for all § in A.

(2) (po, &) (p1, t") for all £—¢ in P, where p(#') = X&i++ « - +&11&)" and u(?)

_—_Xé'l- .« e .E[.
(3) (po, &) = (&, u(t)), tl) for all (&, &) - (4, t.) in P, where u(4) = Xz,-
**Tm and ,u(i{) “—‘XT;' . ’T;n_l‘l';'r'g.
(4) (&, u(t), &)= (p, ) for all (&), &) - (4, t;) in P, where u(#) = Y3,
v 0y and p(fz) = Yo+« 0n-10n

(8) (&2, u(t)), &)= (f, &), where =6,

(6) (p1, &) = (py, &) for all ¢ in A

(7) (py, £") > (po, &) for all & in A.

(8) (pa, £)— (po, t) for each &—¢ in P, where u(t) =a< 3.

(9) (py, &) > (ps, t) for each £—¢ in P, where u(t) =a< 3.

From the above construction of scf DS, D, it can be proved easily that
T(S)=T(D).

9.3. . T%" is a proper subfamily of T 5"
In a scf DS, D= (2, V, 2, K, P, po, ko), denote each rule by an abstract symbol
7 (i=1,...,k; k is the number of rules). Given a derivation

(po, 40) = (po, t)=>(p1, Li)==>+ + +=>(py, 1),
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we associate it a sequence of rules momi---7r—1 such that each z; is used in (i,
1i)=>(pis1, lis1). We call it a control word of the derivation. If the derivation
is of length 0, then the control word is considered to be e.

For each n=1, let C(D; n) be the set of those control words which realize
n-limited derivations from (pq, io), Z.e.,

C(D; m)=fcle=me"* *mre1, (Do, RV + * 22D, &), tr= T(D; #)} (9.5)

mp—y

Notation 9.1. Givena scf DS, D= (2, V, 3, K, P, po, %), let @2 : K x 2% - Kx 2*
be a function defined as follows: For any (p, x:£x) = Kx 2" where £ 4, if
(p, £)="(q, ¢) is realized by a control word a € P*, then we determine Q2 (p,
x8:) = (g, muld)x), where (g, t) = Kx .9 o. If no such derivation exists Q% (2,
xn€x) is undefined.

Note that QF (p, méx) = (p, x&x) for all (p, mEx) in Kx 2%

The following lemma can be obtained similarly to Lemma 1 of the reference?”.

Lemma 9.1. C(D; n) is a CFL for any scf DS, D and any positive integer #.

Definition 9.5. Let N denote the set of nonnegative integers. For each
integer m=1, let N”=Nx---xN (m times).

Then N™ is a commutative associative semigroup with identity under com-
ponentwise addition. A subset # of N7 is said to be linear if there exist members
¢, diy, ...,ds of N such that

0= {xlx=c+hkidi+ -+ +ksds, ki in N}. (9.6)

A subset 8 of N™ is said to be semilinear if it is a finite union of linear sets.

Notation 9.2, Let V={Xy, ..., Xm}. Let @ be the function from V* to N™
defined by ?(w) = (|wlx, . .., |wlx,), where |wlx, is the number of occurrences
of the symbol X; in the word w.

Thus, @)= (0,...,0)=0" and
It is well known that if LcV* is a CFL then @(L) is a semilinear set?.

Theorem 9.4, If T is a scf DL of finite degree, then @(u(7)) is a semilinear
set.

Proof Let D=(2,V, 3, K, P, po, 20) be a scf DS such that T=T(D; n)=T(D)
for some #=1. Let / be the homomorphism of P#* into 2% defined by A((p, &)
(g, 1)) = (1) for each (p, £) > (g, t) in P. Next we extend the function @ of
Notation 9.2 from V* to 2% by defining @(1)=(0,...,0) for each  i=4 and
D(x s -+ x5) = > 0(x) for each x;€ 2. First we show that if QZ(pe, A) = (g, u#(8))

i=1
then @(u(t)) =@(h(a)). We prove this by induction on the length of a.

(1) For a=e¢, it is true.

(2) Suppose that @(u(¢))=0(h(x)) for some a, and consider Qi~(ps, 1) =
Qu(p, uh)) =(q, p(t)), where u(t) =x8y, ult) =xp(s)y, n: (p, &) >(g,s) in P.

Then, O(ult;) = 0(xy) + 0(u(s)) = 0(xEy) + O(uls))
=0(p(t)) + 0(u(s)) = 0(h(a)) + O(h(x))
=0(hlan)). 9.7)
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Thus, it holds for all « that @(u(f)) =0 (k(a)).

Hence, O(pu(T)) =0(u(T(D; 7)) ={0(u())]
Q:( po, 10) = (q, #(t) ), a e C(D; n)}
={0(h(a))|acCiD; n)}=0h(C(D; n))). (9.8)
Now by Lemma 9.1, C(D; n) is a CFL and thus A(C(D; »)) is a CFL, since the

homomorphic image of a CFL is also a CFL*®, Thus, @(u(7))=®(h(C(D; n)))
is semilinear.

