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I. Preliminaries

Recently the experimental data concerning the absorption and dispersion of
ultrasonic waves in polyatomic liquids have been accumulated”?®, and the
rheological investigations of solid high-polymeric substances*®® are also in great
progress. The molecular kinetic theories to interpret the phenomena of the
elastic relaxation of substances of polyatomic molecules have been tried, and up
to the present the quantitative explanation of these phenomena especially in
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liquids from the modern molecular kinetic theories has not yet been quite
satisfactory.

On the other hand, the treatment of the rheological characters of the continua
has been tried by Oshida®®, Frenkel and Obratzov®®, Sips', Takizawa!»¥,
Meixner*®, and Kailski®”, Oshida considered the equation of state of visco-
elastic body (i.e. the relation between stress and strain) in order to explain the
high velocity of propagation of hypersonics in liquids, which constitute the main
part of the thermal motion in liquids. He also extended his old theory? so as
to include Frenkel-Obratzov’s as a special case. The theory presented by Sips!?
is also included in Oshida’s treatment. They all considered merely the stress-
strain relation of visco-elastic body and did not take any explicit account of the
thermal character of the media. @~We wonder whether the rheological constants
may be called adiabatic or isothermal, especially under the ultrasonic field of
extremely high frequency. In those theories, if we want to take the effects of
temperature which is considered as an independent variable, then the effects are
merely included implicitly in the statement that the rheological constants are
certain functions of temperature. Accordingly, the temperature comes to be
only secondarily effective in the final expression of stress, through the change
in numerical values of the rheological constants,

While, in the theory of molecular collision presented by Kneser'®¥ and
Rutgers?®”, the equation of state is assumed to be adiabatic, and the main part
of the theory consists in the final expression of specific heat expressed as a
certain function of frequency of external mechanical oscillation. Here the
question arises, whether the thermal condition, under which the process takes
place, is adiabatic or not, especially under the region of extremely high frequency,
i.e. under the hypersonic region. The theories of Frenkel-Obratzov, Oshida, and
Sips, result in the decreases of elastic constants and viscosities with increasing
temperature, if we fix the frequency of external mechanical oscillation. This,
in turn, leads to the decrease of the absorption and velocity of ultrasonics, with
increasing temperature. While, following to Kneser’s theory, we see that the
increase of temperature results in the decrease of specific heat, which, on the
contrary to the above case, leads to the increase of the absorption and velocity
of ultrasonics. Accordingly, simple liquids such as carbon dioxide and benzene
obey to Kneser’s collision-theory, while the réle of the shearing and volume
viscosities presented by Frenkel, Oshida, and Sips, rather predominates in the
associated liquids such as water and acetic acid. In liquids and solids of high-
polymeric substances, the situation is quite complicated, and we should consider
the generalized theory of visco-elastic media at the more unified point of view.

The theories presented by Takizawa'®'® and Sips'” concluded the theories
by Frenkel and Obratzov? and Oshida® and summarized them in the tensorial
formulation of the theory of relaxation. Especially Takizawa'®'*, as Meixner?
mentioned, formulated the theory of relaxation, apart from the adiabatic or the
isothermal condition, and also took explicitly the temperature relaxation into
account. Thus he made a first step to the direction of the thermodynamic
theory of relaxation'®'®?», Meixner? extended his theory of elastic relaxation
in the framework of the theory of irreversible thermodynamics and generalized
the thermodynamic theory of rheology into a more consequent formulation of
these theories mentioned above®.
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In reference to these theories, the author presents a theory which includes
these theories from the rheological point of view. Also, he wishes to generalize
the theories of visco-elastic relaxation presented by the above mentioned au-
thors™¥, taking explicit account of thermal stress and thermal conduction, with
reference to the femperature wave. Thus the sonic theory may be called sound,
when we take into explicit account the thermal phenomena.

The macroscopic linear theory of visco-elastic body in the present paper is
based on the following assumptions:

(1) the components of stress are linear functions of strain and temperature-

deviation,

(2) the media are isotropic,
and

(3) the internal energy in the macroscopic sense is expressed as a linear func-

tion of temperature and strain.

The theory based on these assumptions is conveniently applied to the absorption
and dispersion of supersonics as well as hypersonics in the rheological media.
The extension to the theory of anisotropic body??* is quite easily carried out.

In the following we shall restrict ourselves mainly to the treatment of liquids,
because the slight modification of numerical values of rheological constants in
the present theory can lead to the theory of the solid visco-elastic body, mutalis

mutandis.

Theory of electric relaxation can be also extended in a similar
manner, with slight modification of interpretation of symbols and formulae.

II. Notations

i: rectangular coordinates, (i=1, 2, 3)
;: components of displacement, (i=1, 2, 3)

i %"'t‘ : components of velocity, (i=1, 2, 3)
&ij = %(%%— g;;) components of strain tensor, (7, j=1, 2, 3)
@ij :_»17(_55,-_ Qﬁ_): components of rotation of displacement, (i, j= 1, 2, 3)
2\ 2x: oxj ) ,
Aj;: components of stress tensor, no temperature effect being
taken into account, (i, j=1, 2, 3)
Aij= A+ Al;: components of stress tensor, including explicitly thermal
stress, (4, j=1, 2, 3)
t: time,
p=po+p': density, po - density at static state,
p=po+p': pressure, po @ static pressure,
T=Ty+: temperature, To: initial temperature,

U: internal energy per unit mass in the macroscopic sense, i.e.
energy of translational and rotational motion of constituent
molecules,

pU: internal energy per unit volume,
gj: components of heat flux vector, (j=1, 2, 3)
x: thermal conductivity,

ko:

static volume moduls,
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At partial volume moduli, (r=1,2,3,...,1)
Jv=Jytr: partial volume viscosities, (r=1,2 3,...,1)
o partial shearing rigidities, (r=1,2,3, ..., m)
1= el partial shearing viscosities, (r=1,2,3,...,m)
ar/ke: coefficients of partial thermal expansion, (r=1,2,3,...,n)
PSS I £ TR P 15).

T Tr, T, Tr, T and t, : relaxation times,
C,: static specific heat at constant volume,
C,: partial specific heat at constant volume, (r=1,2,3,...,p)
b and bf;': material constants, (4, j=1,2,3; v=1,2,3,...,q)
w=2zp: circular frequency, »: frequency,

v: phase velocity of wave,
a: amplitude absorption of ultrasonics per unit length.

For the sake of abbreviation we shall write the differential operator with
respect to time ¢ as follows:

d _2 ., 02 _2
ot

I

D= a5 = T %o

As usual in the tensorial notations, one should sum up over dummy indices.

The word thermostatics will be used for what is usually called thermody-
namics. Non-equilibrium thermodynamics should be called simply thermodynamics
in this paper.

III. Dynamical Equations of State

Stress-Strain Relation
The equations of state of the liquid media, no explicit temperature term being
included, 7.e. the relation between stress and strain, are written as follows'#*¥:

7 A
Afy = = poedig o Roraedig | S {em(® = | @) et =1t} -
- -g .E_:J:ﬂr'{é‘kk(f) - \0 By t) vern(t — t’)dt’}_]°6;j+
+ 22,,:,-{5;,-(0 - SO B (1) et — t')dt'}, (3-1)
r=1

where gr(#') and hy(#') are the so-called relaxation functions which satisfy the
following conditions:

S g (that' =1, (r=1,2,3...,0

v

with (3-2)

{Cnnar=1, =123 ..., m
Jo

with epr=¢11-+en-+es, and 8i; Kronecker's delta. In the above equations (3-1),
if we put /=m=1, the equations reduce to those corresponding to the theory of
Sips®. The expression of stress-strain relation presented by Oshida®® is also
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obtained, if we put in egs. (3-1),

gt = Lot (2,50
Tr
and (3-3)
o) = — Lm0y
Tr

and take the oscillatory motion of the system. Further, if we put /=1 and
m=2, egs. (3-1) are reduced to the equivalent expression as Frenkel-Obratzov's®.

For the sake of simplicity, we shall take the Maxwellian relaxational process
as taken by Oshida®, egs. (3-1) reduce to the expression as follows:

o )] 2 : +D
Aij= —poe 51]T(k3+ 2 1+'er ; ”,D)ekk 6,;—!-2’2:_{ I_f' (“D €ij,
(7, 7=1, 2, 3) (3-4)

where 2, = J,t, are partial volume viscosities, and u = p,ri?’ are partial shearing

viscosities.

Egs. (3-4) are the expression of the stress-strain relation for the visco-elastic
media, with the so-called partial volume viscosities Ay and partial shearing viscosities
2y, which are subjected to the Maxwellian relaxational processes (3-3) respec-
tively.

Thermal Stress

Now we shall consider the equations of state, taking into account the relaxa-
tional thermal-stress. As for the thermodynamical independent variables, we
shall take strain e; and temperature-deviation 9(=467). If thermal stress is
composed of # components, we obtain thermostatically:

Aji(#) — AZ(H _,_.A"” ) = —z;a,.ﬂ, (3-5)
r=1 r=

with 7 fixed, where ar/ko are the coeflicients of thermal expansion. Accordingly,
we obtain:

dAY) _ _ d¥

at AT

if the stress A" is caused instantaneously by thermal expansion, and the term
(—ar¥) is the static thermal expansion. While, in the field of ultrasonics of
extremely high frequency, the relaxational process of the media due to the
temperature-deviation may be also quite effective. In other words, in such a
non-equilibrium state as the supersonic and the hypersonic waves create, the
temperature fluctuation or deviation will be caused in liquids. The energy
corresponding to the momenta of constituent molecules in an equilibrium state,
can be obtained by averaging the translational, rotational, and vibrational mo-
menta over the available configurations of the molecule. In a non-equilibrium
state, however, the fluctuation of these momenta may be greater and greater,
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and sometimes it would be more convenient to consider even the matrix quantity
which corresponds to many kinds of momenta of the constituent molecules.
Accordingly, sometimes it may be rather useful to take into account the matrix
quantity corresponding to many kinds of temperature-deviations in the expression
of stress. Here in the present chapter, however, we shall consider merely
a scalar quantity of temperature-deviation as an independent variable of thermo-
dynamical state. In this case, the thermal stress is not directly proportional to
the temperature-deviation itself, but it may be supposed that the stress is also
proportional to some averaged value of temperature-deviation in the past, just
as in the case of stress-strain relation mentioned above. In this respect, the
behaviour of the thermal stress as a function of temperature-deviation greatly
differs from the ordinary thermal expansion as treated in the theory of thermo-
statics.  Accordingly, as in the case of egs. (3-1), considering the components
for thermal expansion, we see that the normal stress is expressed as?¥:

AbD) = 45O = AHD = = Sar 90 = | frn-du-mar}, @7
r=1 g
with 7 fixed, under the condition for the relaxation functions:
Sofr(t’)dt'=l. (r=1,23, ...,n (3-8)

As for the expressions of the relaxation functions, we shall take:

fr(t') = .e-xr/:rm, (3_9)
Lr
as already mentioned by Takizawa@®,

Considering the relaxation function of Maxwellian type (3-9), and taking the
oscillatory motion of the system, we see the following relations hold for the

normal stress and temperature-deviation:

(D) = Al — A% =_‘"“h_‘£;_,D._A - -
AL = Aut) — AR %1‘1+r£”0 , (i=1, 2, 3) (3-10)

with relaxation times 7", and partial cubic thermal expansions a,/ky = al/{ k)"

The first term in the right-hand side of eq. (3-7) is the one analogous to the
usual thermal expansion, while the second term represents the rate of dissipation
of the stress by plastic flow. In another word, the equation (3-7) means that
the temperature does not cause the normal stress instantaneously but there needs
finite delay of time to create the normal stress after a sudden increase of
temperature. This may be considered also to correspond roughly to the physical
picture that after the local temperature has risen, the temperature makes contri-
bution to the normal stress with a small but finite delay of time.

