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General Introduction

Recent development in the field of technology which has space- and nuclear-
engineering as its leading parts has required not only the exploitation of superior
high-temperature alloys which endure the severe conditions of high temperature
and high stress, but also has required the research of analytical methods of stress
and strain in the various equipments or structures employed in such conditions.
In these equipments, in general, creep deformation which proceeds with time
even under the constant load and the constant temperature is significant. In
order to secure the high performance and the high safety in the design of them,
therefore, it is indispensable to take account of the creep deformation over the
whole service life besides the elastic- plastlc deformation which occurs at the in-
stant of loading.

In many metals employed in engineering practice, when loaded with a constant
stress at the presence of high temperature, the strain rate decreases rapidly at
first, then tends to a constant asymptotically and finally increases again up to
the rupture. These three stages are called those of transient creep, steady-state
creep and accelerating creep, respectively. In the present paper, we investigate
the transient and the steady-state creep deformation of shells of revolution which
is one of the most important examples of the above mentioned high temperature
equipments. The accelerating creep is, in general, omitted from the objective of
creep design, because it is connected with very unstable stage just before the
creep rupture.

The present problems have so far attracted considerable attention of many
researchers because of their practical importance. Nevertheless, the rigorous
‘treatment of them were quite lacking on account of the mathematical difficulty
connected with the non-linear feature of creep. The previous papers were re-
stricted either to those of approximate analyses due to some simplifications, or
those connected with the thin spheres or the thin circular tubes without regard
to the effect of end condition of shells which is the most important from the view-
point of design.

The development of digital computers in these days, however, has enabled
us to perform rigorous analyses of such problems numerically. In this paper,
therefore, we develop a numerical approach to these problems by means of the
finite-difference method or the extended Newton method combined with the method
of finite-difference, and elucidate the features of creep deformation of shells of
revolution employed under the condition of high temperature and high stress.

In Part I of the paper, the transient creep analyses of shells of revolution
are discussed on the bases of the power creep law and the creep theories of the
Mises-Mises, Tresca-Mises and Tresca-Tresca type. The strain-hardening and the
time-hardening hypotheses are employed. As an example, the creep deformation
and the associated state of stress are investigated for circular cylindrical shells
of various shell-geometries and the various magnitudes of internal pressure. The
difference between the creep theories as well as between the hardening hypo-
theses as applied to the present problem is also discussed. Calculations are per-
formed for the constant and the variable internal pressure.

Part II, furthermore, is concerned with the analysis of the steady state creep'
of shells according to the power creep law and the creep theory of the Mises-
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Mises type. The extended Newton method combined with finite-difference pro-
cedure is applied. As numerical examples, creep in circular cylindrical shells as
well as partial spherical shells is analysed. The effects of shell-geometry and
creep exponent on the state of stress and deformation rate are investigated. The
rigorous results for circular cylindrical shells obtained herein are also compared
with the previous solutions for the sandwich shells, and the validity of the as-
sumption of sandwich construction is discussed.

Notation

Dimensional quantities (Fig. 1.1)

x, ¥, z ; orthogonal co-ordinates in the directions tangential to the parallel
of latitude and the meridian of shell of revolution, and that perpen-
dicular to them.

7o, 71, #z; radius of curvature of the parallel of latitude, and those of segments
in the meridional plane and the plane perpendicular to it.

@, 0 ; angles specifying the parallel of latitude and the meridian.
B ; central semi-angle.

h ; thickness of shell.

X, Y, Z; components of external force in the x-, y- and z-directions.
v, W ; components of displacement in the y- and z-directions.

o, € ; stress and strain in the uniaxial state of stress.

de, ¢ ; equivalent stress and equivalent strain.

ag, 0o, €4, €05 COmponents of stress and strain.
sij, eij ; components of deviatric stress and strain tensors.
Ny, Ny, My, My; components of membrane force and bending moment.

E, v ; Young’s modulus and Poisson’s ratio.
A, n, m; material constants for transient creep.
k, n ; material constants for steady-state creep.

A, X, B; coefficient matrix, unknown column vector and inhomogeneous
column vector.

A ; relaxation parameter.

) ; a small value specifying the accuracy of iterative procedure.

t ; time.

g ; difference interval.

N, N’ ; numbers of divisions over the central semi-angle and that over the

half thickness of shell.
c ; suffix referring to creep.
i ; suffix refferring to i-th mesh point.
() ; derivative with respect to time.
( )* ; approximate value.
(™) ; small difference between the approximate and actual values.
Non-dimensional guantities
(i) Transient creep
Circular cylindrical shell

V=l W=t
() (& &)
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x ; co-ordinate in the axial direction.

! ; length of the shell.

a ; average radius.

p ; internal pressure.

$; arbitrary reference pressure to define dimensionless variables.

a ; a parameter specifying the geometry of circular cylindrical shells?.

Spherical shell
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(ii) Steady-state creep
Circular cylindrical shell

€= ?ZJE’ 7= %/?’ V= AM?N“VW sl 7w 72 9= “",“SQ
w(G) a5 5 W)
Ee="—e'e'-?z’ Sy = 9z y So= % , Se = 2e s nx:]_yﬂj’ n‘):%
W Ty Ty e e
mnggi—, mezgg%l, a’= )@%Jﬁa% g .af_(,,:%)
Spherical shell
2z v &
7= 7;, V= T e W= 'y‘wﬁ, E¢ r Ey = e 7
g " S
E.= s el S¢ s So =- 9 y Se = —o‘g*: g = “"]yé'
5 CA T < N )
o N My M,y h
o = STy = , Mg = y H=—
& )ty



Creep in Shells of Revolution 177

1) ~4)

Part 1. Transient Creep of Shells of Revelution
1. Introduction

In the creep design of apparatuses employed under the severe conditions of
high temperature and high stress, as the design life is relatively short, the stage
of primary creep occupys major part of the total life-time and hence can never
be neglected. Vessels subjected to internal pressure are examples of such ap-
paratuses, and the informations on their behaviour in short time range are often
required. Nevertheless, published works on the deformations of pressure vessels
in this range are relatively scarce*,

If the total strain is assumed to consist of the primary creep and the elastic
strain, the constitutive equation is linear with respect to the stress- and strain-
rate. In the geometrically linear problems, therefore, the fundamental differential
equations are also linear as regards these rates. If they are replaced by the cor-
responding difference equations, they yield the simultaneous linear equations,
which can be easily solved.

In the present Part, creep behaviour of shells of revolution under various
loading conditions is analysed by this method by assuming the power creep law
and the creep theories of Mises-Mises, Tresca-Mises and Tresca-Tresca type.
The strain-hardening and the time-hardening hypothesis are employed. In the
analysis, attention is paid to the accuracy of the analysis in particular.

The first purpose of the present Part is to provide a method of transient
creep analysis of shells of revolution, and to elucidate the typical feature of the
creep deformation of particular shells with emphasis on the effect of shell geo-
metry. The second purpose, furthermore, is to provide a comparison for facili-
tating a discussion of the validity of the above mentioned hardening hypotheses
as applied to the transient creep of shells. Since strain-hardening and time-
hardening hypotheses are employed most frequently to the transient creep analyses
of various structures and moreover since it is generally accepted that the former
is physically supported while the latter has the advantage of mathematical feasi-
bility, their difference or validity has been examined repeatedly’®. These exami-
nations, however, were mainly performed under uniform state of stress by means
of thin tubular specimens, and the validity of these hardening hypotheses cannot
be inferred therefrom when they are applied to the practical engineering problems.
Consequently, it is interesing to investigate quantitatively the difference between
both hypotheses in the case of circular cylindrical shells which are far from in
the state of uniform stress as an example of such problems.

To show the difference of numerical results obtained by different creep
theories and to discussed the suitable theory in the creep design of pressurised
shells are the other purposed of this Part. The most common type of effective
stress (and also effective strain) and flow rule adopted in multiaxial creep analyses
are those of Mises and Tresca type®™®. Among the four kinds of combinations
of them, the creep theories of Mises-Mises, Tresca-Mises (Tresca’s effective stress
and Mises’ flow rule) and Tresca-Tresca type are used in practice usually. The
creep theory of Mises-Mises type, above all, is most popular and has been postu-

* During the preparation of References [1]1-{4], R. K. Pennv!®~'? published several papers
on the transient creep of pressurised shells based on the time-hardening hypothesis and creep
theory of Mises-Mises type according to the similar procedure as that of the present Part,
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lated in the majority of previous works. According to A. M. Wah!'s results'®,
however, the Tresca-Mises theory furnished a satisfactory coincidence with the
experimental results, while Mises-Mises theory predicted smaller values of creep
strain and, therofore, was on the unsafe side from the viewpoint of creep design.
The similar trends were also found in creep deformation under the state of biaxial
tension'®?®, In the present Part, therefore, the difference between the numerical
results due to these three kinds of creep theories in regard to the present ex-
ample is also discussed.

2. Governing Equations

2.1. Equations for transient creep of shells of revolution

2.1.1. Basic relations

According to the small-deflection theory of shell, the equations of equilibrium
and the kinematic relations for axisymmetric deformation of thin shells of revo-
lution (Fig. 1.1) are expressed as follows?) %3

F1G. 1.1. Nomenclature.