On the other hand, consider a DL, T(S) of Example 3.1, which is a CSDL.
For this 7'(S), we know that @(u(7(S)))={(2"—1, 2*)|n=1}, where @#(A)=(1, 0)
and @(a)=(0,1). Since {(2”—1, 2*)|n=1} is not semilinear, 7'(S) is not any scf
DL of finite degree. Hence, noting Theorem 9.3, we have the following theorem.

Theorem 9.5. . TS'C T,

9.4. An infinite hierarchy between .7 cr and .Fcs

sef

In this section, it is shown that .Z75" properly contains .75, i.e., .7 5 G .75,
which means that there exists an infinite hierarchy such that

Ter= TG TEGC e G TG C T = Ty
Notation 9.3, Let V={X, c}U{ai|1<i<4n-2}, where

c(X)=n, o(c)=0, o(a1i-3)=2; 1=i<n, o(ai-2)=2; 1<iZ=n—1,
o(asi) =c(aui-1) =0; 1=i=n—-1, o(ain-)=0.

Let T» be a subset of .7y defined by
Tyn={t|p(t) = Xafdicahal - + - abpraln_ccaln saln sakn_scaln ., k=1).

An element ¢ of 7% is topologically represented in Fig. 9.1. In the followings,
we show that T, .75 and Tue. 975,

Theorem 9.6. The= . T35,

: t : 3
| .
5 &% e IE““‘"% Sl\ }
: a [adn-é : a4n-5 ¢ %n-2
g # %n-6
2 & [aAn-6 n-5
c E c %n-5

FIG. 9.1. Topological representation of ¢ in Th.
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Proof Let Kp={p:|0=i=n} U{gl0=i=n} U{pH1<i=n} U{f), Zn={c} Ulai-ll
Sign—1Ulaul1<ign—1) U lain—2t, V= {ai-sl1=Zi=al U {ayi—|1<isn—1} U
IXJUZ, and 2, =14, v, G U{&|1=i=n} UV, where

(D) =0() =0(8) =a(;) =0; 1<i=n.
Let Du=(2n, Va, Zn, Kn, Pn, po, A), where P, is defined as follows:

(1) (po, A0) = (p1, ) where u(f) = X& -+ &y
(2) (pi, &) > (Pisr, 1), where u(?) = asi-28:a4i,

(Bl ) > (Pl 1)

(gi, £ = (gi+1, 1) , where p(#'") = asi-28i@i,

(gi, &) = (qisy, "), where pu(#") = a4i-rc@si-1; 1=ZiZn—1;
(3) (P E2) > (pl, ), where pl(t) = 423546,

(D, En) = (P, t) , where u(t") = ain-s2av,

(P, En) = (q, ") , where p(#") = asp-scv,

(gn, )= (q1, Gsn-2),

(gn, €)= ([, Gsn-2).

where u(#') = asi-s&iasi,

From the above construction of scf DS, Du, it is clear that we have only the
type of derivations: (po, io)=>(f, t), p(t) = Xd'dkicatal- + afn_1aln scaln_sakn_.

aky-scal,-, for any £=1. Thus,
T(Dn; 72) = T(Dn) =Th.

sel

Next we prepare a definition and some lemmas to show that .75, .7 5"

Definition 9.6. Let D=(2, V, X, K, P, py, A) be a scf DS. For a tree ¢ in
T o, v(p(t)) denotes the number of occurrences of the elements of A in x(?).
The function p: P*—N is defined by

o(m) =7(u(t))—1 for each r: (p, £)~> (g, ?) in P,
p(2) =0, and
p(me--mr)=p(m)+ - +p(zr); each ;i is in P.

The following lemma is immediately obtained from the definitions.

Lemma 9.2. If Qu(p:, n(t)) = (p,, u(t)), then

t(ult2)) = v(u(#)) + pla) 9.9)

Lemma 9.3. Let D=(2,V, 3, K, P, p», %s) be a scf DS. If C(D; n) is infinite,
then C(D; n) contains a control word 7:18i7283.7s which satisfies the following
conditions:

(1) Bifoxc and 111 B57s is in C(D; n) for all £=0;

(2) for all B in init (B), p(B81)=0;

(3) for all 8 in dnit (B.), p(B)=0(B:),
where init (B;) is the set of initial subwords'® of p;.
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This lemma can be obtained by the same way as Lemma 3 in the reference?.
Next we prove a key lemma:

Lemma 9.4, Let
Tt n(t) € Xatascasal + « + am-raim-cCaim-safm-saim-scaim-»  (9.10)

be a scf DL of degree ». Then if 7 is infinite then @(x(7)) must contain a
linear set {x|x=c+kd, k=1} such that d*0'” and d has less than (47-+2) nonzero
coordinates.

Proof Let @, h and v be the same as in Theorem 9.4 and Lemma 9.2,
respectively.

