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1. Iuntroduction

The purpose of this paper is to discuss the zero assignment problem in linear
multivariable decoupled control system. The zero locations in complex plane affect
the input-output relationships of the linear systems, for instance, the step re-
sponses and the steady state errors vary with them. Therefore to derive the con-
ditions under which desired zero configuration can be obtained is important in the
synthesis of the linear systems. In the older literature, however, not so much
attention is directed to the problems of zero assignment in contrast to the pole’s"?.

In [3], zero assignment problem is considered for a single input-single output
system and the conditions are derived where any desired pole-zero configuration
can be obtained independently. This paper is an extention of that to the mul-
tivariable decoupled control system and gives necessary and sufficient conditions
which assure the existence of an input matrix with which the multivariable
system can be decoupled by state feedback and can have desired location of zeros.

The paper is organized as follows. In §2 the characteristics of zeros in
multivariable systems are reviewed and the precise statement of the problem
considered in this paper is given. In §3 the survey of the decoupling control is
done and the problem given in §2 is partially solved. §4 gives the principal
result of the paper and states it in theorem 3. In §5 a numerical example is
given to illustrate the computation of the input matrix. §6 contains the con-
cluding remarks.

2. Statement of the problem

Consider the linear time-invariant dynamical system

%= Ax+ Bu
s
y=Cx

where x is an n-vector, # and y are m-vectors, and A, B, C are real constant
coefficient matrices of appropriate dimensions.

It is well known that the linear state feedback u = Fx-+ Gw can be used to
obtain any desired pole configuration if and only if S: is controllable. On the
other hand it is also known that the zeros of the single input-single output
system do not change their location by state feedback. So, in single input-single
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output system, if desired zero configuration can be obtained by some means, the
poles of the system can be compensated without destroying the above obtained
zero pattern, and therefore any pole-zero configuration is obtainable.

The zeros of S can be altered by giving a different matrix to B or C. In
applications, the output matrix C will usually be fixed by the physical structure
of the systems, and more freedom is available in the selection of the input matrix
B. In reference 3 it is shown that the input matrix B of the single inpt-single
output system S, where A and B are given fixed matrices, can be found to obtain
any desired zero configuration if and only if (C, A) is observable pair.

Unfortunately, the above results can not trivially be extended to the mul-
tivariable systems, the reasons are as follows. First, even if S; is observable
all the zeros of the transfer matrix can not be assigned arbitrarily. This can
be found simply by comparing the numbers of zeros with the numbers of the
free parameter B. Secondly, in the case of multivariable systems, not only the
poles but also the zeros are dependent on the feedback matrix F, and so even if
the desired zero configuration is obtained by some means, it will generally be
changed by application of state feedback for pole assignment.

The main difficulty in the pole-zero synthesis in multivariable systems lies
in the fact that both poles and zeros are function of feedback matrix F. So, the
great simplicity will be obtained if the above interactions of poles and zeros are
eliminated. J. D. Simon and S. K. Mitter have considered this problem and
showed?® that, if the matrix A devides the whole space E" into m cyclic invariant
subspaces and if the input matrix B is constructed such that every column vector
of it coincides with the generating vector of the m invariant subspaces, then the
zeros of the system are invariant under state feedback. However, to require that
the matrix A has exactly m invariant polynomials would be very unrealistic and
furthermore even if this condition holds, their results only assure the invariancy
of zeros, and does not give any assurance for the obtainability of desired zero
configuration.

As stated above, the problem of pole-zero assignment in multivariable systems
is very complicated and no so much work has been done yet. In this paper the
zero assignment problem in multivariable decoupled control system is considered.
This is somewhat restriction of the general problem where the zeros of any
element of the transfer matrix is to be specified. It must, however, be noted
that the restriction of this kind does come not only from the requirement for the
simplification of the problem, but also from the actual importance of decoupling
control in multivariable systems. The characteristics of the poles and zeros in
decoupled system are fully examined in references®, and the fundamentals of
them which are required in this paper are briefly summarized in the next section.

