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1. Introduction

The purpose of this article is to construct the general theory of optimal
control for distributed parameter systems through “Functional Analysis” approach.

* Chapter 2 is due to Funahashi.
Chapters 3 and 4 are due to Nomura.
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Optimal control theory initially born in engineering interest has been much
developed in the increasing need to perform with high degree complex control
actions such as the automatic landing of airplane, the guidance control of flying
rocket, the attitude control of space viecle and the optimum control of atomic
reactor, etc. There are many studies contributed largely to the development of
optimal control for the lumped parameter systems described by ordinary dif-
ferential equations. But for the distributed parameter systems, there are not so
many remarkable results owing to the wall of mathematical difficulty. Recently,
advanced control engineers have great interest in the optimal control of distributed
parameter systems. In fact, the great progress in modern industry has caused
the need to develop sophisticated techniques for controlling complex and large-
scale systems with the highest efficiency and the largest profits. These systems
are, in general, hybrid ones composed of lumped parameter systems and distributed
parameter systems. Hence the optimum control problems for distributed parameter
systems have come in light in control engineering, and the unified research on
optimal control theory for distributive system has now put in urgent need.

The authors, restricting themselves to the most fundamental control problems
such as the optimal pursuit problem and the optimal regulator problem, develop
the general optimal control theory for linear distributive systems. These problems
were treated by several methods: the extended Pontryagin's maximum principle
by Egorov' and Wang?, nonlinear programming by Sakawa® and variational
method by authors®. In this article the authors grasp the problem as the one of
minimum distance problem in Hilbert spaces and solve it by the orthogonal
vojection. This method is lucid and appeals to the geometrical intuition. By
noticing that the feedback controller is the transformation from the state space
to input space, the feedback control theory is established. These developments
become possible only through Functional Analysis.

When it is desired to realize the optimal control for practical systems in
real time, it is inevitable to rely on the aid of digital computer. Digital computers
can not solve the problem described by the continuous-time function and the
infinite dimensional state. From this point of view, discrete-time version of the
optimal control theory established in chapter 2 is developed further in chapter 3.
This discrete-time regulator theory is the extension of Tou's theory for lumped
parameter systems. In chapter 4 an approximate computational method is developed
by approximating the distributed parameter system by the finite dimensional ones.
The control calculated for this new system is valuable to take as suboptimal
control for the original system. The validity of this approximation method is
assured by proving that the sub-optimal control converges to the true optimal
one if the dimension of the approximate system approaches to infinity.

2. Optimal Pursuit Control Preblems—Continuous-time Case

In this chapter the unified optimal control theory is developed for the optimal
pursuit problem, the special case of which is the optimal regulator problem. In
2-1 the problem is described and formulated in mathematical terms. The solution
to the problem is obtained by the orthogonal projection method. It isin the form
of open loop. In control technology it is desired to design a controller in the
form of closed loop. From this standpoint, in 2-3 the optimal feedback controller
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is designed for the regulator problem and is demonstrated that the feedback
operator is characterized by the nonlinear differential equation of Riccati-type.
In 2-4 the different approach is taken and the optimal feedback controller is
designed for the optimal pursuit problem. In this approach the feedback operator
is characterized by the linear integral equation of Fredholm type.

2-1. Control Problem

The aim of this article is to design a controller for the distributed parameter
system in order to acheive desired action in some optimal way. But, for the
purpose of demonstrating the generality of the theory developed in 2-2, control
problems are considered for the general linear systems not necessarily described
by dynamical equations. The theory is then applied to the dynamical systems
including distributed parameter systems. .

The input-state relation of a non-anticipatory linear system is separated in
zero-input response A; and zero-state response AsV.

2t = Aix(0) 1)+ Asue ) ; 1) (2-1-1)

where x(#) is state at time ¢ and belongs to a Hilbert space X.

i, 18 a function defined on the time interval (0, #]. w«(#) is control at time
t and belongs to a Hilbert space U.

Often it is desired to drive the system (2-1-1) to approach the specified state
x7(T) at the final time T or, to follow the specified trajectory x7(#) over the
interval (0, 7). The difference between the state of the system (2-1-1) and the
desired state is assumed to be measured by the norm of the space X. The control
problem is loosely stated as the minimization of

lx(T) — x"(D%, (2-1-2)
or

,
fi!x(t%x"(zf)!iifdz. (2-1-3)

g

While, on the way of restricting control energy, two cases are obtained.
(a) The available control energy is limited and is subject to the constraint.

{ e par<t - const. (2-1-4)
Jo

The problem is to find the control #° that minimizes (2-1-2) or (2-1-3) under
the restriction (2-1-4).

By letting 4 be a Lagrangian multiplier, the performance index is expressed
by

Tiw) = x(T) —-xd(T>!§§;+AS (O di
or (2-1-5)
"~

T T
Jtw) = [ x0) = =40 e+ 2§ o)l e
0 0

7
0

(b) Though the available energy is not limited it is desired to minimize
(2-1-2) or (2-1-3) by using the least control energy possible. In this case the
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performance index is expressed, letting » a weighting factor, by

.
Jw) = [ T) = 2D [+ 7 o) it
or . (2-1-6)
AT T
Jotw) = | Je(0) = 5 () et + | ey ae
4

Replacing ~/ A#(#) in (2-1-5) and ~7u(¢) in (2-1-6) by new (), the above
two problems are formulated in the same form and the problem is to find out
the optimal control which minimizes the performance index

’
T = 15D = 2D s+ | o) [ ar, (2-1-7)
Jo
or

T T
Rtwy = 1at6) = 5" @lxde+ § Jut)lpat, (2-1-8)

Define the operators K; and K, by

K= Al 1y 1),
U s\, 1) 1 (2-1-9)
([(gu)(f) :As(um,f] ) t), 0<t<T. j
and ¢ and c: by
d
= T — A:(x(0) 5 T,
=27 o ! (2-1-10)

(D) = 28 — Adx(0) 5 B, 0<i<T. |
respectively. By using these notations, Eqs (2-1-7) and (2-1-8) can be written as

r
o) = K=y + | lu®)lsat (2-1-11)

and

o) = S:I! (Kotd) (£) — (Dt + S:Hu(t) 13 dt (2-1-12)

Let [2(0, T: X) be a linear space of X-valued square integrable functions
defined on (0, 7, i.e. a linear space of functions y(#) such that

y(HeX ae in t,
and

~T
Introduce an inner product into this space by
"
ey W rin = So<x(t), Y(t)>xdf,

and the norm deduced from inner product by
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i, 220 = | IO ar

This 1*(0, T; X) is a Hilbert space. By using this notation Fgs. (2-1-11) and
(2-1-12) can be once more written
Jila) :E!KI%—'Cl[!?X“%'“uHiz(O,T;UJ; (2-1-13)
]z(%) = HKZH - CZWL?(@,T; n -+ H%Hzfﬂgo, U (2‘1‘14)
By definding Hi=1%*(0, T'; U) and Hy=X or L*(0, T ; X), Egs. (2-1-13) and (2-1-14)
are written in the same equation.

J) =\ Ku — ¢y, +uly,. (2-1-15)

So far the operator K is assumed only a linear operator in A into H, But
the operator of physical system is always a closed operator. In the sequel, it
is assumed that the operator K is a closed operator with domain D(K) dense in
H,.. Thus the optimal control is finally phrased as follows: Find the control
which gives

inf  J(u). (2-1-16)

u=D(K)

In a special case where Eq. (2-1-1) is the integral form of a dynamical
system

vg—{x(t) = Ax(t) + Bu(p), (2-1-17)

the operators K: and K», and C; and C, are given as follows:

Kﬂt:SOS(T—a)Bu(a)da (2-1-18)
T

(o) (£) :505‘(1‘—0) Bu(s)ds, 0<i<T (2-1-19)

e =xU(T) = S(T) x(0) (2-1-20)

) =x(8) = S x(0), 0<i<T. (2-1-21)

And the general theory developed in the next section is applicable to the
system (2-1-17). ‘

2-2. Solution by Orthogonal Projection®

2-2-1. Problem Reformulation

Following J. von Neumman®, define the operator X by its graph ®&(K) and
give a geometric image to the closed operator. This makes it possible to view
the control problem in a different standpoint and to demonstrate the existence
and uniqueness of the optimal control.

Define the product space of input space A, and the state space H: by

*) Concerning the representation of Eq. (2-1-17) and the fact that Eq. (2-1-17) represents
the general control system, see reference 2 and 3,
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H=H x H,
={(u, x); usH, x=H).

Introduce into H scalar multiplication and addition in a natural way as

alu, %) = (au, ax) (2-2-1)
(uly X))+ (%2, xz) = (%1 —+ s, X+ X2) (2—2‘2)

and inner product by
Loy, 1)y (e, 22)0m = <oty um, + {0, XDH,. (2-2-3)

Induce on H a norm determined by the inner product.

W, )12 = Llae, 2, (o, 20D
= lloea, + %0 5. (2-2-4)
Then H is complete with respect to this norm, ie. H is a Hilbert space.

Definition: The graph &(K) of an operator K is a subspace of H defined by
G(K) ={(n, Ku) ; usD(K)}.

In particular, if the operator K is a closed operator if and only if &(K) is a
closed subspace.

Recalling that the distance between a point (z, Ku) on ®(K) and a point
(0, ¢) is given by

Vo, Ku) — (0, cHilu =0, Ku—c)lu
=V J(u), (2-2-5)

it is found that the. control problem is equivalent to finding the minimum distance
between G (K) and (0, ¢). As K is assumed to be closed, G (K) is closed. From
the well known theorem?® that in a Hilbert space any closed convex set contains
a unique minimum norm element, the existence of #°€D(K) such that gives the
infinimum of Eq. (2-2-5) and its uniqueness are assured. Thus the existence and
uniqueness of the optimal control #° for the problem are proved.

Moreover, from the orthogonal projection theorem™ (u°, Ku°) is given by the
orthogonal projection onto §(K) of (0, ¢).

2-2-2. Optimal Control

Let P be an orthogonal projection onto &(K). Then, as shown in the previous
section, the optimal control #° is given by

(#°, Ku®)=P(0, ¢). (2-2-6)

In the following, the explicit representation of the operator P will be given.
Define an orthogonal complement of &(X) by

G ={heH ; g, > =0, "geD(K)}

From the orthogonal projection theorem, H is decomposed orthogonally as
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H=8(K) 8GN,
This means that any % in H is represented uniquely by
h=h+h me®K), heGE? (2-2-7)

The G (K)L is, as shown in the following, just the graph G(K*) of the adjoint
operator K*, Let us define the adjoint operator.

