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Abstract

Since optimal control problems for distributed parameter systems are intimately
connected to optimal control problems described by partial differential equations and
require a treatment in function spaces, there is a great difficulty to solve these pro-
blems directly. Consequently it is considered to be necessary to obtain approximating
solutions by nummerical computation.

In computing a numerical solution of a partial differential equation, an approxi-
mating method in which differential operator is replaced by a difference operator is
widely used.

A similar approximating procedure is commonly used in calculating an optimal
control in systems with distributed parameters.

Convergency conditions of a sequence of approximating solutions for the optimal
control problems of distributed parameter systems are given in this paper.

Introduction

Optimal control problems for distributed parameter systems, particularly
systems described by partial differential equations, are often treated using
mathematical function space techniques. As a result, there is a great difficulty
to solve these problems directly. Numerical solutions are obtained by approxi-
mating the abstract operations in a computationally feasible manner. In obtaining
approximating solutions, the method of expanding in eigenfunctions?, and the
finite difference method are widely used.

After having found an approximate optimal control, the question arises
whether a sequence of these approximating optimal controls converges to an
optimal control of the original system. A condition of convergence of a sequence
of approximating solutions of initial value problems by the finite difference method
in which a differential operator is replaced by a difference operator was given
by H. F. Trotter?®. This theorem is concerned with a homogeneous system
and does not give the condition of convergence of approximating optimal controls
for a distributed parameter system, but its result becomes very useful for our
discussion as shown below. )

The condition of convergence of a sequence of approximating solutions has
been given for time-optimal control problem for a class of linear systems with
distributed parameters by the author®.

In this paper the condition of convergence of a sequence of approximating

316



Research Reports 317

solutions is given for the optimal control problems with more general cost func-
tions.

To discuss the convergence of approximating solutions, it is important to
define a concept of metric. In the following, the space is considered to be a
Hilbert space.

Definitions and Basic Theorem

For convenience, the following notations, definitions and basic theorem are
introduced. Let X be a Hilbert space and X be a subspace of X. We consider
a linear mapping P.: XX, which satisfies the following conditions:

_P;:Pn, “Pﬂ“X:"l)
lim | Psf — fllx=0 for every feX.

We denote the norm in X by || lx and the norm in X, by || ls, respectively.

Definition. The limit of a sequence of operators { 4}, where A, is an operator
on X», is the operator on X whose domain consists of f&X, for which {AxPnf}
converges, and whose value is lim AnPnf.

Let Sn(#) be a sequence of strongly continuous semigroups of operators on X
into X», and A, be the sequence of associated infinitesimal generators. Then
we have the following theorem, which is due to H. F. Trotter.

Theorem {Trotter?). If the range of 1/— A, denoted by R(AI—A), is dense in
X for some A>K and the following conditions are satisfied, where M and K are
positive constants:

(C) A=lim A, and D(A) is dense in X,
(S)  I1SA(H) s, < M,

then a closed extension of A is the infinitesimal generator of S(¢), where S(¢) =
lim Sx(#) is a strongly continuous semigroup of operators on X.

In this theorem it is demonstrated that if conditions (C) and (S) are satisfied,
approximating solutions of approximating equations starting from given appromi-
mating initial sates converge in the sense of norm to a solution of the original
homogeneous partial differential equation, which satisfies a given initial condition.

Statement of the Prbolem

Let us consider the following distributed parameter system:
oxlt, s) /ot = Axlt, s) +ulL, s), (0)

where for each ¢, 0<t<co, (¢, 5) is an element of X, which is an arbitrary
Hilbert space X(2), s=&, consisting of locally summable function on a bounded
domain 2; A is an unbounded linear operator from X to X, for instance A being
a partial differential operator on £; and u(4, s) is an element of X for each ¢
and square summable in . We denote x(¢, s) and « (¢, s) as x(¢) and #(#), respec-
tively. Here A is assumed to be an infinitesimal generator of the strongly
continuous semigroup S(¢). Then (0) becomes



318 Research Reports

() = Ax(t) +ult). (1)
Along with the system (1), the following equation is considered:

where x.(¢) is an element of X, for each £, 0 < <oo, un(t) is an element of X»
for each ¢ and square summable in ¢# and A, is the operator from X, into X
which is an infinitesimal generator of a strongly continuous semigroup Sx»(f).