Let D=(82, V, 2, K, P, po, %) be a scf DS such that T=T(D)=T(D; n). If
T is infinite, then C(D; ») is also infinite. Thus there exists a control word
71817232 7s which satisfies the conditions (1), (2) and (3) in Lemma 9, 3. Therefore,

{te Q?lﬁlkrznzkn(po. Ao) = (g, #(tk)), R=0icT (9.11)

since the condition (1) assures that 7 8%71.8%r is in C(D; ») for all £=0.
From the first part of the proof for Theorem 9.4 it is known that if
Q;}xﬁx"T:;‘ckTa(pO, Xo) - (q, #(tk)) then

O(u(t) = 0h(r B 72 B 7:))
=0(h(ri7273)) + RO(R(B:B2)) (9.12)

Combining (9.11) and (9.12), we have

(xlx=0h(ri7272)) +EO(R(B:B)) S @(u(T)) (9.13)

Thus, it suffices for completion of the proof to show that @ (% (8:48:)) has at most
(4 n+1) nonzero coodinates. To prove this, we have two cases, i.e., p(8:1)=1 and
p(B:) =0, where p is the mapping of Definition 9.5.

Case 1. Suppose that p(#:1)=1. Then, p(B:) =—p(B)=-1. Because if not
then u(f) would contain positive number of occurrences of elements in 4, which
contradicts the fact that # is in 7.

That p(B3:) =1 assures that
p(rBY) = o(71) +n0o(B) =n (9.14)

Thus, QY. po, 40) = (p1, #(£,)) contains more than # occurrences of nonterminal
node symbols. Denote the » nonterminal node symbols from the left of u(#) by
&, &2, ..., &, then

Q'?'m"(ﬁn» AD) = (ph &1 %820 ¢ XpyEnZnnr), (9.15)

where preK, x1, ¥z, ..., xn are in V* and xx.1 is in 2% On the other hand, the
condition (2) of Lemma 9.3 assures that for all B! in init (87), Q¥ s (Do Ao
contains more than (#+ v(xx+:)) occurrences of nonterminal node symbols. Thus,
Qix(py, £16,+ + +£y) is defined for all £=0. Then there exist pu, ps in K, i, ye
ces Y in V* yuoy, 21,22, ..., 20 in 2% and vy, ve, ..., px in 4 such that
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Q;’;ﬂ: (151, &6y - '51:) = Q:;(pz, Yyt ® 'ynl’u}’n«n)
=(ps, Y1212 * *YnZnYn+1) (9.16)

Here, we define a function g: 2-V U {e} by

g(&) =¢ ; forall £in 4, }

. (9.17)
g(X)=X; forall XinV

and extend g to 2%>V* by g(¢) =¢ and g(mix:) =g(x) g(xz) for any x, v 2%

Then, from (9.16) it follows that there exists a sequence of integers 1=j:=
o Efrii= fai= - S jon=4m—2 such that g(z) is in a@f,_, g/i, for each i. This
comes from the following reasons: Assume that g(z;) contains a subword ay, af. a,
such that /; </, </, and £>0. Since

DR(B)) =O(y;+ * *yne1) =02+ + *25) (9.18)

(which is obtained by applying the same discussions as the first part of the
proof for Theorem 9.4 to (9.16)), ar, occurs in some y;. This means that in
Y1Z1Y222% + +YnZnYn+1, SOMe ar, occurs either in the left to some a;, or in the right
to some @, This contradicts the fact that Q¥ ir,(Po, Ao) = (g, u(fe)); ulfy)
= Xaa5caid; - -« dbyqafascain-salu-satn-scain_, and thus the fact that the
symbols a@; occur in the increasing order of suffixes in ¥:z:1%.2:° * *¥nzZp¥n+1. Thus
g(z) is in aj,.,a}, and g(zi1z:+ * *z,) is in ajiaj,+ + +afi,-nafi,.  Thus, 0(A(B:))
has at most 2 # nonzero coordinates.

Next, let s= —p(8) (=p(8)) and then p(yBI 1) =n+2s. Thus, Q%pmneer,
(po, 20) = (P, p(f;)) contains more than (# + 2s) nonterminal node symbols.
Denoting the (z-+2s) nonterminal node symbols from the left of u(7;) by &, &,

. —q';n-r-zs, we have

n —_— A = — - .
QT e, (Do, Ao) = (P, %1817+ * *ZnrosEntasEntrs)

where 7, is in K, %, . . . , Zn+ss are in V* and Fpezse is in 2. By the condition
(1) and (3) in Lemma 9.3, Q}.:( 91, &1Z,+ + +Epves) is defined. Thus, there exist
Ea, Psin K, Viy V25 « « « » V1IN V*, Vi, Doy « » ., bpindand z, 22, ..., 2 I o
such that

Q?zz(_ﬁl, ?1 M '§n+zs) = Q;;(Z_Dz, Mv1* 'ininynﬂngs-n . ’~§n+2s)
= (D3, MZi1Y2" * *FnZnVnr1Zne1) (9.19)

Thus we have
D(h(B2)) =03 F2* * *Fps1) =0O(Z1Z2° * *Zpss)

And similarly to the above discussions, we can prove that there exists a sequence
of integers 1=/i=j:=---=jin.1=4m—2 such that g(z:) is in a},,.,a}, for 1=i<an
and g(Zx+1) is in a},;,. Suppose that g(Z;) contains a subword as,a:, with 4 <1.
Since ar, occurs in some ¥i, g(F1Z:1* * *Fus124+1) contains a subword of the form
ai,way, a,. This is a contradiction. Therefore g(zi1z.* * *Zn+1) isinaj,aj,* « @}, .,
Thus @(%4(8.)) has at most (2z+1) nonzero coordinates. Thus 0(A(8:4.)) =

