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1. Introduction

The cutting of metals is frequently accompanied by vibrations of cutting tool
or workpiece, known as “chatter vibration”. The existence of chatter vibration
is a serious problem because it is detrimental to the life of tool, to the surface
finish and to the accuracy of the machined parts. Though an elucidation of the
problem is very important in these respects, the radical improvement of the
chatter behaviour is extremely difficult because chatter vibration is of a very
complex nature. In recent years, however, many workers have become to study
on chatter vibrations, and useful results are obtained?-?. Especially the general
analytical method of chatter vibration which is shown by Merrit et al.? is rated
high. Nevertheless, detailed experiments and investigations are necessary to
prevent the chatter vibration in each cutting operation.

In boring operation, high finish and accuracy are generally required. It is
also desired to raise the length-diameter ratio of the hole to be bored. However,
owing to the insufficient rigidity of boring bars, chatter vibration is liable to
occur in boring operations. Many procedures have been used to prevnt the
chatter vibration and to obtain a high degree of precision, and obtained fairly
good results. For example, Hahn® showed that the chatter vibration of boring
bar can effectively be prevented by the Lanchester Damper, and Kato ef al” sug-
gested the way to design the optimum damper. Furthermore, Kuchma® suggested
that the chatter vibration of boring bars can be prevented, and the efficiency of
the operation is raised by using the directional characteristics in the vibrational
properties of the boring bar.

It may usually be inevitable that the boring bar has a directional character-
istics in the vibrational properties (that is, stiffness, natural frequency, damping
coefficient), owing to the mechanisms of the transmission of torque or tool holding
devices. In this paper, first, the relationship between the stability boundary of
chatter and the vibrational properties, the cutting conditions, is obtained theo-
retically for the boring bars which have directional characteristics in the vib-
rational properties, and on the basis of this result, the optiumum configuration
of boring bar and the optimum setting condition of a tool to the boring bar to
prevent the chatter are discussed.

It may be inevitable that the multi-edge rotary cutting tools such as drill,
tap and reamer have a directional characteristics in the vibrational propeties,
owing to the structure of the tools, too. Then, the stability boundary of chatter
is introduced theoretically as the function of the vibrational properties of the
system and the various cutting conditions, using the same method as the analysis
of the boring bar, and is ascertained experimentally. And on the basis of this,
the concrete means for the prevention of the chatter in the multi-edge rotary
cutting tool are examined in detail.

Furthermore, the effect of a small error in the tool setting condition and in
the tool dimensions (such as cutting angle, nose radius etc.) is studied for many
practical cases.

2. Some Considerations on the Prevention of Chatter
Vibration in Boring Operation®®
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2.1. Analysis

2.1.1. Equation of motion and stability boundary

First, the differential equation representing the chatter vibration occuring in
boring bars with directional characteristics in their vibrational properties as
shown in Fig. 1 will be determined, and the stability boundary of chatter will
be discussed theoretically.

|
- "
[te]
L~

37 -
340 =
;I AG3
k), o b
T \
B U e !

E— )
l " TAG2 I FAG
¥

FI1G. 1. Diagram of boring bars.

For the sake of simplicity, the boring bars are regarded as a lumped mass
system with two degrees of freedom, and following is a treatment of chatter
vibration occuring in orthogonal cutting operations. The analytical results, how-
ever, include other cutting operations.

In Fig. 2, center A of the boring bar
displaces to point O under the action of
the cutting force in a cutting operation.
Taking this point O as the origin, x-axis
is determined in the direction of the least
stiffness of the boring bar, and y-axis in
the direction of the greatest. This co-
ordinate system rotates with the same
velocity as a boring bar. When the cut-
ting operation is steady, the boring bar
displaces to the amount of «. along the
x-axis and a, along the y-axis by the cut-
ting force respectively. If the correspond-
ing depth of cut is denoted by ds, then

— Fse(ds) = (ke — ma®) ax T1G. 2. Rotational coordinate system
(1) fixed to boring bar.

- Fsy(ds, = (ky - m(ﬂz)ay
where Fsx(ds), Fsy(ds) represent the components of the cutting force in the x and

y directions, ksax, kyay are the spring forces in both directions, and —mao?as, —mao'ay,
are the centrifugal forces respectively.
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Representing the angle between the x-axis and the cutting edge setting di-
rection by ¢, the depth of cut during vibration can be expressed as follows:

d=ds+ (xcos¢+ysing) (2)

According to Doi and the author’s previous investigations, the occurence of
the chatter seems to be caused by the time lag of the cutting force existing be-
hind the fluctuations in area of the cut?. On the basis of this investigation, and
assuming that the components of the cutting force are proportional to the depth
of cut, the thrust force Fy and the cutting force Fr can be written as follows:

Fy= Kylds+ x(t — Hcos ¢ +y(¢t — H)sin ¢} } 3)

Fr= Kplds+ x(t — h)cos ¢+ y(¢ — h)sin o}
where H and % indicate time lags of thrust and cutting force respectively, and
Kr and Ky are the proportional coefficients of the cutting and the thrust force
respectively. Hence, Kr, Ky are closely related to the cutting conditions (that
is, material being cut, geometry of cutting tool, width of cut and so on).

The x and y components of the cutting force, that is, F. and Fy, can be
written as functions of Fy, Fy as follows:

FxZRvCOSqﬁ—Fz'Singb} “w

Fy=Fysing+ Frcos ¢

For the sake of simplisity, the following notations are used.

%t — ED) = %y, y(t — H) =y } (5)

x(f— ) = Xiny, y(zf — k) =Y

Substituting Egs. (3) and (5) in Eq. (4), the expression for Fu, Fy is givern.

Fy = Foplds) + Kntom co8’¢ + (Kyym — Kr¥iny) sin ¢ cos ¢ — Kryon sin’g } ©)
Fy= Fsy(ds) + Krxny COSZ(P + (Kyxm + Ky’y(h)) singcos¢ + Kuya Sin2¢>
where
st(ds) = deg COSs ¢ - Kng Sin¢ } (7)
Fsy (ds) = Knds sing + Krdscos¢

Using the above equations, the differential equation representing chatter vib-
ration can be derived in the rotational coordinate system. Here, it may be allowed
to neglect the coupling effect induced from gyromoment, since the equivalent
mass of the boring bar and the polar moment of inertia about the axis of rotation
are generally small. Therefore, the centrifugal force and Corioli’s force have only
heen taken into consideration, and the differential equation of chatter vibration
becomes,

mE + cot + (By ~ mo®) (x+ ay) — 2maey+ Fe =0 } )

2mak +my+cyy -+ (by — ma’) (y+ay) + Fy =0
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where m is the equivalent mass of the boring bar and it is assumed that the

values of m in x and y directions are equal referring to the experimental resulis

given later. ¢, ¢, are the damping coefficients and k., by are the spring constants

in both directions respectively. o is the angular velocity of the boring bar.
Setting

Ce/m =202, Cyf/m =2ny, kelm =Dk kylm=pY Kylm=y, Kelm=1r (9)

It is justifiable that the time lags H, % of the cutting force are such small
amounts that xu), y@), etc. are approximated as follows:

rm=x— Hi, yany =y — Hy } 10)

Ymy=x—hiE yay=3—hy
Using Eqgs. (1), (6), (7), (9) and (10), Eq. (8) becomes,

F+ (272, ~ AsHcos ¢ + Aehsingcosg) i+ (pi — o + 15 08" ¢ — Arsingcosg)x
+ (=20~ AzHsingcosg + Arhsin®¢) ¥+ (Aysingcosg — Arsin‘¢) =0
(2w - AyHsingcosg — A hcos’ ¢) i+ (Aysingcos ¢ + Arcos’ ¢)x -+ 5
+ (27my — AnHsin’ ¢ —ehsingcos¢) i+ (p) — o + Aysing
+ Arsingcosg)y =0
(11)

For the convenience of numerical calculations, the following non-dimensional
expressions are used.

to =D, & =x/ay, d&/dly=2%/axpe, . ..,

7=DylPr, 1o=20x/Pr, §= s/, wo=0/Px, (12)

H, ZﬁxH, Ao = lﬂ/ﬁi, g= ]’Z/H, T = 37'/131
where ¢ indicates the ratio of time lags in the cutting force, and r indicates the
ratio of K to Ky, namely, of the two components of the cutting force (See Egs.
(3) and (9)).

Eliminating the terms including y from Eq. (11) and using the non-dimensional
expressions of (12), it follows,

‘ejdty+ Td2/dty + Ud's/dty + Vds/dty+ W =0 (13)
T= 7’20(1 -+ q) s ZoHn
U=1+47"+ 2w+ gno+ 2o{1 — 2veHyoy — (sin® ¢ + gcos® ¢) 1, H,

— reHymo(1 — glsing cosep )

. (14)
V=ndg+7 ~ 1+ @oi) + dlolHy+ 2 cwy — (Hy — no)sin’ ¢

~{no(q—1) + re Hy(1 —#*) }sinpcosg — (7 Hy — qny) cos® ¢

W=r"—= (147 — o) wi+ Al — v+ sin’¢p — (# ~ 1) esing cose + 7 cos’ ¢}

Now, assuming the solution of Eq. (13) is as follows:
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& =™ (15)
and substituting (15) in (13), Eq. (13) becomes '
AT+ UL+ Vz+ W=0 (16)

The roots of Eq. (16) can be written in the form of a complex number.