Combining egs. (3-1) and (3-7), we finally obtain the dynamical equations of
state for the rheological bodies with thermal expansion:

40 = 450 = [ Sar {80 = | o0 s —tar} o5, G j=1,2,3)
(3-11)
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with Af;(#) as expressed in eq. (3-1).
And, if necessary, the combination of egs. (3-4) and (3-10) reduces to the
expression subjected to the Maxwellian relaxational process:

LMD 28 D .
A = =g+ (bt [ = g 2 e

+ ,UrD ﬂ‘\ CYLD o R.s ;4= _
23D - NSRS 0 =129 G12)

In case of a continuous distribution of the relaxation time, the summation
in egs. (3-11) and (3-12) can be replaced by Stieltjes integration.

The expression (3-11), including both strain and temperature terms explicitly,
can be applicable to describe the rheological behaviours of visco-elastic bodies,
i.e. internal viscosity effects, structural relaxations, monomer-polymer formation,
and temperature relaxation in the system under consideration. The stress-strain
relations (3-4) are essentially the same as derived by Oshida® in 1950 and include,
as special cases, the results obtained by Frenkel-Obratzov®!® and Sips'’. The
relation (3-11) or (3-12) is an extension'®™ of eqs. (3-4), and it is also found
to include the equations of state of rheological bodies obtained by Sips'”, Tisza*,
Hall??, Kneser?, and others? ), respectively as special cases.

Equations of Motion
The equations of motion of the medium under consideration read as follows:

du; _ 0Aij . ~
CdE T Tox; + pXi, (i=1,2,3) (3-13)

where X; is the components of external body force.
By making use of the expressions (3-11) or (3-12), we obtain:

1) 5] o, ®
( aut‘ + u; aZ’ ) = ai“ + ko —=— ax ‘kk-rl,b {ekk“ SO g,—(t’)ekk(t—t')dt}+

+ 3 Ellr Ekk—S Dy (8- ehk(t—t’)dt}+

+é”’A{5f(” - S:hr(t’)'&(t— #dt ) -
_ Ear {z?(t) - Swfr(t')%?»(t——t' )dt’} CoX (=12, 3)

rel
(3-14)
or

——eqy

du; ou; 9po. LD 1= #,D 3
. = — ko s
o ot +”’ax,-) oni + (P i e P e D)

oD pe %o aD 2 .
+§ 1+t9D }.l 1+”D 2% toXi  (i=1,2.3)
(3-15)
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IV. Eguation of Conservation of Energy

Energy Equation

The increase of internal energy in the macroscopic sense which is consisted
of the translational, vibrational, and rotational energies of the molecules, is equal
to the work done by the external force plus the energy inflowed by the thermal
conduction into the system considered. We shall follow the method of derivation
of energy equation presented by Sakadi®»®,

Let us take a part of the medium, in
which the kinetic and internal energies
are expressed respectively as:

external
force Xi.p

dssurface element

L= —é—j.puz,'dx, (4-1)

inward 9

and normal

~

E=Jpde, (4-2) q

energy flux vector
where dx is volume element, p density
of the medium, i =9%/ot (i=1, 2, 3)
components of velocity, and U internal
energy per unit mass. The increments

dL and dU in a small interval of time FIG. 4-1. Energy Flux and Inward Nor-
mal at the Boundary Surface.

dt, are:
dL = di+ous ‘Z;" dx
=dt~ju,-f‘?a%‘—dx+dt-_§pu,~X,-dx, (4-3)
and
— .l AU _
dE = di prdt dx. (4-4)

The equations of motion (3-13) are referred to derive the final expression of
eq. (4-3).

The work W,; done by the surface force at the surface of the medium is
expressed as follows:

W, = dt- SX,-, JuidS = — dt-jA,-j cos (v, x;):dS, (4-5)

where » is the inward normal, and X;, , the components of external force normal
to the surface element dS. The work W:. done by the body force X; is

W. = dt\ous Xsdx. (4-6)

Accordingly, the work 7 done by the external force is equal to the sum of
Wi and W,:
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W= Wi+ We= —dt | Aij cos (v, %)uidS + dz-Spu,-X,-dx =

dt'S-é% (Aijui)- dx + dt'SpuiX;‘dx .

= dL+dt| Ai S dx =

=dL+dr Ay aa‘;—dx, 4-7)

2

where the reference is also made of eq. (4-3) and equations of motion (3-13).
The thermal energy obtained @ is expressed as:

Q=dt-{g.ds = —dt-[ gL ax, (4-8)

with g7 (=1, 2, 3) components of heat flux vector, and ¢, its component normal
to the surface dS (cf. Fig. 4-1).
The equation of conservation of energy states:

dL+dE= W+ Q. (4-9)
From egs. (4-3), (4-4), (4-7), (4-8) and (4-9), we finally obtain:

au. _ , Ok 9q5 -
P df —~A17 of axj‘ (4 10)

Expression of Internal Energy
As for the expression of internal energy, we already took temperature and
strain as independent variables, so it is natural to take

6U=06U:+6Ur, (4-11)
where §U: means the increment of internal energy at iso-strained state, and éUr
is the one at isothermal state. Corresponding to the first term: (specific heat
at constant volume Co) x (the increment of temperature 67, it is considered that

the averaged effect of the temperature in the past plays also an important rdle.
So we can write:

SUD) = CaT(®) + 336, [T = § [ 0T~ ar,  (4-12)
where f,(#') are hysteresis functions satisfying the conditions:
S:fr(t')dt'= . (r=1,2,3...,9) (4-13)
In the similar manner, we have

9 pe—
DUR(B) = byedeua(t) + 33617 {821 () = \, 7o) -deis(t =2+ ary,  (4-19

where
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So Frtat =1. (r=1,2,3, ...,q (4-15)

From egs. (4-11), (4-12) and (4-14), we finally obtain the expression of the
increment of internal energy in the rheological media:

oUW) = CordT+ 3670 = | Ty o~y ar)+
+ bo* deni(t) sz"’ {6e,-j(t) - 50 ?;(t')-as,-,-(z—t')dt'}. (4-16)

Taking the Maxwellian relaxational processes for the hysteresis functions
as in eq. (3-3):

f_'r(tl) — ;3) .e~t’lfr"’, 131>0) (4-17)
r
(t Lt () (4-18)

we have, for the oscillatory motion of the system,

. (3) D R 9 (;) L:G)D
olU = {Ca + 2 'i__';'_(s)D } 6T+ {bo'oij‘{'g*l*_i.—;‘(;ﬁD } Bsx‘jy (4"19)

where Gy is static specific heat at constant volume, and C, the so-called partial
specific heats at constant volume. The summations in the right-hand side of
egs. (4-16) and (4-19), may be replaced by the Stieltjes integrals, if we need
more relaxation times or even the continuous distribution of relaxation time.

The relaxational processes in egs. (3-3), (3-9), (4-17), and (4-18), are Max-
wellian, while in some time the relaxation of resonator type:

relaxation function cc 1—+:‘"—° +cos (wet!) +e” 7', (4-20)

is also useful®?®. If such a selective absorption (4-20) takes place in liquids,
there should be an eigen-oscillator in the constituting molecules of the liquids.
In reality, however, atomic oscillators have extremely high eigen-frequency, for
example in the inversion spectrum of ammonium its eigen-frequency is about
10" cycles per second. This is one of the reason why we take the Maxwellian
relaxation and not the relaxation of resonator type.

The coefficient (i.e. an operator) of 47 is the specific heat in a non-equili-
brium state, and this operator is seen to be reduced to the formally equivalent
term of the specific heat due to Kneser?®®. Let C, be the specific heat
corresponding to the translational motion of the molecules, then C. is the limiting
value of ¢U:/0T when the frequency becomes infinite. Thus we obtain:

(4-21)

9}

6

li
)
+
M«
e

r=]

Introducing eq. (4-21), we obtain for the operator corresponding to the specific
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heat in eq. (4-19):

s __CTT;‘S)__M_ B k] Cr
Gt 2 149D =Com 2 149D

(4-22)

As a special case, if we take further s=1, and C,=C.— C;, where C{ is
static specific heat, eq. (4-22) reduces to the expression of specific heat obtained
by Kneser. Thus the equation (4-19) includes, as a special case, the expression
of the term of the dynamic specific heat presented by Kneser 01819

The expression (4-14) is not so familiar in the usual thermostatics. The
expression (4-14), however, may be very interesting to consider the thermal
stress in a medium under the ultrasonic field, when the disturbances caused by
thermal expansion propagate with finite velocity. The internal energy is a scalar
quantity, which depends thermostatically on the state variables ¢ and 7. Accord-
ingly the general expression for the internal energy, which includes the infini-
tesimal quantities of first order with regard to strain e and temperature-deviation
$, can be given as the expression in the first terms of (4-12) and (4-14). The
second terms in egs. (4-12) and (4-14) come from the thermal and the visco-
elastic relaxations, respectively. The scalar property of internal energy leads
to the tensor bf;. Thus the expressions (4-16) and (4-19) are the more general
expression for the internal energy.

Now, we shall consider the physical meaning of the quantities C and s in eq.
(4-16). For the sake of simplicity, we shall take and explain merely the first
terms of (4-12) and (4-14).

If the liguids (po>0 in eq. (3-12)) undergo the infinitesimal deformation
adiabatically, then the expression:

U atap = Co* 1+ Do ek, (4-23)
is the work done by the surface force and is equal to:

1.9 (fe)= — Do -
00 ax; (A”Ex) d 00 Ekk, (4‘ 24)

as we see from the equation of conservation of energy (4-9) or (4-10). The
right hand side of eq. (4-24) is a small infinitesimal quantity of first order. In
this case, we put:

0Ugiar = — —‘f:; Ekk, (4-25)

and the change in temperature ¢ is obtained as follows:
- L Do _
d= ¥o) (bo—l— s )ekk. (4-26)

On the other hand, if the liguids change isothermally always under the guasi-
static process, the change in free energy dF can be expressed as mechanical work,
and is equal to:

3F =48Ur— T-aS, (4-27)
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where §Ur stands for the increment of internal energy in the isothermal process,
and S the entropy of the system. The quantity §F is of first order, because p,
is finite. ~ While, the increment of internal energy in the isothermal process is
given by (4-16):

8Ur = by epn,

which is also a quantity of first order. Accordingly, the “Gebundene Energie”
78S is of first order, in general case.

The value of b can be estimated, for example, by the experimental value of
the velocity of longitudinal hypersonics:

m

Ly P- 1 T
vhyp"___\/ko’f'pgl)-r‘f' '3"§A¢r+ (bo+ - -0—}’ "‘C"Ear

00 0 r=1 s
Po

as expressed in eq. (6-2), where Ar/ko<l, pr/ko<1l and ar/ko<1l. If we consider
that the volume expansion (sxz>0) results in the decrease of temperature in most
kinds of liquids under the adiabatic process, we see at once be> — P/ po.

If we take a solid visco-elastic body (we can put p=0 in the stress-strain
relation (3-12)) instead of liquids, and consider the infinitesimal deformation
adiabatically, then the internal energy is expressed by the work done by the
surface force:

6U.Adiab = Cl).'l?_}"bu's}ek, (4—28)
and is equal to (cf. eq. (4-9)):

1 o L2 = ko e
”Eo* ’ax’j’(Awqr)f 0o Skk>

the right-hand side of which is a small infinitesimal quantity of second order.
If we put:

6 Uraiar = (terms of second order), (4-29)

then the change in temperature 7% is obtained as follows:

C

On the other hand, a solid wisco-clastic body (i.e. p=0) changes its state
isothermally under the quasi-static process, the change 6F in free energy is
expressed as mechanical work:

= - “'l—bo’Elzk“‘}" (terms of second order). (4-30)
0

0F =¢Ur— T6S. (4-31)

This quantity is obviously of second order, because of py=0. While, from
eq. (4-19) the internal energy oUr = boesie is of first order.  Accordingly, the
“Gebundene Energie” 79S is of first order. In general, in a solid body, it is
easily seen that the quantity b, is positive. This comes from the fact that in
an adiabatic change the volume expansion (exx>0) leads to the decrease in
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temperature (9<0), as is expected from the above equation:

7}— - —'C— 'bo’&‘kk (Cﬂ>0) (4"32)

Writing the differential form of eq. (4-16), under consideration of the Max-
wellian relaxational processes (4-17) and (4-18), we obtain the expression for
the increment of internal energy:

U = Cord Tt + 33C-{dT@) = § FrtendT—ede}+

o+ bovdew+ 3305 | deig () = § Fo#) di(t = ) '), (4-33)
re=l o
or
) G D ¢ b7 D ]
au(®) ={Co+ > (3,D} 4T+ {Boeois + pRLS “’D} deii(8).  (4-34)

The second term of eq. (4-34) expresses that the internal energy is also
subjected to the relaxational process due to the normal and shearing strains. In
general, it happens that the values of 4/ are very small compared with be.
However, as the frequency o of the normal and shearing waves in liquids
increases greater and greater, and finally approaches to ;"' @ =1, then the second
terms may be comparatively effective. On the other hand, when /" w<1, we

may neglect these terms comparing with the one involving bo.