Definition: Let K be a closed operator with dense domain in H.. If for some
xe H,, there exists a ve H,; satisfying

{Ku, g, =<u, vwu, for YusD(K), (2-2-8)

the operator defined by this correspondence is called an adjoint operator of K and
is denote by K*, i.e.

v=K"x
The domain ©(K*) of K* is given by
BAK™®) ={x=H,; for this x, there exists v satisfying (2-2-8)}.
By rewriting Eq. (2-2-8),
{Ku, ©n, =<u, K*3>r,
—<u, K*p, +<{Ku, xu,=0,
and recalling Eq. (2-2-3), the following relation is obtained.
Lu, Ku), (—K*x, 205=0 YucsDK), Yx&€D(K*). (2-2-9)

That is, {(—K*x, x) ; x&D(K*)} is orthogonal to G(X).
Introduce a continuous linear operator V on H;x H, into H=H,x H; by

Vix, ) = (—u, x). (2-2-10)
Then
{—K*x, ) ; x€D(K*)}
={V(x, K*%) ; x&D(K™)}
=VGKE™).
It is shown that §(K) and V&(K*) are orthogonal to each other, i.e.

H=8{K)SVS(K™. (2-2-11)

Now we are in a position to represent the othogonal projection P(x, x) of
(u, x) onto G(K). By the linearity of P and

(22, x) =z, 0)+ (0, 2V, (2-2-12)
it follows that

Pu, x) = Pu, 0)+ P(0, x), (2-2-13)
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First, P(0, x) is to be obtained. By Eq. (2-2-11), (0, x) is uniquely represented
through suitable ve®(K) and ye®(K*) by

(0, x) = (v, Kv)+ (= K™, ) (2-2-14)
1.e.
0=v—K"y
x=Kv-+y
From these relations,
I+ KK*]ly==x (2-2-15)

I+ KK* is self-adjoint, positive definite operator on X, and hence is invertible.
y=[I+KK*] 'z,
Thus the orthogonal projection of (0, x) is obtained.
P(0, x) = (v, Kv)
= (K* I+ KK*1 'x, KK*[I+ KK*1 'x). (2-2-16)
In the same way as above, P(x, 0) can be obtained.
P(u, 0) = ([I+ K*K1 ', KU+K K1 'u) (2-2-17)

P(u, ) = ([I+ K*K]1 'u+ K*[I+ KK*17'x,
KLI+ K*K1 'w+ KK'[I+KK*T™'%.  (2-2-18)
For the optimal control problem at hand, the orthogonal projection of (0, ¢)
is wanted. From Eq. (2-2-6),
(#°, Ku®) =P(0, ¢)
= (K*[I+ KK*1 ¢, KK'[I+ KK*17'c). (2-2-19)

That is, the optimal control #° is given by
u® = K* I+ KK*1 . (2-2-20)

In particular, if ¢ belongs to ®(K*) or if K is a bounded operator, Eq. (2-2-20)
can be written in another form.

u® =1+ K*K] 'K*. (2-2-21)

2-2-3. Examples

In order to show the application of the theory developed so far, optimal
controllers will be designed for some illustrative systems. Ex. 1is for the purpose
of demonstrating the width of applicability of the theory. Ex.2 and Ex.3 treats
the control problems for the distributed parameter systems.

Ex. 1. Optimal Pursuit Problem for a Differentiator
Let us consider a differentiator whose input-output relation is given by the
following equation:



Optimal Control of Distributed Parameter Systems 197

() = %u(t) >0, (2-2-22)

Here it is desired to control the differentiator such that the performence index
given by Eq. (2-2-23) is minimized.

T T
T :Soiy(f)~c(t>t?dt+§01u(z> Pdt, (2-2-23)

where ¢(¢) is the desired output which is to be followed and T is the fixed time.
It is required from Eq. (2-2-23) that both the input space U and the output space
Y be L*(0, T). Define an operator K from U into ¥ by

y=Ku e y(&) =u(l), (2-2-24)
where the domain ®(K) of K is given by

D(K)={us L0, T); u is absolutely continuous on (0, 7)
and «' belongs to L*(0, T)}.

The operator K is easily proved to be a closed operator and D(K) is dense
in U=L*0, 7). Then from the general theory it is assured that the optimal
control exists uniquely.

The adjoint of X is defined, from Eq. (2-2-8), by

{Ku, 2>y =<u, K*2v  YuesD(K). (2-2-25)
By defining the domain of K* by

D(K*)={zeL*(0, T); z is absolutely continuous and z’ belongs
to L*(0, T) and z(7) =0},

the adjoint operator K* is found to be
* —_ — __d_.__ -
(K"2) (1) = 7 z(8). (2-2-26)

Put g=[I+KK*] ', then the optimal control » is given by u°=K*g from
Eq. (2-2-20). From the relation

LU+ EKK*]g=c, (2-2-27)
it must hold that g belongs to ©(K*) and K*g to D(K), i.e.,
g(T) =0 and (K¥g)(0)=0. (2-2-28)
The solution of Eq. (2-2-27) under the condition Eq. (2-2-28) is

T t
gl = ggﬁ;;go c(s) sinh (T~ 5s) ds — ~goc(s) sinh (7°—9S) ds. (2-2-29)

The optimal control #°=K*g is

cosh ¢ (7
cosh T"J,

¢
u°(t) =Scc(s) cosh (f —s)ds — ¢(s) sinh (T —s) ds. (2-2-30)
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Ex. 2. Final Value Problem—Distributed Parameter Systems with Spatially
Distributed Control
Consider the system described by the partial differential equation:

e) o
~a—t-x(t, @) = —a?;;x(t, &) +ult, ), 0<a<l, (2-2-31)

with boundary conditions x(z, 0)=x(z, 1) =0.

In the case of heat conduction system, for example, x(¢, «) denotes the tem-
perature at time # and at spatial coordinate «, and u(f, «) denotes the heating
source at ¢ and «.

Given the specified temperature distribution x7(7, «), it is desired to bring
the #(T, «) of the system (2-2-31) to x"(7, @) as nearly as possible with the

)

least control energy. That is, it is desired to minimize the performance index

A1 sl
JAA =3 | %(T, @) —x™(T, oc)lzda—l-g 5 l2(t, )| dadt. (2-2-32)
0 0v ¢
By defining
x(¢) = x(¢, *)
w(t) =ult, *)

D(A) = {y=L*0, Dly(a) and y'(a) are absolutely continuous and
Y e L0, D}

(Ay) (a) = -d(-it;fy(a) on D(A),
Eq. (2-2-3) can be written as
¢ ) = -33)
»%x(z‘ = Ax(t) +ud). (2-2-33

For any control #eI?(0, T; L*(2)), 2= (0, 1), the trajectory of Eq. (2-2-33) is
given by

#(6) = S(@) 2(0) + SZSU-—J) u(s)ds (2-2-34)
where S(¢) is the semi-group generated by A and is given by
S x= %e*nfxmn. (2-2-35)
Eq. (2-2-34) is explicitly written as

@

ok
zlgoex"u——{x) un(G)dO'(}sn(a), (2’2_36)

*#(, a) = ée‘“txn(m pnla) +

where,
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27; = = (7’271')2

onla) =V 2 sin nra

1
wal) = [ 218, @) pula) da | (2-2-37)

1
() :jou(t, Opuladda n=12, ...
The operator defined by
.
Ku = SIT—0)uls)do, (2-2-38)
0

is a bounded operator on L*(0, T; L*(£)) into L*(2). The adjoint operator K*
of K is a bounded operator on L*(2) into L*(0, T; L*(2)), and is given by

(K*0O W) =S(T'-x  0<t<T. (2-2-39)

By putting ¢=x"(7) —-S(T)x(0) and y=[I+KK*] ¢, the optimal control #°
is, from Eq. (2-2-20), given by

u® = K*y, (2-2-40)
Prom the relation,
[I+KK*ly=c (2-2-41)

y must be determined.
Expansion in Fourier series of both sides of Eq. (2-2-41) leads to

1 W20 N
Yn + 73 e’ doyn = cn,
bl

. Cn
ie. gu= e (2-2-42)
+ 1-e - LT
2(nr)*
where
Y=<y, ¢
Cn = <C, ¢7z> .

The optimal control #° is thus obtained. -

u°(t) = (K*y) ()

= ¢ g, (2-2-43)
YT
where

Cn = <xd, Sljn> - e_mn)szn(O)‘ (2-2-44)

Ex. 3. Optimal Pursuit Problem
Consider the same system as Ex. 2 and notations are the same as in Ex, 2,
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It is desired now for the system to follow the specified trajectory x7(¢, ) with
the least control energy possible, i.e. to minimize the performance index,

7

J(u) = m:tx(t a) —x7(t, a)*dacdt + SOS:W(L ) |*decdt. (2-2-45) -
Define the operator L on L*(0, T; L*(2)) into itself, by
(Lu)(2) :SZS(t—-a)u(a)da, 0<t<T. (2-2-46)
The adjoint operator L* of L is
(L¥2) (2) = SZS(G 1) (o) do. (2-2-47)

Put c(¢)=x"(t)~S()x(0). The optimal control #° is characterized, from Eq.
(2-2-21), by
[I+L*L]u=L". (2-2-48)

Expand both sides of Eq. (2-2-48) in Fourier sieres.
.

T g
wUnlt) + Stde&e‘"”“"t""un(r)dt = Ste*n“"“cn(o) ds. (2-2-49)

If c(#) is differentiable almost everywhere, Eq. (2-2-49) is twice differentiable
and is equivalent to

Gia(t) — (1+ B) un(t) = Anttn(t) — 2n(2),
1/291,(0) =+ Xnun(o) = - Cn(o), . (2"2“50)
un(T) = 0.

An -
cosh Bnt — =% sinh But .1
Bn ( cn(a)[cosh Bl T~ ) — '?TZ sinh B,.(T— O')Jdd

wn (D) =

cosh B,T — -é'i sinh BnT“O
¢ A

-~ S Cn(a)[cosh Balt—5s) — =2 sinh Bt — s)} do. (2-2-51)
0 Bn

The optimal control #° is thus obtained.
u°(t) = >3 unlt) g, (2-2-52)

where u,(¢) is given by Eq. (2-2-51).
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2-3. Optimal Feedback Control—Riccati-type Differential Equation

In this section we restrict the control problem to the one in which the specified
trajectory or state are zero. This problem is called regulator problem and one
of the most important control problems. The optimal feedback controllers will
be designed for this problem.

For the case of dynamical systems with finite dimensional state space, Kalman
gave a feedback as the solution of nonlinear differential equation of Riccati-type®.
He derived the result from Hamilton-Jacobi equation. There are some extension
of Kalman’s theory to distributed parameter systems. Wang and Tung!® developed
their theory for a special distributed parameter system with spatially distributed
control.  Falb and Kleinman!» extend Kalman’s theory to systems in Hilbert
space. But the theory is restricted to systems whose infinitesimal generators
are bounded operators and is not applicable to distributed systems.

The derivation of the theory developed here is quite different from Kalman’s.
The key point is the fact that the feedback operator is the mapping from the
state space into itself. The feedback operator is defined geometrically and its
properties are examined. One of them shows that the feedback operator satisfies
the nonlinear differential equation of Riccati-type in Hilbert space. This equation
corresponds to the one which Kalman has obtained for the finite dimensional
dynamic systems. Another property shows that the value of the performance
index under the optimal control is given by the quadratic form in its initial state.
This property is just the assumption on which Kalman and others have constructed
their theory. But the validity of the assumption is not clear. The theory in this
chapter needs no assumption and reveals the meaning of the feedback operator.