In the case of A, being the difference operator on X, into X,, (1) is the
original system which we consider and (2) is the approximating system given
by the finite difference method. In what follows A, is assumed to be a bounded
linear operator.

As an example of the mapping P, see?.

The solution of (1) is formally written as

t |
#(1) =S x0) +SOS’(t—-0)u(a)da. 3)

Since u(¢) is bounded and square integrable the integral on the right-hand side
of (3) exists in the sense of Bochner. Sufficient conditions under which (3)
represents the strong solution to (1) (differentiable in the strong sense) have
been given by Balakrishnan®. But since the right-hand side of (3) exists in the
sense of Bochner, we define (3) as the solution of (1) for any square inegrable
function x(¢#) and a given initial condition x(0); 7.e, we deal with the mild
solution® in this paper.

For simplicity’s sake, one can assume without loss of generality that x(0)=0
in the sequel. Through the following discussion, we assume that the conditions
(C) and (S) are satisfied.

Let B:.(X, T) be the space of strongly measurable functions x(¢) with range

”
in X such that S he)iPdt < 0.
a

Now, the solution x(¢) of (1) for any u(#) & B:(X, T) is an element of the
space B:(X, T), since S(¢) is strongly continuous. P, being bounded operators,
it follows that Pux(¢) —»x(#) in B(X, T) for any x(t)eB:.(X, T).

We put

’

(Lu) (2) =SOS(t—u)u(a)da, wt) € By(X, T) (4)
T

(Ln%ﬂ)(t) = \ Sn(t"" O')Z’ﬂn (U)do, %n(t) &= Bz(Xn, T) (5)
Jo

Under the hypothesis of Trotter’s theorem it is shown that S.(f)Pax— S(#)x for
any x< X, and again by the condition (S) it follows that

in B:(X, T) for any u () €B(X, T).

We consider a nonlinear function f(x(2), #(¢)): B(X, T) xB(X, T)—~R: and
a sequence of functions fu(xn(?), #n(t)): Be(Xn, T) x B2(Xn, T)—R1 approximating
J(x(#), u(t)) which has the following properties:
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(Hy)y I xu(), un(t) € Be(Xn, T) converges to x(¢), u(¢) in B:(X, T) respectively,
Fulxa(l), ua(t)) converges to f(x(#), u()).

(H2) If xalD), un(t) € Bo(Xa, T) converge weakly to x(#), u{f) in B.(X, 1),
Fx(d), u(t) £ lim fr(@all), uall)).

(H:) If the norm of xu(f), un(f) €B:(Xn, T) go to infinite respectively, fu(xn(f),
un(t)) goes to infinite.

Remark. (H), (H:) and (M) mean that the sequence of f» is approximating
f, f is weakly lower semicontinuous and radially unbounded.

In this article we discuss on convergence of approximating solutions of the
following optimal control problem.

Problem

(A): The original optimal control problem in system (1) is to find the admissible
control minimizing f(x(¢), #(¢)) starting from a given initial state x(0) €X.

(B): The approximating optimal control problem in system (2) is to find the
admissible control minimizing fa(xa(f), #x(£)) starting from a given approxi-
mating initial state Px(0), with n—co.

Then our problem is reduced to, “Does a sequence of approximating optimal
controls of the problem (B) converge to an optimal control of the problem (A4)?”.

Remark. In this article the set of admissible controls are defined such that
B:(X, T) is the admissible control set for the exact problem and B:(Xn, 7T) is
“the admissible control set for the approximate problem.

Condition of Convergence

Let %°(¢) be the optimal control of the problem (A) and #z(¢) be the optimal
control of the problem (B) at the n-th degree of approximation.