O(2(B.)) + @(h(B:)) has at most (47 -+1) nonzero coodinates.
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Case 2. Suppose that p(81) =p(8)=0. Let

Q% (o, A0) = (p1, xE1%2% * + XsEsXse1), (9.20)

where s=min (5, p(r1)+1), %1, ..., % in V¥ %y in 2% and &,...,& in 4. By
the condition (2) in Lemma 9.3, Q#x(py, &+ - +4s) is defined for all 2=0. Thus
there exist pz, ps in K, ¥1,...,¥sin V¥ ysi1, 21, ..., 2s in 2% and »1,...,vs in 4
such that

Q?ﬁ(ph Er1e e '58) = Q';;(.Dz, Yiviya* 'ysllsysﬂ)
= (ps N21y2° * YsZsYsi1) (9.21)

Then there exist 1=/=j,=<..-=j;s=4m—2 such that g(z) is in a},.,a}, for
1=i=<s. Therefore @(h(B3))) =®(z:---25) has at most 2n nonzero coordinates. An
anologous argument proves that @(%(B8:)) has at most 2#x nonzero coordinates.
Thus @(2(B:1B3.)) has at most 4 » nonzero coordinates.

Both cases show that @(k($5f8:)) has at most (4#xn+1) coodinates and we
have proved the theorem.

We are now ready for the main result of this section.

Theorem 9.7. Ty is not in 5"

Proof Suppose that Ty« = {tlulf) = Xa'atcatd" -+ + abp_salin_scalu_ aindln
ca¥y.o, k=1} is of degree n. By Lemma 9.3, @(u(T»+)) contains a linear set

U={xlx=c+kd, k=0}
such that at most (474 1) coodinates of d are nonzero. But

w(#(TIH-l)): ((lwl& lwlCr lwla” e e oy lwlamn)}

4n+2 4n+2

" ———
={xlx=(1, n+1, 0+-0)+~£((0,0, 11+--1), k=1}.
This is a contradiction. Thus 7.1 is not of degree .
Theorem 9.8. T35 G Ty for all n=1.

Proof By (9.4), Theorems 9.6 and 9.7.

10. Dendrolanguage generating systems on control sets of strings

In the previous chapter, we have discussed state dendrolanguage generating
systems, which is an extension of CFDS and corresponds to state grammar?).
In this chapter, we propose another extension of CFDS which corresponds to
string grammar®. We will call it string context-free dendrolanguage generating
system (gcf DS).  We discuss its DL generating power and show an existence
of an infinite hierarchy of DL, which is a similar result to Theorem 9.8 for scf
DS.

10.1. String context-free dendrolanguage generating system
In this section, we will define a gcf DS and a gcf DL which is generated by
a gef DS,
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Definition 10.1. A gof DS is a 7-tuple E=(2, V, 2, I', P, z,, A), where

(1) 2, V, ¥ and 1, are same as in Definition 3.1,

(2) I" is a nonempty finite set of auxiliary symbols,

(3) Z, is a distinguished symbol in I', called an initial auxilary symbol,

(4) P is a finite subset of I"'x .7y x I x T q.
An element (A, i, «, t) of P is called a string context-free dendrolanguage generating
rule (or simply a rule) and usually writen (A4, 1) - («a, 1).

Definition 10.2. Given a gcf DS, E=(2, V, 2, I', P, Zy, k), let=>be a relation
on I x.Zq defined as follows: For any (B, #), (B, f2) in I'x.Tq, (B, Lh)=>
(B2, 1) if and only if there exist A in I, « in I'*, x, ¥ in 2% such that the fol-
lowing conditions (1) and (2) hold:

(1) (A4, }, a, s) P,
(2) Bi=AR, B.=aBl, ult) =20y, pult.) =xu(s)y.

If at most j nns's are appeared in p(#) then we write =%> instead of =>.
For «, Bl x T, we write a=>p if either a=p or there exist «o, ..., ar
such that as=«a, ar=08 and ai=>ai.: for each i (0=i=r-1).
The sequence aq, ..., ar is called a derivation and is denoted by ar—=ar=>
=,
The subset T(E) of v is called a g¢f DL generated by gcf DS, E and
defined as follows:

T(E)={ts . TvI(Z, io)=>(e, D)}

Definition 10.3. Let E=(8,V, 2, T, P, Zs, %) be a gcf DS and n be a positive
integer. An n-limited derivation is a derivation ai?aZ®.--2Z5q, such that
jliy=n for each i(1=/=7). In this case we write arZSa, instead of ao—>ay.

A subset T(E; n) of 7y is defined as follows:

T(E; n)={t€.Tv|(Z, W) 25 (s, 1)}
For each positive integer #z, it is clear that
T(E; n)<T(E; n+1) (10.1)

Definition 10.4. A gcf DS, E is said to be of degree n if and only if 7'(E)=
T(E; n) for some positive integer n. A gcf DL, T is said to be of degree » if
there exists a gcf DS, E of degree »n such that T=T(E; n). If T(D; n)=T(D)
for all positive integers #», then E is said to be of infinite degree w and the gcf
DL, T(E) is of infinite degree w.