2-3-1. Control Problems

We restrict the control problem in 2-2 to the following: the system is given
by

g—tx(t) = Ax(#) + Bu(t) (2-3-1)

and the desired trajectory or state be zero, ie. the performance indices of Eq.
(2-1-7) or (2-1-8) are

) = 1D+ | ez a (2-3-2)

T .\ z \
Jo) = | JxoVide+ | o) 3 at (2-3-3)
0 V0

respectively.

The problem is to design a feedback controller whose action at time # is
expressed by the state at time ¢ only.

Define

,
Lu={ S(T~0)Bu() do,
0

d= —S(T)x(0),
(2-3-4)

I3
(Eu) () = | S(t — o) Bu(o) do,
-0

c(t) = — S() x(0).
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Then the optimal control for the problem of Eq. (2-3-2) is given, from the theory

in 3.2, by
u® =[I+L*L]17'L*d,
and in the case of Eq. (2-3-3), by
u® =[I+K*K]1 "' K",
where

(L¥) () = B*S™(T'—thu, 0<i<T,

.
(K" (@) = B*S"o—Duds, 0<t<T.

2-8-2. Optimal Feedback Controller for Final Value Problem
Rewrite Eq. (2-3-5) as
[I+L*Llu=L"d
or
w=L*d— Lu)

where

1l

.
— S(T) (0) — §05<T~ &) Bu® (o) do
= —x°(T)

d— Lu®

£°(T) denotes the state at the final time 7T under the optimal control.

optimal control is given by
u® () = — B¥S™(T—1) x° (D).
If there exists an operator such that

Q) x° () =S (T—1)x° (D),

the optimal control can be expressed in the form of feedback control.

u®(#) = — B¥Q(t) x° (2).

(2-3-5)

(2-3-6)

(2-3-7)

(2-3-8)

(2-3-9

Thus the

(2-3-10)

(2-3-11)

(2-3-12)

To get the geometric image of the operator Q(1), consider the system

q(t) = A%q(1).

(2-3-13)

A* denotes the adjoint operator of A. Since A is an infinitesimal generator of
a strongly continuous semi-group S(#), £=0, A* also generates a strongly continuous
semi-group. The generated semi-group is the same as the adjoint of S(#), ie.

S*(t).
S S*(e) =S*(t+ 1) Yt, =0

IimS*x=x Ve X
tdn

{t—s*(t)x:A*s*(t)x Ve D(A*)

(2-3-14)
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The solution of Eq. (2-3-13) under the initial condition ¢(0)eD(4*) is ¢(f) =
S*(t)q(0). Let z(t)=q(T—1¢). z(t) satisfies

%z(t) = — A%z(). (2-3-15)

This system represents the backward response of the adjoint system of Eq. (2-3-13).
Given the initial state x°(7), the state at time ¢ of Eq. (2-3-15) is

2() =S (T—Dz(D
=SHT—1)x°(T). (2-3-16)

Thus, the operator Q(#) defined by Eq. (2-3-11) can be considered an operator
mapping the state x°(#) at time ¢ under the optimal control into the state
S*(T—1)x°(T) attained at time ¢# by Eq. (2-3-15) under free motion.

In the following, the various properties of Q(#) are examined and the feedback
controller will be designed.

Property 1. The operator defined by Eq. (2-3-11) is linear and unique on ®(A4).
Since the right-hand side S*(7T—¢) 2°(T) of Eq. (2-3-11) is strongly continuous
in ¢ and differentiable, the @Q(¢) must be differentiable.
d ) o ! d o . AkQE — o
[2 o |« () + Q) G 5°(1) = — A*S* (T~ ) 2°(T)
= — A%Q(t) x°(#). (2-3-17)
On the other hand, Eq. (2-3-1) becomes under the optimal feedback control
u®(t) = — B*Q®) x° (1),

%x"(ﬂ = Ax°(t) — BB*Q() x°(2).

Substituting this relation into Eq. (2-3-17), we obtain

[z?g Q)+ A% QD) + Q) A~ Q(z‘)BB*Q(t)]xO(t) —0.

Since this equation must hold for all the optimal trajectories, Q(f) satisties

7‘;{ Q) + A¥Q() + Q) A — Q(#) BB*Q(£) = 0. (2-3-18)
The boundary condition for Q(¢) is obtained, by letting /=7 in Eq. (2-3-11) as
QU x°(TY =S™0) x° ()

i.e. QT =1
It is thus proved that

Property 2. The operator Q(¢) defined by Eq. (2-3-11) is strongly differentiable
and satisfies the differential equation of Riccati-type.
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d ® _
Tﬁ-Q(t)+A*Q(t)+@(t)A—Q(t)BB Q) =0 } (2-3-19)

QY =1
Let Q(¢#) be the solution of Eq. (2-3-19). The adjoint operator @*(¢) is easily
seen to satisgy Eq. (2-3-19). Combining this with Property 1, the following is
obtained.
Property 3. The operator Q(¢) is symmetric, ‘.e.

Q*(t) = Q). (2-3-20)

In the following, it is shown that the value of the performance index under
the optimal control is given by <x(0), @(0)x(0)>x.
Differentiate the scalar <x°(#), Q(#) x°()>x with respect to time ¢

%<x°(t), Q) x°(H)>x
= —lu* (Ot
Integrate the above equation from 0 to T.
7 d T
S <&@, Q) x°(Vxdt = — f e (&) at.
0 <0

Remembering Q(7T) =1, x°(0) =x(0), we obtain

iy
o () i+ § e (B 1 dt = <x(0), QU0) 5(0)>x.
Thus we have

Property 4. The feedback control «°(f)= — B*Q(¢) x°(¢), where Q(#) is determined
from Eq. (2-3-11), minimizes the performance index

iy

1) =D+ § lalat
0
and the minimum value of I(x) is given by

(%) =<x(0), Q(0) x(0)>. (2-3-21)

2-3-3. Optimum Feedback Control for Regulator Problem
The optimal control is given by Eq. (2-3-6).

u =[I+K*K1'K*
Rewrite this equation as

u® =K*(c— Ku®°)
Where
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(c— Ku®) () =c(t) — (Ku®) ()
Al
' x-—S(L‘):‘c(O)—S St — ) Bu(s)do
0
= —x°(#).

That is, the optimal control is given by,

w® () = — SjB*S*(a-— 1) x° (o) do. (2-3-22)
If there exists an operator such that
P = [ 7= 2(0) do, (2-3-23)
then the optimal feedback control is designed by
u(t) = — B*P(#) x° (1). (2-3-24)

In the same way as the previous section, the property of P(¢) is examined
and feedback controller will be designed.

Property 5. The operator P(¢) defined by Eq. (2-3-23) is linear and unique.

b
The right-hand side &S*(Wﬁ‘)x"(a)da is differentiable with respect to time ¢
i

and thus P(¢) must be differentiable. Differentiate both sides of Eq. (2-3-23)
yields the following property.

Property 6. The operator P(¢) defined by Eq. (2-3-23) is differentiable and
satisfies the differential equation of Reccati-type.

—%P(zf) + A*P(#) +P(#) A-+1— P(t) BB*P(1) =0 (2-3-25)
P(T) =0. (2-3-26)
Same reasoning as in 3-3-2, the following two properties are obtained.
Property 7. The operator P(¢) is symmetric, i.e.
P()* = P($). (2-3-27)
Property 8. The optimal feedback control u«(#)= —B*P(f)x°(¢) minimizes the
performance index
S1 ) T .
T = | Jx@lid+ | luolba
0 0

and the minimum value of J(x) is given by

J(2°) =<x(0), P(O)x(0))x. (2-3-28)

5-3-4, Examples
Feedback controllers will be designed for the same systems considered in 2-3-4.
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Ex. 1. Optimal Final Value Problem
Let us consider the system

) C
*éz«\f(l‘, a) = é;gx(t, oc)+u(t, ) <<l

(2-3-29)
2, OV =x(t 1) =0
and the performance index
1 nl Al
1) = [ 1D afda+ | § lut. «)*daat (2-3-30)

Let it be desired to construct the optimal feedback controller which minimizes
(2-3-30).

From Eq. (2-3-30), x(f, «) and u(f, «) are required to be square integrable
in a, ie x(t <), u(t, )=L¥0,1). L0, 1) is isomorphic to the Hilbert space [* of
infinite sequences of square summable. By expanding x(7, «) and u(f «) in
Fourier series, Eq. (2-3-29) becomes

xl(t) A1 0 xl(t) { %1(t‘
d (1) 0 X L w(t) (1)
"a’tf © - N * -+ ' (2“3“..)1)
where
~1
2alt) =\ 24, @)V 2 sin nrada (2-3-32)
v 0
v 1
wnlt) = | wlt, I 2 sin nrada (2-3-33)
<o
x;;: - (7171’)2, 1’7,':—'1, 2, P
Put
1 xz(z‘) ul(t) i ]1 0
x'z(t) ﬁﬁz(t) Ao
x(H =1 - u(t) = . A= . (2-3-34)
. 0 .

Eq. (2-3-31) is written as
9 () = Ax() +u(d) (2-3-35)
A is a linear operator from /* into itself and its domain of definition is given by

S)(A):{Z:(Z;‘ : ‘)Elziiixnznlz< -+ OC’}

n=1

D(A) is dense in /2. A is not a bounded oerator, but is a closed one. A generates
a semi-group S(¢#) and S(¢) is an infinite dimensional matrix given by

S(2) =diag[e™, &, ... ] (2-3-36)
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The feedback matrix @Q(f) is an infinite dimensional matrix and is characterized
by Eq. (2-3-19).