Zip = &1 £ JB1, 234 = s £ jB2
where j =]5:3 i } an
Using the relations mentioned above, it follows,
= —2(a; + a2)
U=ai+a;+8i+8i+4aa s

V= —2a(ai+B) —2az(al+ 8D
W= (ai+ 1) (a;+ B3)
The necessary and sufficient condition that the solution given by Egs. (15)

and (17) is stable (that is, the system is stable for chatter vibration) is that the
real parts of (17) are negative.

tx1,2<0 (19)

At the stability boundary of chatter, the larger one of ai, az becomes zero.
Hence, using this relation, and eliminating i, #. and a1 or as, the following ex-
pression for the stability boundary of chatter vibration can be obtained.

TUV—=V'=T'W=0 (20)

In Egs. (20) and (14), parameters #, n, ¢, 7, ¢ and ¢ are determined by the
vibrational properties or the cutting conditions. Hence, regarding these para-
meters as assigned, the critical value of A which gives the excitation boundary
of chatter and frequency f corresponding to critical condition can be determined
from Eq. (20) as follows:

(e = 4olr, no, g wo. Ho, 7, & ¢)
or (Ax)e=pr* (lo)e (21)
f=pz/2nNV]T

Particularly, in the boring bars with no directional characteristics in vib-
rational properties, »=1, g=1. So that, Eq. (14) becomes

T=2 g — XoHo
U=2-+2w+ 1+ 2o(1 — noHy — 2 e Hywy)
V= 2m0(1+ wp) + ol wyHo + 2 vwo — Ho+ 1)
W=1—(2—w) o)+ h(l— )

(22)

In Eq. (22), it is a reasonable result that 7, U, V and W do not include the
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term of tool setting angle ¢, and then the stability boundary of chatter in this
case has no connection with ¢.

2.1.2. Numerical calculation and consideration

Fig. 1 shows the dimensions of boring bars which are used in the following
experiments and also in these numerical calculations.

The stiffness of a boring bar in both x and y directions (that is, ks, ky) is
obtained from the load test, and the vibrational properties of boring bars (that
is, natural frequencies p., py and damping coefficients #., #,) are acquired from
the free vibration photographs in Fig. 3. Using the above measurements of %, p,
the equivalent mass m is given as follows:

m=k/D (23)
= /
TN
LAY Y J
B 1 X D:rechon V )

%H“WWNM
W

B-3 X- Oarechon

FIG. 3. Free vibrations of boring bars in z, y directions.

TABLE 1. Vibrational Properties of Boring Bars

‘ kr = ] Py x«/( /2| 3 ’ vny (mg)x | (mg;u
(kg/mm)| (Lg/mm) (rad/s)[(rad/w (’;;;’// r=plbn (1) [ (1/s) | (kg) | (kg)

B0 | 403 | 1223 i 1223 L 25.3 2.64
B-1 323 | 507 | 1090 | 1873 | 1240 | 125 | 305 | 382 | 265 | 262
B-2 271 521 | 1009 | 1387 | 1212 140 | 221 @ 401 | 262 @ 266
954 | 1448 } 1227 152 | 201 | 577 | 267 @ 263

B3 | 219 | 560

These results are listed collectively in Table 1. From the table, it is obvious
that, for every boring bar system, the equivalent mass 7 has an almost identical
value in both x and y directions, and then the assumption made in the previous
section is a reasonable one. It is also seen in the table that these four boring
bars have an almost equal value of v (pi-+p2)/2 or (ke-+ky)/2.

As an example of this calculation, Figs. 4, 5 and 6 show the relations be-
tween the stability boundary (4y). and the tool setting angle ¢, which are obtained
from Egs. (20) and (14). Only the relationship within the range 0° < ¢ < 180° is
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illustrated in each figure, since there is a relationship that (Ay)c(¢) = (Av)c(p-+180°).
In these calculations, the following numerical values are used referring to many
previous experimental data, i.e., H=0.0005 sec, e=0.4~0.8, r=2~4., In these figures,
any vibratory system becomes unstable in such a cutting condition that the in-
dividual value of 1y is larger than that of (Aiy) predicted by the corresponding
(Ax)c—¢ curve.

In the circular sectioned boring bar (that is, B-0), the stability boundary
(Ax)e is independent on the tool setting angle ¢, seen as B-0 lines in Figs. 4,5
and 6.

/s

200 »

fx,

180
¢ deg

FIG. 4. Variation of stability boundary (2y)e and chatter frequency
7 with change of tool setting angle ¢ (=3, ¢=0.6).

& deg

FIG. 5. Variation of stability boundary (ix). with change of tcol
setting angle (B-3, ¢e=0.6, r is varied).
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B3, T=3
——e—- £-04

135 180

¢ deg

FI1G. 6. Variation of stability boundary (ly)e with change of tool
setting angle ¢ (B-3, =3, ¢ is varied).

Meanwhile, for B-1, B-2 and B-3 boring bar systems in Fig. 4, (iy)c makes
an interesting change with a tool setting angle ¢, due to the directional charac-
teristics of vibrational properties. That is to say, the value of (iy)e becomes
maximum at the tool setting angle B (the first order of ¢.,:) and D (the second
order of ¢on). It is obvious that within this calculation the maximum value of
(Ax)e becomes large with the increase of the frequency ratio r=p,/p. and for
every boring bar the maximum value of (ly). at B is slightly greater than that
at D. These maximum values are considerably larger than those of system B-0,
the minimum value at C is larger than at E and the difference between these
minimum values becomes large with increase of frequency ratio ». This fact
may be closely related with the magnitudes of natural frequencies and damping
coefficients in both x and y directions.

Next, it is clear in Figs. 5 and 6 that the relations between the stability
boundary (4y)c and the tool setting angle ¢ have a strong resemblance to those
in Fig. 4. However, it is seen that the value of ¢, are considerably connected
with the cutting conditions, i.e., = and ¢, but that the maximum values of (ly)e
at ¢opr are almost constant, independently of the change in ¢ or e Meanwhile,
the minimum values of (Ay). decrease with the increase of ¢ or .

From the above discussion, it is clear that there are optimum tool setting
angles for the effective prevention of chatter vibration in boring bars having
directional characteristics in vibrational properties, and it is expected that the
chatter behaviour will be remarkably improved if the good use of the directional
characteristics of the boring bar is made.

However, the above discussion is based on the calculations for the boring
bars which have the almost equal value of v(p:+p3)/2. As a result, the larger
the ratio »=p,/p. is, the larger cross sectional area the boring bars have, as seen
in Fig. 1. The fact seen in Fig. 4 that (ly)... increases with the increase of »
may be caused by the above mentioned effect to some degree. To examine this
effect, the stability boundary (4y)c is again calculated for circular sectioned boring
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bars which have diameters equal to the maximum size of B-1, B-2 and, B-3, and
are shown in Fig. 4 by the lines B-10, B-20 and B-30. It is clear in the figure
that (iy). in the boring bars, having directional characteristics, is considerably
larger than that in the circular sectioned boring bars at ranges of tool setting
angle neighboring ¢opt.

Next, the frequency f can be calculated from Eq. (21). As an example, the
result for the B-3 system is shown in Fig. 4 by fine solid lines. Two straight
lines indicate the natural frequencies fy=p./27, fy=py/2n of the B-3 system. It
is recognized in the figure that the tool setting angle is divided into two ranges,
one is the range in which the chatter occurs with frequency closely equal to fs,
the other is the range in with the chatter occurs with frequency closely equal to
fy, furthermore, the tool setting angle where the chatter frequency f changes
abruptly agrees with ¢op,. approximately.

To discuss the interesting results about the stability boundary (Ay)c and
chatter frequency f in detail, the relation between «, f and ¢ is calculated by
the system B-3, using Egs. (14), (16) and (17), and is shown in Figs. 7 and 8.
Fig. 7 is for the case when the system becomes unstable at some ranges of ¢, and
is for Ay=1.09x10° 1/sec’. Fig. 8 is for Ay=3.28x10° 1/sec’, and corresponds to
the case when the system becomes unstable in all ranges of ¢.

It is seen in Fig. 7 that a,, a. are both negative within the range A-5, and
then that the system is stable and the vibrations with frequencies close to f:, fy
damp out. In the range B-C, however, «, is positive, hence the vibrations set
up with frequency fi nearly equal to fi.

Next, it is seen in Fig. 8 that either a: or «: is positive in all tool setting
angles ¢, and the system is unstable for the whole range. In the range A-B and
D-E-F, the vibration occurs with frequency f, and within the range B-C-D with
f». However, these frequencies fi and f: are considerably different from the
natural frequencies f, fy.

It may be noted in Eig. 8 that the magnitudes of «: and a, are reversed at
B and D. This fact is closely connected with (ix)c becoming maximum at B and

02
[ B3 An=109x10%/S?

/s

f2
*_-o—

, Ol

B it
S fy

, f2

- T

1 /o/o-—o——o\o\ﬁ: =
0o ' i1200

o

s — fi
fi

Jioo
"o a5 90 % 180
& deg

F1G. 7. Variation of increments or decrements a1, a2 and frequencies
fi. f» with change of tool setting angle ¢ (B-3, v=3, ¢=0.6),
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FIG. 8. Variation of increments or decrements ai, a2 and frequencies
J1, fo with change of tool settig angle ¢ (B-3, t=3, ¢=0.6).