1d
%(Np;ra) — Nyricos ¢ — z@(M,éro) + Mscos ¢ — Yrr =0 ]

(1.1)
N¢70+N07’1 Sln¢+ada{%a%(M¢?’o) "MQCOSQS} “Z7’07’1 =0 ‘
. _My__ze_ii(hiéuz)
T ndp n ndp\n ndp (L.2)

oto— Y Zoop ol s Ldw J
gy = rzCOt¢ Pl mcot (28 7,1-1‘- " d¢)
The non-vanishing components of the stress in the thin shells of revolution
discussed here are ¢, and go. Then, if the total strain-rate is assumed to be ex-
pressed by the sum of the elastic and the creep rate, the principal components
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of strain rates are expressed by the relations
S N Ut
a¢=§(u‘p—wfe, + €4, €9=E“(09~w,s)+€ec (1.3)

By solving the above relations with respect to o, ¢o and expressing &, ¢, in
terms of o, w by means of (1.2), we obtain the following relations

6
607 —Efhile- -+ Ls dolds el
BRI 0o

d*w/de*

where

R O A
o (1) + (2 ), he (2]
A PGS S e
Gi=éactvéne, Go=¢octvig (1.5¢)

Integration of (1.4) yields the following expressions for the rates of membrane
force and bending moment:

N¢ Ku K+ Kis U P1
No K21 Ko v v - Kzs dv{dgb PZ
.= w +1 . (1.6)
My LiuLy -+ Lis dw/de @
b0 Lo Ly +++ Ly dzw/d‘ﬁz QQ
where
_ -E hl2 _ —E ni2 |
Kys = ”‘i‘:z;zs_h/z Irsdz, Lys= *i-—:;zf_hn[rdeZ I

o —E(M . —E( . j“'ﬂ
Przl—__—yzg_hlz(}fdz, Q7=~1~:-1;25_M2(;rzdz, (r=1,2;s=12...,5)

Now, let’s assume that the relation between the creep strain e at time ¢ in
the stage of transient creep and the relevant stress in the state of uniaxial stress

is expressed as follows:

ge= Aot (1.8
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The above relation is valid for the majority of metals at elevated temperature
under relatively low level of stress'®~'?. Differetiating (1.8) with respect to time,
we obtain the strain rate according to the strain-hardening and the time-hardening
hypothesis'¥ 18 :

S0 = mANT M =V (strain-hardening) (1.92)

So=mAs"! (time-hardening) (1.9b)

By assuming the isotropy and the incompressibility of the material the above
relations can be extended to the multiaxial state of stress. According to the
three kinds of creep theories described previously, the components of creep rate
in the present shells can be expressed as follows¥:

@® Mises-Mises and Tresca-Mises theories

. - - 1
Spo= mAllmae(n m)/meec(m 1)/m( 04— _de))

(strain-hardening) (1.10a)
doc = mA1/maem—m)/maec(m—1)/m< oy — —2—(;5,
Spc = mAae"_ltm“l( op— —é— ao>
. (time-hardening) (1.10b)
éoc = mAggn—ltnl-d( o — 7055)

where the effective stress and effective creep-strain are given by the following
relations:

2 12
ve = (ah — o400 + 03) /

(& Ly (Mises-Mises) (1.11)
Sec = 75 \Egc T Esc€oc T Egc
v3

ge=Max{|agsl, los—anl, loal}

)
2 ) (Tresca-Tresca) (1.12)
6ec—_—"‘3'MaX<IZE¢c+SGCi, i€¢c—€ec[, |2€00+3gﬁc[}

& Tresca-Tresca theory

o900 > 0 Ege=csignoy Sac=0 (logl>1lae D }

. . . | (1.13a)
ge =0, epc=c8ignay (\o‘e!>}o’¢|)
0300 <0  Egc=csignoy Eoc=csignae (1.13b)
where the value of ¢ is given by
c=m A Mg ey ™ V™ (strain-hardening) (1.14a)
c=mAdt"! (time-hardening) (1.14b)

and e, egc are
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=Max{losl, los—anl, o]}

(1.15)
eecz’Z‘MaX“ZS,éc’i“E()(" lege — zocl, 1220c+ 2gel}

The creep rates involved in (1.4) and (1.6) can be thus calculated from the re-
lations (1.10) through (1.15) provided the values of stress and creep strain are
specified at the relevant instant.

2.1. 2. Governing equations in terms of rate of displacement
The substitution of (1.6) into (1.1) provides the following simultaneous linear
differential equations with respect to ¢ and w:

d | dw\y 1d . dv
d¢170<K11U - K12d¢+Klaw+ Knd¢)+I{bd¢ ){ 71@{¢'{)<L11Z}+ng¥

-+ L}gw -+ LH‘;?; + Lbdd:;;) -+ Cos (p{ Lol - Tlex)?J + (Lo — 7’1]{22)%

F Loy — Kt + Loy — 1 KM)’?%‘*' (Los — nKs) ng) }

= Y7’07’1 - ZZ% (Pi?’o) ’}'%%(Qﬂ’o) - COS(QZ - Pm)

(;%K11+Kzlsin¢)1)—}—< K12+K2281n¢)d; < """ K13+K2351n¢)20 (1.16)

+ (2 K+ Kusin ¢)J£ + (2 Kas + Kussin e 7”’

1drid
+ ?’qu) 7’1d<}§{7'0<L“U f ‘2d¢+LlszLMd¢ f L15d¢ )}
dv d
“COS¢{L91TJTL22(1¢+L2‘,W Lm (Las d;{;\]
e (T p b sing) — L 4) _
=7 <7,1P1+; lenqﬁ) ?d¢17d¢(Qm) chos¢}

The boundary condition of the above equations are, for example,

: - _d% _dw
Center: 6=0, ¥ =3P dy =0 (1.17a)
. , . dw
Clamped edge: ¢ =B, v:wza,g:() (1.17b)
Simply supported edge: ¢=8, ¥ =1 =M,=0 (1.17¢)

In order to determine the states of stress and deformation for the given shell,
it is necessary to obtain the solution of (1.16) at every stage of deformation.
Since it is difficult to solve (1.16) analytically, we calculate them numerically by
the method of finite-difference.

If the mesh points of difference interval g=p3/N (NN is the number of division
over the semi-angle () are superimposed on a meridian section of the shell, and
the derivatives with respect to ¢ are replaced by the usual centered difference®,
the equations (1.16) together with (1.17) are reduced to the following simultane-
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ous linear equations concerning #; and ; (the values of ¥ and ¢« at the mesh
point 7):

AX=B (1.18)

Here, 4, X and B denote the coefficient matrix, the unknown column vector and
the inhomogeneous column vector, the expressions of which will be given by
specifying the geometry of the shell. Since the matrix 4 is constant with re-
spect to time, X (¢) at any instant can be obtained by multiplying B(#) at that
instant by the inverse of A, provided that it has been evaluated at the beginning
of the calculation. The errors caused by the centered difference are of the order
of g% Integrals appearing in (1.7) are carried out numerically according to
Simpson’s 1/3 rule® by dividing the thickness of the shell into N’ equidistant
portions (in the present paper N' is assumed to be 10 throughout). The errors
due to the numerical integration are proportinal to (1/N')® which are much
smaller than those of the finite-difference.

2.2. Governing equations for pressuvised circular cylindrical shells"™

Let’s consider first a pressurised circular cylindrical shell shown in Fig. 1.2
In the present case, the meridians are reduced to a family of generators of the
cylinder and the external force corresponding to internal pressure are represented
by Z=—p. Hence, the relations for the present shell can be directly obtained
by the replacements

}
h

t L L
2 z

FIG. 1.2. Circular cylindrical shell subjected to internal pressure.

w
=, n=r=a ndp=dx, r= =
P 9 (1.19)

Y=0,Z=—-p

If we employ the non-dimensional quantities defined previously and replace
the derivatives by the corresponding finite-difference, the governing equations of
the pressurised circular cylindrical shells are obtained. Since the details of the
equations are reported already®™, they will be omitted here for the sake of
brevity.
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For long thin circular cylindrical shell, in particular, the state of deformation
in their middle portion is uniform in axial direction. Such a portion may be
treated as a long thin circular tube, and exact solutions in the closed form can
be obtained. For the cylinder with closed ends, for example, the components of
stress is given by

sx=%-, Sp=1 (1.20)

Then, the deflection at time ¢ are:
@® Mises-Mises theory

= {(1= )+ () () ) (.z12)

® Tresca-Mises theory
— (- L)+ (B ()T (1.21b)

@ Tresca-Tresca theory
w=~{(1-5»)+ (EA)(%‘?)Mz’”} (1.21¢)

2.3. Governig equations for pressurised spherical shells
The basic relations for a spherical shell under internal pressure (Fig. 1.3) can
be directly obtained by applying the replacements

n=r=a rn=asing, Y=0,Z= —p (1.22)

to the preceding relations for general shells. If the resulting relations are re-
written by using the non-dimensional quantities defined previously, the governing
equations for the present problem are reduced to as follows:

Fig. 1. 3. Spherical shell subjected to internal pressure.