For each positive integer », let .75" be the family of gcf DL’s of degree 7,
and .7&" be the family of all gcf DL's of degree w. Define 75" = Ul.ﬂ" 5. By

the definitions, it is clear that
T T T8 T5 (10.2)

Example 10.1, Let E=(R, V, 2, I', P, Zs, ) be a gcf DS, where



38 Hidenori Ito et al.

(1) T=!lc}, V=1{A, BIUZ, 2=k, UV,
I'=1{Z, A, B}, 5
(2} P=1{(z,, k) — (24, I:o Y, (Zo, 49) =(ZuB3, I“ )

A

(2o, o) (e, ), (A, D= (s [1),
B (e [0, 4 Dle [0
(B, M =tes |,

B
c

This gef DS, E generates a gcf DL, T(E)=T(E; 1) ={t|pn(t) =ww, we{A,
B}*} and it is of degree 1.

10.2. Inclusion relations among T cs, 7% and T5°
In this section we show that .75 "G 7 sG 775" for any positive integer 7.

Theorem 10.1. . T csG 5"
Proof In a similar way to Theorem 9.3, we can prove that .7 ¢s&.7 & On
the other hand, we know that the DL of Example 10.1 is in .Z°%" but not in T ¢s.
Definition 10.5. For a gcf DS, E= (2, V, X, T', P, Z, X), we define a set
C(#) for the derivation of ¢/ in 7(E) from (Z, io) as follows:
Zf(t) = ‘:AOAL' M ’Ami(Zu. /m) = (Ao;go, tu) ""(Ax 51, il):>' .=
(AmBm L) = (e, t), Aiel, Bic [k;:, O<izm; (10.3)

Next, we define a finite substitution £ : I"*—2%" by

R(A) ={rilmi : (A4, }) > (a, t) € P}
} (10.4)

Rz =h(x) (%) ; x, me '™

Using the set C(¢) and the finite substitution 2, we define a set C(X; n), of
which element is called a control word, as follows:

C(E; n)=h(C(T(E; n))), (10.5)

where /4 and C are extended in a usual way such that 2Z(C(T(E; »))) = {h(x)|x
e C(T(E; n)) and C(T(E; n)) ={CW)lte T(E; n)}.

Similarly to Lemma 11 in the reference?”, under the above definition, we
obtain the following lemma.

Lemma 10.1. For any gcf DL, T(E) and any finite positive integer n, if
T(E; n)=T(E) then a set of control words, C(T(E; #)) is a CFL.

Definition 10.6. For a gcf DS, E=(2, V, 2, I', P, Zo, ) we define a function
Qi I x @*->T*x Q" as follows:

For B, BET*, x1, EQ* 4, hE.T o and any positive integer n, if (B, h)=>
(82, I2) is realized by a control word « in P*, then Qu(B;, x:iu(#)m) = (5, xipu(t:) %)
and if not then undefined. Morevoer, for the empty control word ¢ we define
Q?(ﬁ!, xl.u(tl)xz) = (8, xl,u(tl)xZ)-
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From the above definition, the following theorem can be proved similarly to
Theorem 9.4.

Theorem 10.2. For any gcf DL, T of degree n, @(x(7)) is a semilinear set,

where @ is same as in Theorem 9,4,
This theorem and Example 3.1 prove the following theorem which is similar

to Theorem 9. 5.
Theorem 10.3. T 5 €. T5".

10.3. An infinite hievarchy of gcf DL

In this section, we show that .75 &.7 5%, for any integer n=1.

Notation 10.1. For any positive integer n=1, define a ranked alphabet Vu=
(X, ¢} Ulai-s|1=2i=n) U lai—|1=i=n) U {aui-1 |1 120} U {ai| 1S 7=n}, where
o(X)=n, a(c) =0, o(asi-3) =0 (@i-2) = 2, o(@ii-1) =c(asi)=0; 1=i=n. By T»n we
denote a subset 7 of .7y, such that

Tw=1{tlult) =Xddtcaial- + - @ u_saln_scalinaln, k=1) (10.6)

An element ¢ of T is topologically represented in Fig. 10.1.

X
man
; u[ %n-3 : %n
%n-3
[a!ln-z ::_1
P %n-2
[ %n-1

#n-2 l\%n-l

c

FIG. 10.1. Topological representation of an element of 7.

Theorem 10.4. Tpe T5".

Proof It is sufficient for the proof to show that there exists a gef DS, E of
degree n such that T(E)=Th.