[;‘Zt QU + A% QD + QD A—@H QWD =0 |

(2-3-37)
QUMY =1 J
By rewriting Eq. (2-3-37) componentwise
d 1 1 ) ) f’s I
ar G 8) -+ (An+ ) @umlt) — %Qz;e\f)Qem(f) =0
. 9.9
1 m=n (2-3-38)
Gum! 7) = O =
L 0 m=n
When m=n
Gnmlt) =0 0<t<T. (2-3-39)
When m=n
2 (nx)?
anll) = » t) = =7 ) om 9 2 . -3-40
@unlt) = qnl [1+2(im) ] 6 _ 1 (2-3-40
From Eq. (2-3-10), the optimal feedback control #°(¢) is given by
u(t) = — Q) x° (1)
1.e.
2 (nm)*
Z(n(t) = - [1—}«2(717:)2332“”)2“'—” -1 x;z(t)- . (2‘3"41)

The value of the performance index under the optimal feedback control is

. ® 2 ()t ) .
Ty = ‘;[1—‘— -2(nx)* 1T — 1 0 (273742)
where

1
£,(0) = S %0, &)y 2 sin nra da. (2-3-43)
0

Ex. 2. Regulator Problem

Let us consider the system of Eq. (2-3-30) and the performance index
VRS AT Al

Jw) = | \ [ x(t, a)IQdocdt+5 § lu(t, )" dadt. (2-3-44)
20 ~0 06

Let it be desired to design optimal feedback controller for the system. The
notation is the same used in Ex. 1. The feedback matrix P(#) is an infinite
dimensional matrix and is characterized by Eq. (2-3-25).

d

H?P(t)ﬂ'—APuH—AP(t)+I~P‘ﬂp(ﬂ:0 1{ 12-3-49)

P(T) =0}

Rewritting componentwise, when m 1,
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'%'an(lf) + un -+ zm}ﬁnm(“ - Zl:pne(t)pem(ﬂ =0

(2-3-46)
pnm(T) =7
It follows
Pamlt) =0, 0<t<T.
When m=n
»d~j) () + 2 2nPun(B) + 1 = Phult) =0
dt nn T ninn nn = (2_3_47)

pnn( T) =0 J
The solution of Eq. (2-3-47) is given by

pnn(t) :pn(t)
R — — 1 -
= VI1+ ()t cosh v 1+ (nm)® (T—18) -+ (nm)*”

The feedback control is given by
w(t) = — P x° ()
that is, componentwise

wun(t) = — Pu(t) 22D

1
,,,,,,, 7 (D). (2-3-48)

And the value of the performance index under the optimal feedback control is
given by

. w© s 1
T = 20 T Gy cosh V1 (m)* T+ (n)

i 2a(0)% (2-3-49)

2-4. Optimal Feedback Control Fredholm Intergral Equation™

In 2-3 we solved the regulator problem for distributed parameter systems in
the form of feedback control and derived a nonlinear differential equation cor-
responding to the Riccati equation obtained by Kalman. The regulator problem
is the one in which we wish the state of the system approaches to the zero state
as near as possible over the time interval (0, 7]. In this section, feedback
controller is designed for the optimal pursuit problem in Hilbert spaces, in which
it is desired to bring the trajectory of the system state to the specified one
not necessarily zero over (0, 71

This problem was considered by Merriam III for finite dimensional dynamical
systems™. He assumed that the value of the performance index under the optimal
control is given by the quadric (not quadratic) form of initial state and he
characterized parameters by nonlinear time-varying equations. On the other
hand, Balakrishnan gave a feedback control law for the final value problem without
derivation®.

In this section it is shown first that the feedback control law for the final
value problem given by Balakrishnan can be derived directly from the results of
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2-2 and then the feedback solution for the optimal pursuit problem is obtained
referring to the derivation for the final value problem. Since control is expressed
explicitly with the present state and the desired trajectory in future, the result
makes clear the structure of feedback control. Next, the value of the performance
index under optimal control is obtained in the explicit form. In the case of final
value control problem, it is given by the quadratic form of the difference between
the desired state and the system state at time 7 under no control. And in the
case of the pursuit problem it is expressed as the quadratic form of the difference
between the desired trajectory and the system trajectory under free motion. In
this section, we did derive quite analytically the above results which were the
very assumptions on which Merriam III developed his theory.

Letting the desired state be zero in the above result, we can obtain the solution
for regulator problem. Then the solution satisfies the nonlinear differential
equation of Riccati type. Thus we have solved the Riccati equation analytically.
It is noticeable that our theory contains no nonlinear analysis and simplifies the
solution of the optimal control.

2-4-1. Conirol Problem
We now consider the control problems where the desired trajectory or state
may not necessarily be zero, i.e. the system is given by

9 x() = Ax0) + Buld), (2-4-1)
and the performance index is given by

,
7 =) =2 D+ § u@lpar, (2-4-2)
0
or

r AT
Jo) = j lx(2) —xd<t>n;dt+§0nu(z>§z§fdz. (2-4-3)

The control problem is now to design for the system of Eq. (2-4-1) a feedback
controller which minimizes (2-4-2) or (2-4-3).

Using the same notation as in 2-3-1, with only exeption that ¢ and d are
replaced by

e(t) = x9(¢) — S(£) 20, |

a (2-4-4)
d=x"T) - S(T)x(0), |
the optimal feedforward control is given by Eq. (2-3-5) or (2-3-6).
2-4-2. Optimal Feedback Controller for Final Value Problem
Proceeding in the same way as in 2-3-2, #°(#) can be expressed by
u®(1) = B*S™(T— [« (T) — x*(T)]. (2-4-5)

where x°(7") denotes the state at the final time 7 when the optimal control is

applied to the system.
x°(T) can be expressed by the state x°(¢) at time { and the optimal control
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on (¢, T, ie
v
2D =S(T=D2W + | S(T—0) Bu* (o) do.
0

Combining this relation with Eq. (2-4-5), we obtain

o1
$UT) = 22(T) = 2T = S(T— 1) 2°(8) — | S(T—0) Bu®(s)do

— x( T)]drf
Then

4
[1+§t5(T—- $) BB*S*(T = 0) do1[x(T) — 2°(T) 1 = x(T) = S(T— 1) x° ().

(2-4-6)
Define the operator G(#) by

e

G(t) =T+ ST~ o) BB*S™(T~0) do. (2-4-7)
The operator G(f) is a bounded linear operator on U into itself, and is self-
adjoint and positive-definite. The straightforward calculation assures the existence
of the inverse operator G(¢) and the boundedness of G(¢). Eq. (2-4-6) is solved
for x"(T) —x°(T) as

x(T) = 3T =G '[e(T) = S(T— 1) x° (1) ]. (2-4-8)

Substitution of Eq. (2-4-8) into Eq. (2-4-5) yields the feedback control law,

W (1) = BESH(T— 1) G ' [e(T) — S(T =) x°(1)], (2-4-9)
which is desired. Eq. (2-4-9) states that the optimal control «°(f) at time ¢ is
determined only by the state x°(¢) at the same time and the desired final state
x4(T) at time 7.

Now let us evaluate the value of the performance index under the optimal
feedback control law given by Eq. (2-4-9). We consider the scalar,

m(t) =<x°(), S*(s—1) BB x%() =S =) 2° () Dy

and differentiate it with respect to time ¢. After straightforward calculation, we
obtain the value of the performance index under the optimal control as

1) =2 (T) = (D) [+ § e )
=<2 ) = S(T) (0, GO LT —S(T) (0)Dx, (2-4-10)

that is, the value of the performance index under the optimal control is expressed
in the quadratic form of x%(7)—S(T)x(0), which is the difference between the
desired state and the final state under no control.

In a special case where x7(7)=0, Eq. (2-4-9) becomes
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u° (1) = ~B""S*(T—i)G(ﬂ"lS(T—wx"(ﬂ, (2-4-11)
and Eq. (4-4-10) becomes

Iu®) =<S(T) x(0), G(O)'S(T)x(0)>«
=<x(0), S*(T) GO S(T)x(0))x. (2-4-12)

Let us define a bounded linear operator on X by
Q) =S"T-GH'S(T—1. (2-4-13)

The operator Q(#) is strongly differntiable with respect to time ¢ and satisfies
the following Riccati-type nonlinear differential equation:

»;%—Q(t) +ATQW) + QU A~ Q) BB*Q(t) =0, QiT) =1. (2-4-14)

The notation Q(#) simplifies the expression of Egs. (2-4-11) and (2-4-12) as follows.

u° i) = — BQ#) x(1). {2-4-15)
T(u®) =<x(0), QU0 x(0)Dx. (2-4-16)

Comparing the results obtained in 2-3-2, we find that the @Q(#) given by Eq.
(2-4-13) is the analytical solution of the Riccati equation of Eq. (2-4-14).

2~-4-3, Optimal Feedback Controller for Pursuit Problem
Just as in 2-3-3, we obtain

’

u® () :SiB*S*(a—— HILx% () = 2° (o)1 do. (2-4-17)
Now write x°(s), s>t with the state x°(#) at time ¢ and control #° on (¢, s].

S

#(8) =S(s =) x(0) + | S(s= o) Bu® (o) do.

Substitute Eq. (2-4-17) into the above.
s T 4
£°(s) = S(s—1)x° () —‘;—StS(s- u)B”tB*S*(r — o) (x%(0) —x°(0))dr |do

3 T
[x'(s) =21+ | Ss=) B] B*S*(c = 9La"(2) = () 1dr s
=x%s) = S(s— )27 (). (2-4-18)

Define an operator for arbitrary hel(t, T; U) by
S T
(HOR(S) =h(s)+ gtdag (s — o) BB*S*(v — o) A7) dr, s<t<T. (2-4-19)

H(#) is a bounded, self-adjoint and positive definite linear operator on L* (¢, T; U)
into itself. The inverse H-!(#) of H(¢{) exists and is bounded. Use of H(?)
reduces Eq. (2-4-18) into the following equation,
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HO L) = ()T () = 2%) = S(s— ) x° (@)

x%s) = 2°(s) = HO ' [x%(+) = S+ =) (D (s). (2-4-20)
Substitution of Eq. (2-4-20) into Eq. (2-4-17) yields the feedback control law,
.
u®(t) = StB*S*(s —OH®B x() = S =127 D (s) ds, (2-4-21)
which is just the desired one. Eq. (2-4-21) states that the optimal control «°(#)
at time ¢ is determined by the state x°(¢) at the present time and the desired
trajectory on (4, TJ.

Now evaluate the value of the performance index under the optimal feedback
control law given by Eq. (2-4-21). We consider the scalar,

1
n(t) = <&°(1), j ts*<s — D (HD L) —SC=0D2@D ) ds>  (2-4-22)

and differentiate it with respect to time ¢ and integrate from 0 to 7.
Then the optimal value of the performance index is obtained.

T T
[ 1) = lkdt + § e @) e
T
= 30<xd(t> —S() 2(0), (H0)'[x%(+) = S(+) £(0)]) (£)>xdt. (2-4-23)
Eq. (2-4-23) indicates that the value of the performance index under the optimal

control is expressed as the quadratic form of x?(¢) — S(¢)x(0), 0<¢< T
In a special case where

1) =0  0<t<T,
that is the regulator problem, Eq. (2-4-21) reduces to
T
u(t) = — B*j tS*(s— H(HE) 'S — 1) x(¢)) (s) ds, (2-4-24)

and Eq. (2-4-33) to

Jw®) =1 <S8 2(0), (HWO)YT'S() 2(0)) (£)>xdt

<x(0), ST (HWO)IS(+)) () 2(0)pxdt. (2-4-25)

(1,
o
,
Define an operator on U into itself by

P u= Sis*(s—ﬂ(H(t)”S(- — 1) %) (s)ds. (2-4-26)

P(t) is a bounded linear operator, strongly defferentiable with respect to time ¢
and satisfies the following Riccati-type nonlinear defferential equations:
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_d_ * . * .
7 PO+ AP + P A+1—P(t) BB*P (1) =0 ' (2-4-27)
P(T)=0
Rewriting Eqs. (2-4-24) and (2-4-25) with use of P(#), we obtain the following
equation:
u®($) = — B*P(#) x(8), (2-4-28)
J(u®) =<x(0), P(0)x(0)>x. (2-4-29)
Which agree with the results in 2-3-3. Thus the feedback matrix which Kalman

obtained as the solution of Riccati equation is given by Eq. (2-4-26) in an analy-
tical form.