184 Sumio Murakami

%{ (13 — Hmy) sin ¢} — (10— Hmy) cos ¢ =0

9 (1.23)
a%g(nwingb)——1(%gcos¢)+(%¢+no~2)sin¢:0
2 \
¢=0,V —Lfi;'"‘fi[;/ =0  (center)
b=8, V= W~§i,g~ 0 (clamped edge) j (1.24)
=8, V=W=ms=0 (simply supported edge)
. 1 av .. aw
S’Z’:l—yﬁ[{(ﬁ-ﬁﬁw) H’7d¢&v+ d¢)?
—!—v{(VCOtgb—W')—*H'}ycotgb(V—!—dWT)}—(E¢c+vEec)
2 d¢
av d dw (.29)
. 1 .
Soe=1 5 {(da"w>“‘H d¢(V—L?ﬁ¢_)}
L cotp—T) = L Hycot o7+ WV} = (Bt vEe)
l ¢ 5 7 (]5 d¢ ac 124
1 .
P = ég Sedy, 710 = ZS 1Sedn (1.26)
. 1 .
it = —(S~ls¢-odn, = oy (1.27)

@ Mises-Mises and Tresca-Mises theories

(n—1)/m

E¢c — m(EA)IIm(?ﬁ> Se(n~m)/mlgec(m—1)/771(59s

5 Sh l
. (strain-hardening)

(n—=13)/m
Froo = m(EA)J,/m(]:’a) S, mim g Gn=1) /m(SO _ _;4895) (1.28a)

2h

Eoo=m(EA) (g"—h)ﬂ-lse”*tm*(sp ~555) |
J— (time-hardening) (1.28b)
Foe= m(EA)<?-g) S;“lz"’“l(so —%S,s) J

where

= (8% — 5,8+ SHM

Mises-Mises) (1.29a)
Eec = Q%( Eﬁc -+ EyScEOC + Egc) v f (
Se:Max(iS¢l, lS;ﬁ"S@L [Sel} )
9 | (Tresca-Mises)
Eee = ’g‘MaX“ZE,dC'f'EOci

| Ege = Brcl, 12 Bnc+ Eyel) | (1.29b)
@ Tresca-Tresca theory
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S¢50>O EgczCsignS¢, Eec=0 ([S¢(>ISQD
. . . } (1.302)
Eee=0, Hoe=CsignSy (S ]>]S:])

SpSe<0 Ly =CsignSy, Foc=CsignSy (1.30b)

where

7711 (rn—=1/ym
e ec

(#2—1)fmt
) (strain-hardening)  (1.31a)

C=m(EA) (L2

2h
- 731
C=m(EA) (gg) Ny (time-hardening) (1.31b)
Se=MaX“S§$]’ lsﬁ—sﬂiy ISB‘> l

1 , (1.32)
Eec=“§MaX(12E¢c+Eoc], | Ege — Eocly, 12 Eoc+ Egel} J

By replacing the derivatives with the corresponding finite-difference and pro-
ceeding analogously as before, we readily obtain the governing equations for
pressurised spherical shells.

In the case of a complete sphere, especially, solutions of closed form may
be easily obtained. The components of radial displacement, for example, are
furnished by the following relation independently of the type of the creep theory:

W= = {1 =)+ 5Ea) (28)pm) (1.33)

3. Method of Calculation

The first step of the calculation is to determine the elastic deformation cor-
responding to the given pressure, which provides the initial condition of the suc-
ceeding calculation. The fundamental equations for elastic state may be obtained
by (1.1) through (1.18) only if the terms connected to the creep rates are re-
placed by 0 and dots on every symbol are excluded.

Then creep rate at a certain instant can be calculated by relations (1.10)
through (1.15) from the values of stres and creep strain at that instant. Then,
v: and #; are determined by (1.16) and (1.17). The rates of the other variables
are furnished by the relations (1.3) through (1.7) together with these values.
Hence, the variables at the succeeding instants can be determined by integrating
numerically the rates of variables thus obtained with respect to time.

At the particular instant /=0 (i.e. e.c=0), however, creep rate becomes infinity
as can be seen from (1.10) through (1.15). Then, the above mentioned procedure
for creep state cannot be applied. To avoid this difficulty, we select a particular
short interval 0<¢=<+t just after the loading, and calculate the increments of
variables during this interval by integrating fundamental relations instead of
calculating their rates. If the variation of stress during this interval is sufficiently
small by comparison with the values of stress at instant =0 and the state of
stress can be assumed to be constant during the interval, creep strain increments
may be calculated by integrating (1.10) and (1.13) to be expressed as follows
independently of the hardening-hypotheses:

@ Mises-Mises and Tresca-Mises theories
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AS;;(: = AJZ'I(AI,‘)"‘(G;; - '%‘ o’g) y A&’oc = AO'Z-I(At)m<O'e - %‘07,) (1~ 34)
where
oo = (agy — dgo000 + apg) (Mises-Mises) (1.35a)

Jey = Max {] ago {, [ ago = 0o 2, [ dao 1) (Tresca-Mises\ (1. 35 b)

@® Tresca-Tresca theory (e.g. in the case of og>0e>0)
Ae,zsc:Ao'eg(Aﬂm, A€9c=0 (136)

where

t)'eo:MaX{ldyso!, !0;60—(74\0', ]Jeol) (1.37)

In the above relations o4 and ge denote the initial value of stress. Other re-
lations, ie. (1.4), (1.6), (1.16) and (1.17), must be also integrated with respect
to time, but they remain formally unchanged. Thus, increments of variables can
" be calculated from (1.4) to (1.17) by the same procedures as mentioned above
only if the relations (1.10) to (1.15) are replaced by (1.34) through (1.37). In
the following calculation, the value of #£=10"° hr was ascertained to be satis-
factory enough for this purpose.

Numerical integration of the above mentioned rates of variables with respect
to time was performed by the Runge-Kutta-Gill method®.

4. Results of Caleulation and Discussion

As a numerical example, the following two cases are considered for simply
supported circular cylindrical shells with closed ends of 0.15 per cent carbon steel
at 450°C. As the first example, the creep behaviour of shells of a=» and a=2z
under four kinds of constant load between pa/h=5 and 20 kg/mm? are calculated
according to the three kinds of creep theories. The creep of shells of a=2x
subjected to the step-wisely varying load among pa/h=7.5, 10, 12,5 and 15 kg/mm?
according to the Mises-Mises theory is selected as the second example. The
shells of =7 and 2z correspond to short and long ones respectively®, and pa/h
is equivalent to the hoop stress in long thin circular tubes.

Material constants employed are

E =18,000 kg/mm®, » =0.3
A=4.36%10"" (kg/mm?» ™% (hr) """, m =0.218, n =4.66

which were obtained by a creep test for the above mentioned carbon steel.

The truncation errors due to the replacement of the derivative by the centered
difference is the order of g? where g=1/N*. However, difference between nu-
merical results obtained in the case of g=1/25 and g=1/50 is less than 0.2 per
cent for a cylindrical shell of a«=2#, pa/h=15kg/mm? Hence the lattice interval
of g=1/25 is practically admissble and is employed in the following calculation.

The errors of the numerical integration due to the Ruge-Kutta-Gill method,
on the other hand, are in proportion to (4#)% (4¢; increment of time)?, and are
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much smaller than those involved in finite-difference mentioned above. In the
present calculation, the value of 4¢ is specified so that W at £=0 may increase
by a certain constant fraction (i.e., 1/K) of the initial elastic value of W at £=0
during the interval 4¢. The results of the calculation for =30 and K=60 were
ascertained to coincide with each other to an accuracy of six significant figures
in the case of g=1/25, a=2x and pa/h=15 kg/mm? The following calculation,
therefore, are all performed by using the value K=30.

When the creep deformation proceeds sufficiently far and creep strain be-
comes large enough in comparison with elastic one, the rate of stress decreases
gradually and its distribution tends to that of steady-state ceeep. In the present
}G— % <1077
(hr)~! and the resulting stress is regarded as that of steady-state (i.e., i=o).
These results are entered into the subsequent figures. According to the results
due to the Mises-Mises -theory for pa/h=20 kg/mm? for example, the above
condition is satisfied at about #=6,000 and 4,000 hr in case of a=xr and a=2r,
respectively, and ratios between creep strain and elastic strain at these instants
are less than about 20 and 15 for these parameters. V

The above procedures were programmed according to Fortran IV, and calcu-
lations were all carried out in double precision (13 digits) by using HITAC-5020.
The programme consists of about 71,000 machine words (in case of g=1/25), and
the time of calculation was, for example, about 150 sec in case of the following
shell of a=2nr, pa/h=15 kg/mm*® due to the Mises-Mises theory and the strain-
hardening hypothesis in the time ragne of {=0~120 hr.

analysis, therefore, the calculation is carried on up to the state Max E

4. 1. Circular cylindrical shells under constant internal pressure

4.1.1. Mises-Mises theoyy®™

Numerical results due to the Mises-Mises theory for comstant pressure are
shown in Table 1.1 and Figs. 1.4 to 1.10. The solid and the dashed line in these
figures are the results of the strain-hardening and the time-hardening hypothesis,
respectively. In the following, the internal pressure p is employed as the refer-
ence pressure  in the definition of non-dimensional variables. Figs. 1.4 and 1.5
show the variation of maximum deflection and the maximum stress for various
values of pa/k. Open circles on the ordinate in these figures represent the values
corresponding to the elastic deformation. In Fig. 1.4 (a), (b), the difference be-
tween the results of both hypotheses is less than about 5 per cent. Fig. 1.5 (a),
(b) shows (0¢)mash/pa which occurs on the surface z/h=-1 at 2x//=0.4 to 0 and
0.7 to 0.6, respectively. The change of the location of these maximum stress
with the lapse of time may be estimated approximately by Figs. 1.7 and 1.8
below, together with the fact that M,/pah shows almost the same distribution
as Mx/pah but is one-third to one-ninth times the latter in magnitude.

Closed circles on the ordinate in these figures show the maximum stress at
steady-state creep. It will be observed that the maximum stresses in the cylindrical
shell of «=7 and 27 are about 5 and 3 per cent larger even in the steady-state
than those of long thin circular tube in which the relation ¢o%2/pa=1.0 holds always.
The dependence of rate of decrease of (¢o)maxk2/pa on the magnitude of internal
pressure and the geometry of shells will be also observed in these figures. The
difference between the solid and dashed lines in Fig. 1.4 are less than 0.5 per
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TABLE 1.1. Computed values of Ehtwmax/pa?, Ehtimax/pal, (Mz)max/pah,
(My)max/pak and (Ny)max/pa at several instants
(a) a=nr, pa/h=15 kg/mm?

o £ (hr) L0 l 0.1 L 1 10 100 ; .
Bl | | —oses | THTS | -lao | -z | e |
Bhospal | § | oxwn| QI24) omme ouee| ol
orsp | S| —ooms| 00062 | ~00610 | —00389 | 0007 | 45,
st | 5| —onzis | “H220 | 0007 | 0| 0| _gese
(Nomss/ba | 5| 1073 | 100 1 193 108 | Tom | 10%

S: strain-hardening hypothesis
T: time-hardening hypothesis

(b) a=2n=, pa/h=15kg/mm?