Heat Flux—Generalized Fourier Law

Now we shall consider the expression of heat flux vector ¢;. Kneser ',
Rutgers? and others"? considered that the dispersion and absorption of super-
sonic waves occur as a result of the delay of energy exchange between the
excited and the normal states of molecules. Accordingly, the medium, through
which the wave propagates, is considered as a mixture of two kinds of molecules,
between which the reaction analogous to the chemical one can take place. This
idea succeeded in the interpretation of the dispersion and absorption of the
ultrasonic waves in gases of polyatomic molecules. Later, this treatment was
extended to the consideration of the supersonic phenomena in non-associated
liquids', Kneser took the assumptions that

(1) one of the excited states is taken into consideration, and the number

rate of molecules per unit time in the excited state is a function of
volume, temperature, and the number itself,

(2) pressure is also a function of these three variables,
and (3) the thermal process caused in the medium by the disturbance of the

elastic waves is adiabatic.

Such a consideration was taken into account by Sakadi, in order to discuss
the dispersion of sound wave in gases accompanied by heat conduction and
viscosity. Sakadi®® assumed that the expression of the increment of internal
energy in the macroscopic sense dU is expressed by:

dU =CdT + E'dn, (4-35)
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where C is the specific heat of the gas, when the gas is entirely degenerated in
the sense of Kneser and Rutgers, d7 the increment of temperature, E' energy of
excited state of molecules, and »’ the number of excited molecules in 1 gramme.

He also took, after Kneser®®, the equation of reaction between the normal
state and the excited state of molecules:

an ondbi(n—n") — kyn'}, (4-36)

where » is the total number of molecules in 1 gramme, p the density of the aas,
and %, and k. constants of reaction, whose ratio is expressed as:

k—i =exp[ — _E,__, (4-37)

with the Boltzmann constant %.
Sakadi also assumed that the heat flux vector g; is expressed as:

N
qi = 1 axj .axj:

(7=1,2, 3 (4-38)
with constants #; and k.. The expression (4-38) is quite different from the
classical expression of heat flux vector due to Stokes and Kirchhoff:

oT

qgi= —K axj’ (]=1, 2, 3) (4-39)

with «# the ordinary thermal conductivity.

In an early paper, Herzfeld and Rice®, and Bourgin® took into account
many sorts of temperature, which correspond to the energies of the vibrational
and the translational, as well as the rotational motions of the molecules. They
set up two kinds of equations of conservation of energy: i.e. first, for the degree
of freedom of translation, expressing the fact that this energy can be changed
by the external work (work done by the stress), thermal conduction (a molecule’s
translational motion changes into another’s translational one), and the exchange
with the internal (in the microscopic sense) degrees of freedom with a finite
delay of time of energy transfer (relaxation time); and secondly, for the equation
of conservation of energy of the internal vibrational degrees of freedom, stating
that there exists the inflow from the external degrees of freedom and the exchange
of energy between the internal degrees of freedom themselves. The latter equation
includes a rather uncertain idea of the flow of vibrational heat to the vibrational
one. Accordingly there might exist three sorts of temperature at any point of
coordinate space, having the following relation with initial temperature Tu:

C{T' = T) + C"(T" = Ty) = C"(T" — T, (4-40)

where 77, 7" and 7" are the translational, internal (vibrational), and thermo-
statical temperatures, respectively. C’, C" and C" are the corresponding specific
heats. For sufficiently slow motion, the following relations hold:

T = TN = Tm, (4-41)
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and
C'+C'=C". (4-42)

In such a line of consideration, the macroscopic pressure p may be defined as
the one which is proportional to the total energy subtracted by the internal
vibrational energies, and accordingly p is proportional to the translational energy
alone.

The method of dividing the total system into a number of subsystems 199,
in each of which the thermostatical equilibviuwm is maintained, is of frequent use,
and may contribute to extend the theory of thermodynamics of irreversible
processes®#_ Such a treatment may be useful for the thermodynamical state
not so much deviated from the thermostatical equilibrium. The elastic relaxation,
structural relaxation, and temperature relaxation etc. can be also treated by
dividing the system into many numbers of subsystems.

As Takizawa? already mentioned the assumption of the heat flux vector
(4-39), stating that the heat current vector is proportional to the negative
gradient of temperature, is sometimes uncertain within such subsystems as
disturbed by the mechanical oscillations of extremely high frequency. Accord-
ingly, the expression of the conservation of the internal energy (in the macro-
scopic sense) is rather ambiguous, in the sense whether the expression (4-39) is
valid or not.

Moreover, the classical equation of heat conduction:

9T _ AT, (s =const.) (4-43)

ot
is based ion the assumption (4-39), and gives the solution which expresses the
instantaneous propagation of temperature, i.e. the velocity of propagation of
temperature is infinite. In this respect, it may be also considered that the
expressions in both side of eq. (4-43) should be replaced by others, under the
sudden change of temperature field, or under the rapid process such as under
the ultrasonic field of extremely high frequency.

The modification of the left-hand side of eq. (4-43) has been already made
in our eq. (4-33) and (4-34). If we deal with the problems of the so-called
thermal shock in an elastic solid body, the term containing bo in egs. (4-33) and
(4-34) plays an important rdle. The finite values of b and 5{;" result in the
finite velocity of propagation of temperature wave in the solid body. And, as
Sakadi®® mentioned, the numerical value of b, is positive, and can be estimated
by measuring the velocity of propagation of the temperature wave in the adiabatic
process in an solid elastic body. Under the assumption of adiabatic process, the
temperature-change 47 is expressed® by eq. (4-30), i.e.

0T = — -%;'Ekk. (4-44)

We put the expression (4-44) into the expression of thermal stress (3-10) ~ (3-12),
and calculate the velocity of the longitudinal wave which propagates through
the medium. The comparison between the theoretical and the experimental
results will give the numerical value of ba.



On the Thermo-Mechanical Properties of Rheological Media 211

The right-hand side of eq. (4-43) can be also modified by introducing the
work done by the external force, as was already expressed in eq. (4-9) or (4-10).

There, the term 7—5?(—7 (Ajiju;) was introduced, and in the equation of conservation
X4

of energy (4-10), the term Ai; fas;’— appeared explicitly.

The assumption (4-39) can be interpreted in such a way that the heat
transfer takes place by the collision between the same sort of energy, i.e. the
translational energy to the translational energy of the molecules and the rota-
tional to the rotational one. While, the assumption presented by Kneser®®,
Rutgers? and Sakadi®?, corresponds to the energy transfer by collision between
the same kinds of energies, i.e. the translational to translational, and the excited
to the excited energies, respectively. In such an assumption of energy transfer
by collision in the microscopic point of view, the present author inclines to
consider many kinds of excited states and to pursue the transfer process of
energies among the excited states. Thus the expression such as in eq. (4-38)
may be quite useful. We shall take many numbers of excited states and the
number of molecules at each excited state shall be denoted by n: (i=0, 1,2, ..., s),
7o being the number of molecules at the normal state. We shall consider the
equation of first order reaction between these states, and assume:

i Sy —tim,  (i=0,1,2,...,5) (4-45)
P
under the conditions:
‘:Eong = N = const., (4-46)
and
ii:u‘,e; n; = E, = const., (4-47)

where ¢; is the energy of a particle at the i-th state, and kj; and k; are the
reaction constants, k;; corresponding to the transition probabilities of particles
from the j-th to the /-th energy levels, and 1/k being relaxation times of the i-th
state. This idea corresponds essentially to the generalization of eq. (4-40),
taking into account the reaction kinetics among the different energy states.

On the other hand, phenomenological equations of heat conduction of hyper-
bolic form were presented by Kaliski®%® Nowacki*® and others® -, The
classical heat equation (4-43) is parabolic, an essential consequence of which is
that the thermal disturbance propagates with infinite velocity. In the physical
reality, however, this result is quite inadmissible, and the equation should be
modified to describe the real physical phenomena of energy transfer, especially
in the non-stationary field or in a rapidly changing field such as ultrasonic field
of extremely high frequency. The authors cited above have proposed hyperbolic
wave equations of heat conduction, and especially Kaliski has generalized the
classical Fourier law and proposed the expression of heat flux vector g; as follows:

dq; . _ . oT B
di +qgi=—K o7 (4-48)

T
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where r is a constant, which may be called relaxation time of heat flow. « is
the thermal conductivity and is reduced to the ordinary thermal conductivity
when ¢ is sufficiently small. The expression (4-48) can be written in linear form:

K oT

%= T %D “ox; (4-49)

with D=09/ot.

With reference to the expressions (4-35), (4-38) and (4-49), the present
author proposes the generalized Fourier law for the generalized velocity ¢; (heat
flux) and the generalized force 97/ox;:

() = = 32| [ e 9~ ar) 4-50)
qi\t) = rﬂh‘r"a?j‘ uo‘fr 2 ) (

where kr (r=1,2,3,...,p) are the so-called partial thermal conductivities. is
temperature-deviation, and ¢r(#) the relaxation functions, which satisfy the condi-
tions:

[ ertrar=1. =123 ....p (4-51)

The expression (4-50) is quite similar to the expressions (3-1), (3-7), (4-12),
and (4-14), and is obtained from the consideration that (a) heat flux is consisted
of a number of fluxes, and (b) in each flux the time-average of temperature-
deviation (cf. the derivation of egs. (3-1), (3-7), (4-12), and (4-14)) is effective.

If we take the relaxation functions of the form:

(’gr(tl) = ""}S)"e_t‘“r“): (/1_‘52‘
Tr
as taken already in egs. (3-3), (3-9), (4-17), and (4-18), then the expression

(4-50) reduces to:

[
Gi= =t . oy 2.3) (4-53)

for the oscillatory motion of the system.

It is worth-while remarking that the expression (4-53) is very much resemble
with eq. (4-45). And, if we take p=1, the expression (4-53) reduces to the
expression (4-48) or (4-49).

Further, if we take r’D<1, then the expression (4-53) reduces to the
ordinary Fourier law:

oy e -

While, if we take ri'D - + o, then we have the vanishing thermal conductivities
in the expression (4-53), and the expression (4-53) reduces to:

q;=0. (4-55)

This means that the thermal process taking place in the system is adiabatic.
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Accordingly, the expression of heat flux (4-50) or (4-53) is the generalized
Fourier law under the rapidly changing thermal field. The expression (4-50)
or (4-53) can describe the general thermal conditions under which the real
thermal processes take place. Thus, the equation of conservation of energy is
expressed in a hyperbolic form and not in a parabolic form, only if we take the
expression of heat flux (4-50) or (4-53) into account.