Consider a gcf DS, E=(2, V, X, T, P, Z,, 1) effectively constructed as follows:
(1) 2 ={c} Ulasi-, asil1<i<n)
V=23Ulasi~, @si-=|1=i<n}
O =1, 8, &, ..., Ein-z M2 Moy » v« » Pan-2t UV,
I'=4{Zy, Z, Zsy Zsy .« o Zsn—2, A, Ay, Ay As, A, . o ., Asnes, Asn—s}
2T P={(Z,, W)= (Z.Z), X&:8&+ « *Ein-s),
(Zi, 8) > (A1 A5+« AsnsZ A, &),

T Here, a rule (4, i)—>(a, t) is represented in the form of prefix notation (A, 2)—(a, p(£)).
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(Agi-s, E4ims) = (e, @yi-sbyisag); 1=i=mn,
(Z, 51) > (Z2Zs* * * Zin-, 772),

(Zsizs, Eri=a) > (e, Mui=2); 2=i=mn,

(A, 7) = (A2 Ag* + * Ain— @27203),

(Agi-z, ai-2) = (&, Qui-anui-a@siz); 2=i=0,
(Zy, 7))~ (2, ©),

(Zoy nsi-2) > (Zy, ©) 5 1=iZ=n—1,

(Zo, 7747:-'2) - (g, o)l

The above construction of gcf DS, E assures that Tw=T(E)=T(E; n).

In the followings we use the same functions r, p as defined in Definition 9.6.

Then, the following lemma is immediately obtained by a similar way to
Lemma 9. 2.

Lemma 10.2. If Q™8 u(£)) = (B p(#)), then v(u(f)) = (u(t)) +ola).

Lemma 10.3. Let E=(R, V, 3, I', P, Zo, ) be a gcf DS of degree » and
T=T(E), ie, T(E; n)=T(E).

If the set C(E; n) of control words of 7 is infinite then C(E; ») contains
a control word 7, 8:7:8:7: which satisfies the following four conditions:

(1) BiB=¢ and 71 Bi7Birs in C(E; n) for all k=0,

(2) P(Bl) = P(Bz) =0,

(3) For all i in init (), n— p(r) =p(B1) =0,

(4) For all 8 in init (82), n—p(r) — (1) Zp(82) =0.

Proof (1) This is obtained by the same way as Lemma 3 in the reference®.

(2) First if p(B1) =1, then for an integer k>n—p(r1) —1 (note p(71) >0) and for
QLai(Zo, %) = (a, n(1)), we have t(n(f))>n, which contradicts the fact that
T(E; n)=T(E). Second if p(8)= —1, then for the integer k and for @7,(Z, )
= (a, p(£)), we have =(u(f)) < —n, which means that there exists some integer
k>0 such that Qs rakr,(Zs, A) is not defined. This contradicts the fact of (1).
Thus, we have p(8) =0. Similar arguments prove that p(8:) =0.

(3) and (4) can be proved by a similar way to Lemma 3 in the reference®.

Lemma 10.4. Let TC{t|u(t) € Xaifarcasal « + * aim-s@im-2Caim-1aim} be a gcf
DL of degree »n. If T is infinite, then @(z(7T)) contains a linear set {x|x=c+kd,
£=0} such that d>0*"+? and d has less than 4 » nonzero coodinates.

This lemma can be proved in a same way as Lemma 9.4 with Lemmas 10.2
and 10.3 instead of Lemmas 9.2 and 9.3.

Theorem 10.5. T+ is not in 75"

Proof Suppose that Tpey = {#]|p(#) =Xa"akcatdt -« - aty ainrcdinsdin iy, RZ1)
is of degree n. Then Lemma 10.4 requires that @(u(Tn)) 2{x|x=c+kd, £=0},
where d had at most 4 # nonzero coordinates. But

O(p(Tye)) = {((wlx, lwle, lwlay o o, [Wlaged |w in 2(Ty)}

4n-+4 4n+4

={xlzx=(1,2+1,0,...,0+£0,0,1,...,1), k=1}.
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This is a contradiction. Thus, 7%.: is not of degree .
By (10.2), Theorems 10.4 and 10.5, we have the following results.

Theorem 10.6. . T5 E. 955, for all n=1.

11. A characterization of derivation trees of phrase
structure grammars

We have studied various types of dendrolanguage generating systems and
their properties from chapter 1 to the last chapter 10. In this chapter, we
investigate a characterization of derivation trees of phrase structure grammars
as an application of these systems. The results obtained here include that of
Thatcher®, which is a characterization of derivation trees of context-free
grammars through tree automata. Our result not only generalizes Thatcher’s
result but shows that there exists a fine correspondence between various types
of DS and those of phrase structure grammars.

First, various types of phrase structure grammars and their derivation trees
are defined.

Definition 11.1. A context-sensitive grammar (CSG) is a 4-tuple G=(V, 3, P, S),
where

(1) V: a finite set of symbols,

(2) < V: a set of terminal symbols,

(3) P: a finite set of rewriting rules uAv->uyv, with «, v in V*, 4 in (V-2)

and y in VT,

(4) S: a distinguished element of (V—2X) called an initial symbol.

For w and z in V*, we write w==>z if there exist x, 1, #Av, uyv in V* such
that w=xouAvx, z=%uyvx; and uAv—uyv in P. For w and z in V* we write
w_—z_}z either if w=z or if there exist wo, ..., wr such that wo=w, wr=z, and
wi=>wis for each 7.

The subset of I*

L(G) = {w in X*|S=2>w) (11.1)

is called a confext-sensitive language (SCL). L(G) is said to be generated by G.