Now we make the assumption that the approximating optimal solutions u5(#)
exist and the conditions (C), (S) and

(C*: lim |Sa()Puf~ S (1)flx=0, for fixed ¢ and fe X,

are satisfied, where S* and S, are the adjoint operators of S and S. considered
on the space X and X, respectively.

Since 1Sy, = 1Sklly, and S|z =]|S*|x, it can be obtained that
(LiPu ) - (L*A) in BAX, T), where flt)<s BAX, T). (7)

L* and L} express the adjoint operator of L and L, considered on the space
B:(X, T) and B.(Xa, T), respectively.

Now we denote the inner products of the space X, X, and the space B:.(X, T),
Be(Xn, T) by [, Ix, [, Jx. and < >x, < Dx, respectively. Hence the inner pro-
ducts of the space B:(X, T") and B:(Xs, T) are defined as follws,
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o

<ox=l0 Lt

<= (T D

Since {X—X,} 1 X, and P. is a projection operator, for f()eB:.(X, T), we
have the following equations:
[(Laus) (), fF(O) x = [ Lpu) (1), Pof(£)]x
- [(Lnufx)(t), Pnf(t)]){ny fOI‘ fixed t,
C(unla), Sitt— o) (Puf) () Ix =Lu5(o), Skt — o) Puf(®)1x,

for fixed ¢, o.
Therefore we get
<(Ln%fz)(l), f(t)>\: == <(Lnu;) (t), Pnf(t)>Xﬂ, (8)
un(t), (L3 Puf) (£)>x, = <us(t), (L3 Puf) ()>x. 9)

Next we shall show the following Lemma:

Lemma 1. Let the conditions (C), (S), (C*) and the properties (H:), (H:),
(Hs) be satisfied. Then there exists a weakly convergent subsequence {u5;(¢)}
of {u3(#)} in Bu(X, T). If wd denote its weak limit by v(f), (Lauju3;)(f) con-
verges weakly to (Lv)(¢#), too. Moreovere v(¢) is an optimal control of the
problem (A4). ,

Proof. us(t) being optimal it is clear that the following inequality is satisfied
for any u(t)eB.(X, T):

In((Lnuza) (), ua(8)) < fu((Ln Putt) (), Prae(t)).

Since fu((LnPnu)(t), Puu(t))—F((Lu) (8), u(t)) by (H), (L,u3)(¢) and u5(¢) be-
come to be bounded in B:(X, T) by (H:). Therefore there exists a subsequence
{uzn;(£)} of {un(#)} converging weakly to v(f)eB.(X, T), because B:(X, T) is a
Hilbert space.

Now it can be shown that (L.ju5;)(#) converges weakly to (Lv)(#). In what
follows we write » for n;, By the equation (8) and (9), we have

(Lnus) () () — (Lo) @), FE)>x
=L (Lars) (1), f(Dx — L(Luz) (@), fF(O>x+ < (Lus) (£) — (Lo)(8), F($)>x
= Lnun) (£), Puf($)Dx, — {(Laua) (), F(O)>x+ (Lusp—0))(8), f(E)>x
= <un(8), (LAPaf) )y, — <us(t), (L¥ 1O Dx+ <us(t) —v(2), (L¥ ) ()>x
= <un(8), (LaPuf) (@) — (L* O EDx+ (D) — v (), (L¥HUx.
The first term of the right-hand side goes to zero as n—« by the conditions

(C*) and wus(t) being bounded. The second term goes to zero as n— oo, t00
because u5(f) converges weakly to v(#).
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Next we shall show that »(#) is an optimal control of problem (A4).
By the optimality of u;(#), the above results and (), the following ine-
quality can be proved:

FULDY @), v S Tim ful (Laaa) (2), 05(6)
= f({La) (D), ulD)).

Since the above inequality is satisfied for any u(¢) € B:(X, T), it can be concluded
that v(¢) is optimal.