T

t (hr) o0 o1 | 1| 100 100 e
Bhwpe | S oss | WM A -
Bhumesfpal | £ om00| OHB Gl omis | ontes|
(Modmes/pa | 3| 00822 | G060 TOGE  Toosss | _oosia | 00483
(Mms/pan | S| ooz TS0 008 Z0000L | 0800 | —nooss
Vomespa | % | ros | 198 Lem 1B M o

S: strain-hardening hypothesis
T: time-hardening hypothesis

cent.

Fig. 1. 6 is the distribution of Ehw/pa® in the case of pa/h=15kg/mm? Curves
of =0 shows the elastic deflection at the instant of loading, and circles on the
ordinate are the values calculated by equation (1.21a) for #=0, 0.1, 1, 10 and 100
hr. Hence it will be observed that the deflection at the center of the shell of
a=m are about 15 per cent larger than that of long thin circular tubes. In the
shells of =27, on the other hand, the circles coincide not only with the results
of elastic solution but also with those of the creep solution due to the strain-
hardening hypthesis within the accuracy of 1 per cent. According to the results
for «=2nr, e.g., Figs. 1.7 (b) and 1.8 (b), the central portion of the shell is almost
in the state of hoop stress. Consequently, the fact that the results of exact
solution (1.21 a) coincide with the corresponding numerical results confirms the
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accuracy of the present procedures. The maximum deflection in the shell of a=
27 occurs at 2x/l=0.55 to 0.65 and about 10 per cent larger than those calculated
by (1.21 a). It should be noted that these portions of maximum deflection can
not be neglected from the viewpoint of structural design.

Distribution of Ny/pa and Mzx/pah in case of pa/h=15 kg/mm? are shown in
Figs. 1.7 and 1.8. The maximum values of Ny/pa for a=n and 2 are about 4
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and 2 per cent larger even in the steady-state creep than the value No/pa=1.0 in
long circular tubes. The value No/pa does not vanish at 2x//=1 because of the
effect of axial force. On the other hand, Mx/pah in Fig. 1.8 is significant only
near the supported ends, and in particular it is almost negligible in the central
portion of the shell of =27z In the case of n=1, M«/pah vanishes at 2x//=0
in the shell of a=r, and at 2x//=0 and 0.5 in the shell of a=2#". Therefore,
it should be observed that the effect of supported end prevails in wider region
as the creep proceeds. The differences between solid and dashed lines in Figs.
1.7 and 1.8 are less than 3 and 6 per cent, respectively. It will be also observed
that the changes in the distributions of the membrane force and bending moment
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in these figures are quite rapid in the first few hours and their maximum values
change within 10 hr by about 60 per cent of their total variations.

Finally Figs. 1.9 and 1.10 illustrate examples of the stress distribution in
section 2x//=0.8. It should be noticed that the stress distribution in the section
shows a remarkable tendency to become more uniform in a relatively short time.

4.1. 2. Tresca-Mises and Tresca-Tresca theories”

Some of the numerical results for the shell of a =27 due to the Tresca-Mises
and Tresca-Tresca theories are presented in Figs. 1.11 to 1.13.

Fig. 1.11 shows the distribution of deflection obtained by these two kinds of
theory for the case of pa/h=15kg/mm? The small circles on the ordinate again
correspond to the rigorous solution for long thin circular tubes (1.21b), (1.21c).
Though the results of the Tresca-Mises theory, Fig. 1.11 (a), show the similar
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distribution as those of the Mises-Mises theory, the values are about 40 per cent
larger than those due to the latter theory. The difference between the strain-
hardening and the time-hardening hypothesis is less than 2 per cent, and the
values at the center nearly coincide with those of (1.21) for long tube.

In the results due to the Tresca-Tresca theory, on the other hand, the location
of maximum deflection moves considerably with time, and the maximum value
due to the strain-hardening hypothesis, especially, occurs at the center of the
shell at the time #=100 hr. The difference between the solid and dashed lines
are less than 3 per cent. Although the deflection of the center of shell coincides
with the value of (1.21 ¢) for #=0.1, the difference between them increase with
time thereafter. According to the Tresca-Tresca theory, therefore, the region
which is influenced by the end condition increase as the creep deformation pro-
ceeds, and the distribution of deformation becomes alike to that of the shell of
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a=m shown in Fig. 1.6 (a). The maximum value of deflection in this case is
about 80 and 40 per cent larger than those of the Mises-Mises and the Tresca-
Mises theory, respectively.

As regards the components of axial displacement, membrane force and bend-
jng moment, the Tresca-Mises theory was found o show the similar distribution
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and nearly the same magnitude as in the case of the Mises-Mises theory. In the
case of the Tresca-Tresca theory, however, the effect of simply supported edge
was remarkable also in the distribution of these quantities.

Figs. 1.12 and 1. 13, furthermore, show a comparison of the three kinds of
theories in the variation of the maximum deflection and maximum stress. As
observed in Fig. 1.12, just as in the numerical results of A. M. Whal for rotating
disks'?, the Mises-Mises theory gives much smaller deformation than the Tresca-
Mises and Tresca-Tresca theories, and therefore it gives the results of unsafe
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side. This should be a general trend when the external loads are prescribed,
because the Mises criterion always gives smaller (or equal) values of effective
stress than that of Tresca’s for every state of stress and the small difference of
equivalent stress gives rise to a large discrepancy of the deformation due to the
significant non-linearity of the creep law. As regards the maximum stress, how-
ever, the Mises-Mises theory gives larger values than the others (Fig. 1.13) and
hence on the safer side in this respect, which is a different trend from that of
Whal’s' concerning maximum stress, Then, it is difficult to lead a straight-
forward conclusion as regards the suitable theory for the purpose of creep design
of rather complicated structures.

It should be noticed, however, that in addition to the stress the state of de-
formation is also required in creep design and the difference between the pre-
dictions of deformation due to the Mises and Tresca theories is very significant
because of the highly non-linear character of creep law. Hence, the more elabo-
rate theories should be employed in creep analyses when accurate predictions
of stress and deformation are required.

4.2. Circular cylindrical shells under variable internal pressure?

Although it is obvious that the strain- and the time-hardening hypothesis in
the presence of stress variation give different results from each other, such works
have been so far quite scarce as to investigate quantitatively the difference be-
tween these two hardening hypotheses when they are applied to the practical
problems. In the preceding article, therefore, we illustrated the difference in the
case of simply supported circular cylindrical shells with closed ends subjected to
constant internal pressure on the basis of the Mises-Mises, Tresca-Mises and
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Tresca-Tresca theories, and showed that the differences between the results due
to these two kinds of hardening hypotheses resulting from re-distribution of stress
during the creep are less than few per cent in every case.

In the present article, furthermore, we analyse the creep deformation of a
circular cylindrical shell subjected to step-wisely varying pressure according to
the Mises-Mises theory in order to investigate the difference between these
hardening hypotheses in the case of varying external loads.

The results for shell of a =2, as an example, are shown in Fig. 1.14 (a) and
(b), where internal pressure is changed by pa/h=2.5 kg/mm?® at /=24 and 48 hr,
respectively. It will be recognized that the difference between the results of the
strain-hardening and the time-hardening theory is about 20 and 40 per cent for
the pressure increase of 25 and 50 per cent in magnitude. However, in the case
of pressure decrease of the same amount, the difference is less than 10 per cent.
For the temporary drop of load shown in Fig. 1.14 (b), in particular, the differ-
ence between the results of both hypotheses is almost negligible. Although the
difference between the two kinds of hardening hypotheses may depend upon the
time and the magnitude of change of stress, of course, it can be concluded, re-
ferring to the intrinsic nature of hardening hypotheses, that in case of step-up
of a certain magnitude of load the strain-hardening hypothesis always gives larger
values of deformation than the other and vice versa in case of step-down of load;
these differences are the larger the later is the change of load.



Creep in Shells of Revolution 199

5. Conclusion

Transient creep analysis of shells of revolution was developed on the basis
of the strain-hardening and the time-hardening hypothesis. The creep theories
of Mises-Mises, Tresca-Mises and Tresca-Tresca type and the power creep law
were postulated. Total strain was assumed to consist of elastic and creep com-
ponents. Equations of equilibrium were replaced by the corresponding difference
equations in regards to the rate of displacement, and the solution of the resulting
simultaneous linear equations was integrated numerically with respect to time.

Calculations were performed for pressurised circular cylindrical shells of 0.15
per cent carbon steel at 450°C. As a first example, simply supported shells of
a=r (short) and a=2r (long) with closed ends under constant internal pressure
were selected. The Mises-Mises theory was found to predict the deformation
which is 40 and 80 per cent smaller than the Tresca-Mises and the Tresca-Tresca
theory, respectively. As regards the maximum stress, however, the Mises-Mises
theory gave larger values than the other theories and is on the safer side in this
respect. Then, it is difficult to lead a straightforward conclusion as regards the
suitable creep theory for the design of rather complicated structures. Consequently,
the modification to the elementary theory seems to have large significance in
creep theory, because not only the state of stress but also the state of deformation
are required in creep design and the difference between the predictions of de-
formation due to the Mises and the Tresca criterion is very large on account
of high non-linear character of creep law.