At this point, the problem considered in this paper should be stated in more
concrete fashion, and is as follows.

Given the matrices A and C, find the conditions for the existence of the input
matrix B such that the system

{ %= Ax+ Bu
s,{
y=Cx

can be decoupled by state feedback x = Fx -+ Gw, and furthermore the decoupled
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system have a desired pole-zero configuration.

3. Decoupling control and the difference order

Consider again the m input-m output system

{ %= Ax+ Bu
Si
y=Cx

The control law
= Fx+ Guw (3-1)

is said to decouple S, if the closed loop transfer function
H(s, F, G) =C(sI- A— BF)"'BG (3-2)

becomes a nonsingular diagonal m = m matrix. Throughout the paper such a
control and the system obtained by decoupling S; will be called the decoupling
control law and the decoupled system of S; respectively. The {—¢ th element of
the transfer function matrix (3-2) represents the transfer function of the i-th
subsystem of the decoupled system.

The necessary and sufficient condition for decoupling has been derived by P.
L. Falb, W. A. Wolovich, E. G. Gilbert and others, and is given by the following
theorem.

[Theorem 1] (P. L. Falb, W. A. Wolovich®, E. G. Gilbert® and others)
The system S can be decoupled by state feedback if and only if the matrix

aA"B ]
. .
cmA.d"‘B
is nonsingular, where ¢ is the i-th row of the matrix C and
di=min{j; ¢;A’Bx0, j=0}, i=1,...,m

The following remark is the fundamentals for present paper and their proofs
can be found in [6].

(Remark 1)

Given the system S: whose coefficient matrices 4, B and C satisfy the required
conditions in theorem 1, the transfer function of the decoupled system of S; is
uniquely determined except for the location of poles, i.e., the orders of the
denominator and the numerator of every subsystem, and the locations of zeros
do not depend on the particular choice of the decoupling control law of Si. In
addition, the location of the poles can be arbitrarily assigned by suitably choosing
the decoupling control law. The difference of the orders in denominator and
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numerator of the i-th subsystem, which is seen from the above to be independent
of the choice of decoupling control, is equal to di+1. The number d; (i=1, ... ,m)
will be called the difference order of the i-th subsystem.

Now, in the followings, it is assumed that A and C are given matrices and
B is the matrix of dimension » xm which can be arbitrarily chosen. Then the
problem, as stated in the previous section, is to find B such that the system S
can be decoupled and the decoupled system has the required zero configuration.
For the former problem, following theorem holds.

[Theorem 2]

(i) There exists a matrix B which makes the system S, be decoupled by
state feedback and makes the decoupled i-th subsystem have the difference order
d: if and only if.

(ii) The vectors

{c; A} i=1,...,m, Jj=0,...,d
are mutually independent.

(Proof)

Assume (i) holds, then from the definition of the difference order d; and
from theorem 1,

i A’B=0 i=1,...,m, j=0,...,di—1, and
AR (=1, ...,m) are mutually independent.
Suppose there are constants k;; such that

Zi‘,kijaAJ = (3-3)
i=13=0
Postmultiplying both sides of this equation with B produces
Rida; =0 i=1,...,m. (3-4)
Now, introducing the above results into (3-3), and postmultiplying with AB gives

kidi—1 =0 i=1 ..., m

Continuing in this manner proves (ii).

Next, (ii) is assumed. By the definition of the difference order di, it is
enough to show that the linear squations

ciA’B=0

i=1,...,m J7=0,...,di—1 (3-5)
i AYB = ¢ 7 ‘

can be solved for B, where ¢ is an unit vector whose elements are all zero
except for i-th element which is one. From the assumption (ii)
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Ci
A

dy m
a4 =2 di+m,

C2 i=l

e A

rank

CmAdm
and hence there always exists a matrix B which satisfies (3-5).

(Rmark 2)
If >1(di+1) =n in theorem 2, (3-5) have unique solution B, and in this case
1

the decoupled system of S, does not have any zeros.