D in Fig. 4. It is further interesting to compare Fig. 8 with the B-3 curve in
Fig. 4. The fact that a: or a; becomes maximum at C or E in Fig. 8 corresponds
to the result that (4y)c becomes minimum at C and E of Fig. 4. Taking this into
considerarion, it is understood that the minimum value of (ly)c at E is smaller
than that in C in Fig. 4.

2.1.3. Optimum tool setting angle

On the basis of Eq. (20), the tool setting angle at which (iy)c becomes
maximum, that is, the optimum tool setting angle popt fOr the prevention of chatter
can be calculated.

Expanding Eq. (20) into a polynomial of 2, and using Eq. (12), a cubic
equation for 1, is obtained as follows:

AN+ B+ C(¢)o+ D=0 (24)

where A(¢), B(¢) and C(¢) are the functions of tool setting angle ¢ and D
is a constant free from ¢.
Differentiating Eq. (24) by ¢, then

dlo/dp = — {dA(¢) [dp-2i+ dB(¢)[dp~ds+ dC($) [dp=2}/{3A($) s+ 2B(#) do+ Clg)}
(25)

Referring to Figs. 4, 5 and 6, it is obvious that Eq. (24) is not differentiable
at the point where 1, (that is, (iy)c) becomes maximum. However, at the left
side of the maximum value dl,/d¢>0, and at the right side dl,/dp<0. Hence,
the optimum tool setting angle gon can be calculated by seeking the point where
the sign of dA/dp changes from positive to negative by the method of numerical
calculation.

As an example, Figs. 9 and 10 show the results of the calculation of the first
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T=3
20 20
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L - B3
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R4
10+ 10
B-2
B- 8-
ol 1 ) 1 L | oL .t L 1 ) J
2 3 4 04 06 038
T €
FIG. 9. Relation between optimum tool FI1G. 10. Relation between optimum tool
setting angle gopt and ratio © for various setting angle dopt and ratio ¢ for various
boring bars (e=0.6). boring bars (z=3).

order of ¢gop. It is clear in Fig. 9, where ¢ is changed, that ¢.. decreases with
the increase of ¢ for each boring bar system. It is also seen in Fig. 10, where ¢
is changed, that ¢o, decreases with the increase of e. Therefore, r and ¢ may
have a similar influence on ¢.. It may be noted that the greater the frequency
ratio » is, the greater gog is.

From the above discussion, it is clear that chatter behaviour is improved
considerably by using a boring bar having directional characteristics in vibrational
properties, and that there are optimum directional characteristics and odtimum
tool setting angle for the prevention of chatter vibration.

2. 2. Experimental result
To ascertain the above theoretical analysis, the following experiments are

carried out.

Four boring bars having different amounts of directional characteristics are
made (See Fig. 1 and Table 1), and a cutting tool (rake angle: 0°, side clearance
angle: 6°, nose radius: 0.5 mm) is set to each bar. Boring operations are carried
out such cutting conditions that the cutting velocity is about 30 m/min, the feed
rate is 0.1 mm/rev, which is held constant, and the depth of cut is changed for
various tool setting angles. The vibrations of » and y directions are measured
electrically by the strain gauges AG 1~4 in Fig. 1. The strain gauges AG 1, 2
are for measuring the vibration of the boring bar in x direction, and AG 3, 4 are
for measuring that in y direction, respectively.

Figs. 11 and 12 show examples of the chatter vibration in both » and y
directions of the B-3 system for various tool setting angles.

Fig. 13 shows an example of the relations between the amplitude of chatter
and the depth of cut obtained from many experimental photographs for B-3. In
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FIG. 13. Variation of amplitude with change of depth of cut d
for various tool setting angles ¢(B-3, B-0).

the figure, the experimental result for B-0 is shown by the chain line, too, for
reference. From the amplitude-depth of cut curves in the figure, the critical
depth of cut dc at which the chatter vibration is set up, can be obtained experi-
mentally for various tool setting angles. Here, it must be noted that the critical
depth of cut d. is equivalent to (lx)¢ in the theoretical analysis.

Fig. 14 shows the relations between d. and ¢ for each boring bar. Comparing
this experimental result with the corresponding theoretical resut in Fig. 4, it is
obvious that both results show a closely similar tendency. Namely, for B-0 the
critical depth of cut de is constant regardless of the tool setting angle ¢. For
B-2 and B-3, there are two tool setting angles at which d. becomes maximum
and these optimum tool setting angles ¢, are in close agreement with those of
calculations. Moreover, the value of (ix)c at the first order of ¢, is considerably
larger than that at the second order of ¢.x, and this fact corresponds with the
calculational result in Fig. 4. For the B-1 system, however, the existence of the
second order of ¢.. cannot be recognized, which may be considered to be due to
the following fact. The experiments shown in Fig. 14 are carried out in oblique
cutting conditions. The feed component of the cutting force may have an influ-
ence to some extent on (lx)c especially for such a system as B-1 in which the
frequency ratio » is small. In the theoretical analysis, however, the feed com-
ponent of the cutting force is neglected.

From the above considerations, it is ascertained that the analytical results
are in good agreement with the experimental results quantitatively.

Fig. 15 shows an example of the vibrational loci of boring bar obtained for
B-3 from the experimental photographs as shown in Figs. 11 and 12. It is seen
in each locus that the frequencies in the x and y directions are equal in spite of
the directional characteistics of boring bar. The shape of the vibrational locus
is remarkably influenced by the tool setting angle ¢. In the case of ¢=0°, the
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amplitude in y direction is quite large compared with that in x direction, and the
rotational direction of a vibrational locus is the same as for the boring bar.
Next, in the case of ¢=67.5° (which is larger than the first order of ¢on), the am-
plitude in x direction is quite large, and the rotational direction is the reverse
of that of the boring bar. Last, in the case of ¢=157.5° (which is larger than
the second order of ¢..), the amplitude in y direction increases again, and the
rotational direction of the locus agrees with that of the boring bar. It is very
interesting that the phenomenon discussed above corresponds to the facts con-
sidered in Fig. 8.

2.3. Conclusion

The stability boundary for chatter vibration in boring operation is introduced
as the function of vibrational properties of boring bar and the cutting conditions.
On the basis of the stability boundary, some considerations for the prevention of
chatter are made.

As a result, it is ascertained that chatter behaviour is improved considerably
by using a boring bar having directional characteristics in vibrational properties,
and that there are optimum directional characteristics and optimum tool setting
angles for the prevention of chatter vibration.

3. Some Considerations on Prevention of Chatter Vibration
in Multi-edge Rotary Cutting Tool, 1'%

It may be inevitable that the multi-edge rotary cutting tools such as drill,
tap and reamer have directional characteristics in the vibrational properties (that
is, stiffness, natural frequency, damping coeflicient), owing to the structure of the
tools. Fig. 16 is an example showing the bending stiffness % of a twist drill for
various loading directions §. It is seen in the figure that the k-§ curves for two
drills used in the experiment are fairly different and the maximum and minimum
values of % are not equal, and further that the setting angles of two cutting
edges C,, C. against the tool axis are not equal for two drills.

In this chapter, the stability boundary of chatter is introduced theoretically
as the function of the tool setting angles against the directional characteristics
and the various cutting conditions, and is ascertained experimentally. On the
basis of these results, the concrete means for the prevention of the chatter vib-
ration in multi-edge rotary cutting tool is suggested.

3.1. Analysis

3.1.1. Equation of motion and stability boundary

First, the differential equation representing the chatter vibration in multi-edge
rotary cutting tools with directional characteristics as shown in Fig. 17 will be
determined for the general case that » cutting edges are placed in arbitrary
setting angles, and the stability boundary of chatter will be discussed theoretic-
ally, using the same method as in the analysis of the chatter vibration in the
boring bar of the previous chapter.

For the sake of simplicity, multi-edge rotary cutting tool is regarded as a
lumped mass system with two degrees of freedom, and analysis is made for
orthogonal cutting. The analytical results, however, include other cutting
operations.



Prevention of Chatter Vibration in Multi-edge Rotary Cutting Tools 17

kmcx
3
N® P |\'\
' \\\ i }
20k 1 ™N_B 4 r
4 b |
\\ /.’/ 1
B {
| Kemin
Kmax }
e [ 5 :
I
£ f £
|
2 I :
| Kenin
= 10} |
: Cz
O Lo " Il N I}
0 90 180
8 deg
F1G. 16. Load test of twist drill.
330 -
< Hf g
- ¢
— T —1 L
dlo] L 3
] gl -k
B— B
o e ]
r=| r=1) r=3 =13
— |
1 ' /] p:S
\ ‘ |

T ]
53 42 32
F1G. 17. Diagram of cutting tools.

Fig. 18 shows the coordinate axis of the tools having two cutting edges. In
the figure, center A of the tool displaces to point O under the action of the
cutting force in a cutting operation. Taking this point O as the origin, x-axis is
determined in the direction of the least stiffness of the tool, and y-axis in the
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FIG. 18. Rotational coordinate system fixed to cutting tools.

direction of the greatest. This coordinate system rotates with the same angular
velocity as a tool. When the cutting operation is steady, the tool displaces to
the amount of @ along the x-axis and @, along the y-axis by the resultant cutting
force respectively. If the corresponding depth of cut for each cutting edge is
denoted by ds, then

stxi(dsz’) = (kv - mwz)ax
=]

n (26)
S\ Fsyilds) = (ky — ma®) ay
i=1

where Fexi(dsi), Fsyi(dsi) represent the components of cutting force in x and y di-
rections, k.ax, kyay are the spring forces in both directions, and —maltay, —mo'dy
are the centrifugal forces respectively.