The difference between the results due to the strain-hardening and time-
hardening hypotheses was, in these shells, less than few per cent in spite of
large local variation of stress. The maximum values of deflection and circum-
ferential components of membrane force were observed at the center in the shell
of a=r, and in the vicinity of supported ends in the case of a=2r (except the
results at #=100 hr due to the Tresca-Tresca theory and the strain-hardening
hypothesis, where the maximum values occured at the center of shells just as in
the shell of a=r). They were 5 to 15 per cent larger than those of the long thin
circular tube without regard to the effect of supported ends. These location of
peak values are important from the viewpoint of creep design.

The simply supported shells of a« =27 with closed ends subjected to variable
load were analysed according to the Mises-Mises theory as the second example.
Step-wise increase of internal pressure of 25 to 50 per cent in magnitude induced
the difference of about 20 to 40 per cent between the results of two kinds of
hardening hypotheses. In the case of pressure decrease of same magnitude, the
difference was less than 10 per cent.
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Part II. Steady-State Creep of Shells of Revolution®™®

1. Introduction

In the preceding Part, we analysed the transient creep of shells, and revealed
the process up to the steady-state during which the creep rate decreases with
the lapse of time and the elastic-plastic strain changes in accordance with the in-
crease of creep strain. According to the numerical results for pressurised circular
cylindrical shells, the variation of stress distribution in the case of constant load
ends in relatively short time, and steady-state is realized actually when creep
strain has increased to about 15 to 20 times as much as the elastic-plastic strain.
Hence, the analysis of steady-state creep is also very important because it covers
the majority of the total creep process, especially in case of relatively low stress.

Although many authors have discussed the steady-state creep of shells?®, most
of these works are concerned with some approximate analyses due to certain
simplified assumptions® Y. In these analyses, accordingly, it remains open to
examine the validity of the assumptions employed, and the works concerning with
the shells other than the cylindrical ones are quite small®?.

The informations of steady-state creep may be also obtained, as observed in
the preceding Part, from the results of transient creep analysis as the limiting
state of infinite creep strain. In such analysis, however, the stress strain-rate
relation has a complicated form because the elastic-plactic strain should be also
taken into account besides the creep strain. Then, it is impossible to make the
relations not to include the material constant explicitly by rewriting them in
terms of non-dimensional quantities. Therefore, in such problems, unlike the
case of steady-state creep, one cannot obtain any general idea of the creep of
shells which should be independent of the material law. The primary aim of the
previously mentioned work of R. K. Penny', in fact, is to establish the steady-
state creep response which should appear when the creep rate has tended to con-
stant after sufficiently long time. Accordingly, it will make a significant contri-
bution to the engineering practice to establish accurate and direct analyses of the
steady-state creep of the general shells of revolution, and derive a general con-
clusion which is independent of the mechanical properties of material.

In the present part, we derive at first fundamental equations of the steady-
state creep of the shells of revolution by applying the extended Newton me-
thod*®»-*® under the assumption of the creep theory of Mises type and the power
creep law. In this problem, as will be observed later, integrals of the unknown
variables or conversely the solution of integral equations as regards the variables
appear in the governing differential equations on account of the non-linearity of
the constitutive equation. Hence, it is necessary to dispose of such integral or

“integral equation adequately, which is a different situation from the case of
physically linear problems®®. Thereafter, the creep behaviour of circular
cylindrical shells and a partial spherical shell under internal pressure will be
analysed as numerical examples of the fundamental equations thus derived. The
creep behaviours of these shells, the effect of non-linearity of the creep law on
the state of stress and deformation will be discussed in detail. The numerical
results of the cylindrical shells, in particular, are compared with those due to
the sandwich assumption,
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2. Govering Equations

2.1. Equations for steady-state creep of shells of revolution

2.1.1. Basic relations

Consider again a thin shell of revolution as shown in Fig. 1.1. Equations of
equilibrium and kinematic relations of the shell are given by the following ex-
pressions® % just as in Part I:

d
g%(N;ﬁ'o) — Ny#,cos ¢ — %«;d—é (Myr)) + Mycos g~ Yy =0

(2.1
Nyro+ Nov: sin¢+%{%}%(ﬁ@rg) ~ M, cos g&} —~ Zr =0
: _L@_z@_ﬁé,(z L@) 7
s ndgp 71 rnidg\n o ridp { (2.2)
Y otg— 2 org(? Ldw '

Though the steady-state creep of shells generally yields relatively large deflection,
the small-deflection theory is assumed in the present analysis. It is because one
of the primary aims of this Part is, as described previously, to reveal the
general feature of the creep of shells in a certain extent of their deflection. The
procedure to be developed here can be applied also to the case of large deflection.
The relation between stress and strain-rate of steady-state creep in the uni-
axial state of stress is assumed to be expressed by the usual power law® ™17,

& =ko” (2.3)

The last relation describes well the behaviour of steady-state creep of metals at
elevated temperature provided the stress level is not so high. If we assume the
isotropy and the incompressibility of material, the relation (2. 3) is readily extended
to the multiaxial state of stress according to the creep theory of Mises type!®~19:

o 12
éij = —% kol " 'sij, de = (% s,-jm) (2.42)

According to Hoff’s analogy*®, results of analyses obtained by using the relation
(2.4a) are analogous to those obtained by the aid of non-linear elastic law:

e = %kae""lsy (2.4D)

The following analysis, therfore, will be carried out according to (2.4b) for the
sake of convenience. The relations (2.4b) can be rewritten also in the form

2 _ _ 2 1/2
Sij = _3~k 1/7;68(1 n)/nei].’ Ee = (—3‘ e,-jeij> (2.5)

The non-vanishing components of stress in the thin shells of revolution dis-
cussed here are 54 and vy, and are expressed according to (2.5) as follows:
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[SUIREN

(2.6)

— 2 2y1/2
ge = V/§~(€¢ -+ 480 + 39) /

The components of membrane force and bending moment in (2.1) are given by
the relations

“h]2

=)

ni2

oz, No= | oudz 2.7)

—h/2 -h/2

hf2

hi2
M¢=S sszdz, Mo :S sozdz (2.8)
—-1/2

~h/2

2.1.2. Application of the extended Newton method

Let’s consider, at first, what kind of sectional variables should be taken as
governing quantities in the present analysis. In the analyses of transient creep
L-910~12)  the procedures analogous to the elastic case are applicable’, because
the total strain can be divided into the elastic and the creep component and the
creep terms can be treated as inhomogenous terms of the differential equations.
The shearing force and the rotation of section, therefore, may be chosen as the
independent variables of the equations. It is difficult, however, to apply such an
approach to the physically non-linear problems of steady-state creep, because
therein elastic strain is not taken into account generally.

When we solve this problem as regards the sectional force, on the other hand,
we must take account of the equations of compatibility at the same time. Thus,
complicated integral equations have to be soived in order to express the strain
components in terms of the sectional force, which is generally intractable.

If the components of displacement are chosen as the unknown variables,
membrane force and bending moment are expressed as integrals of irrational
functions of the displacement. When they are substituted into the equations of
equilibrium, integrals of unknown variables appear in the differential equations
(independent variables of the differential equations and integrating factor are
different from each other). The disposal of these integrals is, however, simpler
than the two cases mentioned above. In this case, furthermore, it is advantage-
ous that we need not take account of the conditions of compatibility.

When the non-linear differential equations are solved with respect to the com-
ponents of displacement by applying the extended Newton method, it is necessary
to devise not to bring the integrals of unknown variables into the equations.
Such a kind of difficulty does not arise in the physically linear problems. For
a non-linear analytical function, to integrate it at first and then to linearize by
expanding the integral in the neighbourhood of a certain approximate value is
equivalent to linearize it at first and then to integrate the linearized function.
Hence, as regards the expressions of membrane force and bending moment, if
we linearize the expressions under integration symbol at first by expanding it
in the vicinity of certain approximate values of displacement and then perform
the integration, these sectional forces are expressed as linear functions of the
small correction of displacement. Substitution of these expressions into the
equations of equilibrium yields a system of linear differential equations in regard
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to the small correction. These procedures mean precisely the application of the
extended Newton method to the physically non-linear problem represented by
non-linear differential equations.

The solution of the linear differential equations derived in this way now
gives the value of small correction of displacement, and the previous approximate
value may be improved by it. If the approximate value converges to a certain
value with sufficient accuracy by repetition of the similar operation, we can ob-
tain the accurate solution of displacement.