Under the consideration of egs. (3-12), (4-19), and (4-53), the equation of
conservation of energy (4-10) is written as:

f o Cre’D N AS |y s b5 "D \d.Eu -
[‘C’+Z 140D | gp T\l +% 1+79D 1 at l

A D 23 wmD
gm0 - 42 lw)*k it

m ’ n ,_‘
SFD IS . g_.:]f'(?,pﬁ“u-; \a":" Ry A% (4756)

V. Application to Supersonic Waves

The fundamental equations of the supersonic waves under no body force,
which state the conservation of momentum (3-13) and of energy (4-10), are
expressed respectively, in linear forms,

o°8; _ 9Aij _
TS T oms (5-1)
asxj -
o at A:] +KA79 (5 2)

where the expression (4-39) was used for the heat flux vector. The change of
density js related to the strain through the equation of continuity:

op our _ ~
o TP =0 (5-3)

with u#i=82i/ot (i=1, 2, 3).
Putting the expressions (3-12) and (4-19) for the stress and the internal
energy into egs. (5-1) and (5-2), we obtain'?, retaining the small quantities

of first order:

'8 5 D 2¥, wmD Dkl
=1{h _— I AT e
P o { D T A ke ‘”D} oni

e o /er a&u _ 1\ Q’r.D 819

+2 _ar -4)
§ 14D 2x; = 1+D ox’ (54
and
Crry o b7 =" D sij Derk
e[+ BTN + ot BTN 5 - - 2 o,

(5-5)

If we take the wave of volume dilatation, we obtain, from eq. (5-4), the
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following equation of motion:

n

82 d 4 ”1 #rD <V Q’rD
_AD D rd) (5-6)
Y <k°+z 1+er o AT “‘D)Ae’”e 21 .op A

Owing to the scalar property of the thermal expansion, which appears merely
in the diagonal parts of stress tensor, the explicit temperature term plays rather
an important role in the equation of motion of the longitudinal wave. While,
in the shear wave, the temperature term makes no contribution to the equation
of motion.

As a special case, we shall take the plane wave, progressing into the +x-
direction with circular frequency o:

_ 2 _ o _
n=5 ox:  Oxs =0,

& = P, eeexp Lint — Bx], &=8=0,

0T =19 = R 9exp Liot — Bx],

epp =& = — PIeexp Lint — Bx], T m(BY>0
gij = 0. (except i=j=1)

(5-7)

The equations of motion (5-4), and of conservation of energy (5-5), are:

n

' e
po—a%“su— (kn"l S‘ A-D 4 >_|—"L'h )AEH 2 - «; D A, (5-8)

1+er 1+<'D 1+4'D
and
& Ci' ' Dy o bl Dy Ge Do e P
Co+ )2 Er ) bo+> r 2 o P % 4 E AR (5-9)
( ! _’1+ =D ot (“ r11+r£"D) ot oo Ot + 0o v

Putting eq. (5-7) into egs. (5-8) and (5-9), and neglecting the terms of
higher order, we obtain:

i

2 A 43 dou 71.. iwak
k ik A5y $=0, (5-10)
{”°“’+(° :2:1+sz+3%11+1' ) +,>:11+z B (

and

- sz( Po + b+ 21 ;ajf&:rm )E + {i"’(CO % ficl:;;rs: ) - :0 82}'9 =0

{5-11)

Considering that the simultaneous equations (5-10) and (5-11) have non-trivial
solution, we see that § is to satisfy the following equation:

|

Ly AR o dway |
oo+ AP z—'{ 1+zw»rr2' B
=0, (5-12)

— iwpB, zw\Co+ }.: oGy rr(s, ) - =g

r=1 l-rw)t',

i.e.
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n

- S Af'+ H 10Cq — éfuic'r 2l }A — k0’ — Eﬂ 1B Bj}Bz +

Po ra1 1+ dory! =1+ der?
. 3 Lo 0Cr ~
+ 1w OG(CO Trﬂﬂi;}]ﬁ’_) —0, (5 13)
with
i . 1 ™m 3 !
A 4 1wy
A=Fhy+ > 04 A
= i WA, 33 14 dwe’
and
iwbl "
B=P0 g >yt o
, rzx} 1+ jwr

In this equation, if we take x—0, which approximately holds for non-metalic
liquids such as high polymer solutions, then we obtain:

2 1 . I m . ! n . 7
2 @ iwly 4 10pr iway b,
== — +|1- —_— = e R 2 e X
vy [ r=1 ko(14twtr) 373 k(1 + o) K g Ry Co((1 + ey
N P & ek o 2 iwCrri -t
X1+ e DT |« (1] — ) (5-14)
( o p0bo :gl: bo(1 + it ) ( N rZI Col1 + i) ) ]

with oy =vko/po .

Accordingly, the wave-velocity » and amplitude absorption coefficient « per
unit length are given respectively:

«

T TaB)

v (5-15)

and
a=.%(B). (5-16)

v,/ Ve
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FI1G. 5-1. Sound Velocity versus Frequency.
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FI1G. 5-2. Absorption Coefficient versus Frequencv.

In the special case of r=r =" =", 8]’ =C,=0, and bo/Co<1, the plot of
v/ve versus w, and the intensity absorption per unit wave-length 2a/.7x(8) are
shown in Figs. 5-1 and 5-2 for four values of rheological constants. The curve
comes essentially from the equations of motion (5-8), and it is interesting to
mention that the curves are very similar to those obtained by Kneser on the base
of quite different point of view, where Kneser used the so-called dynamic specific
heat.

In general, the partial elastic moduli, which represent the rheological character
of the media, are smaller than the static modulus ko. Accordingly, we can put:

Mg, ﬁ:—<<1, and %ﬂ <1. (5-17)

ko R 0
In the similar manner, we shall also take:

7)
—‘é:—<<1. and 2 <, (5-18)

which are considered to hold for most kinds of liquids.
By expanding expression (5-13) in powers of Ar/ko etc., and retaining the
terms of first order in Ar/ko etc., we obtain:

3=i“i{1— 1 < dodf 2 ™ dop 1 < dwarb
Vo 2Ry r=1 1+iwtr 3 ko »=t 1'+t'a)rl,-n 2koCo r=1 l+ia)t'(r2’
_l < dvay 1 <y dwarh (L & dwbil'
2 pobokoCo 7=t 1+ imry” 2koCo i 1+ iwry” \ by r=1 1+ iwr,”

- Ly eCror ) (5-19)

PNE]
Co =l 1+ i
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where v, = vko/p, is the velocity of longitudinal wave at low frequency.
From egs. (5-14), (5-15), (5-16), and (5-19), we have

FER RS et g B Hja;m > b;' T g -
and
afg%f+%§2$i1f§32‘%§%?1+§mfiﬁzx
E?%§%7*'2222§2'1+;%w~ sé%‘EM%;%ﬂ} (5-21)

The first and second terms of (5-21) are due to the volume and shearing
viscosities respectively, and correspond to the terms obtained by Frenkel®,
Oshida™®, and Sips'®. The third and fourth terms are mainly due to the work
done by thermal expansion by Takizawa'®®, The sixth is the one from the
relaxation of specific heat, corresponding to the term due to Kneser®92, The
temperature dependence of wave-dispersion and of the wave-absorption in various
kinds of liquids may be also explained by the varlatlon of rheological and
thermodynamical constants in the present theory.

At the sufficiently low frequency, expression (5-20) reduces to:

2@ 3 3 P a 3 aiby

“= 37;600{ R MLV I

4—u;+—§§z;+--- 4 -2

The quantity p; corresponds to the usual coefficient of viscosity, and the first
term gives classical absorption. While A; is the volume viscosity, which vanishes
in most kinds of gases under the wave field of very low frequency.

The relaxation time for ordinary viscosity of liquids is very small, being
approximately «{”= 107" sec. ~Accordingly, at the frequency of the supersonics
region of w=10°~10% cycles per second, we have wrl’<1.

If we take /[=m=2 and n=1 in eq. (5-21), we obtain:

’ / @ '
12 Lo ' po . a1 T . 1 }
>

3
8 R 4 1+ 7 o G 1tote??
(5-23)

a 1
= A
o* 21}000{ ity

which are considered to hold for almost all kinds of liquids.

In many kinds of liquids at ordinary temperatures and pressures, however,
the quantity a/»* does not change appreciably with increasing frequency up to
the supersonic region: w= 105~10’~‘3 cycles per second. This fact shows that the
numerical values of wr;, wr;'’, and wri” etc. are comparatively small in most liquids.
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VI. Hypersonic and Transverse waves

Elastic waves, the so-called hypersonics®™ or ondes thermiques® ™™, which
have the frequency of 10°~10" cycles per second, constitute the main part of
thermal motion in solids. It is also believed for the elastic vibration to exist
in liquids, whose frequency is of the order 10 cycles per second. Considering
the quasi-crystalline structure of liquids, we may consider that the Debye theory®
of specific heat can also approximately hold in liquids. ~When the wave- -length
becomes shorter and shorter and reaches the value comparative with the molecular
spacing in liquids, we regard such waves as waves of thermal motion or ondes
thermiques. The critical frequency, under which the ondes thermiques exist is
about 5x10% cycles per second in usual liquids, and in crystals it can reach 10
cycles per second. Accordingly, the treatment developed here, considering liquids
as continua, can be a good approximation even at the high frequency of hyper-
sonics. And, the Debye theory®” can be considered to hold approximately in
liquids as well as in solids. Thus, the waves of thermal motion can be decom-
posed into three waves, one longitudinal and two transverse.

At sufficiently high frequencies, we may expect that wrP>1 (£=0,1,2,3,4) is
maintained. In this case, from egs. (5-13) and (5-23), we have:

i m n -
2 S W e bo arbo
—_— — ————-—- A s LTl e e s 6~-
8 (1+mk0+31>3 0+(1+ pobo)rglkoCoT | IRGEY)
and
L b 2 &
T T.® [H 2k rzf’ 3 ko ?3””
b v b e —g
ZkopoCo %“r ZkoCo %arjﬂ ] (6-2)

Because the value of 8 is almost purely imaginary for extremely high frequency,
the wave of such a high frequency hardly suffers from absorption:

a=0. (6-3)

The expression (6-2) also shows that the hypersonics propagate with higher
velocity than the velocity vo of the ordinary sound wave.

In the frequency region of hypersonics, the transverse wave is also very
possible to exist. Because of the fugitive nature of shearing rigidities of
Maxwellian relaxational process, as we know from eq. (5-4), we see that the
equations of motion for the transverse wave read as follows:

o - e’ Do B}
Po— 5t 722 1+T(“D szJ, (6 4)
with
-
mi=5(2l-SL). G =123 (6-5)

Taking the progressing wave into the -+x-direction,

@ij = R wijrexp Liot — Bxd, T m(B)Y>0 (6-6)
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we have the equation to determine f3:

m - (1)
2 2N LTy Uy _
—pw =g 2 (6-7)
r=1 1 1wty

Accordingly, the velocity v’ and amplitude absorption coefficient ¢ per unit length
of the transverse wave for such high frequency wci">1, are given respectively
as follows:

F R w — E/lf 6‘8)
U= o - =1 , (
T mB) o
and
a =0. (6-9)

In this case, the changes in density and in temperature caused in liquids
are related to the strain by egs. (5-3) and (4-26), respectively. Thus, it is
considered that the term in eq. (4-14) and especially the terms involving dsij
({=3) in eq. (4-14), which appear in the expression of internal energy (4-19)
and (4-34), play rather an important role at the thermo-mechanical process of
extremely high frequency.

Of course, in the equations of state (3-12), we may take the stress tensor
corresponding to the thermal expansion, which has non-vanishing off-diagonal
elements containing temperature deviation. Here, however, we have taken thermal
stress having simply diagonal elements in the stress tensor, so that the explicit
temperature term should be vanished in the equations of motion of transverse
wave. If the thermal deviation or fluctuation from the state of thermostatical
equilibrium becomes large enough, so that the tensor quantity corresponding to
the averaged momenta of constituent molecules should be taken into account,
then the tensor of thermal stress may have some fugitive off-diagonal elements
in the expression of stress tensor (3-12).

In crystals, there exist three velocities of component waves, corresponding
to one longitudinal and two transverse waves, and three Doppler-doublets®®
appear in the experiment of monochromatic light-scattering® 92,  Then, follow-
ing to the Debye theory®?, the thermal energy in solids is distributed in these
three waves. If there were no transverse waves in liquids, the specific heat of
liquids should become far smaller than that of corresponding solid bodies®®.
In reality, no such a case occurs. Accordingly, if the Debye theory holds
approximately in liquids, the transverse waves of extremely high frequency do
exist in most liquids. In such a case, the off-diagonal parts in the thermal
stress might be comparatively effective.