Next, the cutting force acting in one cutting edge C; during vibration will
be introduced. Representing the angle between the x-axis and the cutting edge
setting direction by 6, the depth of cut for cutting edge C; during vibration can
be expressed as follows:

d; = ds; — (xcosf; + ysinf;) (27)

Assuming that each component of cutting force is proportional to the depth
of cut, and that the cutting force acts on the vibratory system with constant
time lag on the basis of the privous experimental results? regarding the cause
of chatter vibration, the thrust force Fy; and the cutting force Fy; can be written
as follows:

Fui = Kyildsi — x(¢ — H) cos0; — y(¢ — H) sinf;}

, (28)
Fri = Kei{dsi — x(t — h) cosO; — y(¢ — h) sinf;}
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where H and / indicate the time lags of the thrust and cutting force respectively,
and Ky; and Ky; are the proportional coefficients of the cutting and the thrust
force respectively. Hence, Kyi, Kr: are closely related to the cutting conditions
(that is, material being cut, geometry of cutting edge, width of cut and so on).

The x and y components of the cutting force acting on the cutting edge Ci,
that is, i and F,;, can be written as functions of Fy; and Fui as follows:

Fyi = Fyicosf; — Frisinb;
(29)

Fyi = Fyisinf; -+ Fricosb;

It is justifiable that the time lags H, % of the cutting force are such small
amounts® that x(¢1—H), y({—H), etc. are approximated as follows:

2t—H) =x—Hi, y(t — H) =y~ Hy } o)
$(t—h)=x—hi, yt—nh) =y—hy
Using Egs. (28), (29), (30), F.i, F,; are obtained as follows:
Fri = Fei(dsi) — Kyizcos' 0; ~ (Kyiy — Krix) sin0; cos ; + Kriysin®f;
+ Kyillicos'0; + (KyiHy — Kyihi) sinf;cos ; — Krihysin®0; (31
Fyi = Foyildsi) — Krixcos® 0; — (Kyix + Kriy) sinf;cos f; — Kyiysin®;
+ Kyihi cos®0; + (KyiHi + Kzihy) sin 0 cosf; + Ky Hy sin’6;
where
Fexi(ds)) = Kyids; o8 0; — Kridsi sin 0; } )
Foyildsi) = Kyidsi sin 6; + Kridsi cos 0;

Using the above equations, the differential equation representing the chatter
vibration occuring in multi-edge rotary cutting tool can be derived by the ro-
tational coordinate system as follows:

ME + Coft 4+ (ky — mo®) (x+ az) — 2mwy= ) Fy

i=1

: (33)
2mok+my+cyy+ (ky — mo®) (y+ ay) = >, Fyi

i=1

where m is the equivalent mass of the tool system and it is assumed that the
values of m in x and y directions are equal; cx, ¢, are the damping cofficients and
kx, ky are the spring constants in both directions respectively; o is the angular
velocity of the tool.

Setting

Celm =20, Cy/ M =21y, Ny/Nx = q, kufm = pL, ky/m =P}, z

bylpz=1, hl H=2, Kyi/m=hyi, Kvilm = Jui, J (34)

2;: Axiln =y, 217:’/” =Ar, def/ly=r, Axildy = gi
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where g; is the cutting factor of each cutting edge indicating the contributing
rate to the cutting operation, and is written as follows:

> gi=n (35)
i=1
Using Fags. (26), (31), (32), (34), Eq. (33) becomes,

¥+ ak + ax+ azy+ay =0 \

.. . (36)
bu’c+bzx+y+bsy+b4y=0
where
0y = 2my — Ay H S gicos™0; — h >, gisin6;cos f;)
=1 =1
@ =Pt — o* + (S gicos®0; — v > gisinficos 6
i=1 i=1
ts = — 20— iy(HS) gisinficos; — th >, gisin’0;)
i=1 i=1
a4:XN(ZgiSinﬂicosﬁi—ngising(?i)
i=1 i=1
(37)
b =20 — ax(H S\ gisinf;cosf; + th >, gicos’ 0;)
i=1 i=1
by = dn( S gisinficos -+t >, gicos’ 0;)
i=1 1=1
by = 2ny — ANQHigisinzai +th > gisinf;cosl;)
i=1 i=1
by =pb — o+ in( S gisin0; + v > gisinb;cosb;)
i=1 i=1
Now, the solution of Eq. (36) is assumed as follows:
St St
x=506", ¥ =o€
I _,“} (38)
s=a+jB, j=V-1

The characteristic equation of the vibratory system can be obtained as follows:

St At A+ Ass+ Aa=0

Ay =a,+bs

As = aibs+ ar+ by — ash (39)
As = aby + ashs — ashy — asb

Ay= i~ abs

Reffering to the Hurwitz criterion, the following expression for the stability
boundary of chatter vibration can be obtained.

Ag(AlAz - Az) - A§A4 = 0 (40)
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In Egs. (40), (39), (37), parameters p:, py, ix, 2y, o, i, gi, H, h, ~ are deter-
mined by the vibrational properties or the cutting conditions. Hence, regarding
these parameters as assigned, the critical value of iy which gives the excitation
boundary of chatter can be determined from. Eq. (40) as follows:

(}u\’)c=l;\'(px, py, Ny, My, 0, ﬁi, &gi, H /Z, ) (41)

Therefore, the chatter vibration should be brought out in such cutting con-
ditions that the magnitude of iy is greater than the critical value (Ax)e.

3.1.2. Numerical calculation and consideration (Case of n=2, gi=g=1)

First, the stability boundary (1x)c in the case of tools with two cutting edges
(n=2) will be examined, using Eq. (41). The vibrational properties of each vib-
ratory system shown in Fig. 17 are acqired from the free vibration test. The
results are listed collectively in Table 2. Fig. 19 shows the relation between the
damping coefficients » and the natural angular frequency p of these systems. It
is seen in this figure that there is a good liner relationship between 7 and P
Hence, numerical calculation in this paper is carried out based upon this relation
(nocp?).

The cutting factor gi depends generally on the cutting edge setting conditions
(both axial and radial) and the dimensions of each cutting edge. For example,
when the axial distance of two cutting edges f (See Fig. 17) is greater than the

TAELE 2. Vibrational Properties of Cutting Tools

- | Do by i i -y
CTERe | radgs) | (radgs) | ey | (1)
r=1 1855 | 1855 | 743 | 743
r=11 1618 | 1771 54.5 67.7
r=13 1235 | 1606 329 | 556
r=15 %3 | 1445 20.0 45.1
80
70+
60
0 50 o
~
40+ £
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20
10
e} : 1 ‘ 2 3
pex 10557

F1G. 19. Relation between damping coefiicient # and
natural angular frequency p.
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feed of tool or workpiece, and the depth of cut of each edge is equal, g1=g2=1
for arbitrary condition of each cutting edge.

Accordingly, as a standard case of consideration, the stability boundary of
the tools with two cutting edges is investigated for the case that gi=g.=1, that
is, the cutting factors of two cutting edges are equal.

For example, Figs. 20~24 show the relations between the stability boundary
(Ax)c and the various cutting edge setting conditions, which are obtained from
Eq. (41). Here, representing the cutting edge setting angle of C, (that is, 6:) by
0, that of C. (that is, 6:) is expressed by 6.=180+ (§—¢), where, ¢ indicates the

(An)e x 10%/8°

0 90 180 270 360
8 deg

FI1G. 20. Variation of stability boundary (iv)e with change
of cutting edge setting angle § ($=0°).
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FIG. 21. Variation of stability boundary (iy)e with change
of cutting edge setting angle § (¢=22.5°).
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FI1G. 24. Variation of stability boundary (2y)e with change
of cutting edge setting angle 6 (¢$=90°).

shifted angle from the symmetrical setting position of both cutting edges (See
Fig. 18). In these calculations, the following numerical values are used referring
to many previous experimental data, i.e, H=0.0005 sec, e=h/H=0.6, v=3. In
Figs. 20~24, any vibratory system becomes unstable in such cutting conditions

that the individual value of 1y is larger than that of (lx). predicted from the
corresponding (Ax)e~f curve,
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In the tool which has no directional characteristics in vibrational properties
(that is, »=p,/p=1), the stability boundary (ix)c is independent of the cutting
edge setting conditions, seen as fine solid lines in these figures.

Fig. 20 shows the relation between (ix)c and the various cutting edge setting
angles # against x-axis, when two cutting edges are arranged symmetrically. For
r=1.1, =13 and =15 tool systems in Fig. 17, (ix)c makes an interesting change
with the cutting edge setting angle 6, due to the directional characteristics of
vibrational properties. That is to say, the value of (ix)c becomes maximum at the
cutting edge setting angles A, A’ (the first order of fope) and B, B' (the second
order of fop:). These optimum setting positions are a little ahead of the least
stiffness directions (#=0°, 180°) or the greatests tiffness ones (6=90°, 270°) in
the same rotational directions as that of the tool. It is obvious that within this
calculation the maximum value (Ay)ms:x Of the »=1.1 tool system is the greatest
of all, and this greatest value is extremely greater than the stability boundary
(Ax)e at A, A'is fairly greater than that at B, B"

Next, Figs. 21~24 show the relations between the stability boudary (Ax)c and
the cutting edge setting angle 6, where two cutting edges are shifted by the
amount of ¢=22.5° 45°, 67.5° and 90° from the symmetrical setting position of
both cutting edges respectively.