2-4-4, Examples
We now take up the same example of distributed parameter system as in
2-3-4 and construct the optimal feedback control law.

Ex 1. Optimal Final Value Problem

We consider the same distributed prameter system as in 5-3-4,

2 ¥ L
57 5 aLWx(t, a) +ult, a), 0<a<l (2-4-30)

with boundary condition x(#, 0)=x(¢, 1)=0.
Given the initial state x(0, «) and the desired state x7(7T, «), we design the
optimal feedback control law which minimizes

1 Tl
1) = golx(T, @) — 2T, e de + SO _f\:olu(z‘, ) dec dt (2-4-31)

and evaluate I(x) under the optimal feedback law.
The optimal feedback control is given by Eq. (2-4-9) as

w () = S(T~n| [+ StS(T— DSIT=a)ds| [+(T) = S(T—DxD]. (3-4-32)

Put
) = xUT) = S(T—1) x(8), (2-4-33)

z(8) :[I“}‘SZS(T“G)S(T—O‘)dUJ 1y(zf), (2-4-34)

and evaluate Eq. (2-4-34).
Now,

¥y »
{I+L S(T= ) S(T= o) do |a(t) =(0).
Fourier expansion of z(f) and y(f) with respect to {¢.} yields

1
2Zn(t) = T L othan yalt). (2-4-35)
1+ —
2 l?&
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Where z,(f) and y» (%) are Fourier coefficients of z(¢) and y(#) respectively.
Let un(?), x,(f) and +%(T) the Fourier coefficients of u(¢), x(¢) and x7(T) with
respect to {¢.} respectively. y.(¢) and un(¢) are written as follows:
yu(t) = 23(T) — e ™7 g, (1)

wS(F) = e B 2.
So the optimal feedback control is given by

Ay (T~
23T — e " Py (8) -t

un(t) = e ¢ . (2-4-36)

The value of the performance index under Eq. (2-4-36) is given by Eq. (2~4-10)
as

T(2®) =<x%(T) — S(T) x(0), GO 'Lx(T) —S(T) x(0) D

1 ,
= Z e (22 T) — e x, (0] (2-4-37)
e

n=1 1 R
I+ =7

Ex. 2. Optimal Pursuit Problem

We again consider the system in Ex 1. Given the desired trajectory x"(f, ay,
it is desired to construct the optimal feedback control law #° (¢, «) which minimizes
the following performance index.

J(u) '“‘ Slx(t ) —x%(t, a)l? dadt—i—S S lu(t, a)|*dadt. (2-4-38)

Optimal feedback control is written, from Eq. (2-4-21), as

.
u® (1) = (ts<s— O(HG 2 =S =D 2D (s) ds (2-4-39)

Put
y(s, 1) = x%(s) — S(s— ) x(D), ' (2-4-40)
his, t) = (H@ Tyle, ) (s). (2-4-41)

Reference to Eq. (2-4-19) reveals that A(s, t) satisfies the Fredholm integral
equation of the second kind.

S 1
s, B) + StS(s - g»[g S(r =) bz, Ddr |do = (s, ©). (2-4-42)

Fxpand %(s, t) and »(s, t) into Fourier series and compare the coefficients of both
sides of Eq. (2-4-42)

Tinls, z)+§ 5 W20 (8 dr = (s, 1), (2-4-43)

If x7(¢) is twice differentiable almost everywhere, then Eq. (2-4-43) is equivalent
to the following equation.
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d dﬂ \
e hnls 1) = (1+ B hats, D) = 7 s, 1) = Anyuls, 1)
BT, ) = 2l Ty 1) =yl Ty £) = (T £) (2-4-44)
Balt, ) = yult, )
Solution of Eq. (2-4-44) is expressed, by letting #, = V1+1i, as
1 S
hn(s» 1) zj’n(s, B+ ‘E{“J yﬂ(ff, ) sinh Bn(s — ) do
_ smh Bﬂ ”’S (g 1) B cosh B,(T ~ a) — Ansinh Fnl T— ) d
- Bx N0 g e oSh B T—1) — Ay sinh pal T=1) °°
(2-4-45)

Referring to Egs. (2-4-39) and (3-4-41), we can write %°(f) as
W) = [ & halo, D do.

Some straight-forward calculation after substitution of Eq. (2-4-45) into the above
equation yields

o sinh B,(7T ~¢)
B cosh Bu(T—1) —Ansinh B, (T—1)

§ £4(0) B cosh Bu( T — ) — 2y sinh B (T — o)
" B cosh Bu(T—1) —An sinh B, (T—1¢)

u;(t) = xn(t)

do. (2-4-46)

Now let us evaluate the value of the performance index under the control
given by Eq. (2-4-46).

oy At 1 Businh BT — A, cosh B, T
Jtu )“%{Boy”(” 0t + g oS B T— 1y Sinh BT

s 2
x[ ya(t, 0) sinh ﬁnzdz]

I

-
- ﬂ 941, 0 cosh Bt | 94(s, 0) sinh 80ds) dt (2-4-47)

where y(z, 0) = x2(4) — e 2,(0).

Let x7(#)=0 0<t< T in Eq. (2-4-38). The problem is the so-called regulator
problem for the distributed parameter system and Eqgs. (2-4-46) and (2-4-47)
agree with Egs. (2-3-48) and (2-3-49) in 2-3-4.

3. Discrete-Time Regulator of Infinite-Dimemsional System

In this chapter the optimal and sub-optimal discrete-time regulators of
countably infinite-dimensional systems are studied. The performance indices of
regulator problems are weighted sums of squares of both states and control inputs.
But in most practical control problems, systems are randomly perturbed by external
disturbances, and the measured outputs are contaminated by random noises. Then
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the states of systems must be estimated, and as function of these estimated values
of states, the control inputs must be generated so that the quadratic performance
indices are minimized. Consequently regulators consist of feedback controllers
and state-estimators. For finite-dimensional systems the above regulator problems
are investigated®®, but there has been no report for discrete-time infinite-
dimensional systems. The parabolic and hyperbolic partial differential systems
are transformed into the infinite-dimensional systems by eigen-function expansion.
The dimensions of these systems are countably infinite and state-transition equa-
tions are described in terms of infinite-dimensional matrices. It is convenient to
study the optimal regulator problems of these infinite-dimensional systems with
Functional Analysis. Then the inner product will be defined on the state spaces
and so they become Hilbert spaces, and the infinite-dimenisonal matrices are
usually treated as linear operators.

In Secs. 3.2 and 3.3, are shown the recurrence relations which are satisfied
by optimal controllers and state-estimators. These relations are extensions of
Tows ones?. The extensions are heuristically achieved by changing finite-
dimensional matrices with infinite-dimensional ones (operators) and conjugate
matrices with normed conjugate operators. But the covariance operator of
infinite-dimensional random vectors must be re-defined. The definitions of Falb®
then will be used. By Functional Analysis, it is shown the relations obtained
heuristically are correct.

At first the systems with no disturbance and no measurement noise are studied.
The minimal value of the performance index is shown by the inner product as

L&, PO

where ¢ is the initial state of the system, and P is proved to be positive semi-
definite and self-adjoint. With this result the optimal feedback controllers are
shown to be bounded operators from the infinite-dimensional state space to the
control input space. Next it is shown that these optimal controllers are also
optimal for systems with independent random disturbances. At last the optimal
estimators are calculated by the orthogonal projection of the infinite-dimensional
state-space to the output space and estimators are shown to be bounded operators.
Furthermore the seperation theorem is proved for the infinite-dimensional system,
so that the following relation holds

= F¢,

where ¢ is the optimal estimate of the state, # is the optimal control and F is
the optimal feedback controller obtained in the cases where there are no distur-
bance and no measurement noise.

3—1. Formulation of Discrete-Time Regulator Problems

At first the following simple control problem, i.e., the control process of one-
sided heating of metal in a furnace is considered, and discrete-time regulator
problems of distributed-parameter systems will be formulated. Let x(-) and x(.)
be the temperature of the material and the heating gas medium respectively,
and #(-) is the fuel flow which is the control input. The system is described
by the linear parabolic equation, and the controller is governed by the first-order
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ordinary differential equation.

o - az,

éﬂtf””(z‘, a) =A e’ x(t, aY, 0<a<i, t>0

ox — } — ,a,“ k = Bu + D

57 (z, 0) =0, 1 (1—-&) S x(2, ) + kx(t, cr)]d:l (#) d(1), 1>k>0,

w(t) = Hx(p),
20 = Fa(D) + Gult) + DA(s),
(3-1-1)

where A, B, D, H, F, G and D are nonzero scalers.
4; and ¢i(-) are defined as the eigen-value and the normal eigen-function
repectively of the boundary value problem
& .
A s dla) = igla) =0, l
oa
(3-1-2)

o9 = (1—p) .9 ‘
5 (0) =0, | (1—-A) et dla) k(,b(o:)Ja:I_O, j
We obtain

are negative and ordered such that [A:]<|As]<---

where 1;,i=1, 2, ...
the following equation by the Fourier transformation of Eq. (3-1-1) with ¢;(-).

‘g{éi(l‘) =2 £8:(8) + Biu(t) + Did (D),

.l

where
) g il
Bi=yp B Di=1p D
Letting
0 = (G, &), .. )", (1) = diag &7, ¢(t) = ¢,

EEEBJ, Bg, PR .]’, EztDl, Dg, -
then the input-state relation of the system (1) is equivalent to the following

equations.
¥4
§(6) =00 200) + [ 0 = ) (BHz () + Dd(0)) de,
<o

t
(1) = () x(0) +i§0¢(t — N Gu(z) + Dd(7)) dr.

It is assumed that the input u(.) and disturbances d(.), d(.) are piecewise

constant in time, i.e,
w(o)=uli), dic) =di), dic) =d(i), iT<c<i+1T.

The prime denotes the transpose of vectors and matrices.

$ 1)
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Moreover let £(Z)=£(GT) and x(i) =x(T).
Then the discrete-time input-state relation becomes

o
(x| o T) 0 [M“}+ &fCT~ﬂGﬁt
£(i+ = B 2(; r —
£Gi+1) SJD(T HBHsOd o(T) |l £() jm(T—t)BHi St — o) Gdedi
4 0
¢§a7quw ] 0 2
‘ e (" = td@t
jw(T—J)BEﬂ ot—)Ddzdt | 0(T~1Dat
By the following new definitions of ¢(z) and d(7)
. x(2) ON
Q(i)—-[ J d( ) = d(l)J’
the input-state relation can be rewritten by
Cli+1) = 840 -+ Bu(d) + Dd i), (3-1-3)
where &, B and D are
" T
8(T) 0 §or-nca
¢ = _ 3 B = 7 L 3
[lor—nBm@®ar o1, § ocr-nBH| 9= Gdz at
0
C a7
S o(T —t) Ddt 0
p=10 et ? b
|, o(r=1 BH| g(t— ) Dddt SO@(T—t)Ddt
| 0

and clearly they are bounded linear operators.
The output m(i) of the system is assumed as follows:

m(i) = x5, D +n(d). (3-1-4)
The output measurement operator M is defined by

m(i) = M) + n(i), (3-1-5)
Since
27, D) = Tpge(d) oD,
we have
M =00, 5H), ¢, ... 1L (3-1-6)

The norm of the state ¢(7) is defined by 1¢() P =1x() P+ (D I°, where
M) F = Zp(pi+ 20p) E2(D), i, 2> 0.