VII. Thermo-elastic Waves in Liquids, Specific Heat and
Thermal Conductivity of Rheological Bodies

As was already stated in Chapter VI, many experimental evidences concerning
liquids so far obtained have manifested the fact that liquids are more similar to
solid crystalline bodies than to compressed gases at ordinary temperatures and
moderate pressures. The thermostatical and thermodynamical characters of a
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liquid, for example, resemble themselves especially to those of its corresponding
solid phase. At temperatures lying near the crystallization point, a liquid must
be more similar to a solid crystalline body with respect to its structure, character
of thermal motion, and many kinds of mechanical properties. The application
of the method of X-ray structure analysis to liquid bodies has elucidated the vivid
image of liquid structure that the liquids consist of a very large number of
randomly orientated crystals of submicroscopic size, smaller than 10? A in diameter.
And this can be interpreted also by a very close similarity in the X-ray diagrams
between a liquid phase and its corresponding solid phase.

The hyperfine structures observed in the spectrum of the scattered mono-
chromatic light have directly proved the existence of the thermal motion or
thermoelastic waves in liquids. According to the theory of specific heat proposed
by Debyes?, the thermal energy of solids is distributed among three thermoelastic
waves in liquids, one longitudinal and two transverse. The fact that the difference
of the specific heats between a liquid and its corresponding solid is rather small,
leads us to apply the Debye theory® of specific heat to liquids, which takes into
account the thermal vibration of the constituting atoms or molecules of solid
(crystalline or amorphous) structure.

In the case of liquids so similar to solids in their structure, it is quite
suggestible to estimate the internal energy, which is supposed to be consisted
of the thermal waves in liquids. Thus we can calculate the specific heat of
liquids according to the method analogous to that of Debye even in such phases
as of high viscosity and of rigidity of fugitive nature. At the starting point of
calculating the specific heat, Debye? took the expression of perfectly elastic
body in solid phase. On the other hand, Lucas® started from the expression
of Stokes, applicable to viscous fluids. Brillouin® considered that the compres-
sional wave still remains in liquids but the two transverse waves are degenerated
into the rotation of molecules, also having its kinetic energy. Oomori® took
into account the equation of state for plasto-elastic body presented by Frenkel-
Obratzov?® in his papers of thermoelastic waves in liquids.

In the present treatment of thermodynamical characters of liquids shall be
conveniently applied a generalized equation of state, i.e. stress-strain-temperature
relation, which Takizawa!®'® proposed to include Frenkel-Obratzov’s® and Oshi-
da’s™® treatments as special cases. Moreover, the expression used by Takizawa'
also includes the terms of dynamic specific heat of Kneser®%293% as a special
case. Starting from these macroscopic equations of state, one can calculate at
once the velocity of the wave-propagation and the absorption coefficient in the
medium. The results obtained have a favourite characters®™ both of Frenkel's
and of Kneser’s theories.

Specific heat of liquids, in which the thermal waves exist, can be calculated
merely by counting the number of phonons in liquids. In the liquid hydrogen
and liquid hellium, however, the quantum effects predominate. In this chapter
we shall be concerned merely with the liquids in which the classical treatment,
as Debye mentioned, can be still available. The quantization process is main-
tained by taking the classical quantum assembly of thermal waves, i.e. phonons,
into account. In such a treatment, the method applied can describe the thermal
and mechanical behaviours of almost all kinds of liquids at moderate pressures
and temperatures.
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The generalized rheological equations for an isotropic amorphous body, which
describe the mechanical behaviour of macroscopically continuous bodies, shall be
adopted in the present paper. These equations are already mentioned in the
preceding paragraphs as the expression of components of stress tensor (3-11)
and that of the increment of internal emergy in the macroscopic sense (4-33).
In these equations of stress and of internal energy the thermodynamical characters
of the media, in which the mechanical and thermal processes actually take place,
are all assumed to be subjected to the Maxwellian relaxational process, i7.e. the
rheological constants and thermodynamical coefficients are all considered as
operators of Maxwellian type accompanied by relaxation times (3-12) and (4-34).
It should be mentioned here that these equations can be also conveniently applied
to the solid and gaseous bodies as well as liquids, mutatis mutandis. In other
words, taking suitable numerical values and their dependence on temperature in
the rheological and thermodynamical coefficients in the above equations, we have
the expressions of the states of the gaseous, liquid, and solid bodies, respectively.

At first we consider the classical quantum-mechanical assembly of the elemen-
tary waves, which can be permitted to exist by the differential equations above
cited. Then we shall treat the specific heat according to the theories of Debye,
Brillouin, Lucas, and Oomori. The treatment of specific heat of liquids in the
manner analogous to that of the corresponding solids, can be considered rigorous,
as we take into account the quasi-crystalline structure of liquids, their thermal
and mechanical properties and so forth.

The linear equations of motion and of conservation of energy!®»!® in the
macroscopic sense, are expressed by (5-1) and (5-2), respectively:

o

g 044 _
Po5E T Tox; (7-1)
and
oU _  , Oepk _
pa"'é-t—— poﬁ "}‘ﬁAly, (7 2)
where

erk = &1+ o2 + €32

Inserting the expressions of stress (3-12) with #=0, and of internal energy (4-34)
into egs. (7-1) and (7-2), we obtain the equations which govern the dynamical
characters of liquids.

Taking sinusoidal motion of plane wave, progressing into -xi-direction,
we put:

g1 = R 2™, T u(B)>0, Re(p)>0, (7-3)
o a* _ s o _
X=X, "ag = *‘8}63 =0, &= &=0, and Ekk = £11. (7 4)

On the other hand, as for the transverse wave we put in a similar manner:

~ o 1 afj ...,_a,;:i - ~ . Twl—(3,% s g
917 = 5 (g 896;') =He by, j=1,2,3)

T m(B) >0, FHe(B2) > 0.

(7-5)
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Taking /=m=1, and no thermal expansion in (3-12), and making use of
equation of motion (7-1), we obtain the velocities v: and v: of longitudinal and
transverse waves, and the amplitude absorption coeflicient per unit length a: and
a: of longitudinal and transverse waves, respectively:

® 1 A o' 2 W riV? .
= =3 1 el e S (et o oA S 7-
v T m(B1) v { * 2 ke 1407 3 ke l+oof? }’ (7-6)
5 1 2 T 2 oV
a :Q% = @ o ——¢ Lo L W'—/;z}--‘"——*—"l” "7
! 6(81) Vo { 2 ko 1+(DZT% + 3 ko 1_}_&]2?;1)2}’ (7 )
I
v = j:(ﬁz) :/2/11;01 w .[\/1_*_602?{1)2 +w‘r§1)]—1/2, (7-8)
and
ar = Re(B2) = N/‘Z‘(,’i%” V1 + o'Vt — w1, (7-9
T1
with vo = Vhko/po .

The expressions (7-6) ~ (7-9) are derived under the following assumptions:
(1) The thermal conduction corresponding to the external degree of freedom
of the constituent molecules is of negligible order.
(II) Among the rheological and thermodynamical coefficients the following
relations hold:

~2;— <1 and Jk% <.

Thus we can neglect small quantities higher than the first order of these
terms. In usual liquids, the first assumption was assured by Takizawa® with
the theoretical calculation even in the extremely high frequency such as over
102 Hz. The second assumption is considered to be usually valid in almost all
kinds of liquids.

Combining the theories of specific heat due to Debye, Lucas, and Brillouin,
and applying the fundamental equations of state (3-12), we can further proceed
in computing the specific heat of liquids, quantizing the longitudinal and trans-
verse waves in the isotropic body. We shall confine ourselves to the considera-
tion of specific heat and viscosity of liquids.

The internal energy E of liquids per unit volume is written by:

E=E;+ E:, (7-10)
w2
E,=4njo o 2(2)d, (7-11)
and
w
Etssngo L (7-12)

where E; and E: are the thermal energies of longitudinal and transverse waves,
respectively. v represents phase velocity and W group velocity of the waves,
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The suffixes / and ¢ distinguish the quantities corresponding to the longitudinal
and transverse waves, respectively. The weight function g(») for the frequency
v comes from Planck’s law. »* is the cut-off frequency, which originates from the
finite number of degrees of freedom in the system considered, and is written by:

3

vi=oe ()"
and (7-13)

. 3N 1/3

v = (ar)

where N is the Loschmidt number, M molecular volume of the liquid. The
expressions (7-13) satisfy the following condition for the total degrees of freedom
of the molecules, i.e. for the total number of the stationary waves:

3N Y4t YT 8 ot
= 1 d . -
o L s dm-jo T o (7-14)

The cut-off frequencies »; and »; are determined by use of egs. (7-13),
(7-6), and (7-8), and satisfy the following equations:

__z'.?i_. =1+ _L. 3 .*M + g.ﬂ.~M
vod 2 ke 14 (pr)* 3 ke 14+ (g’
and
* E3 e
2 B T @Y g1
i.e.
sy i LA (o)’ 2, m, (qud)’ _
R L R e ey A VLA R 1+(qvo/1)3}’ (7-15)
. 2 —1/2
vi = _2_/:@1./12.[ 1+ iﬁi_q_‘/ﬁ] , (7-16)
0 0 ;

with p=2nt, ¢g=2=c", and 4= (3 N/4 D))"

Thus the limiting frequencies »; and »/ are determined as functions of =
and «i”. Accordingly we can also find the temperature-dependence of these
frequencies, if we find out the temperature-dependence of =; and {" (cf. eq. (7-25)).

In egs. (7-11) and (7-12), the group velocity W of waves is defined by:

L _A) 43

WS T T de (w=27rp) (7-17)
The weight function g(») is expressed as follows:
gly) = bizzv e “é?‘y*; (7-18)
exp [»k—;: } -1

where /2 is the Planck constant, and % the Boltzmann constant. At elevated
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temperatures we can put g(v)=k7.
The expression (7-11) becomes to:

4 7k T(w])? 3 A (ppf)* M (gv])? (7
= AT L (]~ et P D e -19)
= 3 v {1 2 ke 1+ (pvi)? ko 1+ (qvf)* }
with
D=2 rt, q=2n"r§1)
and (7-20)
Vo = \/ko/po .
The equation (7-12) is written by:
(1) —3/2  avgt
Es = n-l;T( .uﬂ; T ) .SO D2 [T (@0)E -+ @I+ [1 + (gv) 1™y =
*\3/2 ———
__ FTG) VI (go)? + g7, (7-21)

T 3Dy Voo
with Vtw = Np1/ko .

The temperature- and pressure-dependence of the material constants appeared
in the equation of state and in the expression of macroscopic internal energy,
are not known precisely, but at temperatures near the fusion point, liquids being
very closely similar to solid bodies in their structure, we can put:

T > +OO,
in eq. (7-18), and obtain:
. ATkTGH? 3 A 1 V2w 1
Ei= = 1— S {1 — - - .
! 30 [1 2 ko {1 (2 rywf)” ; ko {1 2 eV uf) H
_, AmkTW))* -‘[1»« 3 A zm]
308 2 ke ko
_ N ;
=3 ET. (7-22)

In the expression (7-22), the internal energy appears already in Debye's
expression in the first term, and it is clear that eq. (7-22) approaches to the
expression of internal energy of a solid body, as " tends to infinity.

On the other hand, in liquids it is more interesting to consider the effect of
transverse waves than that of the longitudinal one.

Considering the approximation:

rﬁ“ > 00,
in the expression (7-21), we obtain:

8 nkT(p})?

3 .
= . 7-23)
Er= 3U§m [1*{' 382 nz_{]_)y;k z] (7-2
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.8 kT (v}
3 U;m

2N
=S ET. (7-24)
The expression (7-23) corresponds to the expression presented by Lucas, and
eq. (7-24) is just the contribution to the internal energy due to the transverse
waves in a solid body, as Debye mentioned.
The temperature dependence of a relaxation time is expressed, according to
Eyring®, as follows:

r::r*~exp[!%§i], (7-25)

where U* is the activation energy corresponding to the transition of a molecule
from an equilibrium position to the other adjacent one, and is perhaps of order
of magnitude of 0.1 ¢V.  represents the mean life of the molecule at an equi-
librium position. ¢* is the period of oscillation of the molecule at the equilib-
rium point.