It is recognized in these figures that the (Aw)c~0 relations of these cases
differ in features from that of ¢=0°. Namely, the cutting edge setting angle at
which (Ax)c becomes maximum moves rightwards in the figure, that is, the value
of fops becomes large with increase of the shifted angle ¢. Furtheremore, for a
large shifted angle ¢, the value of (Ax)c becomes maximum at only two cutting
angles M., M}, which lie between the first order of fo, and the second order of
dops (See the case of ¢=45° and r=11). In the case of ¢=90° the stability
boundary (Ax)c is independent of the cutting edge setting angle 0, regardless of
the presence of the directional characteristics in the vibrational properties.

Figs. 25, 26 show the relation between the maximum value (Ax)max, the cor-
responding optimum cutting edge setting angle 0o,x and the shifted angle ¢. In
these figures, the ranges A-B, C-D and E-F correspond to the case where the

A T F
O C oo, oD
¥ ‘& 4
| 4 /‘\ i
4 4 \‘\ ’I'/\\\ // "\‘g I’/ \\.
7\ /B | ]

08
—o—- r=l.1
T 0s1
-(éo ' T ’ 0 b ' 56 ' 180
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FIG. 25. Relation between maximum value (iv)mwax and shifted angle ¢.
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FI1G. 26. Relation between optimum cutting edge setting angle
fope and shifted angle ¢.

value (1y)c has four maximum values, and the ranges B-C, D-E correspond to
the case where (ly)c has two maximum values.

It is obvious in Fig. 25 that the value of (ly)max become maximum and the
chatter vibration can most effectively be prevented in 30°>¢> —30° in case of
the »=1.1 tool system, and at the critical shifted angle ¢ at which the number
of the maximum values of (Av)c changes from four to two in case of the »=1.3,
r=1.5 tool systems. However, in any tool systems (ly)... becomes minimum at
¢=90° where both cutting edges lie in a rectangular position to each other,
hence, this setting condition is an undesirable one to prevent the chatter vib-
ration. From Figs. 25, 26, it is recognized that the chatter vibration of the multi-
edge rotary cutting tool can remarkably be prevented in the tool system having
suitable values of 7, ¢, 0.

Fig. 27 shows the relation between the maximum value (iy)m:x and the fre-
quency ratio ». The value of (Ay)m. varies with the shifted angle ¢, as shown
in Fig. 25, nevertheless it is seen in Fig. 27 that (ly)wax becomes maximum at
almost the same frequency ratio, »=7... This is a very favourable for the design
of an effective tool to prevent the chatter vibration.

Next, the effect of the cutting conditions and the vibrational properties on
(Ax) max, Oope and the optimum frequency ratio 7., is examined in detail. As some
examples, Figs. 28, 29 show the effect of the cutting force ratio r and the damp-
ing coefficient 7. on the values of (Ax)max and fop.

It is obvious in Fig. 28 that the value of (ly)max i almost constant indepen-
dently of r, but, the corresponding value of f,, decreases with the increase of .
Meanwhile, it is obvious in Fig. 29 that the value of (1y)um.: and the correspond-
ing value of f increase with the increase of ..

Fig. 30 shows the relation between (Ax)m.. and » for various values of ..
The value of (Ax)m.x becomes maximum at almost the same frequency ratio r=
7o for each value of n., as shown in the figure. And this magnitude of 7o
agrees nearly with that of Fig. 27.

It is clear from the above discussion that there exists the optimum frequency
ratio, that is, the optimum tool configuration to prevent the catter vibration in
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the multi-edge rotary cutting tools, and this optimum tool configuration is not
affected by the cutting conditions, the cutting edge setting conditions and the
vibrational properties of the system. This is considered to be a favourable fact
for the design of an effective tool to prevent the chatter vibration.

Thus, it is clear that there are optimum cutting edge setting angles for the
effective prevention of the chatter vibration in multi-edge rotary cutting tools
having the directional characteristics in vibrational properties, and it can be
expected that the chatter behaviour will be remarkably improved if a good use
of the directional characteristics of the tool is made. However, it may be noted
that the tool displaces owing to the unbalance of cutting force acting on each
cutting edge when both cutting edges are arranged unsymmetrically, ie. ¢#0°.
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3.1.3. Effect of vibrational properties and cutling conditions on stabilily boundary
(Ax)e

To discuss the above mentioned results about the stability boundary (1x)c in

detail, the characteristic equation (39) is solved approximately using the under-
mentioned method.

Replacing s in Eq. (39) by s*—A4./4, next equation is obtained,

sS4 8™ A posT+ 05 =0

0 = ""%A%"*‘AZ
1, 1 (42)
P2 = ”g‘Al - “2'A1A2+ A3
P = 226 1+ 16A 1A, — A1A3+ Ay
The solution of Eq. (42) can be assumed as follows:
=X+jJY=2), si =X-j(Y—-2)
7 2 i( ] (43)

st= = X+jY+2),s8i=-X—-j(Y+2) J

Substituting Eq. (43) in Eq. (42), using the relations between roots and co-
efficients of a fourth-degree polynomial equation and neglecting the higher order
of s* the following equation on X is obtained.

2o X 4o —4p) X —pi=0 (44)

X can be determined from Eq. (44) as follows:

X= =% V'(Px—‘llh) ‘+80101—'(0|"4[)1)
1601

Consequently,

_______ R R (45)
Y = j:/V(01_4p3)2+80192+(01_403
16()1

7= Jpl 403

From the above analysis, the solution of the characteristic equation (39) can
approximately be expressed as follows:

51'2=a1ij2”f1=X"%:i:j(Y—Z) 1
A (46)
53"‘=“Zij2”f2="'X"’Z:l:]'(Y—}-Z) ]

The relation between the real part «, the chatter frequency f and the cutting
edge setting angle # is calculated by the system »=15, using Eq. (46), and is
shown in Figs. 31, 32. Fig. 31 shows the case when ¢=22.5°, and Fig. 32 shows
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FI1G. 32. Variation of increments or decrements ai, a2 and frequencies
fi1, /2 with change of cutting edge setting angle 0 (¢=67.5° »=1.5).

the case when ¢=67.5°. Both figures correspond to the case when ly> (Ax). for
all setting angles. In these figures, solid lines indicate the real parts «i, a; and
broken lines indicate the chatter frequency fi, f» corresponding to ai, a» respec-
tively. Two straight lines are the two natural frequencies fi=p:/27, fy=py/2m.
It is seen in Fig. 31 (¢=22.5°) that either a1 or a: is positive in all setting
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angles #, and the system is unstable for the whole range. In the range 1-A, B-N
and B'-2, the vibration occurs with frequency fi, and within the range A-M-B,
A'-M'-B', with f,. At the intersecting points of the ai-curve with a.-curve, vib-
ration with frequencies f1 and f; becomes unstable simultaneously.

It may be quite interesting to compare Fig. 31 with the »=15 curve in Fig.
21. The fact that a; or a» becomes maximum at M, M'; N, N' in Fig. 31 cor-
responds to the fact that the value of (ly)c becomes minimum at M, N in Fig.
21. Furtheremore, the values of «i, @ becomes almost zero at A, A'; B, B', and
the magnitudes of a; and «; are reversed at these points. This fact is closely
related with (ix)c becoming maximum at A, A’; B, B' and decreasing abruptly
when passing through these points.

Next, it is seen in Fig. 32 (¢=67.5°) that a:<0<a; for all setting angles 0,
and vibration occurs with frequency f for whole range. The fact that the value
of a; becomes minimum at M,, M) corresponds to the results that (ix)c becomes
maximum at M,, M in Fig. 23, and the value of (iy). decreases smoothly.

From the above discussion, it is clear that two modes of vibration, that is, fi
and f,, satisfy the stability boundary simultaneously and all of the real parts of
the characteristic roots become zero at the maximum points of (ix)e, when (Ix)e
has four maximum values, as seen in Fig. 20 (¢=0°). Hence, X=A,/4=0 in Eq.
(46) and the following relation can be obtained

sin(20 +0c) = /o (47)
where

e =4npe H(q+ 7Y + 2014+ @) 2001+ @) — prH1 4+ #) }

—4nip(1+ @)* (1 + %) sin’¢
0= nH(1+ q) cos gV {epes H(r* — 1) — 2ne(q— 1) P+ {piH(F — 1) — 2melg— 1)} (48)
v=py/be, q=ny/nx

(Hip — 2n:) cos ¢+ v (pih — 2n.) sing
(pH — 2ny) sin g — ¢ (pyh — 2n,) cos ¢

tanf. =

When the condition that |k/s|<1 is satisfied, four setting angles f., where
the value of (iy)c becomes maximum can be obtained using Eq. (47) (See Fig.
20). These values of k, ¢ are closely related to the vibrational properties of the
system, the cutting conditions and the cutting edge setting conditions, as seen in
Egs. (47), (48). Namely, whether four values of 0. exist or not is determined
by these conditions.