Theorem 1. Let the conditions (C), (S), (C*) and the properties (H1), (M),
(H;) are satisfied. Suppose that the optimal controls 5 t) of problem (B) exist
for each n. ‘Then there exists an optimal control #°(#) of the problem (A) and
the optimal value of the cost function of the problem (B) converges to the
optimal value of the cost function of the problem (A4) as n-—>co. (ie Tl Lnoty)
(1), ua(®)) » FULu®) (D), u(2)

Proof. The first part of the theorem is clear from the above Lemma. Any
subsequence of f,((Lnu5)(#), u5(#)) has its subsequence converging to f((Lx°)(#),
u°(#)), and therefore f,((L,u5)(¢), u7(#)) converges to f((Lu®) (), u°(¢)) as n—oo.

Remark. In order to obtain the condition (C*), we again make use of the
Trotter’s theorem. Since condition (S) is always satisfied for S,(#), it is suffi-
cient to check the validity of condition (C) for Ax.

In the sequel we confine our discussion to the following type of the cost
function:

’

£, w(8) = § {at) =@+ 2lu® 15}, (10)
T

S0, nlt) = | (D) = Pay(D) [y Alaen(D) [} (1)

where y(1) &€B:(X, T) is a given function and 1>0.

An optimal control problem minimizing the cost function like the above (10)
is called to be the tracking problem.

In this case it is clear that the properties (H.), (H.) and (H:) are satisfied
because |xnlx,=|%xllx, for xn€ X, and the resonance theorem? means that if
%a(t) € Bo(X, T) converges weakly to x(#) in the space B:(X, T), lim <{wx(D),
xn(8)Dx = <X (1), x(0)Dx.

We denote the optimal controls of problem (A4) and problem (B) associated
with (11) and (12) by #°(¢) and #5(#) respectively.

Theorem 2. For the tracking problem, wu,if) converges «°(f) in BAX, T), i.e,
u5(#) converges x°(#) for almast all ¢

Proof. By Lemma 1, there exists a subsequence {u5;(#)} of {ux(#)} converging
weakly to an optimal control »(#) of the problem (A). One recall that u;(#)
and #°(¢) are unique?®.

Since #°(f) is unique, #°(f) =»(f) for a.a.t. By Theorem 1, fui(xui(#),
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wai (D) - f(x°(D), u° (), where x5;(1) and x°(#) is the optimal trajectories for
u; (1) and #°(#) respectively (i.e., xn;(£) = (Lajusi) (1), x°() = (Lu®) (D).
Now it can be shown (see Appendix);

tmi(8), i (D> x~><u® (D), u°($))x.

Therefore we can conclude u5;(#) converges strongly #°(¢) in Bx(X, 79,
because #%;(#) converges weakly to #°(¢), the norm of «5;(#) converges the norm
of u°(t) and B:(X, T") is a Hilbert space.

Any subsequence of u5(#) has its subsequence converging weakly to #°(),
and therefore it has the subsequence converging strongly to #°(#) in B«.(X, T)
by the above facts.

Consequently #«5(¢) converges to #°(#) in B.(X, T).

Example

As an example we consider the tracking problem for a one-dimensional
diffusion equation.
The system equation is given by
ox(t, s) /ot =2"x(t, ) [of +ult, s), for 0<t< e and 0<s<1,
u(0, s) =0, (12)
u(t, 0) =ult, 1) =0.

Let X=1.(0,1) and define
DA ={f(s)eX: f0)=741)=0, F(s) and F'(s) are

absolutely continuous, f"(s) e X7},
Af=f"(s) for f(s) e D(A).

Then the system (13) is phrased in following abstract notations of this paper
(see, e.g.¥).

dxe()/dt = Ax(t) +u(t), x(0) =0 DA (13)

It is well known that A is a infinitesimal generator of a strongly continuous
semigroup?®.

Now let us construct a discretizations cheme. As an example of the mapping
Py consider the following:

X=L,0,1), xsdeX, selo, 1],

Pox(s) = >lapce(s),
1

where
kin
ar=mn x(s)ds,

JRin—-1k
1, R/n—1/n<s=k/n,

Cr(s) = {
0, B/n—1/n=s or s=k/n.
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We put 1/n=48» and

Pux(t, s) = szk(t) cx(s)
Puult, s) = E?EUk(l‘)Ck(S) (14)

P,y(t, s) = iy;e(t)ck(s).