From egs. (7-10), (7-19), and (7-21), we obtain the molar specific heat at
constant volume Cy:

vaM“aﬁ 47FkM o { T(D;:)S { 3 11 (2 7?‘{'11)?)2 2/11

a2, — X
oT 302 T 2 ke 1+(znﬁy?V ko

(2 etV ui)" . kM T (i ST TR %
— (gz‘;f(rl)’l o }J g 5? f’fﬁ/? N1+ @2 a0 12720, }3/2]
(7-26)

In the irreversible process, in which we are interested, the absorption coeffi-
cient ¢ plays rather an important role. This quantity is directly measured by
the experiments of supersonics and hypersonics.

By applying the formula of thermal conduction in solids, which we owe to
Brillouin®, to liquids, we obtain the thermal conductivity in liquids,

£ = k1 Kz, (7-27)
_dr (™1 o1 » . =
F=737), Zar BT Wiu g(y)]dy, (7-28)

8 et 1 ) 2
n=—§502m'aT[w%wg“ﬂ”’ 729

where 7 and : represent thermal conductivities due to the longitudinal and the
transverse waves, respectively. From egs. (7-28) and (7-29) we have:

5, 2wy, 2wy, (7-30)

K] = 3

Q(Z’I*’ b, q) =

15} _ 221.ﬁ2v2 _ 8,u1.q2v A DY Awm g
=SmaT[T{1 Rt TR B TR M i al
0

dv,

(7-31)
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with G=1+p*»* and H=1+4"»", and

V2. [V1+ @ariV)? +2 a1 x

=
o

Y EYPES
_ EVre® S”

3vis Yo

__a [T{‘/1+ @nri"n)’ +27cPu) (7-32)
2 neiV1+ (2 —n‘” »o

with vee = Vu/00.
If 'we consider the limiting case:

Py <1,

which means that the effect of shearing viscosity predominates in the medium,
the expression (7-32) reduces to:

_k 7 9 _Z:_ V()32 -
ke = Wn:\/ﬂm ‘a‘T*< " ) (), (7-33)
with shearing viscosity s = ti”. The expression (7-33) corresponds to the

expression of thermal conductivity at elevated temperatures presented by Lucas®™.

In addition, we can see that, as an approximation for small (ri"»/), the
quantity x: is roughly equal to (7-33) times {1+ O(zi"»})}. Thus the term
O($V55), shows the order of magnitude of the effect of shearing relaxation on
ke for hquids, when (r{" /) is small.

For many kinds of liquids at ordinary temperatures, we can take:

' =107" poises, 7 =10"%~10"" sec., P =10""~10"" sec.,

1

v} =10" sec.”", and vit = 10" sec.”"

Accordingly, we obtain rp*=10?~10°. This figure shows that the terms (zp*)
hardly contribute to the curled brackets in the expressions of internal energy,
(7-22) and (7-22'). And the numerical value of (7-22) is almost equal to (7-22'),
which includes partial elastic moduli 41 and u:. For some solutions of high-
polymeric substance, it happens sometimes that " is of order of magnitude
10-7~10-% sec., and the value of (¢{”»;f) reaches to 105~10% In this case, the
expression (7-23) does not differ numerically from (7-24). Thus we can see
that calculations of specific heats by the methods of Debye, or of Lucas, are
valid for many kinds of liquids exhibiting relaxational properties.

VIII. Theory of Amnisotropic Rheological Body

The extension of our theory to the anisotropic rheological body is quite
obvious?, The visco-elastic constants and coefficients of thermal expansion in
the relation of stress-strain-temperature are tensor quantities in an anisotropic
body. Accordingly, one can take into account the rheological operators discussed
in the preceding chapters and make all of them to be the operators of tensorial
character. The operators corresponding to the so-called dynamic specific heat,
the quantities &’s in the expression of the macroscopic internal energy, and the
operators corresponding to the thermal conductivity, are taken to be the operators
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of tensorial character.

In rheological media such as visco-elastic bodies, if the volume dilatation is
produced suddenly and kept constant (i.e. kept in an isostrained state), normal
stress decays after a sufficiently long time and finally vanishes. While, in liquids,
pressure also decays after a sufficiently long time, and does not vanish but finally
approaches to a constant value, still remaining finite. This is the main difference
between solid-like (visco-elastic) and liquid-like materials. In the following we
shall be mainly concerned with the equations of state for liquid-like and solid-like
bodies, respectively.

Equations of state for Stress, Strain, and Temperature
The equations of state for an anisotropic liquid-like body are written, in linear
approximations®, as follows:

At = —Po’Bij+kQSkk(t)’aij‘f‘é(l;}:} ezpr() — é T (D), (8-1)
affiran(t) = afe e = [0 W et =) v, (8-2)
QD) =l ‘ﬂu)—g Oy It — ", (8-3)
aliy = ayi; = al, (r=1,2,3...,R (8-4)
o} =alfp, (i, 7, kb 1=1,2, 3 (8-5)

with initial pressure po.

The third term in (8-1) accompanied by relaxation functions comes from
the elastic relaxation of the media, while the last term expresses the relaxation
of thermal expansion.

While, we can write, in an analogous form, the equations of state for solid-
like body with a slight modification of the rheological coefficients a{},; and o)

AU ll) ——Z(Z,]kr E:}el f) 26(”) '73(1‘) (8—6)

The summations in (8-1) and (8-6) can be replaced by Stieltjes integrations
when the distribution of relaxation functions is discrete in some region and
continuous in the other.

Equations (8-1) are reduced to egs. (3-1) for an isotropic body:

1
Aij(8) = = po*8ij+ ko* err8ij + {Z 2= E um*} epp(t) « 855+

2 0 u ey (1) — Ea‘”*-ﬁu) *3if, (8-7)
=1

r=1

A e () = 27+ f (D) — (0 B e~ 1 dt'

U ——

1% i () = u'”- {egﬂt) — S:gb(')(z") ceii(t— 1) dt'}, (8-8)

aMFeI () = {ﬁu) S () o3 ( t—t/)df'\
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al} = a5y, (8-9)

with partial coefficients corresponding -to Lamé’s constants A® and 2%, and
partial coefficients corresponding to the isotropic thermal expansion a®.
In a solid-like body, egs. (8-6) are reduced to egs. (8-10) for the isotropic case,

)I . m n
Ai(t) = {21/1"“—— z; -ekk(t) 8ij+ 2 Zum*u&‘;(t) StaE G (0845,
= = =1
(8-10)
with a slight modification of A%, u*, and a*.
For the sake of simplicity we shall consider in (8-1), (8-6), (8-7), and (8-10)
the Maxwellian relaxations:

e—t'/r;"‘),

f(r)(t,) - __(7)_

r 1 -7 r
g( )(t’) =5 o [, )’

B4 = — —1/7,(T)
(" T(,) gt

3y

Py o L
P = e
4

with 7's all positive.
Then, considering the oscillatory motion of the system, all the operators with
superscript #, can be written symbolically by the integro-differential operators:

(r) ( (r)?
a(”)]%; — at;kl TIr)D — z?J‘IlD
1w 1+¢7D 1+«"D’
{ (:
e _ el D
Y 1+’ D’ (8-12)
-1
;((r)* B A(”r({)D _ ~(f)rD
1+77°D  1+'D’
ﬂ(')* _ (r) (7)D _ ﬂ(r)lD
1+r‘”D 1+2"'D’

with D=0/ot, where a7, A7 and 4™, correspond to the partial coefficients of
7
viscosity.

Expression of Internal Energy
If we take, as usual in the thermostatics, components of strain eij and
temperature deviation ¢ as independent variables in the expression of internal

energy U per unit mass, we have:

av = (L) -ar+ (ZL) -dei, (8-13)

where suffixes ¢ and T outside the blackets mean the iso-strained and the
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isothermal state, respectively.

In the present theory of an anisotropic rheological body, we can interpret
that the term (2U/9T): is the operator C* corresponding to the specific heat at
iso-strained state, while the term (9U/2=:;)r is the operator bj; corresponding to
the term which measures the effect of deformation of the body at isothermal
state. These are written as:

C* = 30, (8-14)
Cr () =0 p) — T -9 —mar, (8-15)
Y0
and
:j“‘bi_y Ebw‘)"y . (8—16)
b7 ey (1) = b7+ {e;f(f) - SO T it — l")dz"}, (8-17)

as mentioned by Takizawa®.
The operators in (8-14) and (8-17) can be reduced to the following expressions:

C = “”l“j_“;(;)D (8-18)
and
. b(?‘! ‘(f)D
(Fys i7 s _
bii " = Taa D (8-19)

if we take the Maxwellian relaxation functions:

g, (8-20)

- 1
f(7)(tl) — -

and

FOW) = gt (8-21)
Tg

and consider the oscillatory motion of the system.

Heat Flux
The expression (4-49) of heat flux for an isotropic material will be generalized
to the anisotropic case, and is written as follows:

N P A {S (’>(z'>-79(z~t')dt'} {8-22)
&= r=1 7k Bx

with heat flux vector ¢; (j=1,2,3), the tensors of thermal conductivities «%;,

(4, k=1,2,3; r=1,2,3,...,p) and the relaxation functions o™ (#) which satisfy
the conditions:

g msﬂ‘“ () dt =1 (8-23)

0
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Taking Maxwellian relaxational processes:

GO = e (r=1,2,3, ..., ) (8-24)
T

and considering the oscillatory motion of the system, we obtain, from (8-22), the
following expressions:

gi= -2k .00 (8-25)

The expression (8-25) is a generalization of eq. (4-48) or (4-49) for the
anisotropic materials. If we put p=1 in eq. (8-25), we have the expression for
the anisotropic body proposed by Kaliski®,

Applications and Discussions of the Theory of Anisotropic Rheological Body

The simultaneous equations (3-13) and (4-10) with egs. (8-6) and (8-13)~
(8-17); or with (8-12), (8-14), (8-16), (8-18), and (8-19), are generalized funda-
mental equations of motion and of conservation of energy for anisotropic rheolo-
gical media. These, when simplified, can be applicable to the theories of surface
rheology of mono-molecular layer of macromolecules such as presented by
Tachibana-Inokuchi®, Oka®, Oka-Satd6™, and Frenkel®, and also may have
some contributions of acoustic (ultrasonic) birefringence in high polymer solutions
and highpolymeric substances. The rheology of solid crystal-like materials is
also involved in the present theory, mutatis mutandis.

When the process occurring in the media is isothermal, ie. §7=0, eqgs. (3-13)
with eq. (8-6) can be simplified, and eq. (4-10) shall be omitted. For the sake
of simplicity we shall take the Maxwellian relaxational process and consider the
progressing sinusoidal wave with circular frequency w. Then, as is well known,
owing to the symmetric property of the matrix ai};, we see that there exist
three waves with different velocities, whose planes of oscillation are perpendicular
to each other. Moreover these waves show the dispersion and the dissipation
because of the existence of the complex elastic moduli:

(2

(7% 10a5; 0 P
aiip = —2 . 4, 5k, 1=1,2,3)

1+ twty
When the initial stress of finite magnitude is distributed in the solid-like

media, we have the equations of motion in the isothermal process according to
Sakadi’s formalism™:

il DA
L= — e

0Aij
Oo of

% + OWjk
ox;

Oxk Oxk

+00(Xi — e X7+ 35X 5),
(8-26)

where A;; is given by egs. (8-6), X:(x") body force per unit mass at initial
~oordinate point x' and X;(x) body force at x in a strained state.
At the reference state in equilibrium with initial stress, we have:

o Db
A3+ 5 Al

2A5(x)

o = 0. (8-27)

00 x) X3 (x) +
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Here the initial stress is expressed as Aj;(x/) at initial coordinate point x’,
oo(x") being the initial density.
Boundary conditions state:

Fi—Fi= —enp Afj+emnyni F; + on Fy+n5 Ay, (i=1,2,3) (8-28)
with initial conditions at the mechanical equilibrium:
F;=u3A7, (i=1,2,3) (8-29)

where 7; are direction cosines of the outward normal to the boundary of the
unstrained state; F; and F; surface tractions at initial state and at strained state,
regpectively.