Fig. 33 shows the relation for »=1.5 tool system between sin (20-+0¢), fopx and
¢, obtained from Eq. (47). It is seen in the figure that |sin(20+40:)|=|r/s| <1 for
¢ within the range A-B, C-D, and two modes of vibration, that is, /i and f2, be-
come unstable simultaneously at four cutting edge setting angles, that is, (6:)opn
and (62)epe. On the contrary, |sin(20+6,)|>1 for ¢ within the range B-C, and
there are no cutting edge setting angles that make two modes of vibration un-
stable simultaneously. So, it is clear that f.n is not found in four cutting edge
setting angles. These facts correspond to the considerations in Figs. 20~24
closely.
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As seen in Figs. 20~24, (Jx)c-curves change smoothly for the cutting edge
setting angles near f,,, when (iy)c has two maximum values. Consequently, it
is convenient for practical application that the value of (ly)c is not so much
affected by the small error in cutting edge setting angle from f,:.

Next, to make clear the effect of the vibrational properties of the system
and cutting conditions on the number (four or two) of the maximum values of
(x)c, the critical shifted angle ¢. for which Eq. (47) has a solution is calculated
for the r=1.1, =15 systems, and is shown in Figs. 34 and 35. Fig. 34 shows
the relation between ¢. and the damping coefficient »n,. The value of n, is deter-
mined by the relation that nocp® (See Fig. 19). It is seen in the figure that ¢
decreases with increase of 7., hence the range of ¢ where (iv)c has four maxi-
mum values for both systems narrows. This tendency is conspicuous in fhe
system of large frequency ratio 7.

Next, Fig. 35 shows the relation between ¢. and r. It may be noted in the
figure that the greater the ratio r is, and for the same magnitude of ¢ the greater

50r
o 401
@
el
s
30}
2ot .5 : 100 150 200

20« /S

FIG. 34. Relation between critical shifted angle ¢, and damping
coefficient nz (=11, »=1.5).
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the ratio r is, the greater the value of ¢. is, hence, the range in which (ix)c has
four maximum values is broad.

3.2, Experimental result

To ascertain the above theoretical analysis, the following experiments are
carried out. Four cutting tools having different amounts of directional character-
istics are made (See Fig. 17 and Table 2) and two equal dimensioned cutting
edges (rake angle: 0°, side clearance angle: 6°, nose radius: 0.5 mm) are set to
each cutting tool. Boring operation is carried out in such cutting conditions
that the cutting velocity is about 15 m/min, the feed rate is 0.1 mm/rev which
is held constant, the cutting factors of both cutting edges are equal, ie., gi=g:=1
and depth of cut is changed for various cutting edge setting angles, and the
critical depth of cut at which the chatter vibration is set up is examined experi-
mentally. The vibrations of x and y directions are measured electrically by the
strain gauges. Fig. 36 shows an example of chatter vibration in both x and y
directions for the »=1.5 tool system.

Figs. 37~39 show some examples of the relations between the amplitude of
the chatter and the depth of cut obtained from many experimental photographs
for #=15. From the amplitude-depth of cut curves in the figures, the critical
depth of cut d. can be obtained experimentally for various cutting edge setting
angles. Here, it must be noted that the critical depth of cut d. is equivalent to
(Ax)¢ in the theoretical analysis.

Figs. 40~43 show the relations between d. and § for =15 tool system. The
calculated value (iy)c is illustrated by solid line in the figures, for reference.
Figs. 40, 41 are the results for ¢=0° 180° and ¢=45° 135° where the stability
boundary (ix)c becomes maximum in four cutting edge setting angles. Fig. 42
is the result for ¢=67.5°, 112.5° where (ly)c becomes maximum at two angles.
Fig. 43 shows the case of ¢=90° where two cutting edges are set vertically to
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each other, and ()¢ is independent of §, regardless of the presence of the di-
rectional characteristics in the vibrational properties. It is clear in Figs. 40~43
that the experimental results show a closely similar tendency to the theoretical
results. Consequently, it is ascertained that the analytical results are in good
agreements with the experimental results quantitatively.

3.3. Conclusion

The stability boundary for the chatter vibration occurring in the multi-edge
rotary cutting tool which has the directional characteristics in the vibrational pro-
perties is introduced as the function of the vibrational properties of the system
and the cutting conditions, and is ascertained experimentally.

As a result, it has been shown that the chatter vibration of the multi-edge
rotary cutting tool can remarkably be prevented through a good use of the di-
rectional characteristics of the system and a proper combination of the setting
angle of each cutting edge. Furthermore, it has been shown that there is the
optimum tool configuration to prevent the chatter vibration, and this optimum
tool configuration has no relation with the cutting conditions and the cutting
edge setting angles.

4. Some Considerations on Prevention of Chatter Vibration
in Multi-edge Rotary Cutting Tool, 2%

In the previous chapter, the stability boundary of chatter occurring in the
multi-edge rotary cutting tools which had a directional characteristics in the vib-
rational properties was introduced theoretically as the functions of the vibrational
properties of the system and the various cutting conditions, and was ascertained
experimentally.

In this chapter, based on the analytical results in the previous chapter, the
effects of the cutting edge setting condilions in axial or radial directions and small
errors in the cutting edge setting conditions (such as cutting angle, nose radius
etc.) on the stability boundary are examined from a practical point of view.

4.1. Tools with two cutting edges (n=2)

In the previous chapter, only the stability boundary in the case that all of
the cutting factors are equal, that is, gi=1 [See Eq. (35)] was treated.

The cutting factor g; is generally determined by the geometrical setting con-
ditions and the dimensions of each cutting edge. For example, Fig. 44 shows
the relation between g; and the setting conditions of each cutting edge, for the
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tool with two cutting edges having
equal dimensions (#=2). As seen in
Eq. (35), g1+g:=2 for the case that
n=2. Inthe figure, f/s is a parameter
indicating the ratio of the setting
error in axial direction f to the feed
rate per revolution s, ¢ indicates the
shifted angle from the symmetrical
direction of both cutting edges as
shown in Fig. 45. When f/s=0.25, g
shows the changing process of A-D-
E-F and g shows that of A'-D'-E-F'
with increase of the shifted angle ¢,
as shown in the figure. Namely, g1=
2, g2=0 for the case that —180° <p< FIG. 45. Cutting edge sefting angle (n=2).
—90°, hence, cutting edge C. does not

contribute to metal removing at all. And for the greater shifted angle, g1 de-
creases and g: increases, hence, both cutting edges Ci, C. contribute to metal
removing. Particularly, in the case of ¢=90°, gi=g:=1, that is, the contributing
rates of both cutting edges are equal. Furthermore, it is seen in the figure that
when f/s=1, g&1=2 and g =0 for arbitrary shifted angle ¢, hence, cutting edge C:
does not contribute to metal removing. Symmetrical setting condition of the two
cutting edges corresponds to the point B (¢p=0° f/s=0) in the figure.

It may be considered that the stability boundary of the chatter vibration is
affected by accidental or intentional changes of each cutting edge setting con-
dition in this manner. On that account, the effect of the various cutting edge
setting conditions on the stability boundary of multi-edge rotary cutting tools
will be examined from a practical point of view.

4.1.1. Effect of gi (n=2)
First, to make clear the relation between the stability boundary (An)c and the
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cutting factor g;, the stability boundary (iy)c is calculated for the actual tool

system used in the previous chapter, varing the value of g;.

examples of these calculations.
values are used, H=0.0005 sec, e=%/H=0.8, r=3.

Figs. 46~49 show

In the calculations, the following numerical
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Figs. 46~49 show the relations between the stability boundary (ix)ec and the
cutting edge setting angle ¢ for the case of ¢=90" (See Fig. 45) where both
cutting edges lie in a rectangular position to each other, and the values of &
are 1.0, 0.75, 0.5, 0.25 respectively (hence, the corresponding values of g, are 1.0,
1.25, 1.5, 1.75). In the case of ¢=90°, gi=g.=1, as shown in Fig. 46, the stability
boundary (lx)c is independent of the cutting edge setting angle 0, regardless of
the presence of the directional characteristics in the vibrational properties. On
the contrary, it is seen in Figs. 47~49 where the value of & is varied that (iv)e
is markedly influenced by the cutting edge setting angle #, that is to say, when
g1=075, 0.5, (Ax)e has four maximum values in some cases (=13, 1.5). And
these maximum values are fairly greater than the stability boundary (Ax)¢ of the
r=1 tool system as a rule.

Fig. 50 shows the relation between the maximum value (A¥)max and the
cutting factor gi, which is obtained from the above calculaitons (¢=90°). In the
figure, the range A-B corresponds to the case where (Jx)c has four maximum
values, and the range B-C corresponds to the case where (Iy)c has two maxi-
mum values. It is recognized in Fig. 50 that the value of (Ax)m.x becomes maxi-
mum and the chatter vibration can most effectively be prevented in 0<g:<0.25
for »=1.1 tool system, and for r=1.3, r=15 tool systems, at the critical point B
at which the number of the maximum values of (Ax)c changes from four to two.

Fig. 51 shows the relation between (1x)m.x and g for ¢=0° where two cutting
edges are set symmetrically. In the case of ¢=0°, g1=g=1, (Av)c has four maxi-
mum values, as shown in Fig. 20 of the previous chapter. The maximum value
(Ax)mex is not affected by the change of g when ¢=0° as shown in Fig. 51.
Accordingly, the setting errors in axial or radial direction, which happen acci-
dentally or intentionally, do not affect the chatter vibration when ¢=0°.