If we set

u(i)
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()] = S:{pfxz(l) 1442 x) e, g0,

then lxll=1£], when x(+) = Jp&r¢r(*).
And the topology determined by the norm [x(-)] is equivalent to the one
determined by the norm [x(<) |/

lx() = sup lx(a) ™.
f<a=y

Hence M is bounded and linear.

By these discussions the dicrete-time regulator problems are formulated, i.e.,
the state of the system is governed by Eq. (3-1-3) and control inputs are generated
by linear feedbacks of measured outputs which are obtained by Eq. (3-1-5). For
this system, find the optimal control sequence so that the following quadratic
performance index is minimized

Ja-i[8(N 1= E[200. 0<C(R), QB +<u(k—1), HE—1) ulk— 1)1, (3-1-7)

where I stands for the expected-value operator over the sample space of d(-),
and Q(1), Q(2), ..., Q(N) are positive semi-definite self-adjoint operators and
H(0), H(1), ..., H(IN—1) are positive constants, and <a, b> denotes the inner
product of ¢ and b.

Henceforth we generalize the operators ¢, D, B and M as

¢ =[0;], D=[Di, D;, ...7,
B:[Blly B;1 .. ‘319 M:!:Mly MZ, .. -]l,

where D;, Bi, M; are 1xd, 1xu, mx1 matrices, respectively. We urther suppose

that H(k), k=0,1,2, ..., N—1 are u xu positive definite diagonal matrices, and
CR) = (LR, G(k), .. ),
w(B) = (i (R), we(B), . .., wy(B)),
dlk) = (di(k), do(B), ..., da(R)),
m(k) = (mi(R), mo(k), ..., ;p(B)),

n(k) = (R, n(k), . .., walB)),
E(d(R) =0, E(d(Hd'(E)) =6 R(E),
En(k)) =0, E())n' (k) =8 N(k),
E(d(Dn' (k) =0,

where §j: is the Kronecker’'s delta and R(k), N(k) are both positive definite
diagonal matrices.

Since the hyperbolic differential systems are transformed to the system (3-1-3)
similarly as parabolic differential systems, our formulation of infinite-dimen-
sional discrete-time regulator problems are sufficiently general.
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3-2. Optimal Feedback Controllers

3-2-1. Systems with all state variables accesible for measurement

In this section it is assumed that all the state variables are measureable
with no measurement noise. The optimal feedback controller will be calculated
by the variational methods.

The performance index is the following quadratic form

Tu=iC0)N) = EL300-0{<C(B), Q(B) SR> +<ulk—1), Hk—1Dulk—1>}],

which is defined in Sec. 3.1.
We can show the following lemma.

Lemma Let F(i), i=0,1,2,..., N—1, be optimal feedback controllers of the
system (3-1-3) with respect to the performance index (3-1-7). And similarly let
F(i), i=0,1,2, ..., N—1, be optimal feedback controllers of the system

24+ 1) =02(3) + Bu(d),
with respect to the performance index
Tl (DT = SHojlE R, QBT +<ulk—1), H(k—1) ulk—1)>}.

Then F(G) =F), i=0,1,2, ..., N—-1.
Proof; Let fy-;[¢(j)] and Fy-;LC(/H] be
FoilC(NT= min  ELS3-704<C(R), QUEB) (B> +<ulk — 1), H(k— 1D ulk— 1> 1],

wlgye wN-1)

Fa-lc(N]= (_)migv )EEL,-MKE(M, QURYE(RY> +<ulk—1), Hlk—1 u(k—1)>}1
AlCN—-1]= min)E{(C(N), QNN +<utN-1), HN—1 u(N—1)>}

u(N—-1
FiLC(N=1)1= min {&C(N~1) + Bu(N — 1), Q(N) 8C(N —1) + Q(N) Bu(N - 1))

u(N -1}
+<ulN=1), HN—-1Du(N—1>}.
By Eq. (3-1-3),

FLE(N =11 = min [<6S(N —1) + Bu(N—1), Q(N) #L(N — 1)+ Q(N) Bu(N—1)>
w(N-—-1)
+<u(N—-1), HN -1 w(N—=1)>1+EDIN~-1), QN) DAIN -1
= fAlC(N = 1)1+ EXDA(N — 1), Q(N)Dd(N—1)>,

where e(N—1) = EXDd(N 1), Q(N)Dd(N—1)> is independent of the states
¢, i=0,1,2, ..., N
Since it is proved later by Eq. (3-2-5) that Fy-#[¢(k)] can be witten as

Fuolc(B)1=<2(k), PIN=RYC(R)>, B=0,1,2, ..., N,

where P(N—k) is a positive semi-definite linear operator and clearly P(0) =0, then
by the principle of optimality and Eq. (3-1-3)

FyilC(k) = Pyl C(R) I+ e(k+ 1) + EXDA(R), {Q(k+ 1)+ P(N =B+ 1)} DR,
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where
o(k) = elk+ 1)+ EXDA(R), {Q(k+1) + PIN —k+1)} Dd(k)>
is also independent of
(), 1=0,1,2,...,N
Therefore we obtain the relation
Fo-il€(DT = Fa-ilC(i) +elj), j=0,1,2, ..., N—1,
where ¢(j) is the constant independent of ¢(¢), i=0,1, ..., N. Since
Fu-iLCN] = m{sz}m [Ke<() + Bu( ), QUj+1)0C(H) + Q(j+1) Bulj)
+<u(f), HDul P>+ [xinle(G+ D]+ et ),
the optimal control F(j)¢(j) which minimizes the P.I,
@) + Bul ), Q(j+1) 06(7) + Q(j+1) Bu( >+ <ul ), H ) u(j)>
+ Fa-imll G+ 1D,
equals to the optimal control F(j)¢(s7) which minimizes the P.I,

EC(7+1), QUi+ D7+ D>+ <ul ), H(P ul D+ ry-iall(j+ 1]

Hence F() =F(§), j=0,1,2, ..., N—1. QED.
By this lemma, we can neglect random disturbances d(7), =0, 1, 2, ... in this
section and define P(i) by the following equation.

FleN=D1=CN-0, POCN~-1)), i=1,2,...,N—1 (3-2-1)

Since [B*Q(N) B+ H(N~1)J*" is a positive definite matrix, the optimal
feedback controller can be easily calculated as

F(N—-1) = —[B*Q(N)B+ HN-11"'B*Q(N) 0. (3-2-2)
By Egs. (3-2-1) and (3-2-2)
P(1) =[¢ + BF(N-DTQN)[¢+ BF(N— 1]+ F*"N-1 HWN-1) F(N-1).

This is a self-adjoint positive semi-definite operator. Next we suppose that % is
a fixed integer such that 1<k<N~—1 and P(k) is self-adjoint positive semi-definite.
Further we put

S(k) = P(R) + QN —-F). (3-2-3)

So S(k) is a self-adjoint positive semi-definite operator. Using Eq. (3-1-3),
*#1) The asterisk of an operator denotes the its normed conjugate operator, i.e., A% denotes
the normed conjugate operator of A.
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+ 2 B*S(BYOC(N — b+1)>).

Since [B*S(k)B -+ H(N — E+1)] is a positive definite matrix, the optimal feedback
controller F(N — E-+1) is calculated as follows:

FIN—E+1D) = —[B*S(BYB+ HN—E+1)] ' B*S(k) 0. (3-2-4)

This implies that F(N —%+1) is a bounded linear operator, because [B*S(k) B
+ H(N—%k+1] is a positive definite matrix. Furthemore we will show that
P(k+1) is a self-adjoint positive semi-definite operator. By Egs. (3-1-3) and
(3-2-1)

=(N—E+1), {[6+ BFIN-E+DI*S(R [0+ BF(N—k+1)]
4 F¥(N—E+D) HN—=E+1D) F(N=k+1) (N — 1.

From these two equations it follows

P(k+1)=[6+ BF(N—k+DTSER[o+BF(N—-Fk+1)]
L F¥(N—E+D) H(N —k+1) F(N—FE+1).  (3-2-5)

Hence P(k-1) is a self-adjoint positive semi-definite operator. As we have shown
by the mathematical induction, the optimal feedback controllers F(j),j=0,1,2, ...,
N—1 are linear bounded, P(k), k=1, 2, ... are self-adjoint and positive semi-definite.

By putting P(0) =0, from recurrence equations (3-2-4) and (3-2-5) we can
obtain successively S(0), F(N=1), P(1), S(1), F(N-2), ....

3-2-2. Systems with inaccessible state variables for measurement

We must use the output-feedback controller instead of the state-feedback con-
troller in the cases where there are some inaccesible state variables for measure-
ment. Let #(k|j) be the control input which is generated by the linear feedback
of measured output components 72.(0), m2(0), ..., mi(7), ..., mm(j), and @*(k|j)
be the optimal control which minimizes the performance index

o —
],\'—k[s(k)] =
ECh+1), Qe+ 1D e+ 10 +<alkl)), HE) alkl >+ fy-imls(k+ nly
: (3-2-6)

As in Sec. 3-2-1, we see that random disturbanced (-) can be neglected in this
section.

Let Mp be the linear space of all components of output vectors m (1), ..., m(k)
and so M is a space of random variables. #°(klk) is called the orthogonal
projection of #°(k) to My where u°(k) is the optimal control when the states
¢@), i=0,1, 2, ... are completely measurable. And it is defined as

7o(k\B) = (G (RIR), #5(RIE), . . ., 2n(R]R), - 3-2-7)
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where #{(k| k) is the orthogonal projection of uf (%) to M, in the following sense,
e, two random variables a(w) and b(w) are orthogonal if

E(ab) = Sgam) 50 deo = 0, (3-2-8)

where £ is the probability space and dw is the probability measure.

We put i RIE) = ud (B) — a8 (R R, 1 (3-2-9)
and Wk R) = GECRIRY, 2RI, ., a k). |
These equations imply
E(57 (kIR em) = %‘ W (RIEYmdw =0, Yme M,.
Ja
Next we show that
ATRIEY =2 (BB, (3-2-10)

With Egs. (3-2-1) and (3-2-6), it is easily calculated that

T3l = faalcB)] = El2<i (B B) —u®(B), B*SIN—ETL1) @Cik)>
+<G(k\B), [B*SIN—k+ 1B+ H) 12 kiR

By applying Eq. (3-2-4) and using the relation E<&°(k|E), #°(E|E)> =0, it follows:

TELCT = fuorlC(R) ] = E{<a® (B k), [B*S(N — k1) B+ H() 157 (k| 25>
+ <R — 8% (k| B), [B*S(N—FE+1) B+ HR)WEIE) —2° R},

Futhermore every component of #(k|k) and #°(k|k) belongs to M, and every
component of #°(k|k) is orthogonal to A  Hence the optimal control #*(k|k)
which minimizes J¥_:[¢(%)] is the orthogonal projection u®(k|k) of u®(k) to M.