Due to the existence of the initial stress, the progressing waves such as
surface waves actually damp, and moreover the fugitive character of rheological
stress A;; makes the damping more rapid. Egs. (8-26) may be quite useful in
practical problems occurring in many engineering fields.

As a special case, with isotropic stress (8-10), we have from egs. (8-26), by
using complex Lamé’s moduli 2* and u"*, complex velocities of three waves
for infinite solid-like media:

PR

/ . = E3 1 ) o
vi= ui—)% ,  with m :r};lu(”‘ -5 (Bh— Bss)f
/H/ﬁ n
= [t i = ox _ Lipe _ pe
vy = \/ 00 with L2 —-7§¢U 5 (B2 — Bi), (8-30)
and
A . S Lo,
7)3:\ — with 1222\ +2 “ ’
90 r=1 =1

if we take B7, =0 after suitable coordinate transformation, Bj; being the trans-
formed initial stress, and X; and X; being put equal to zero.

Starting from egs. (3-13) with eq. (8-12), or with egs. (8-6), no temperature
terms and no body force being taken into account, we can see that the three
waves, one purely longitudinal and two purely transverse, are obtained after
suitable orthogonal transformation of coordinates. Calculation of the transformed
elements of the matrix «}),] can be quite analogously carried out as in the case
of elastic waves in crystals™™%™, Once the velocities of these three waves are
determined, we can obtain specific heat of anisotropic media, when they are
solid-like or liquid-like, according to Debye’s theory® and Oomori’s treatment®
of the dissipative wave, as was mentioned in Chapter VII.

In the analogous line of consideration the surface energy of liquids can be
also calculated by wusing the relaxationally decaying elastic surface waves,
following to the method presented by Frenkel (cf. his book!® Chap. VI).

When no initial stress exists, the behaviour of the mechanical and thermo-
dynamical system hitherto considered, is completely described by the system of
equations (3-13) and (4-10) with egs. (8-6), and (8-13)~ (8-17); or with (8-12),
(8-14), (8-16), (8-18) and (8-19). This macroscopic system, however, is not
itself closed in the sense of thermostaics. Here arises a question how we can
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consider the system in itself closed from the viewpoint of the theory of irreversible
thermodynamics. Actually, the terms of heat conduction, fugitive specific heat,
bulk and shearing viscosities, and thermal expansion and conductivity of fugitive
nature, are present in our fundamental equations, so the dissipation of energy
and the entropy production do actually occur in our openm system. But, if we
take some subsystems characterised by some extra inner variables, including those
such as chemical potentials and some measures of excited states of constituent
molecules and atoms, we may set up a closed system as a whole. Meixner®™
considered affinities in the expression of internal energy and arrived at the
relaxation functions in the stress-strain relation after eliminating the linearly
decaying inner variables. He, however, did not propose any equation involving
thermal conduction. So, the expression of internal energy and that of energy
equation in the present paper are different from his expression in these points.

Taking into consideration some subsystems with a sufficient number of inner
variables and of energy equations, and those of entropy production in the
individual subsystems, we may be in the goal of the closed system in the sense
of the theory of irreversible thermodynamics, after eliminating a sufficient number
of inner variables, which do not fall under our direct observation. Thus, egs.
(3-13) and (4-10) with egs. (8-6), and (8-13) (8-17), although still remained in
the scope of an open system, should be reconsidered, if necessary, from the
view-point of a consistent theory of irreversible thermodynamics.

IX. Ultrasonic Birefringence in a Rheological Body under Initial Stress

The Dynamical behaviour of a solid elastic body under initially stressed state
has been already discussed by Biot™™ and Sakadi and Takizawa™. In the
present chapter, calculations are made on the velocities and absorption coefficients
of ultrasonic waves™ in a Maxwellian visco-elastic medium»?™  which is
initially at rest under certain initial stress. Two differently polarized waves in
a medium under initially stressed state have different phase-velocities. Accord-
ingly, one can observe the phase-difference of two differently polarized transverse
waves after they have travelled through the medium. The phase-difference is
proportional to the product of the wave-frequency and the difference of the
principal stresses.

By means of the expression for the phase-difference, one can obtain the
difference of principal stresses from the observed data of phase-difference of the
waves. Such an experiment for a perfectly elastic medium will be called the
acousto-elastic method™ %2 which is quite analogous to the photo-elastic one.

The superiority of this method to the photo-elastic one is as follows. It is
unnecessary to make use of the optically transparent models, such as models of
high-polymer substances. The method is practically applicable to the optically
opaque materials, such as metals, non-metals as well as organic substances.
The method enables us to measure the initial residual stress not only in a model
but also in any part of mechanical structures of complicated form, such as
buildings, bridges, and machines etc. The experimental device for this method
is rather simple, and one can make his measurement outdoors, without using a
dark room etc., ie. the method is quite convenient for field works.

In order to make more precise measurement in the acousto-visco-elastic
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experiment than the present one® ) it is convenient to make use of a number
of small mosaic crystals as detectors of the ultrasonics, so that one can cbtain
acoustical pictures (or its intensity distribution) on the detector surface. The
problem to be solved at present is to improve the precision of such a detecting
apparatus of the ultrasonics of high frequency.

Fundamental Eguations in a Visco-Elastic Body with Initial Stress

We shall take a solid body under initial stress. Let a; (i=1, 2, 3) be rectan-
gular coordinates, and the components of the initial stress be Af; (4, =1, 2, 3).
Let po be the density of the body under the initially stressed state. The body
undergoes infinitesimally small deformation from the initially stressed state.
The small displacement of first order is denoted by &, whose rectangular
components are & (i=1, 2,3). Components of strain &; (i, j=1, 2, 3) are:

L 1y eg 33 . B
eij = 2( v T a?.-,-)* (4, j=1,23 (9-1)
Further, we put:
. 1ro&  o% —_— ~
Dij = *2( o o ) (4,7=1,2,3) (9-2)

Let the components of stress be A;i; (4, =1, 2, 3), due to the displacement
& in the body.
a) If the body is perfectly elastic, we have from Hooke’s law:

Asj = lyerr*dij + 2 moeij, (4,7=1,2,3 (9-3)
with

ekk:€11+€22+€33=div f, (9‘4)
where A and puo are Lamé’s constants, and d8i; is Kronecker’s delta.

b) If the body is visco-elastic, which is subjected to the Maxwellian relaxa-
tional process (3-12) with ar=0 and [=m=1, we have:

A= (/20+ e é—u*>€kk’5ij+ 2 (po~+ 1) es4, (i, 7=1,2,3) (9-5)

where 1o and p are Lamé’s constants, and:

Zs: _ Xl TlD
= 14nD>
T (9-6)
M TzD__
S e

are the wvisco-elastic (integro-differential) operators, with D=d/d¢ (differential
operator with respect to time 7). A and w1 are extra elastic constants, corre-
sponding to the extra Lamé’s constants. v, and 7, are the corresponding
relaxation times with volume viscosity coefficient 4i; and shearing viscosity
coefficient ite.

¢) If the body is visco-elastic, described by the Voigt model, we have:
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A= (2t D= 2mD)ewsi+2 (w+mDey, (G j=1,23) (97

with volume viscosity coefficient #: and shearing viscosity coefficient 7s.

The equations of motion of the system under initial stress are given by
Sakadi and Takizawa™. The equations of motion read, under no external body
force, as follows:

2°¢i _ 2w oiji

O SE = om AU T oy Aki T o

0A% | DA

St o (1=1,2,3) (9-8)

where the summation convention over dummy indices is used, as usual in the
tensorial notations.

Here, in the present chapter, the author calculates the velocities, absorption
coefficients, and phase-difference of waves in a visco-elastic body, which is
subjected to the Maxwellian relaxational process (9-5). For the case (9-7) of
the Voigt model, calculations can be carried out in a similar manner.

Elastic Waves in the System with Constant Initial Stress

In general, the components Aj; of initial stress are functions of coordinates.
In this paragraph, for the sake of simplicity, we shall take Aj; (4, j=1, 2, 3)
to be constants.

By suitable orthogonal transformation (i.e. principal axis transformation),
we can choose such new rectangular axes that all the components of initial
shearing stresses should vanish. In the new rectangular coordinates x; (=1, 2, 3),
we shall take the components of the initial stress as follows:

A = const., \
A3, = const.,

. (9-9)
Az = const.,

Af=0. (i%7)

Let us take a plane-wave propagating into the --xs-direction, with circular
frequency w:

& =Cjrexpliot— fizd,  ReB)>0, Tulp)>0, (j=1,23) (9-10)
with constants C; (j=1, 2, 3).
Putting egs. (9-10) into egs. (9-8), we obtain:

2 % 1
—w Py = {/A;-‘r pno— —2—(14?1"14(3)3 }B%,

—o'm= {ﬂo +ut - %(A%* A3 {85 (9-11)

L S ——

— o= {Xo'i" }L*+2ﬂo+ %—#’k\?ﬁé,
with

iwh T
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and
o fwuiTs
T 14w
From egs. (9-11) we have:
— 2
g = Pt

o+ pF = *% (A% — A%)

2
2 —Hw

f: = 1 >
Mo+ /JS\ ~ 5 (A% — A5

(9-12)

2
2 — Do
B =

Dot X2 ot 5

The wave velocities v; (j=1, 2, 3) and the amplitude absorption coefficients
aj (j=1,2,3) are given by:

(]

- — i=1,2 3) 9-13)
vj jyn(ﬂ]) (.7 (

and
a; = Re(By), (7=1,2,3 (9-14)

respectively, where 8; (j=1, 2, 3) are the square roots of egs. (9-12).
While, the phase-difference § between two transverse waves will be ex-
pressed as:

8=h T m(B— B2, (9-15)
s/ T T
L8 r For =" ]
1.7 LG4/ 0g2/4) = 6.0
: " :3.0
1.6 b =15

=0.6
1.5

1 1
0.1 1.0 10.0
FIG. 9-1. Velocity of Longitudinal Wave, Eq. (8-13).

WG




236 Hung Liang Kue

Vi/ Ve
T T

1.8 - For At =A% b

P/ M=2.0 S
.7 r " =1.0
0 =0.5

1.6 - 7
» =0-2

L W
0.1 1-0 10.0

Fi1G. 9-2. Velocity of Transverse Wave, Eq. (9-13).

03 [Rel@y TmiBs) ' ‘
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0.0 = L
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F1G. 9-3. Absorption Coefficient of Longitudinal Wave, Eq. (9-14).

Wn

after the waves have travelled through the medium of thickness /.

By means of eqs. (9-13), (9-14), and (9-15), the sound velocities, absorption
coefficients, and phase-difference, are plotted as functions of circular frequency
w for four values of extra elastic constants. Fig. 9-1 and Fig. 9-2 show the
sound velocities (9-13), and Fig. 9-3 and Fig. 9-4 the absorption coefficients (9-14).
While, Fig. 9-5 shows the phase-difference (9-15) versus circular frequency o.