In the above considerations, the effect of g, on the chatter prevention is ex-
amined only for ¢=90°, 0°. It is understood, however, from the above discussion
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that the cutting factor g; has a great influence on the stability boundary of the
chatter vibration, and the degree of influence varies remarkably with the shifted
angle ¢.

4.1.2. Effect of ¢ (n=2)

It is ordinary in common multi-edge rotary cutting tools that all of the cutting
edges are set in the concyclic position, owing to the structure of the tools. In
this case, provided that all of the cutting edge dimensions are equal, then Qi=g=
1. As a matter of fact, it is shown in the previous chapter that the chatter be-
haviour will be remarkably improved by the unsymmetrical setting condition of
each cutting edge.

In the case of the concyclic setting of two cutting edges, if one of the cutting
edges is shifted from the symmetrical setting condition as shown in Fig. 45, the
variational configuration of (2y)c is influenced not only by the shifted angle o,
but also by the dependent change of the cutting factor g;, g.. Provided that two
cutting edges have the same dimension, then g, g: are shown as a function of
the shifted angle ¢ as follows:

1=1—¢/180
si=1-¢/ } (49)

&=1+¢/180

Figs. 52~55 show the variation of the stability boundary (iy)e with the
change of the cutting edge setting angle ¢ for various shifted angles ¢ of the
two cutting edges which are set in concyclic positions.

Fig. 52 shows the case of ¢=0°, that is, two cutting edges are set symmetric-
ally. In this case, g1=g:=1, so the figure is identical with Fig. 20. However,
comparing Figs. 53~55 with the corresponding Figs. 22, 24 of the previous chapter
(in which g1=g:=1), it becomes clear that there is a wide difference in the vari-
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ational configuration of (ir)e and the corresponding maximum value (1)max.
Namely, comparing Fig. 53 (¢=45°) with Fig. 22 (¢p=45°, g1=g.=1), it is recog-
nized that the variational configurations of both cases is identical, however, there
is a wide difference in the corresponding maximum values (1x)max. Next, on the
case of ¢=90° g1=g:=1, the stability boundary (i»)¢ is independent of the cutting
edge setting angle 0, regardless of the presence of the directional characteristics
in the vibrational properties, however, in the case of concyclic setting conditions
(Av)c has two maximum values and there exist the optimum cutting edge setting
angles .. In the case of $=135°, gi=g:=1, the variational configuration of
(dx)c agrees with that of ¢=45° and gi=g:=1, and (iy)c has two optimum cutting
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edge setting angles (See Fig. 22). On the contrary, in the case of concyclic
setting condition, the value of (iy). becomes maximum at four cutting edge set-
ting angles. These differences are caused by the change of g, depending on the
change of ¢.

Accordingly, comparing Figs. 56, 57, showing the relations between the maxi-
mum value (Ay)mas, the optimum cutting edge setting angle f. and the shifted
angle ¢, with the corresponding Figs. 25, 26 in the previous chapter, it is recog-
nized that the values of (Ay)mex and fon are different from each other by » and @
Namely, in the case of gi=g>=1, the variational configuration of (Ay)ma< has the
tendency of line symmetry at ¢=90° and ¢=—90°, and (1) m.x becomes maximum
at ¢=0° ¢=180° for the »=1.1 tool system, and at four setting directions B, C, D,
E for the =13, 1.5 tool systems. On the contrary, in the case of the concyclic
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setting conditions, this tendency of line symmetry is not recognized and (A3) max
becomes maximum at two setting directions B, E for the r=1.1 tool system and
at C, D for the y=1.3, »=1.5 tool systems.

From the above discussion, it is clear that the chatter vibration of the multi-
edge rotary cutting tool can be prevented through a good use of the directional
characteristics of the system and a proper combination of the setting angle of
each cutting edge in the case of concyclic setting condition, too.

4.1.3. Effect of small change in g, ¢ on stability boundary (n=2)

It is ordinary in common multi-edge rotary cutting tools that all of the cutting
edges are set symmetrically, that is, $=0°, gi=1. However, it may be inevitable
that small changes in g; or ¢ are apt to occur owing to the setting error or the
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error in tool dimension, produced by the tool forming or tool wear.

Therefore, the effect of a small change in g or ¢ on the stability boundary
will be examined.

Expanding Eq. (40) into a polynomial of Ay and using Egs. (38), (39), a fifth
degree polynomial equation for Ay is obtained as follows:

algi, 9)Av+b(gi, @) A+ (g, 9)A%+d(gi, 95 +elgi, ) dx+F=0 (50)

where a(gi, ¢), b(gi, ¢), c(gi, ¢), d(gi, ¢) and e(gi, ¢) are the functions of cutting
edge setting conditions g, ¢; and f is a constant free from g; and ¢.
Differentiating Eq. (50) by gi or ¢, then

oz oz Z oz
{5a(gi, p)2v+4b(gi, 9)25+3clgi, 925+ 2d(gi, P)Av+elg, ¢)) (51)

Oy _ {aa(g,, o) Fran b gi, ¢) 4 o, aclgi, ¢)13 + ad(g,, ¢)) + del g, ¢)h}/
5 :

where z=g; or z=g¢.

Substituting the stability boundary (ix)c into Eq. (51), 9(Ax)c/0g1, 9(Ax)c/¢
are given. These differential cofficients represent the effect of a small change
in g, ¢ on the stability boundary (ix)e.

Figs. 58, 59 show the variation of the differential coefficients 2(ix)¢/9g1, 2(Ax)c/
2¢ with the change of the cutting edge setting angle # for the »=1.5 tool system,
using the above mentioned method. The stability boundary (ix). is illustrated
by the broken line in the figure, for reference.

Fig. 58 shows a symmetrical setting of two cutting edges (¢=0°). It is seen
in the figure that the value of &(Ay)c/9¢ varies according to the cutting edge
setting angle #, and 3(ix)c/0¢ becomes maximum only in the neighbourhood of
the optimum cutting edge setting angle 6,,. where (ly)c becomes maximum. This
is a very convenient fact to prevent the chatter vibration. The value of (ix)c
at A (first order of f.y) is slightly greater than that at B (second order of fup);
contrast with this fact the value of 2(iy)¢/3¢p at B is greater than that at A.
Because of this, which @, (first order or second order) is to be selected must
be determined in due consideration of the practical problem in tool forming and
setting. On the contrary, 9(ix)c/9g1=0 for all cutting edge setting angles 6,
hence, a setting error of the cutting edges in the axial direction does not influence
the stability boundary (ix). at all.
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F1G. 8. Variation of differential coefficients 9(lx)e/dg1, 8(2y)e/dp and stability
boundary (iv)e with change of cutting edge setting angle ¢ (n=2, $=0°),
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Next, Fig. 59 shows the case of ¢=60° and in this setting conditin (Ax)max
becomes maximum and the chatter vibration can most effectively be prevented,
as seen in Fig. 56. In this case, both small changes of g and ¢ affect the stability
boundary (iy)e. That is, 3(ix)¢/9g:>0 at the first order of fon (A, A'), and
3w e/3g1 <0 at the second order of fon (B, B'). Furthermore, 9(ix)c/9¢p>0 at
the first and the second order of fl,.. Considering the above mentioned points
and that the maximum values (iy)m.. at the first and the second order of o are
approximately equal, the first order of f.n is found good to prevent the chatter
vibration for the case of ¢=60°.

From the above consideration, it is clear that the optimum cutting edge set-
ting angle must be determined in due consideration of the effect of a small change
in g or ¢ on the stability boundary (ix)e.

4.2. Tools with 3 or 4 culling edges

In the previous section, the stability boundary of the tools with two cutting
edges is studied. The stability boundary with more than three cutting edges can
be discussed using the above mentioned method.

4.2.1. Tools with three cutting edges (n=3)

4.2.1.1. Effect of ¢

Many multi-edge rotary cutting tools have generally the cutting edges set in
concyclic positions at regular intervals. The stability boundary of the chatter
vibration is calculated for the case where one of the three cutting edges is shited
from the symmetrical setting condition (¢+0°) as shown in Fig. 60, as well as
for the symetrical setting condition. In this case, the values of gi are determined
as follows:

g2=1 (52)
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In Fig. 61 where three cutting
edges are set in a symmetrical set-
ting condition, the stability boundary Cz P
(Ax)c is not affected by the cutting 4
edge setting angle 0, regardless of the
presence of the directional charac-
teristics in the vibrational properties,
and this tendency is not agreeable 5
with that of n=2. Furthermore, the
stabilitv boundary (iy)e of the tool
systems of »=1.1 and »=1.3 is greater
than that of the »=1 tool system N
which has no directional characterics. T
Next, Fig. 62 is the result for ¢g= Cs
67.5°, where the stability boundary
(A¥)e of the =11, 1.3 and 1.5 tool FI1G. 60. Cutting edge setting angle (n=23).
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FIG. 61. Variation of stability boundary (Av)e with change of
cutting edge setiing angle 6 ($=0°).
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FIG. 62. Variation of stability boundary (Jy). with change of
cutting edge setting angle 6 (¢=67.5°).

systems becomes maximum at two cutting edge setting angles ., (M., M) and
these maximum values are considerably greater than the stability boundary (iy)c
of =1 tool system. Fig. 63 shows the result for ¢=—67.5°, where the stability
boundary (ly)e becomes maximum at four cutting edge setting angles, and this
tendency differs from the tendency in Figs. 61, 62. Figs. 64, 65 show the relation
between the maximum value (1x)ma:, the corresponding optimum cutting edge
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FIG. 63. Variation of stability boundary (Av)e with change of
cutting edge setting angle ¢ (¢p=—67.5°).
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FIG. 65. Relation between optimum cutting edge setting angle fope
and shifted angle ¢ (#=3).
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setting angle o, and the shifted angle ¢. It is seen in Fig. 64 that the value of
(A¥)max @t ¢=0° where three cutting edges are set symmetrically is the smallest,
and (1y)m.x becomes maximum in the neighborhood of ¢=—60°. This maximum
value is heavily dependent on the frequency ratio 7, that is, on the degree of the
directional characteristics in the vibrational properties, and that of the =1 tool
system is the smallest of all. In the above discussion, it is expected that the
chatter vibration will be remarkably improved by using a proper combination of
7, ¢, 0. However, it must be noted that when ¢+0°, the tool displaces owing to
the unvalance of cutting forces acting on each cutting edge.