4. Integrator decoupled system and its zeros

In the followings, {d;; i=1,...,m) are assumed to be the given set
of nonnegative numbers which satisfy the condition (ii) of theorem 2, and

>{di+1)<n. Then from theorem 2, there exists a input matrix B, not
i=1

uniquely, with which S: becomes possible to be decoupled by state feedback and
has difference orders d; (i=1,...,m). Such a matrix B is given by solving
equation (3-5).

Then the next problem to be considered is to find a matrix B, among the
general solutions of (3-5), which makes the decoupled system of S have the
desired zero configuration.

Now, a system which has a general solution of (3-5) as its input matrix will
be denoted as S: and is given by

j *=Ax+ Bu
S,
‘ y=Cx
where
BeB2{B; ¢;A%B=¢, c;AB=0; 7=0,...,di—1, i=1,...,m}
If the control law
u=— A% x+w (4-1)
where
ClAd,H
AF =
C'ﬂx&‘ld"ﬁ‘-]

is introduced to S, the closed loop transfer characteristics of S, with the feedback
control (4-1) can be represented by
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{ %= Ax+ Bw
’ y=Cx
where

A=A-BA*  EBe3.
Notice that the coefficients matrices in S; satisfy the relations,
GAB=0, A“B=ea, A% =0, (4-2)
and it’s transfer function matrix becomes

l/sdl*'l. . . 0
Cis[-A) 'B= .
0 -« - -1/s

E. G. Gilbert called such a system Integrator Decoupled System.

The control law given by eq. (4-1) is, of course, decoupling control law for
S2, but is a special one, which makes the i-th subsystem of S; have 1/s%* as
its transfer function. On the other hand, according to the remark 1 the zeros
of every subsystems of S; are known to be independent of the choice of decoupl-
ing control, and so the integrator decoupled system should also have zeros
corresponding to the matrix B( & B).

Therefore, the fact that the transfer function of the i-th subsystem is repre-
sented by 1/s%*" means the pole-zero cancellations have ocurred. In order to
know which zeros have been cancelled out by poles, deeper structural considera-
tion on S; is required.

[Lemma 1]
Let {%ij; i=1,...,m, j=1,...,pi} be the set of mutually distinct nonzero

"

numbers, where pi=0 and, g(di—% pi+1)<n. When p;i=0, the corresponding

numders A;; are not included.

(i) If the system S; has its cancelled zeros at s=2i; (j=1,...,p:) in its i-th
subsystem (i=1,...,m) for some B& %, Ss can be transformed by z= 7x into
the following canonical form.

b
. 2RI
A, 0 0 :0 : 0
_ ~ 0 L 0 :
2=Az+Bw=| - 0 i lz+| b w,
0 A, 0 . T
...................................................... P Om.
7 L0 a
6. 0 - - 0 :
y= . 10 )z (4-3)
\ 0 . . 0 07)1 -
where 0;=0(1,0, ..... ,0),

|¢<—d; + pi + 1—
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010 + 0 ~ 0%
001 0 ] AT

0 0 0 - 1: 0 i

0 - - - 0. l 17—

A= . - RS

Ji 0 o [T ba \ T

0 0 2:‘2 ' 0 | p; Bi = b.{z bi
o o0 - lip;/_vl_ Bips .‘i‘_

and 7, O, a are matrices with appropriate dimensions. The transformation matrix
T is enough to be of the form,

7

T = (4-4)

THK

Tm+1

where

( Ci ( g
aA ¢

Ti= Cz'Adi s Toner =
tn

tip;, J An—-3(d i+ pi+1)

(i) If there exists a matrix B &9 such that system S, can be transformed
by the transformation of the form (4-4) into (4-3), and if all the element of
b; (i=1, ... ,m) are nonzero numbers, then S: has its zeros at s = ;.

(Proof)

(i) Let B=101, ..., bml] be the matrix stated in the lemma, and define
Qi={n; yAby=0, =0,1,...,n—1, k=i). Qi has following properties?. @
Qi is row-invariant subspace with respect to A, @ QiNQ;=10) if i=j &
i, i A, ..., ;A% are linearly independent vectors of ;. Furthermore, eigen-
values of A on the invariant subspace ; include all the zeros of the i-th
subsystem of S:®. And hence, there always exists a eigenvector ¢;; correspond-
ing to the eigenvalue Z;; such that ej;e Q;.