Now, let’s express the actual values of displacement v, w as sums of the m-th
approximations v*, w* and the small corrections 7, @ as follows:

v=0v +7, w=w"+w (2.9

If we substitute the above relations into (2.2) and (2.6) and neglect the higher
order terms of 7 and 7, components of strain and stress take the forms

# _ - rde i rde\ri T n a’gbld (2.10)
* 4 U _w_z v, law
& gy + poy cotg e mcotgb(ﬁ +7,1 d;b)
22
g3
* 1—n 2¢f+ep 1 1—n 2& +ef 1 1 _
il | s T €9 _ — i) 4 s
“ﬁ[ N on gt .1 *}5¢ { 2n e tejer et 2 . 1 } °]
€¢+v2~€g €3 +"2‘€9
\ 1—n 2ef +ef 1 1 1—n  2e +ef 1\
*1+S L Bl TS S z, 0 4 + 7
69[ V2n '+ efer+eit | 2 1 J '+{ 2n et tedef et s, 1 i) g]
€9 +—2 A g+ 5 es
v
of LI IG ;| 9P
e R B w (2.11)
d?—-u—)-/d¢2

where ¢f, 7, s5 and sy denote the values which result from (2.2) and (2.6) by
replacing v, w with the m-th approximations v*, w* Coefficients 75 (r=1, 2;

s=1, 2, ...,5) in the last relations, furthermore, have the forms
% _ _2d{({1\;«  cot AT N N AT, I T N U N g
= = 2 (L SR (1= 2 r= (1= 2) i = = zhl
s_ _1d(1ym 2C0tg o pe 1 zge ]
L= 7‘1d¢(v7’1~> r1 ;,“172 ]r?,, I = 7;7,1]71, (r=1, 2)

(2.12)
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where /% (r=1,2; s=1,2) are functions of v* w* and are expressed as follows:

Lo
2n e tefer + et a1 o« 27 e tefes et 2 . 1 4
; e + 5 e +g

1—n 2ef + o 1 1 v xjl—mn 2ef +ef 1 1
]21—69 { 2n e§2+s;e§*+e§k2+ 2 .1 *}’ ]22—_%{ 2n e +E¢€9 +e§‘2+ {
€y +"2“E¢

1 S+ eq - 2er +ef 1
el e s R e )
€y

o

*
0 -

l\D‘p—A
&y

(2.13)

When the relations (2.11) are substituted into (2.7) and (2.8), the components
of membrane force and bending moment are expressed as linear functions of ¥
and w, and have the forms

N Ny KiKd « + « K 7
No Ne| | KK - - K5 || 9Plde
= + , w (2.14)

My M; LiLYy -+« L div [dg
M, M§ LELY -« LE )\ dw/de*

where

hl2 h/o

N;=S ”dez, N§ ——J !/aodz (2.15a)
—-n/2 —hf2
h(2 hi2

M} :j‘ oazdz, MY = { / oizdz (2.15b)
—hj2 e
i . ~hl2

Khi=\ Iids Li=| Iid: (2.16)

Finally, the substitution of (2.14) into (2.1) provides the following simultane-
ous differential equations with respect to v and 7:

di}{?’o(KnU T K12§¢+K13w+K§fl;}+K*d ZU)\ L i{?’o(Li’F“}-L*@-

B dg? rde Y de
+L§W+Lﬁzz) + Lf;cfi;))} + cos "51 (L3 —rnENo+(La—n ;z)%

-+ (L::Z -7 K;;) w+ (th - ) dw (L')s - 7’1K2:) 62:;;}

= Yryr — (N;s 7)) +1 (M,ﬁ 7)) — cos ¢ (Ms — Nir)

ridp
(r(’ K+ K4 sin ¢) 7+ (7" Ky + Kasin q))

(2.17)

=2 + (2K + K sing Ja

2_‘
(r°K15+K2531n ¢>d ldarid

Yo
( K14 + Ksisin ¢) de? rl dol ride

dg
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\7’0 (Lf;ﬁ t L12d¢ TLBZU TL;(;Z) +L}d ZL)}

1577, d¢
“‘COSQB[LWD%‘L?Z%"%‘L’ZW‘{‘L?A aé +L;sfi(;u}}
= 7y — (g-‘iN; -+ N§ sin ¢) i gp\ ﬁd(p(Mg; 7o) — M cos (j)}

The boundary conditions of the above equations are, for example,

: _0, p=dT_duw_
Center : ¢ =0, v—'a.,gbfa d(j) =0 (2.18a)
. . dw
Clamped edge: o=, v:w=~@—: (2.18Db)
Simply supported edge: ¢=8, D=w=M;=0 (2.18¢)

In order to obtain the solution corresponding to a certain value of #n, it is
necessary to calculate the values of » and w repeatedly until v* and w* converge
sufficiently to certain values. Then, the equation (2.17) must be solved at every
time of the repetition.

If the derivatives with respect to ¢ are replaced by the centered difference®,
the equations (2.17) together with (2.18) are reduced to the following simultane-
ous linear equations with respect to #; and w;:

AX=B (2.19)

The expressions of 4, X and B will be given by specifying the geometry of the
shell.

Once the values of #; and 7; have been determined from the above procedure,
the components of strain, stress, membrane force and bending moment at each
mesh point can be immediately calculated by the finite-difference relations cor-
responding to (2.2), (2.6), (2.7) and (2.8).

2.2, Governing equations for pressurised circular cylindvical shells?™®
The governing equations for circular cylindrical shells under internal pressure
can be again obtained by the replacements

T
=% n=rn=a, nd :dx,r:oo}
e s 1 : (2.20)
Y=0,Z=—p J

The discussion concerning the equations for the relevant shells was already
reported in detail®"®, and will be omitted here.

If the shell is sufficiently long, in particular, the central part of the shell is
free from the influence of the end conditions. Then, a simple closed form so-
lution may be obtained for this portion, and can be expressed as follows:

W U __1lx

pay" T eyt 2
ak | k|5~

(h) (h) (open end) (2.21a)
pah~pah~ " pa_  Da
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w _*.(\,/Z{)’H'l % _O]
pa\* N2 payt T
a (%) (%) | (closed end) (2.21b)
Mty M3 w |
pah ™ pah” 7 pa” 2’ pa

2.3. Governing equations for pressurised spherical shells®
The basic relations for this problem can be directly obtained by applying the
replacements

n=n=a r=asing, Y=0 Z=—p (2.22)

to the preceding relations for general shells of revolution.

If the previously defined non-dimensional quantities are introduced together
with (2.22), the relations (2.1), (2.18), (2.2), (2.6), (2.7) and (2.8) turn out to
the following forms:

%}{(n;;——Hﬂ%@Sinq))—(na——ng)cosq):O ]
- ; (2.23)
EEZ(% sin ¢) —a?b(necos @)+ (g+m—2)sing =0 l
_ _dV_dw _
$=0 V= d(,éz”mdéﬁ—o (center)
p=p, V= W:%g{—:o (clamped edge) (2.24)
b=8 V=W=my=0 (simply supported edge)
av 1 d dw
Ep= (%= W) - Hyp L (v+2Y),
F‘ (d¢ ) ? ndﬁb( d¢) 1 (2.25)
1 d ’
Ey=(Vcoto— W)~72~H7/cot¢<V+ %) J
_ 4_ 1 iun ey 1 B 4<1 1% (1 1
o= 4(3) "B dm). o= 43 Bz 1)
9 . (2.26)
Ee=7§~(E§+E¢En+E§)”2
1(! 14"
no=5\_ Sudn, mo=3\ Suy (2.27)
1t 1
m,.4=~4‘—5_15¢‘0d77, o —-——Z* ‘ISe‘Odﬂ ’ o (2.28)

If we assume again that the actual values of the reduced displacement V, W
consist of the m-th approximations V*, W* and the small corrections to them V,
W and proceed analogously as before, we obtain directly the governing equations
for spherical shells under internal pressure.

In the case of a complete shell, in particular, solutions of closed form may be
easily obtained. The components of displacement. membrane force and bending
moment are given by the following relations™:
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3. Method of Calculation

In order to start the preceding calculation, certain approximate values of the
components of displacement must be specified. Expressions (2.11) may be re-
written as follows:

* 1 —n (25;7" e:)k)@»{— (2&;::*?“ 5‘;)50 x4y, wya-mimf — 1 1
"1 + 2n it teal g (34 w)
. 1“72(2€:+8;)5¢+(2€§+5§)59 s, A o uyn, #\a-mynl - 1_
3 A ; 2 - mn{ = =
dJg o)) 25 £§2+6:8§+532 Jp -+ 3 k (-e) (v0+ ) ‘~¢>
(2.30)
By the replacements
n=1 ( )*=0, ()-( ) (2.31)
the relations (2.30) become
4, 4 _
J¢:§k l(%“ﬁ'é‘és): 09=”3“k 1(897'-%‘8,6) (2.32)

which coincide with the relations (2.6) in the case of n=1. The expression (2.11),
therefore, gives the exact relations for n=1. Thus, the governing equations (2.17)
which result from (2.11), (2.7), (2.8) and (2.1) are exact ones in the case of
n=1. In other words, the equation (2.19) together with the replacements (2.31)
readily furnishes the solution for the linear case, and hence it may be used as
the first approximation to the solution of n=1-+ 4xn.

If the solution for #=# has been obtained, it can be used as the first ap-
proximation vi*, wi* to the solution for n=mno+ 4n. The matrix 4 and vector B
of (2.19) can be determined by calculating Krs*, L,s* from (2.12), (2.13) and
(2.16). The second approximations of »i, wi for n=mn.+ 4n will be furnished with
solutions of 7, wi of (2.19) in the next expressions

vi = v + i, wi=w + i (2.33)

where 2 (0<2<1) is a relaxation parameter introduced to avoid the divergence
of the iterative solution. By solving (2.19) again after calculating 4 and B
from the second approximation, the third approximation can be determined from
(2.33). When the condition

Max{¥%, @i; i=0,1,..., Nj<o (2.34)
1
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is satisfied after iterating the similar procedures for proper small value ¢, the
values of »; and w; may attain to an accurate solution for #=n¢+ 4n. The com-
ponents of strain, stress, membrane force and beding moment are calculated by
(2.2), (2.6), (2.7) and (2.8) with the use of these values.

The solution for arbitrary values of » will be determined by increasing n
step by step and applying the similar procedure.

4. Results of Calculation and Discussion

4.1. Simply supported civcular cylindrical shells under internal pressure®®®

The creep behaviour of a simply supported circular cylindrical shell of a=2#
with open ends is discussed first. The meaning of the parameter « is the same
as in Part L

In the present example, the values Ai=1 and §=10""7 were assumed in (2.33)
and (2.34) together with 4n=1. The condition (2.34) was satisfied by the few
iterations for every value of .

Procedures described above were programmed according to FORTRAN IV,
and calculations were all carried out in double precision (13 digits) by using
digital computer HITAC-5020. The programme consists of about 68,000 machine
words in case of g=1/50. The time of calculation was, for example, about 120
sec for the shell of « =27 and n=1 through 5.