4.2.1.2. Effect of small change in g, ¢ on stability boundary

The effect of a small change in g or ¢ on the stability boundary will be ex-
amined for »=1.5 tool system.

Fig. 66 shows the variation of the differential coefficients d(Jx)c/9g:, 9(2x)c/0p
with the change of the cutting edge setting angle # for ¢=0°, to make clear the
effect of a small change in g, ¢ on the stabilility boundary of the chatter vib-
ration. Though the stability boundary (iy). is independent of the cutting edge
setting angle § in case of ¢=0° as shown in Fig. 61, (1y). is influenced by a small
error in both g and ¢. 9(1x)./dg: becomes maximum at A4, 4’ and o(Ax)e/D¢ be-
comes maximum in D, D'. Hence, these cutting edge setting angles are desiable
to prevent the chatter vibration, but the differential coefficients 3 (1y)c/9g1, 9(Ax)c/o¢
do not become maximum at the same cutting edge setting angle. In the actual
multi-edge rotary cutting tool, it is conceivable that small errors in g and ¢ co-
exist in many cases. From a practical point of view, it is desired that o(Ax)c/0g1
>0 and 9(Av)c/29p>0 are simultaneously satisfied. Then, the cutting edge setting
angles near the intersecting points of these two curves, #: and 6. are desiable for
the prevention of the chatter vibration.

150
100
k)
~N
50
22
. o) “(J;)
3 >
58 -50 z

An)e

(

-150

F1G. 66. Variation of differential coefficients 8(2y)o/dg1, 0(Jx)e/¢ and stability
boundary (2v)e with change of cutting edge setting angle ¢ (n=3, ¢=0°).

Fig. 67 shows the case of ¢=—67.5°, and in this setting condition (ly)max be-
comes maximum at four points as shown in Fig. 63. It is seen in the figure that
9(w)c/og1, B(In)c/2p>0 near the first order and the second order of fo,:. Con-
sidering that the value of (ly)me at the first order of foy is slightly greater than
that at the second order of .., and that the value of 3(ly)c/0g: at the first order
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FIG. 67. Variation of differential coefficients 8(ix)c/dg1, 8(2n)e/0¢ and stability
boundary (iy)e with change of cutting edge setting angle § (n=3, ¢=—67.5°).

of fop is fairly greater than that at the second order of foyx, the first order of
oot is favorable to the prevention of the chatter vibration.

4.2.2. Tools with four cutting
edges (n=4)
4.2.2,1. Effect of ¢
The stability boundary of the
tools with four cutting edges which
are set in a concyclic position as
shown in Fig. 68. In this case, the
values of g; are determined by the
next relations.

T TN,

\
D

g =1+ ¢/90 )(S
g=g:=1 (563 o (X t\ T
gi=1—¢/90 7 \\\\‘

Fig. 69 shows the result for the
symmetrical setting condition (¢=
0°), Figs. 70~72 are the results for FIG. 68. Cutting edge setting angle (n=4).
the case where two opposite cutting
edges of four are shifted by the amount of ¢.

It is seen in the figures that when ¢=0°, that is, in the symmetrical setting
condition, the stability boundary (ix)c is not influenced by the cutting edge set-
ting angle @, and when ¢=22.5°, ¢=45°, ¢=67.5°, there exists the optimum cutting
edge setting angle and the corresponding maximum value (Aw)Ymax. Figs. 73, 74
show the relation between the maximum value (1x)max, the corresponding optimum
cutting edge setting angle 6o, and the shifted angle ¢. It is clear in these figures
that in each tool system, the value of (ix)m.x becomes minimum when $=0°
(symmetrical setting condition), and in the tool systems which have the directional
characteristics in the vibrational properties there is the optimum shifted angle
¢ope for the prevention of chatter vibration.
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- =3
e 12,5

50 Shinobu Kato and Etsuo Marui

n=4

—o—- r=1.l
——e—— r=1.3
—o0— r=1.5

-90

-60 -30 0 30 €0 90 -90 -60 =30 o - 30 &0

¢ deg ¢ deg
FIG. 73. Relation between maximum FI1G. 74. Relation between optimum
value (I¥)max and shifted angle ¢ (n=4). cutting edge setting angle fopt and shifted
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4.2.2.2. Effect of small change in g, ¢ on stability boundary

In this section, the effect of a small change in g or ¢ on the stability boundary
will be examined for the tools with four cutting edges.

Fig. 75 shows the variation of the differential coefficients 9(1x)c/0g1, 9(Ax)c/0¢
with the change of the cutting edge setting angle ¢ for ¢=0°. A similar vari-
ational tendency to that in Fig. 66 (2=3) can be observed in this figure. That
is, though the stability boundary (ix)c is independent of the cutting edge setting
angle ¢ in the case of ¢=0°, (iy). is influenced by a small error in both ¢ and
¢. 0(Ax)c/2g:>0 at A, A' and 9(Ax)c/0p>0 at D, D', so these cutting edge setting
conditions are desiable to improve the chatter behaviour. From a practical point
of view, however, the cutting edge setting angles 6,, 6. are favorable, where both
differential coefficients become positive simultaneously.

Next, Fig. 76 shows the result for ¢=60° where the value of (Ax)max becomes
approximately maximum (See Fig. 73). It is recognized in the figure that the
cutting edge setting angles (M., M%) where the stability boundary (ix)c becomes

n=4

. %9r A =15 6=0° N
w
\ ”7(\\ /w{\\ N )
" D D 3ln)e g %
= 0 ! ; > /o “’8
o ! i =
Vi i
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— Lot . 1 . L . L N Il
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FIG. 75. Variation of differential coecfficients 9(iw)e/0g1, 0(AN)e/0
and stability boundary (2v)e with change of cutting edge setting angle
0 (n=4, $=0°).
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and stability boundary (Ay). with change of cutting edge setting angle
0 (n=4, $=60°).

maximum does not agree with the cutting edge setting angles where the differ-
ential coefficients become maximum, but o(Aw)c/0g1>0, D(An)e/2p>0 at M., M.
Hence, from a practical point of view, these optimum cutting edge setting angles
are favorable for the prevention of the chatter vibration.

4.2.3. Optimum tool configuration

From the above considerations, it
is clear that the chatter behaviour
is improved by the unsymmetrical
setting condition (¢p=0°) for n=3, 4,
too. As seen in Figs. 64, 73, how-
ever, the value of (Ay)max is closely
dependent on the frequency ratio 7,
hence, it is expected that there will
be the optimum frequency ratio #.u
for the prevention of the chatter vib-
ration.

Fig. 77 shows the relation be-
tween the maximum value (Ay)max and ;
the frequency ratio » for the various |
cutting edge setting conditions. It is ;
seen in the figure that there is an !
optimum frequency ratio 7o, namely, G2r E

|
|
i
|

()xN)mox Xiof’/Sa

Fopt

the optimum tool configuration for the
prevention of the chatter vibration.
This magnitude of 7., is not affected

. O 1 1 1 i ]
by the number of the cutting edges ! LA 12 13 14 5
and the setting conditions of each r=py/ps
cutting edge, and is nearly agreeable FIG. 77. Relation between maximum value

with the optimum frequency ratio 7op  (2¥)max and frequency ratio 7 (%=3, 4).
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for n=2 (See Fig. 27). This fact is considered favorable for the design of an
effective multi-edge rotary cutting tool to prevent the chatter vibration.

4.3. Conclusion

The relation between the stability boundary of the multi-edge rotary cutting
tool which has directional characteristics in the vibratinal properties and the
various cutting edge setting conditions is examined from the practical point of
view.

As a result, it has been shown that

(1) The chatter vibration can be prevented through a good use of the di-
rectional characteristics of the system and a proper combination of the setting
angles of each cutting edge, in the multi-edge rotary cutting tool with 2, 3 or 4
cutting edges; and

(2) There is an optimum tool configuration to prevent the chatter vibration,
and this configuration is not affected by the number of the cutting edges and the
setting angles of each cutting edge.

Furthermore, the effect of a small error in the tool setting condition and the
tool dimensions (such as cutting angle, nose radius etc.) is studied for many
practical cases.
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