In the next section it is shown that #°(k|k)=F(k)¢°(k|k), where £°(k|k) is
the optimal estimate of ¢(k) with the measured outputs m(0), m(1), ..., ni(k).
This is the seperation theorem, i.e., we can synthesize the optimal feedback con-
troller and the optimal estimator seperately.

3-3. Optimal State-Estimators

Generally the measured output is contaminated by the measurement noise as
Eq. (3-1-5). We then estimate the state ¢(k) with the linear combination of the
measured outputs m(0), m(1), ..., m(7). And we calculate the ¢° which minimizes
the following mean-square error

EXC(R) —a®, (k) —a®). (3-3-1)

This «¢° is the optimal estimate ¢°(%|;) of the state ¢(k) with m(0), m (1), ..., m(5).
The components of ¢° are defined as follows:

a°=(m, az, a3, .. .)'
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Let ¢:(%|j) be the orthogonal projection of ¢ (k) to M; and we define £ (k|;j) and
£(k|j) as follows:

Eklf) = CuklD, L&D, L),
(3-3-2)

EkI =Ck) —E (RIS,
Since EXZ(E|§) —a°, ¢(k|j)> =0, then

ECR) —a®, C(B) —a®> = E<C (k) —a°, ERIJ) —a®>+ EXE(E ), E(RID.
Hence it follows
Co (k) =E (k). (3-3-3)

It is assumed in Sec. 2 that the measurement noise has the following stochastic
properties E(n(k) =0, E[n(j)n'(EY] =8 N(k), where N(k) is a positive definite
diagonal matrix, and that the measurement noise n(.) and the disturbance d(.)
are statistically independent. We can obtain the following results by the methods
which are extensions of Tou’s ones to the infinite-dimensional system (3-1-3).

Let

vk =0+ BFR, £=0,1,2, ..., N—-1 (3-3-4)

Since ¢(k+1) =¥ (E)YC(E) + DA(k), when the system (3-1-3) is optimally controlled,
then every component of [¢(k+ 1) — W(E)E(k|k)] is orthogonal to M, and every
component of ¥(k)C(k|k) belongs to M.

Therefore

CR+11R) =T R (RIE). (3-3-

2]

Let /m;(k|j) be the orthogonal projection of m;(k) to AMj, and
k) = mi(R) — milkel]),
(k1) = Ginlk|j), dkli), ..., Gkl (3-3-6)
Mkl §) = Gkl ), 5k, ... 7B,

Then
(k1) = ME(RLD,
" ] v( ] (3-3-7)
k) = MC (k|7 +n(k).
Z(k+1) is defined as the linear space of mu(k+1lk),..., #am(k+1|k) and let
2k+1)=Ck+11E+1). (3-3-8)

Since it is easily seen that M. consists of M, and Z(k+1) which are orthogonal
each other, then 7(k-+1]k) which is the orthogonal projection of %(k+1) to M
is calculated as follows:

He+11R) =C(k+1lk). (3-3-9)

And every component of %(k--1|k) which is equal to »(k+1)~%(k+1|k) belongs
to Z(k+1) and is orthogonal to M. Hence we can obtain the linear bounded
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opefator K (k+1) such that
Fe+11k) = K(k+Dm(k+11R. (3-3-10)
From Egs. (3-3-5), (3-3-9), and (3-3-10), it follows
S+1k+1D =R kB + Kb+ D mlk+115). (3-3-11)

We assume that Y is any inner product space. Let £ and 7 be the X valued
random variable and the Y valued random variable respectively. The covariance
operator*V [£.y] is defined as follows:

[¢9]C=E[<), 2], ¢ V.1 (3-3-12)

Since

Cerlcl<hel] izido § Il do,

o
[£+7] is a bounded linear operator from Y to X. We define the operator C(k) as
ClR)e=[l(klk—1)-2(klk—-1]¢ ¢ X. (3-3-13)
Cleary C(k) is a bounded linear operator. Furthermore
KC(R)E, »=<E k-1, &5E(kIE—1],

=<, E[C(kIE=1), DZklE=1DD
=<8, CR)p.

This implies that C(k) is self-adjoint and positive semi-definite.
Every component of 7 (k+1|k) belongs to Z(k+1) and the random variable
Cle+1) — K(k+1Dmlk-+11k), O is orthogonal to Z(k+1). Then for any ¢eX,

E(&(E+1), Omk+11k) —EKKE(E+1D) b+ 1R, Omk+11R) =0. (3-3-14)
The first term of the above equation is calculated by Eq. (3-3-7) as follows:

E(C(E+1), Omlk-+11k))
= MEKE(k+11k) +E(k+11R), OC(k+11R) + E(L(k+1), On(k+1).

Since <C(&+1|k), ¢ is orthogonal to every component of Z(%k+1|k) and
E((k+1), Onlk+1)) = (ECE+1), O)(Enlk+1) =0,
then
E( k41, Omk+11k)) = MCik+1)<. (3-3-15)
On the other hand, the second term of Eq. (3-3-14) is calculated by Eq. (3-3-7) as

*) [€+%] equals to the covariance matrix E[£7] when & and 7 are both finite-dimensional
random vectors,
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EKEE+Dmk+11E), Om+11k)
= ME(E(R+1k), M*E"(k+ DO (k+ 1R + ECn(k+1), K*(k+DOnlk+1))
+ MEn(E+1), KXE+ DO (k+ 1R + EC (B+ 1R, M¥E*(k+ DOn(k+1).

Since for any m-dimensional vector »
E(nk+1), mpE(k+18) = En(k+1), mpC(k+1)) — Enlk+1), n>C(k+11R)) =0,
then

ERE(E+D w1k, Omk+118) = [MC(E+ 1) M*+ N+ 11K (k+1),

(3-3-16)
where
Nk+1) =[nk+1)ntk+ D]
By Egs. (3-3-15) and (3-3-16),
MC(E+1)=[MC(k+1) M*+ N+ DIK*(k+1), |
(3-3-17)

Kt DIMCG+ 1) M* + N+ 11 =C+1) M*. |

Since [MC(E+ 1D M*+ N(k+1)] is a positive definite matrix, then the inverse
matrix of this exists and

K(k+1)=Clk+1) M*LTMC(k+1) M*+ N(k+ 117" (3-3-18)
By Egs. (3-3-2) and (3-3-5)
Flh+11k) =¥ (k) C(R) + Ddk) — ¥ (k) Z(kIR). (3-3-19)
From Eqgs. (3-3-7), (3-3-8), (3-3-9) and (3-3-10)
E(h+11k)

=T (B)C(E) +Ddk) — TR ERIE-1) + KWE&) ME(RE—1) +K(R) n(k)}
=T E(RIE—1)— () K(B) ME(E|E—1) + Dd(k) — ¥ (k) E(B) n(k).

The for any fe X,

Ck+1¢2
=EK&RE)U—-KE)M)E(RlE~1)+ Ddk) — (k) K& n(k), &
x {WR)([— K(k) M) +(k|E—1)+ Dd(k) — ¥ (k) K(k) n(k)}]
=EKO R I—-K&R) M EERIE—-1), 5T R)I— KB M) E(klk—1)]
+ EIKw (k) K(k)n(k), &£ (k) K(k) n(k)]+ E[KXDd(R), 2> Dd(k)].
In these calculations we used the fact that ¢(k|k—1), d(&) and n(k) are orthogonal
each other. By the last equation, it follows that
Clh+1) =¥ B[~ Kk) MICU)I— KGR MT®* (k) + DR(R) D
+ W (R KB N(RYE*(R)W*(k), (3-3-20)
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With these recurrence relations (3-3-18) and (3-3-20) we can calculate K (0),
C(1), ..., succesively from the initial value C(0), which is the covariance operator
of the estimate error (0| —1) of £(0] —1). By Egs. (3-3-7) and (3-3-11) we
obtain the optimal estimate Z(k|%) from the measured output m(%). This is
shown as the following block diagram, which is an extension of the Tou’s result
for finite-dimensional cases to the infinite-dimensional cases.

E(n, klk)

mik) 4+ m(klk—1) +
H(n, k)

v

-1

z

4

—M(n) - ¥(n, k—1)
—mEE=1) En, klk—1) Eln, k—1lk—1,

F1G. 1. Optimal Estimator for Infinite-Dimensional System (3-1-3).

Next we derive the relation between #°(% |£) and Z(%|k). From the definitions
of u°(k) and F(k), u°(k)=F(k)¢(k). Since

u® (k) =a° (k) +a°(k|k)
and (k) =Z(k|k) + k| E), it follows
(kR — F(R) E(RIE) = F(R)C(R|R) —#°(k| k).

The components of the left hand vectors of the above equation belong to A4 and
the components of the right hand vectors are orthogonal to M;.
Then

@ (k|k) = F(R)E(R|D), )

3-3-21)
@Rk = F(R) Z(RIE), | (

where F(k) is the optimal feedback controller obtained in Sec. 3-2-1.

4. Sub-Optimal Controls and Their Convergence

In Chaps, 2 and 3 the equations to be satisfied by the optimal control and the
optimal feedback controller of the infinite-dimensional system are obtained. But
these equations are difficult to be solved, because these equations are infinite-
dimensional.  Therefore in this Chapter are proposed the methods by which
approximate solutions are obtained.

The methods proposed are modal control methods™ by which the distributed-
parameter system is approximated by the n-dimensional system composed of #n
main modes of the infinite-dimensional system and is controlled by the input which
is optimal for this n-dimensional system. This control input can be easily
calculated and is called the sub-optimal control. But there remains an important
question whether this sub-optimal control converges to the optimal control when
» tends to infinity, and the convergence of the sub-optimal control to the optimal
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control is equivalent to the convergence of the value of the performance index
of the sub-optimal control to the one of the optimal control. Therefore it is
necessary to be shown the convergence of the sub-optimal control to the optimal
control. In Sec. 4-1 it is concerned with the continuous-time system and in Sec.
4-2 concerned with the discrete-time system.

4-1. Continuous-Time Requlator

In this section the control inputs are continuous-time functions and the
performance index contains the spatial derivatives of the state because in heating
or cooling problems of metal and glass the concentration of the thermal stress
must be avoided. For this purpose the W? topology (Sovolev's topology)™ will
be introduced in the state space. And the performance index contains the time-
derivatives of the control input, because in this case the sub-optimal control
which will be defined later converges to the optimal control uniformly in time.
In Sec. 4-1-1 the optimal control for this performance index will be derived by
the similar methods which are used in Chap. 2, and in Sec. 4-1-2 the convergence
of sub-optimal control to the optimal one will be shown.

4-1-1. Parabolic Differential System
System 1
We investigate the following system.