Now, it will be proved {ei;, ciA* j=1,...,p:i, k=0, ...,di} is the set of
mutually independent vectors in @Qi.
Suppose there exist scalars aj (7=1,...,p5:) and Bz (k=0,...,d:) such that

vi di

Slajeii + > Brci AF=0.
=1 k=9

Postmultiplying both sides of this equation with A’, where / is sufficiently large
number, yields
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re
Xic‘(j(lijveij =0.
=

This implies ;=0 (j=1,...,p:), for 1 are, by assumption, mutually distinct
nonzero numbers, and hence together with this the linear independence of ciA*
(k=0,...,di) means a;j=pr=0.

Now the matrix stated in the lemma can be defined as follows,

T, Ci A
T, ci A fz
- =1 ¢ A% —

T=| - , Ti=| A ’ Toner =
‘ €i
T :
T € py Sn-x(pirdien)

(i=1,...,m)

where {f&} is the set of independent row vectors with which the rows of T
(i=1,...,m) span the whole space E*. The fact TAT™}, TB and CT~' have
the form in the lemma respectively can be easily verified by using the definition
of T and the fact B & %.

(ii) Assume that the transformation z= Tx brings S; into the form (4-3),
then the control law

me - -03i0-0
= . ﬁ Tx+ & (4-5)

0« « gmi.0-0
0= ity o« oy Mipovdi+r)

becomes a decoupling control law for S;. It can easily be verified that the closed
loop transfer function of Ss; with (4-5) has zeros in its i-th subsystem.

Now, using this lemma, the main results of the paper can be obtained. For
the proof of the theorem next lemma must be prepared. In the next two
theorems it is assumed that all the numbers 1:;; are real, mutually distinct and
nonzero as in lemma 1, and furthermore it is also assumed they are not equal
to the eigenvalues of A for simplicity.

[Lemma 2]
Linear first order equations,
(t T)[A_MI] =1 =1 P (4-6)
ify Di7 - =V, t=1, .y m, J=4, « . Pi -
g L _ c‘_Ad,—.-l

where #;; are n-vectors and 7);j are scalars, can be solved for (fij, bi;) uniquely
up to the scalar multiplications. Further, #;>0 if and only if ¢; A%*1x0.

[Theorem 3]
The i-th subsystem of S: has zeros at s=2i; ({=1,...,m, j=1,..., p:) if and
only if

(a) ¢; A% (i=1,...,m) are nonzero vectors, and
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(b) ¢; A7, tir (i=1,...,m, j=0,1,...,di, k=1,...,pi)
are mutually independent vectors, where (fik, bij) are nonzero solutions of eq. (4-6).

(Proof) Necessity. By lemma 1-(i), there exist B W and the transforma-
tion matrix 7 of the form (4-4) such that

TAT'=4 (4-7)
TB =B (4-8)
Be®n (4-9)

where A and B are matrices defined in lemma 1.

Now, substituting the defining equation of A into (4-7) yields
TA—-TBA™=AT. (4-10)
From egs. (4-8) and (4-10)
TA—-BA*=AT (4-11)

follows. Substituting the definding equations of A and B into the above and
equating both sidedes,

A= NI ]

(t"j’ bif) _ ciA(1i+1

i=1,...,m, j=1...,pi (4-12)

are obtained. Note that ¢;A9+1=0 means #;=0 by lemma 2, and therefore it contra-
dicts the nonsingularity of 7. Consequently the necessary condition (a) is proved.

Next, assume c¢;A“*'=0. In this case the equation (4-12) have nonzero
unique solutions and ;>0 by lemma 2. The necessary condition (b) can be
verified by the nonsingularity of 7.