By central difference formulas, we have

*xlt, /95 = ) (wpai () — 2 26 (D) + 2= () ) cr(8) /5%, (15

1
By using (14) and (15), the linear differential equation which approximates the
system (13) is obtained. This is

A ) er(5)) 1t = 3 (ko) = 2 54(6) + 3010640/ + D D) ex(s)

We may use the boundary conditions given in (12) to obtain x and xu.1, i.e.,
x0(#) =0 and xu.:1(£) =0.

Hence, representing this equation by the vector differential equation, we
have the following approximation system (given by finite difference methods):

xu(8) = Apxald) +un(t),
where

Xn={%1, . o, %), up=(tt1,...,%:), 22(00=P,0=00,...,0),
0O
1, -2, 1,

Aﬂ:"T

n

O 1, =2, 1
- 1, -2
If we consider that the cost function of original problem is such that
AT pl
f=§ g(lx(t, $) = y(t, I+ Alult, 9Py dsdt, (16)
0o

the appromimating cost function becomes to be

T

=0 SO{ (x2(8) = yn(EN) (x0l) — 5D + Aual ) un(t) } di, an

where a prime denotes a transpose.

Now let us check the conditions (C), (S) and (C*). Condition (S) is satisfied,
since A, is a negative definite symmetric matrix. Condition (C) can be easily
verified after tedious caluculations. Condition (C*) is automatically satisfied
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because both A and A, are selfadjoint.

Therefore by Theorem 2, we can conclude that a sequence of approximating
optimal controls associated with cost function (17) converges to an optimal control
of the original system (12).

Conclusion

In this paper we have treated the convergence of approximation solutions
for distributed parameter optimal control problems with non-linear cost functions.

We have shown under stated conditions that where the sequence of approx-
imating solutions exists, there exists an optimal control of the original problem,
and the sequence of values of approximate cost functions associated with these
solutions converges to the true optimal value of the original cost function
(Theorem 1).

For the tracking problem, moreover, the sequence of approximating solutions
converges to the true optimal control (Theorem 2). '

As an example, we have dealt with a tracking problem for one-dimensional
diffusion equation, constructed a discretization scheme and checked the conditions
of convergence.
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Appendix
We put
A2 @), (D)) = A (Lu) (D), u° (D)

T T
= [ 1@uey o =y Irar+ e @)ar
; \

=Gu°())+ R(u° L))
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FulxolD), w () = fULnsi) (D), uz(i))

= W Lai) 1) ~ Pay) e+ § i) at
0

0

= Gulun()) + Rulun(t)).

Now let us prove that if fuilxni(8), unj(t)) = f(x°(D), u® (1)), Rujluzi() —
R (1)),

We write »# for n; in the following. By the resonance theorem? it can
be shown that

im Galun(1)) ZGla” (1)) 20

The following inequalities are satisfied:

Glu® (1)) + R(u® (1)) = Hm {Gulun(d) + R(us i}
= lim Gulun(t)) + lm Ra(uz(#)

= G(u()) + R(u® ().
Hence,
Hm Ru(un()) = G« () + Riu® () — lim Gulua(f))

SGu () + R () —G(u® (1)) = Rlu® (D).
Therefore lim R,(u5()) = R(u°()).

We have, lim G, (u5()) = G(«°(#)), in such the same way as the above.
On the other hand,

R(u°(#)) = lim Ru(u5(#)) < lim Ryu(ua(t))
= lm {Galun(t)) + Ry(uz(D) — Gulun(t) }
= ﬁﬂl’ﬁ <Gn(u$z<t)) -+ Rn(%;(l‘)) } hAm ( - Gn(?/l?x(l‘)))

= R{u® ().
Consecuently it can be concluded that

lim Rula3(8)) = R(u° ().