In practical problems, in which 1o and o are 10"~ 10" dynes/cm? and A and
m are less than 108~10° dynes/cm? it is interesting to consider the case:
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For Ah =A%
P =20
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0-01 0.1 1.0 10.0 *
Fi1G. 9-4. Absorption Coefficient of Transverse Wave, Eq. (9-14).
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FI1G. 9-5. Phase Difference between Two Transverse Waves, Eq. (9-15).
A gy, AL 1,
Ao Ho
and (9-16)
An=4s g Aw—dAs
10

where A°’s are far smaller than 10° dynes/cm?

becomes to:

Then the expression (9-12)
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. 1% 3 uF
pi=1i— [1 o5 o -+ Lo (A% — A33)+—8—{ 1 ]
) 1" 1 geaeyy 3[u o {
BZ—Z [1 2 P -+ 4#0 (Azz A33)+ SI 1 2#0 (Azz Ass , ((9 17)
SRS S S SPuy SR U B S PO
Br=igr| 1 zxo+2m(" +g )+ g uo+2uo)2(‘ “"3“ }
with
Ut = i;%, \l
and (9-18)
Ul:\/;(o—i‘z,uo. J
0o

Accordingly, the wave-velocities v; (=1, 2, 3) are:

1) ’ 1w o' T3 1 ° o
= =1+ — AN — A%
A jm(ﬁl) V¢ [ -+ 2 1+ o' el Lo (A% 33 _},
w 1w o° Tg 1 o o
S N | NI S S - an |,
T T m(B) vt { 2 m 1+’ bp 7 % ]
and
1) 1 A o' 2 m o'ty
) D=yl . K . z
°= Tl B3) v [ 2 2+2p 140l 3 Ao+2 po 1+w“z‘§J
(9-19)
The amplitude absorption coefficients «; (j=1, 2, 3) are:
= . P(8) = Y- ‘_ﬁl.,.ﬁﬁ’}'i#’
el B ve 2pm l+o'ch
— Y - 2 T
ay = L/@e(lgz) v 2 Lo 1+ w?, 2‘% » (9‘20)

and

1 A ot 2 o Wt
as = g% ) = __Cf]_- — L ° 1 e 1 . .
? (s v L2 204+2p 1407 3 202 o 1+wzr§]

After the two polarized transverse waves have travelled through the medium
of thickness %, they will have a phase difference ¢ as follows:
3w @’ Th
o0=h- = 2 - e, 9-21)
b T 6= ) = 2 (= AR [1- S O] 0

Z.(2) and .7 (z) represent real and imaginary parts of z, respectively. The
expression (9-21) may be called the acousto-viscoelastic law.
If we put wr=0 in eq. (9-21), we have:

0=

(A% — A%), (9-22)
4 Povt

which is essentially the same as is obtained by Tokuoka and Iwashimizu™ for
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a perfectly elastic material. The expression (9-22) may be called the acousto-
elastic law.

The expressions (9-21) and (9-22) are conveniently applied to the practical
measurement of the initial residual stress in the medium, when one detects the
phase-difference ¢ and the frequency /27 of the ultrasonics.

The velocities (9-13) of ultrasonic waves (one longitudinal and two transverse)
and their amplitude absorption coefficients (9-14) in a visco-elastic body under
initial stress were obtained in this chapter, where the Maxwellian relaxational
process (9-5) is adopted as a mathematical model of the visco-elastic body. For
the visco-elastic body of the Voigt type, the similar calculations can be carried
out immediately.

Because of the difference between the propagation velocities of two polarized
transverse waves travelling through the medium under an initial stress, a phase
difference between these waves develops as they progress. The phase difference
of the transverse waves, after they have travelled through the medium of thickness
h, is given by eq. (9-21) for a Maxwellian visco-elastic body, and by eq. (9-22)
for a perfectly elastic body. The phase difference § is proportional to the
product of the circular frequency o and the difference of the initial principal
stresses (A5 — A4%).

Being based on eq. (9-21) or (9-22), the so-called acousto-elasiic experiment
can be carried out, which is very analogous to the photo-elastic one. This method
of experiment is conveniently applied to the measurement of initial residual
stress in any part of real mechanical structures, such as buildings, bridges,
machines etc., and also finds some applications in engineering fields.

X. Conclusion and discussions

In the theory of thermo-mechanical properties of rheological media, the
thermal stress of fugitive nature and the thermal conductivity corresponding to
the dynamical process under high frequency oscillation are taken into account.
The generalized stress-strain-temperature relation was introduced after the theory
presented by Takizawa'®. The visco-elastic media are considered to have finite
numbers of relaxational processes, i.e. elastic relaxations, thermal relaxations,
and structural relaxations etc. The tensorial {formulation of the mathematical
theory of rheological bodies is presented by taking explicit account of thermal
phenomena. In this formulation, the shearing and volume viscosities and the
coefficient of thermal expansion, are expressed as integro-differential operators,
which reduce to the usual relaxation operators for the case of Maxwellian
relaxational process.

The equation of conservation of energy is also modified by taking explicitly
the relaxational thermal conductivity into account. Accordingly, the theory pres-
ented in this paper can describe the thermo-mechanical relaxational process
completely. Especially, the thermo-mechanical process, which takes places under
the dynamical field, such as of ultrasonic field of extremely high frequency, can
be conveniently interpreted by the equations presented here. Thus, the theory
developed here includes, as special cases, the theories presented by Frenkel-
Obratzov?®, Oshida®, Sips'V, Takizawa!?, and Meixner?, as well as Kneser®9,
Tisza®®, Hall®, and Kaliski®*®,
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In Chapter I, the theories of elastic and thermal relaxation were briefly
reviewed, with the notations (in Chapter II) used in the following chapters.
Chapter III treats the dynamical equations of state, especially stress-strain rela-
tion, thermal stress, and equations of motion of rheological body. Here the
emphasis is laid on the elastic relaxation and relaxating thermal stress which
have been discussed by Takizawa'® and Meixner®, and are found to be useful
in the treatment of rheological bodies.

In Chapter IV the equation of conservation of energy was discussed somewhat
in detail. The expression of internal energy with relaxating specific heat (4-22)
was given, which can be verified to reduce to the dynamic specific heat presented by
Kneser V192039 The operator corresponding to the coeflicient of internal energy
accompanied by volume change at isothermal state'” was also introduced. The
term corresponding to this operator is useful, if we treat the elastic breakdown
due to the thermal stress. This term relates to the existence of finite velocity
of propagation of thermal waves. The numerical values of 0's in egs. (4-16)
and (4-19) can not be evaluated directly in experiments, but their effect can be
observed in the velocity and absorption of hypersonics.

The relaxation times ¢’'s involved in egs. (3-12) and (4-19) may have some
relations one another. In order to find out the relationship, we should treat the
theory under the consideration of the theory of irreversible thermodynamics, of
microscopic theory of collisions and molecular relaxations.

The expression of heat flux, i.e. a generalized Fourier law, in a rapidly
changing field, was also given with some discussions of subsystems accompanied
by mutual energy flows. Here, the idea of relaxating partial thermal conductivities,
or the operator corresponding to the thermal conductivity, was introduced. In
a special simple case, the expression of relaxating thermal conductivities given
here, were reduced to the expression of Kaliski'®™* for the case of Maxwellian
relaxational process.

In Chapter V, the application of the theory to supersonic waves was briefly
mentioned. The velocity and absorption of supersonics are calculated and the
dispersion relation and the absorption curves are plotted against frequency.

The neglect of the term of thermal conduction is not so adequate in metalic
liquids, for example, in mercury. In mercury at ordinary temperature, as is
well known, about 70% of total absorption is due to the thermal conduction
under the region of frequency 10° cycles per second, and the effect of relaxation
times hardly appears, because of the liquid structure composed of monoatomic
molecules. The absorption due to the effect of viscosity is about 20%. Accord-
ingly, the solution of equation with thermal conduction must be considered in
most kinds of metalic liguids. In the sonic field near the boundary surface of
the media, i.e. in the so-called boundary layer, the thermal conduction is shown
to be comparatively large, and can not be neglected even in usual liquids.

While, in Chapter VI some comments on the hypersonic waves were given,
and it was shown that the high velocity of hypersonics in liquids comes from the
extra elastic constants of liquid bodies, subjected to the Maxwellian relaxational
process. The transverse waves of high frequency were also discussed in this
chapter, being based on the fundamental equations given in Chapters III and IV.
It was made clear that such waves propagate through the medium with high
velocity, because of the presence of extra rigidities subjected to the Maxwellian
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relaxational process.

In Chapter VII, thermo-elastic waves in liquids and specific heat and thermal
conductivity of rheological bodies are calculated after the method developed by
Debye®, Brillouin®™®®, Lucas®® and Qomori®. The result obtained shows
that the relaxational effect hardly contributes to the numerical values of specific
heat and thermal conductivity in usual liquids, because of the small values of
elastic relaxation times of liquids.

In Chapter VIII, the theory of anisotropic rheological bodies was extended
along the line of consideration of the elastic relaxation, whose isotropic case was
already shown in Chapter III. Thermal stress and thermal conductivity in
anisotropic bodies were also discussed somewhat in detail. Application of the
theory is also briefly mentioned. Theory of surface rheology can be also extended
by the present theory. Some problems to be solved are stated, without detailed
calculations.

Finally, in Chapter IX, calculations are made on the velocities and absorption
coefficients of longitudinal and transverse ultrasonic waves in a visco-elastic body
under initial stress, being based on Sakadi-Takizawa’s formalism™. The ultra-
sonic birefringence in the field of constant initial stress was discussed. The
plot of wave-velocities and absorption coefficients versus wave-frequency is given.
The phase-difference between two differently polarized transverse waves is also
calculated. For small extra shearing rigidity and small initial stresses, the
phase-difference of two transverse waves is proportional to the product of wave-
frequency and the difference of components of initial stress. Briefly mentioned
is the so-called acousto-viscoelastic method for measuring stress, which is quite
analogous to the photo-elastic one.

In the present discussions, the author took implicitly into account the relaxa-
tion among different states of energy, for example, the relaxation between
translational and vibrational states, the relaxation between many structures of
molecular crystals, and the relaxation of monomer-polymer formations etc. Es-
pecially, the relaxation due to the thermal stress may correspond roughly to the
physical picture that the sudden increase of local temperature causes the stress
after a short but finite delay of time. In other words, after the local temperature
has risen, it takes a finite interval of time to create the operative stress.

The relaxation appeared in the expression of heat flux, 7.e. the generalized
Fourier law, may contribute to the physical phenomena in a rapidly changing
field, such as in ultrasonic field of extremely high frequency. The physical
background of the thermal conductivity expressed as integral operators has some
ambiguity in its relativistic derivation®’. On the other hand, the phenomenolo-
gical theory presented in this paper can be easily accepted, taking into conside-
ration that the heat flux in a rapidly changing field may be proportional to the
averaged generalized force such as a time-averaged value of temperature-
gradient in the past.

The equation of conservation of energy with the generalized Fourier law
discussed above in Chapter IV, can serve to describe the supersonic and hyper-
sonic field, simultaneously with the equations of motion given in Chapter IIL
These fundamental equations, expressed in linear form, are quite useful to describe
the wave field with relaxational phenomena, especially taking explicitly the elastic
relaxations and the thermal relaxations into account.
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The phenomena due to the other causes not cited above, however, may
sometimes play an important part in the dynamical behaviour of rheological
bodies. In such cases, the theory presented here can not be available without
keen criticism. For example, the scattering of waves due to the constituent
molecules, the cavity formation in liquids, and the absorption due to the non-linear
terms etc., may be out of the scope of the present theory of thermo-mechanical
relaxation. ‘

Here, in the present paper, the rheological behaviour of the media is mainly
focused to describe the dynamical and thermal character of liquids. The
discussion can be easily applied to interpret the physical properties in gases and
solids, mutatis mutandis. In other words, the slight modification of numerical
values in the rheological and thermodynamical operators, corresponding to the
elastic moduli, coefficients of thermal expansion, specific heats, and thermal
conductivity etc.,, make this theory applicable to various kinds of continuous
bodies of gaseous phase, as well as liquid and solid phases, respectively.

The theory presented here can be also extended to the theory of electro-
magnetic relaxation, mutatis mutandis, i.e. with slight modification and symbolical
interpretation of the present theory. Thus the unified phenomenological theory
of thermo-electro-magneto-rheology can be easily extended along the line of
consideration, as was suggested in the present theory.

In concluding this paper, the author expresses his cordial thanks to Prof. E. I Takizawa
of the Faculty of Engineering, Nagoya University, for his stimulating and constructive
discussions in many chapters. Especially, the main parts of Chapters IV ~VIII have been
developed in course of discussions made with him, during author’s stay at the Faculty cited
above. The author thanks to the members of his laboratory, especially Miss A. Nakagawa,
Miss M. Kondo, and Mr. Y. Mikami, for the facilities generously given.

Author’s acknowledgements are due to Preof. Y. K. Tai, President of the National Central
University, China, for his encouragement in developing this investigation.
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