Sufficiency. If (a) and (b) hold, then equation (4-12) have nonzero solutions
(tij, Bif) (i=1,...,m, j=1,..., pi} where both #i; and 2;; are not zero. Then,
using these solution vectors fij, the transformation matrix 7 can be defined
exactly in the same manner as is done in the proof of the lemma 1 and hence
the derivation of it is omitted here.

It can be asily verified that the egs. (4-8) and (4-9) are solvable for B, by
rewriting these equations into

tn Zl ». 0 N

t 0 b, 0

t! by

tn

t B=ly . . Bl (4-13)
Ci b, 0 - -+ 0

(5} A

C”"Adm 0 0 « « by
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where b; are vectors defined in lemma 1.

It is easy to see that the equation (4-9) follows from equations (4-8) and
(4-12).

Using these matrices 7 and B, it finally follows from lemma 1-(ii) that the
i-th subsystem of S; has zeros at s=42;; and the theorem is proved.

5. Example

An infinitesimal transition matrix A and the output matrix C are given by

=410l

1
0

.OOOD-—‘
O = OO
_— O O e
O OO

respectively.

In order to examine the possibility for decoupling control, c¢i A/ must be
calculated.

a=(1000), ¢A=(1010, A*=(1110, A*=(1111)
=0100), A=0001), cA*=0010), A= 100

Threfore, by theorem 2, the decoupling control is possible for the case where
the couples of difference orders for the first and second subsystem are {0, 0},
{0, 1}, {0, 2}, {1, 0} and {1, 1}. For the case {0, 2} and {1, 1} there are no
zeros in both decoupled systems (See Remark 2).

In the follwings the case {0, 0} will be considered, i.e., the transfer function
of both decoupled subsystems has difference one in their orders of denominators
and numerators. And it is further assumed that the first subsystem has two
zeros at s=/1n and A and the second has no zeros (p1=2, p,=0).

Now, the characteristic equation for A is given by

(1= A+21+2) =0

So, Zn and iz must be mutually distinct numbers which are not equal to one
and zero in order to satisfy the required conditions in theorem 3.
The equation (4-6; becomes

- A = A .
(tj, D) =0, j=1,2

and solving this by substituting A and ¢ gives

(=2 A+ 25+ 0% =i = ki’ =)
(1—=217)2 (1474212
7;1]=1 ]=1, 2.

tj=

To proceed further the desired zeros are assumed to be —1 and —2, ie., in=—1
and lp=-—2. Then

=2 =11 1/4 he=(9 —4 8 2)/27
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Therefore all the required conditions in theorem 3 are satisfied. The
transformation matrix 7 given by eq. (4-4) becomes

(5] 0 0
P30 1/2 —1/4 1/4 1/4
the 1/3 - 4/27 8/27 2/27

Cz 0 0
Finally B can be obtained by solving equation (4-13), and becomes
0 1

1 0
B= 7/3 1/3 Y

1/3 2/3

Consequently, desired system can be represented by

1010
oo o1
=101 0 of*" 1/3 1/3"’
0010 1/3 2/3
_(1000t
3"0100"

Substituting the decoupling control law (4-5) into the above reveals that the first
subsystem has two zeros at s=—1 and —2, and three poles which can be arbitrarily
assigned by suitable vector 7, and the second subsystem has nozeros and one
pole at arbitraly place.

6. Concluding remarks

In this paper, the conditions for the existence of the input matrix B with
which the system

% = Ax+ Bu
y=Cx

can be decoupled by state feedback and has zeros at required positions are dis-
cussed. Theorem 2 and Theorem 3 give such conditions, which can easily be
verified by vector and matrix calculations.

Several assumptions on the zeros are made, 7.e, they must be mutually
distinct real nonzero numbers which are not equal to the eigenvalues of A, but
except for requiring to be real they would not be too strict restrictions in
applications. The extension to the case of complex zeros is straightforward.

If the input matrix B can not be selected arbitrarily, but must obey some
constraints, the decoupling control stated in theorem 3 is possible if and only if
the equation (4-13) can be solved subject to these constraints.

Using a simple example, an algolirism for obtaining the input matrix is
given and the pole-zero compensation of the decoupled system is illustrated.
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