As already pointed out, the replacement of differential equation (2.17) with
the corresponding difference equation (2.19) involves truncation errors of the
order of g? (g=1/2N, N; number of division over the half length of shell).
Therefore, the calculations were carried out with g=1/25 and 1/50 in order to
examine the magnitude of the error. The numerical results due to two kinds of
g together with the analytical results? are shown in Table 2.1 for linear case
n=1. It should be noticed that the difference between the results for g=1/25
and 1/50 are less than 1 per cent, and that between the analytical and the
numerical result with g=1/50 is less than 0.5 per cent. Since the discrepancy
between the results of g=1/25 and 1/50 in the case of =3 and 5 has been as-
certained to be almost the same magnitude as in n#=1, the results according to
g=1/50 may be certified to be accurate enough for practical purposes. The
following results, therefore, have been obtained by using the difference interval
g=1/50 throughout. In the following, the numerical results for each value of
creep exponent z are shown in Figs. 2.1 through 2.4.

Fig. 2.1 shows the distribution of deflection, where the ordinate represents
the non-dimensional values reduced by the corresponding deflection (2.21a) of
long thin circular tube without end effect. The maximum values of w/ak(pa/h)”
for n=1, 3 and 5 are —1.06, —1.09 and —1.10, which are larger by 6~10 per cent
than those of the long tube. Since the values of deflection at center are —0.996
(n=1), —0.997 (n=3) and —1.010 (%#=5), the influence of supported end on the
deflection is very small in this part.

Although the membrane force No/pa shown in Fig. 2.2 takes almost the
same values in the central part of the shell as those of long thin circular tube,
the maximum values are about 6 (n=1) ~2 (#=>5) per cent larger than that of the
long tube.

The bending moment in the axial direction (Fig. 2.3), on the other hand, is
almost 0 in the range 2x/1<0.4, while it shows significant values in the range
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TABLE 2.1. Comparison between the numerical results for #=1 and the
corresponding analytical results (simply supported shell of a=2r)

2 %/l 0|02 04 06 08 | 10
v Numerical (g=1/25) —0.996] —0.998| —1.019| —1.064| —0.911] 0
;;ik(payﬁ Numerical (g=1/50) —0.996, —0.998 —1.019| —1.065| —0.912
2 Analytical [21] —0.996§ —0.998| —1.019 —1.066| —0.912 0
%1075 %1077 x10-%7 x107 x10-%
Mo Numerical (g=1/25) 4 | 0.188 | 0428 |—1.595 |—8.944
pak  Numerical (g=1/50) 1 | 0190 | 0.443 —1588 —9.003
Analytical [21] 0 | 0191 | 0445 |—1586 |—9.022 0
-12 :
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2x

L
Fi1G. 2.1. Distribution of the displacement.

0.6<2x/l. It will be noticed that the distribution of AM./pah as well as Ny/pa
becomes more uniform remarkably in the axial direction as » increases.

In Fig. 2.4, some of the present results are compared with the corresponding
results obtained by Yu. N. Rabotnov on the basis of sandwich shell assumption®39.
Concerning the correlation between two kinds of shell, the behaviour of both
shells is assumed to coincide with each other only in the membrane state and the
state of pure bending®. The results of Rabotnov were calculated for a simply
supported semi-infinite sandwich shell with open ends by means of the variational
method.

Though the results for sandwich shell should coincide with those of homo-
geneous shell in case of n=1, the disagreement of about 0.5 per cent is observed
between the solid and the dashed line in Fig. 2.4, which may be attributed to
the errors of the present calculation shown in Table 1.1, and those according to
the approximate relations assumed in References [35, 36].

In the cases of #=3 and »#=5, on the other hand, discrepancies of about 3 (#=
3), 4(n=5) and 7(n=3), 10(n=5) per cent are observed for the deflection and
the bending moment, respectively. These differences, however, should be referred
to the errors of Rabotnov’s analysis, that is, the error due to the assumption of
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FIG. 2.2. The circumferential component of the membrane force.
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FIG. 2.3. The axial component of the bending moment.

sandwich shell and that accompanied with the variational procedure, and the
errors of the present calculation described above as well as that due to the differ-
ence in the geometry of these shells. The magnitude of individual errors, how-
ever, is not clear. The errors involved in the assumptions of sandwich con-
struction, above all, is very interesting because a number of previous works on
plastic and creep analyses employed such a simplification.

In References [5] and [6], the similar results for the shell of a =7 were also
reported.

4. 2. Clamped civcular cylindrical shells under internal pressure”®
The analogous results for clamped circular cylindrical shell with open ends
are shown in Table 2.2 and Figs. 2.5 through 2.8
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At first, the maximum values of non-dimensional deflection shown in Fig. 2.5
are —1.040 (n=1), —1.045 (n=3), —1.050 (=5), respectively, and are smaller than
the corresponding values for simply supported shell (Fig. 2.1) by 2 (n=1) ~5 (n=
5) per cent. Since the values of the deflections at the center, on the other hand,
are —0.997 (n=1), —1.016 (z=3), —~1.042 (r=5), a considerable effect of clamped
end is observed at the center in the case of »=3 and 5, which is a different
feature from that of Fig. 2.1. It should be noticed, therefore, that the effect of
end condition prevails wider range in this case than in the supported shell.

The maximum values of membrane force shown in Fig. 2.6 are 1.043, 1.015,
1.010 for #=1, 3, 5 respectively, which are smaller than those of simply supported
shell by about 2(#=1) ~1 (#=5) per cent. As observed in Fig. 2.6 and 2.7, the
values of membrane force and bending moment at the center almost coincide
with those of long thin circular tube (2.21a), unlike the case of preceding de-
flection.

Fig. 2.8 shows the comparison between the present results and those for the
clamped sandwich cylindrical shell of a =27 due to F. A. Cozzarelli et al.*® which
are entered with dashed lines in the figure. The correlation between the uniform
and the sandwich shell is again achieved according to Rabotnov®®® by requiring

TABLE 2.2. Comparion between the numerical results for »=1 and the
corresponding analytical results (clamped shell of a=2r)

2%/l | o |02 04 ; 0.6 0.8 1.0
" Numerical (g=1/25) | —0.997| —1.003) —1.031] —1.018| —0.651] 0
;“”‘k(péyr Numerical (g=1/50) | —0.996| —1.004| —1.032| —1.018| —0.644| 0
i Analytical [21] 0996 —1.004 —1.032) —1018| —0.641] 0
Numerical (g=1/25) | 0.0012 | 0.0025 |—0.0018 |—0.0369|—0.0606 | 0.3230
;‘{TZ Numerical (g=1/50) | 0.0013 | 0.0026 |—0.0018 |—0.0375 |—0.0608 | 0.3308
Analytical [21] 0.0013 | 0.0026 |—0.0018 | —0.0377 |—0.0609 | 0.3333
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FI1G. 2,5, Distribution of the deflection,
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FI1G. 2.6. The circumferential component of the membrane force.
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FIG. 2.7. The axial component of the bending moment.

that the behaviour of the both shells coincide with each other only in the mem-
brane state and the state of pure bending.

Although the solution of sandwich shell should coincide exactly with that of
uniform shell in case of n=1, the disagreement of about 0.5 per cent is ohserved
in Fig. 2.8 (a), which may be attributed to the errors of the reproduction of
dashed lines from Reference [40] in addition to that of the present calculation
as already shown in Table 2.2. In the case of =3 and n=5, the discrepancies
of deflection of abhout 3 (nz=3) and 5(%=5) per cent are recognized in the range
0.5<2x/1<0.95. Similar features are observed in Fig. 2.8 (b). The difference in
maximum values of M./pah between these two kinds of resultsis about 1(n=1),
3(n=3), 10(n=>5) per cent, respectively.

Though the discrepancy between the full and dashed lines in these figures is
small in the central portion and in the close vicinity of clamped end where the
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FIG. 2.8. Comparison between the present results and those
for sandwich shell.

membrane force (central portion) and the bending moment (near the clamped
end) predominate separately over the other, it is considerably significant in the
range 0.85<2x/1<0.95 where the effect of Mx/pah and Ns/pa is comparable. Then,
it should be noticed that this feature stems from the aforementioned assumption
that the behaviour of sandwich model coincide with that of the real shell only
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in the membrane state or in the state of pure bending in the case of n#>=1. The
sandwich model employed by Cozzarelli ef al., therefore, may give a close quali-
tative and quantitative assessment of the creep deformation of cylindrical shells
of the present condition. However, in the case where the state of stress is far
from the membrane state or the pure bending state, such as in a cylindrical
shell which is short enough or is subject to the combined action of axial force
and internal pressure, or such as in the shallow spherical shell where the effeets
of bending moment are as significant as that of membrane force, the assumption
of a sandwich shell may not always be a good approximation to the real shell
of uniform wall thickness, especially for large value of the creep exponent. The
validity of the creep analysis based on the sandwich construction in such case is
open to further investigation.

In Reference [7] and [8], the analogous discussion for the shell of a=n was
also presented.

4. 3. Clamped spherical shells under internal pressure®

The numerical results for a clamped spherical shell of semi-angle 3=60° and
thickness-to-radius ration #/a=1/20 are shown in Figs. 2.9 through 2.11 as well
as Table 2.3

In the present example, the values of 1 and § in (2.33) and (2.34) were as-
sumed to be 1=1, §=10"5 For the value 4n=0.5, about ten times of iteration
were necessary until the condition (2.33) was satisfied.