Definition 11.2%. A scattered context-sensitive grammar (CSG) is a 4-tuple
G=(V, 2, P, S), where

(1) V, 2 and S are same as in Definition 11.1,

(2) P is a finite set of rewriting rules in the form of

(A, o AD > (3 o o0, (11.2)

where A; is in (V—2) and y; is in V* for 1=¢=/ (/: finite integer).
Depending on the forms of rules in P, G is distinguished as follows:
(1) If /=1 for all rules in P, i.e.,, P is consisted of the rules in the form of

A-y; Ain(V=2),yin V* (11.3)

then G is called a context-free grammar (CFG).
(2) If all rules in P are in the form of
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A-uBv; Ain (V=23), Bin V, «, v in 3* (11.4)

then G is called a linear grammar (LG).
(3) If all rules in P are in the form of

A-»uB; Ain (V=2), Bin V, # in Z* (11.5)

then G is called a right-linear grammar (RLG). A left-linear grammar (LLG) is
also defined.

For a SCG, G, we define a relation —> on V* as follows: For w and z in V#,
we write w=>z if there exist x, &1, ..., %, Yo, ¥, ..., 3 in V¥ Ao .oy Arin V
such that w=xo A1 %1+ - - %1-1 A1x1, 2=%1 % xi-1yixr and (Ay, ..., A=y, ..., 30
is in P. The reflective and transitive closure of =z> is denoted by =2>.

For CFG, LG, RLG and LLG, the relations => and = is defined in the same
way, with only understanding /=1.

A subset defined by using =>

L(G) ={we I*[S=>w}

is called scattered-context langnage (SCL), context-free language (CFL), linear language
(LL), right linear language (RLL) and left-linear language (LLL), if G is SCG,
CFG, LG, RLG and LLG, respectively.

Definition 11.3. Let G=(V, %, P, S) be a CSG. For a w in L(G) we have a
derivation

S==>we=>w,=> + ¢+ P Wi = W. (11.6)

For this derivation we iteratively define a derivation tree as follows:
(1) For wy(=S), let « = {(0, S)}.
(2) For some i(1=i<m), assume that «'** is obtained.

If Wi —1==>Wi is realized by wi-1=xouAvii=>xouY1- - Yevxi=w; then

@ = %= U ((med, YOl1ish, (m, A) € % me Dot (11D

The rules (1) and (2) define a tree a*( = a“"), which is uniquely determined
and characterized by the derivation (11.6). Thus a* is called the derivation
tree corresponding to the derivation (11.6).

The subset of .7 defined by

D.(G) = {a®|there exists a derivation S=>we L(G)} (11.8)

is the set of all derivation trees for L(G).
Similarly we define derivation trees for SCG.

Definition 11.4. Let G be a SCG. For a derivation from S to w in L(G),

S = wPw=> 0 TP Wm =W (11.9)

T (m, A)s qmoudve: means that the symbol A is the one replaced by Y1Y2 --Yx and that
m is the element of the tree domain with which the symbol A is asscciated.
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the following rules (1) and (2) define the derivation tree corresponding to it:
(1) For wy(=39), let a”={(0, S)}.
(2) For some #(1<i<m), assume that «'-* is obtained.
If wi—=z>w; is realized by wi-1 =A%+ X1 A1 %1 %0 * - K-y Y1% = Wi,
where y;= Y}« - Y, (1<i<0), then determine

l .
a” = a® U \J {(mief, Y17k,
$=1
(my, Aj) & gFoamy Mmdife Sy e B ey} (11.10)

The rule (1) and m iterative applications of rule (2) yield the derivation tree
a®. The set of derivation tree for a SCG, G is also defined by

D.(G) ={a" e Ty |there exists a derivation S=>we< L(G)} (11.11)
(s

Similarly, the sets of derivation trees for CFG, LG, RLG and can be defined.
Although the details of their definitions are omitted, they becomes the same
ones as conventional ones'?.

Definition 11.5. Let Gr=(Vy, 2, Pr, Sy) be a CSG. For any two rules in P,
uAv—uxv and #'B'v'-u'y'v', if A=DB implies that |x|=|y|, then G, is called a
ranked CSG (r-CSG), and define ¢(A) =¢(B) =|z| (=]|y].

Let Gr=(Vy, 2, Pr, Sy) be a SCG. For any two rulest in Pr, (41, ..., 4j
e A= (2, oo, %, ..., x) and (By, .., Bey ooy, Ba) >3y o0 Yk - .., ym), and
for any 7, k (1=j=1, 1=k<m), if A;j=Br implies that |x;j|=|y|, then G- is called
a ranked SCG (r-SCG), and let ¢(Aj) =a(Br) =|x; (=|yrl).

Similarly, ranked CFG (r-CFG), LG (r-LG), RLG (r-RLG) and LLG (r-LLG)
can be defined.

Lemma 11.1. For any CSG, G, there exists an r-CSG, Gr such that (1) L(G)
=L(Gy) and (2) for all wEL(G), Dawg.={0} U {1em | m<E Dyw)s}, where Daw;; denote
the tree domain of a* which is the derivation tree for w under a grammar G.

The condition (2) means that if we delete the root node {0} from Dgw,., then
it is identical to Dgw;;. Namely, this lemma asserts that for any CSG, G we can
construct an essentially equivalent r-CSG, G up to derivation trees.