TABLE 2.3. Comparison between the numerical results for #=1 and the
corresponding analytical results (clamped spherical shell
of B=60°, h/a=1/20)

| 6/8 | o 04 | 08 | 08 10

% __ | Numerical (g=1/50) §w1348 e 1.367 | ~1.394 | —1.287 j 0719 | 0

(2 1 Analytical [21] | ~1.361 | ~1.876 | —1.400 w —1287 | 0112 | 0
My | x107% x107% x10-% x10=1 10~

Jahy | Numerical (g=1/50) 0651 | 0341 |-0537 —0322 —0.334  0.190

(“2”> 1 Analytical [21] | 0.452 | 0.359 | —0.565 -—0 324 ,mo 324 | 0.189

The difference interval was assumed to be g=p/50. Table 2.3 facilitates the
comparison of the present results for n=1 with the analytical ones for the cor-
responding linear elastic shell with Poisson’s ration »=1/2, as a measure to esti-
mate the errors due to the finite-difference approximation. The analytical solutions
were calculated according to Meissner’s soluticn in the form of series?. It will
be observed that the present results differ from the analytical ones by about 1
per cent of their maximum values. Thus, the accuracy of the present results is
a little worse than that for the cylindrical shells discussed above, which may be
partly ascribed to the reduction of accuracy of finite-difference approximation
due to the indeterminate character of the relations at the center of shell.

Fig. 2.9, to begin with, shows the distribution of deflection, where the ordinate
represents the values reduced by the values (2.29) for a complete spherical shell.
It will be observed that the deflection of the present shell is larger than that of
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the complete shell by about 40 per cent in the case of n=1, and 25 per cent as
well for n=5 which is a typical value of » for steel at elevated temperature.
Thus, the rate of deformation in the partial spherical shell discussed here are
subject to much more significant effect of clamped end than in the case of the
preceding cylindrical shell. The effect of clamped end on the deformation of the
shell is, of course, depends on the magnitude of 4/a®.

No/ (pa/2), as shown in Fig. 2.10, increases a little from the values about 1 at
the center, takes its maximum values 1.03 (z=1), 1.02 (#=3) and 1.01 (n=5) at
#/B=0.4~0.6, and decrease monotonously to the values about 0.5 at the clamped
edge. Ny/(pa/2), which is omitted here, takes the values nearly 1 over the whole
shell. It is related to No/(pa/2) by the relation N,/ (pa/2)=Ny(pa/2) at the center
according to the isotropy of stress and strain, and Ng/(pa/2)=2No/(pa/2) at
clamped edge on account of the relation =0.
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FIG. 2.10. The circumferential component of membrane force.
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Finally, the distribution of M/ (pah/2) is shown in Fig. 2.11. The maximum
values of M,/(pah/2) occur at the clamped edge, and are 0.190 (n=1), 0.128 (n=
3) and 0.110 (#=5), respectively. Thus, the bending stress on the surface of the
clamped edge corresponding to these maximum values of M,/ (pak/2) in the present
shell are 1.211 (n=1), 0.533 (#=3) and 0.393 (n=>5) times as large as the membrane
stress due to N,/ (pa/2) at the edge. It follows, accordingly, that the bending
moment in the present shell has a significant effect on the strength of the shell.
Mo/ (pah/2), on the other hand, shows the similar distribution to Fig. 2.11, except
that its value at the clamped edge are half of that of A,/ (pah/2).
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FIG. 2.11. The meridional component of bending moment.
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By comparing Fig. 2.9 with Figs. 2.10 and 2. 11, it will follow that the com-
ponents of displacement are affected remarkably by the end condition over the
whole shell while the state of stress has the influence of the condition only in
the vicinity of the clamped edge and coincides practically with that of complete
sphere in the central part of the shell.

The relation (2.4b) may be a constitutive equation of strain-hardening ma-
terial if the deformation theory of plasticity is assumed. The preceding results,
therefore, can also be interpreted as the results for elastic-plastic shells subject
to monotonously increasing internal pressure. The present method of numerical
analysis, of course, directly applicable also to the physically non-linear problems
with more complicated type of constitutive equations than (2.4b). It is, further-
more, applicable to the case of large deflection, too.

5. Conclusion

The extended Newton method combined with the method of finite-difference
was shown to be a powerful means to the creep analysis of shells of revolution.
Calculations were performed for three kinds of shells on the assumption of the
Mises criterion and the power creep law.

In a simply supported pressurised shell of a =27 with open end, the largest
deflections occur in the region 0.5<2x/1<0.7 and are larger than the deflection of
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thin circular tube in disregard of the end effect by 6 (n=1)~10 (n=5) per cent.
The larger is the values of #, the wider is the region affected by the end con-
dition. The central part of the shell is almost in the state of hoop stress. In
the case of n=1, especially, the present results agree with the corresponding
analytical one within the accuracy of 0.5 per cent. Moreover, the present results
for the maximum deflection and the maximum bending moment in axial direction
coincide with the corresponding ones of semi-infinite sandwich shell due to Yu.
N. Rabotnov within the accuracy of 0.5 (n=1), 7 (#=3) and 10 (n=5) per cent,
respectively.

Similar calculations were also carried out for a clamped circular cylindrical
shell. It was observed that the influence of the end condition in the clamped
shell prevails over wider region than in the supported one. The maximum values
of deflection and the membrane force in the circumferential direction are smaller
than in the previous shell by 2 (=1) ~5 (#=5) and 2 (=1) ~1 (n=5) per cent.

The numerical results for the clamped shell were again compared with the
existing solution for sandwich shells due to F. A. Cozzarelli ef al. In the present
shell, the difference in maximum values of the displacement, the bending moment
and the membrane force between the uniform and the sandwich shell was less
than 3 (n=1), 5(n=3) and 10 (n=>5) per cent although considerable discrepancies
between these two kinds of results exist locally near the clamped end where the
bending moment and the membrane force coexist in comparable magnitude. The
sandwich model, therefore, may give close qualitative and quantitative assesments
of the creep deformation of cylindrical shell of the present condition. However,
the assumption of the sandwich shell may not always be a good approximation
to certain kinds of shells of uniform wall, especially for large value of the creep
exponent ».

As the last example, a clamped spherical shell of 8=60° h/a=1/20 was
adopted. It was found that the present results for deflection and the bending
moment in meridional direction in case of n=1 differed from the analytical ones
by about 1 per cent of their maximum values. The accuracy of the present
analysis, therefore, was a little worse than that for the cylindrical shells. The
deflection of the present shell is larger than that of the complete shell by about
40 (n=1) ~25 (n=5) per cent. The bending stress on the surface of clamped edge
corresponding to the maximum values of M,/ (pah/2) are 1.211 (n=1)~0.393 (n=5)
times as large as the membrane stress due to N,/(pa/2) at the edge. Accordingly,
the bending moment in the present shell has a significant effect on the strength
of the shell, which is, however, significant only in the vicinity of the clamped edge.
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Concluding Remarks

Although a number of papers have been published so far concerning the creep
deformation of various constructional elements, the works on creep of shells have
been relatively scarce and are still a rather new objectives in this field of re-
search. This stems from the fact that the stress resultants in shells cannot be
expressed as simple functions of the components of strain or displacement on ac-
count of the non-linearity of creep law and analytical approaches are intractable.
The past researches on the creep analysis of shells, therefore, were mainly re-
stricted to approximate ones based on certain simplifications.

In the present paper, we developed a numerical approach to the accurate
analyses of creep in general shells of revolution by the method of finite-difference,
and revealed the certain features of creep of shells employed under the condition
of high temperature and high stress. This line of approach seems important
from engineering point of view.

In transient creep analysis developed in Part I, the instantaneous elastic strain
must be also taken into account at the same time, and hence the effect of creep
strain appears only as the inhomogeneous terms in the governing differential
equations. In such a kind of problems, similar method as that in elastic problems
can be applied if the similar concept as the Duhamel-Neumann's analogy in
thermo-elasticity is employed. According to the numerical results for pressurised
circular cylindrical shells, it was found that the difference of nearly 100 per cent
may occur among the predictions of deflection on account of the difference of
creep theories. The Tresca-Tresca theory which predicts larger values of de-
flection does not necessary give larger values of stresses. It is difficult, there-
fore, to single out a creep theory among the classical ones which gives the data
of safer side in creep design. A certain modification seems necessary to the
classical theories of creep in order to estimate the creep accurately. It should
be noticed, furthermore, that the difference between the predictions of creep in
circular cylindrical shell due to the strain-hardening and the time-hardening
hypothesis is sufficiently small if the variation of stress corresponds only to their
redistribution under constant pressure.

The numerical results of steady-state creep analyses in Part II were presented
in non-dimensional form, and do not involve explicitly the creep constants nor
the individual dimensions of shells (except the geometrical parameter of the
shells). These results have a general validity to the circular cylindrical shells
or the partial spherical shells corresponding to the specified geometrical para-
meter, and will be useful to infer the behaviour of these shells or as design data
to pressure vessels. According to the comparison between the present results
for cylindrical shells and the corresponding approximate ones due to sandwich
assumption, both kinds of results agree well with each other when the membrane
force or bending moment is predominant separately. When membrane force and
bending moment coexist in comparable magnitude, however, considerable dis-
crepancies were found between these two kinds of analyses. Though the appro-
ximate analyses based on the sandwich assumption is interesting mathematically
in the sence that the results are analytical, it is not always practical because it
may involve significant errors in certain kinds of problems.

Although the creep theory of Mises type, the power creep law and the small
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deflection theory of shell were assumed in the analysis of Part II, the present
procedure can be applied also to other kinds of creep theories, more general
constitutive equations or to the case of large deformation of shells. The extended
Newton method combined with the method of finite-difference employed in the
present paper will be a powerful means to the numerical analysis of physically
non-linear problems.
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