Proof For a given CSG, G=(V, 2, P, S), define a ranked alphabet V, by
Vi={A% | uAv->uxv in P, n=|x|}U{S}U 2.

Clearly, (Vr—2)N(V-2)=¢.

For a symbol A in V, denote the set {A*| A*V,, k: integer} by [A].

Construct a r-CSG, G=(Vr, 2, Pr, S°) as follows:

(1) For each S in [S], let S°~S7 be in Pr.

(2) For each rule U+ Ui AWi++ WU+ Ui X1+ -+ X; Wi+ - Wi in P, let rules
Ui~ UtA WL - Wi= Ul - - UiX!+ - - X;Wi-+ - W} be in P, where A7 in [A4],
Ui-+ Ui in [U]- -« -LUGH, X1+« X5 in [X]« - -[X;] and Wi« - - Wi in L]

T The case where two rules are same should be taken into consideration.
it [U1]--+[U:] denotes the set concatenation of [U1], ..., [Udl.
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<o [Wed.
The above construction of G, asserts the conditions (1) and (2).
A similar discussion gives the following lemma, again.

Lemma 11.2. Let G be any SCG, CFG, LG, RLG, or LLG. Then there exists
a Gr, which is r-SCG, r-CFG, r-LG, r-RLG or r-LLG, such that (1) L(G)=L(Gr)
and (2) for all we L(G), Dawig,={0}U {1+ | ME Dawic}.

Lemmas 11.1 and 11.2 allow us to consider only the grammars on a ranked
alphabet. Thus their derivation trees are ones over a ranked alphabet and then
a tree «* uniquely determines its prefix notation u(a®), and vice versa.

Now we are ready to describe the main results of this chapter.

Theorem 11.1. For any r-CSG, G, there exist a CSDS, S such that Dz(G)=
T(S).

Proof Let G=(V, 2, P, S) be a r-CSG. Define a set of symbols 4 by
A={l4| A in V}. Define a mapping A: V-4 by 2(X)=12x for X in V, and extend
it to V¥ A% by l(€)=e and /I(xlxz)=).(xl)/l(xg) for X1, X2 in V*

Using these notations, we construct a CSDS, S= (2, V, X, Ps, As) as follows:

(1) 2=VU 4, where ¢(2) =0 for any 2 in 4.

(2) For each rule Ui+« Ui AW,* » - WU+ - Ui X1+ -+ X; Wy« - W, in P,
let (Avy - - o s Avg A }.‘w., e dw) = oy e ey XU,, t, ,iw,, e ey }..w,‘) be in Ps,
where u(#) = AA(X,- - -X;). And for each ix&1{2u,, . - ., dviy Awy - - -, Aw,} such
that X is in 3, let (ix) »(X) be in P

(3) As=24(S) where S is the initial symbol S of G.

From the above construction, we can easily prove that Dz(G)=7'(S).

Similar constructive discussions prove the following theorems.

Theorem 11.2. For any r-SCG, G, there exists a SCDS, S such that D.(G) =
7(S).

Theorem 11.3. Let G be any r-CFG, r-LG, r-RLG or r-LLG. Then there exists
a DS, S, which is CFDS, LDS, RLDS or LLDS, such that 7°(S)=D.L(G).

This theorem is the one describing the result of Thatcher'® in terms of DS.
From Theorems 11,1, 11.2, 11.3 and 5. 2, the following corollary results.

Corollary 11.1. Let Ges, Gse, Ger, Gz, Grr and Grz be CSG, SCG, CFG, LG,
RLG and LLG, respectively. Then (i) u(Dr(Ges)) €.Les, (1) u(Dr(Gsc)) € L sc,
(iii) p(DL(Ger)) € Ler, (V) p(Dz(Gr)) € L1, (v) u(Di(Gzr)) € Lz and (vi)
1 (Dp(Gir) ) € ZLx.

Define a mapping r : V*- 3% defined by t(e) =e; r(a) =a for ¢ in J; v(X) =¢
for X in (V—-2). We have the following corollary.

Corollary 11. 2.

(1) ©(u(Dr(Ges))) =L(Ges), (i) 7(u(Dr(Gsc))) =L(Gsc),

(iii) v(n(Dz(Ger))) =L(Ger), (iv) (2(Dz(Gz))) =L(Gz),

(v) v (u{De{Gre))) =L(Grr), (vi) v(pu(De(Grr)))=L(GrL).

We have characterized the set of derivation trees of phrase structure gram-

mars by the corresponding dendrolanguage generating systems. Closing this
chapter, we note that the sets of derivation trees of state grammars? and string
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grammars?® can also be characterized by scf DS and gcf DS, respectively.

12. Coneclusions

In this paper, we have introduced various types of dendrolanguage generating
systems, which can be considered as a fairly broad class of tree manipulating
systems. A hierarchical studies on them have been done and many properties
concerning dendrolanguages have been revealed.

Dendrolanguage generating systems discussed in this paper will be used in
various fields. A good application field is that of syntax directed translation.
Another example of the application is the using of the systems as a tool for
assigning meanings to phrase structure languages. We will be able to device a
more general tree manipulating system, e.g., a subtree replacement system. But
these problems are left for the future studies.
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