%—x(z‘, a) = A x(t, &) + D) ult), as X, t>0,

a’J

Ay = 250 jattii g sy T, i =aii, (4-1-1)
(o) ;n 2t o)+ (1= k() x4 o) =0, o< 05,

where D(<) = (D' (+), D*(*)y . ... D7), u(s) = (a.(*), ws(+), . .., 2py(+)) Di(e)
is square integrable in ¥, X is a bounded set in R» and has a smooth boundary
35, 9/on is an outward normal differential operator on 92, 0<k(e)<1, and k(+)
is continuous on 9.2\

The other cases where controllers have dynamics or the systems are controlled
by boundary controllers can be investigated similiarly as the above system, and
only the results will be shown.

Let A be the distributional extension of A[), and .# (%) be the following
inner product space which is topologically equivalent to a Sobolev space W?(2X).

rye (),

<x, y>jr = .\:(pfxy—i-pgAxAy)da', (4_1_2)

e = | 812+ ph( AR} dar

where
p>20, p.>0,
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Clerly (X)) € L,{2) (set of square integrable functions).

Let Zx, ¢u(+) be the eigenvalue and the normal eigenfunction in %' (3) res-
pectively of the following boundary value problem, and m, be the multiplicity
of the eigenvalue i,.

A =2, 1

(4-1-3)
k() 3%- U+ (1= k) e(o) =0. |

By these normal eigenfunctions {¢.:}, we can obtain the input-state relation
of the system (4-1-1) as follows.

2T, a) = 2?}=121"i”1$n,( T)Qbm'(a); T>0, (4“1‘4)
,,,
£,:(T) =" £,;(0) + S N D () di, (4-1-5)
0
(n=1,2,...,i=1,2,...,mu),

where
£,i(0) = Szfj'ni(a)x()(a)da’, ()

is the initial state,
Dui={(Dyi, Dy, .. ., Dhi),
Dii=\ D@y da, j=1,2,...,7.

By defining

g(t) = (fll(t); ’flz(t), PR ’521(1), ..y ;:33(t), P .)',
D=[D,, Du, ...,Dun, ..., Dy, ...7,
?(2) = diag [ I,.],

In is the m, = m, unit matrix.
Eq. (4-1-5) can be rewritten as follows:

2T) = 0(DE0) + | 0T~ Duto) dt. (4-1-6)

Let h be the space of infinite-dimensional vectors which has the following
inner product.

§=08n, %0, .o, 8, .. )’,
7=, ey « - 5 2, - -2V,
£, e, (4-1-7)

&, Wy =ZnZilninul PL+PIA),
1211y = Zn 5:85:(pE+ P33,
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It can be seen that .#123) is congruent to §, and

Il = 1l (4-1-8)
by equating x and £ as follows.
x=3nEiniPni (4‘1“9)
where
5 = (’311, 512, « . )'-

And £(7T) corresponds to x(7) uniquely by Eq. (4-1-4), therefore ) and Eq. (4-1-6)
can be the state space X and the input-state relation respectively.
The performance index is

J(u) = ﬂo{i!u(t)i%%t qzll%u(t)i§2+1ﬁilx(t) — xa (DI + pall A (2(2) —xd(t))ﬂz} dt
(4-1-10)
where (d/dt)u(t) is the distributional time-derivative of u(f), T and xq(-) are
specified,

1
la(@) I = S37ad(s), and [lx(OF = Souu, )| de.

The operator K(+) and the error function e(-) are defined as follows:

i
K(t)uzjod)(t—r) Du(z) de, (4-1-11)

e(t) = xa(t) — 0(1) £(0).
C?(T) is the set of infinitely differentiable functions which are defined on (0, 7)

and have compact support. H'(T) is the completion of C;’(7) by the following
norm.

T
0

I GOl =S {rro+ q2<§t f(t))z}art, (4-1-12)

where d/dt is the distributional time-derivative. And H'(T) is also the inner
product space which has the following inner product.

), g(YeH(D),

r ] (4-1-13)
), gl Vm= So{f(t)g(t) + qz—dfc—}tﬁ)—%ﬁ»}dzﬁ. [

f()eHY(T) is continuous and bounded, and
sup | f(DI<Clf . (4-1-14)
t={0, 1)

Therfore we can extend the domain of H'(T) to (0, 7] by setting

(7 Eltig}f(t), F()e HY(D),
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We define H'(7) as the r-fold product space HYT) x H(T) x --- x HY(T) and
define the following inner product in HY(7T).

=0 oo ), 228, 80 .. ., gV € HY(D,

<fa g>H‘ = E;:I<fi; g[>l#') (4_1‘15)

kﬁquyl = E?sl“fi”%ﬁ-

Let 7.(T, §) be the set of square integrable f-valued functions defined on the
time interval (0, 77 and has the following inner product and the norm.

e, feLAT, O, l
T
<o Pruam = e, fdnds 4-1-16)

{

leliairn = | el d.

By Eqgs. (4-1-8), (4-1-11) and (4-1-15) the performance index (4-1-10) can be
written as follows:

J) =l + 1K) u—e() L, .
Furthermore we define the following inner product space H(T) x L:(T, ).

(u, e), (v, f)e H(T) x L,(T, §),
Lu, @), (v, IO =<u, wg+<e, DL,

(4-1-17)
I, e F =lulp + el Luz, v
Then the performance index can be rewritten as following form.
Jtw) =l(u, Ku) — (0, &) (4-1-18)

Since K is a bounded linear operator from the complete space H(7) to the
complete space L.(T, 1)), the set &= {(u, Ku)lusH'(T)} is a closed linear set in

HY(T)xh. Therefore the control u, which minimizes J(«) is obtained by the
projection of (0, ¢) to ®, similarly as Chap. 2. That is

(O, 9) = (%0, K%o) -+ ( - Uy, € K%o), }

(4-1-19)
( — Uy, € — Kuo) 1.

Then

o =K' [J+ KK*] e=[I+K*K] " K¥, (4-1-20)
where K* is the norm conjugate operator of K.

System 11

We show the optimal control input of the following system, whose controller
has dynamics.



232 Yasuyuki Funahashi, ef al.

%x(t, &) = At «) + D ult), ac s,

)
k(o) -2 x(t, o) + (1= E()) 5lt, 6) =0, s €02,
7 on ’ 7 d (4-1-21)

d
a—;&(w = Fx(t)+ Gu(),

u(t) = Hx(f),

where x(#) € Ex, u{t) € Ei, and F, G, H are kxk, kxl, rxk matrices respectively.
We correspond x(-) and £(.) by Eq. (4-1-4), then the state of the system
(4-1-21) is (x(+), ¢(*)) and the input-state relation can be written as

B

t
901 2(0) + | p(t = 5) Gue)dr

¢ I3 T

030 + | 06— ) DHp(D) 50)ds + § 01 = ) DH| 9(c ~1)Gut ) dnds
(4-1-22)

where ¢(t) =¢*. The state space will be written as X x X where X is the k-

dimensional Euclidian space Eg.

The performance index is
’
]

J(w) = \; {Hu(t) I+ qzli%u(t)132+pi;]x(t; — xa(O)?
+BA GO = 5@+ P (D) = 2o,

where |21 = 337, 248, p>0, >0, ps>0, ¢>0.
We define the operator L(#) and the error function f(¢) as follows:

t
S¢(t~r)Gu(r)dr
L(t)u = g 5 s
| 0t = DH[ ¢z =0 Guw) duds -
~¢(t)§(0)+&<§(t)
TO=l _o4)20) - | 00 = ©) DHp@) 2(0)de +248) |
Jo

Moreover we define the inner product in the state space X x X as follows:

(z,8), U, NeXxX, 1
Ax, 8), Qomdxxx =<2, Dxt <&, o, (4-1-24)
[z, ENgox = xl5+ 1215 [

where <x, X>§=p§ Zx:Y;, <&,y is defined by Eq. (4-1-7), and let L (T, X x X) be
the set of square integrable X x X-valued functions defined on the time interval
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(0, 7] and has the following inner product.
e(+), e L(T, XxX),
P
<e(*), F(* Voo xxx) = S0<8(f\), f(f\)>_'iv;; dt, (4-1-25)

T
e uim, xm = | e xat.

Consequently we can obtain the following inner product space H'(T) x L.(T, X x X).

(u, @), (v, fYe H(T) X L(T, X x X,
Lu,e), (v, 1 =<, W +<e, L, XxX)s (4-1-26)

[, I =l +lell e or, 2o

By Eq. (4-1-4), (4-1-8), (4-1-23) and (4-1-26), the performance index can be
rewritten by the following equation.

J() = || (s, Lu) — (0, I (41-2-7)

Therfore the optimal control u, can be calculated in the same way as Eq. (4-1-20)
so that

o= L*[I+ LL*]"'f=[ I+ L*LT'L*f. (4-1-28)

System 111
The systems which have boundary control inputs will be concerned with.
The systems are described by the following equation.

gl;x(t, @) = A5t @), aE 3,

km-%xu, o)+ (1= (Nt ) = Blo) uld), sco5,

(4-1-29)
%zm =Fx($) + Gu(p),
u() = Hx (1),
where A, = 3, aaajg +0, B(*)=(B'(+), B*(*), ..., B"(*), Bi(+) is square

integroble on 2J.

We extend the differential operator A, in the distributional sense and denote
it A. Furthermore we can consider the boundary volue problem (4-1-3), and
can use An, ¢n as the eigenvalue and the normal eigenfunction respectively.

By the Fourier transformation with these eigenfunctions, we can derive the
input-state relation of the system (4-1-29) in the sequel. ;

Similary as the system (II), the state and state space are (x(#), £(#)) and
XA x X respectively. The input-state relation is
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56

L
(1) 2(0) + jogb(t — )Gulz)dr

O E(0) + S:ﬁ(i — 1) BH¢(t) x(0)dr + }‘:(DU - T)BHX;QD(T — ) Gulp)dndr ’
(4 ‘1“30)

where

B=[B}, Bl ...,Buy ...1,

Byi = (Bhiy Bhiy « « ., Bui),

B{:i Ej’asBj(“a%(bni“¢'ni)da. j= 1,2, ...,7

This operator B is an unbounded operator, but ?(t)B, t>0 is a bounded
operator. Then we can obtain the optimal control in the same way as the system
(I1), by changing the operator D by operator B.

4-1-2. Convergence of Sub-Optimal Control of Continuous-Time Systems

At first it is concerned with the sub-optimal control of the system (I) and
next with the one of systems (II) and (III).

We approximate the system (I) by the following finite-dimensional system
which has finite main modes.

N3

Eat) = 0,(8) £4(0) + | Dult — ) Do) d, (4-1-31)
Jo

where
Ea(8) = (G0 (), &(8), . . ., Eum D)),
mn(t) = [diag e)-;tl-)‘:],
1=r=n
Du:[D;h D;h R Dél- R tmt,,:]l-

This is the #-th approximate system of the system (I). Futhermore K,(f) and
en(t) are defined by

¢
Ky'u= 50 0t — ) Dyulc) dr, l

(4-1-32)
e,,(t) = 5(17;(1') - 0,.(t) ‘En,(O). [
Ka(t) and &,(¢) are defined by
K (1)
0 \
-‘n( ) = ’ )
Klt . (4-1-33)

Zalt) = (en(?), 0,0, ...,

2an(1) is the n-th approximation of £a(?) and is defined by the following equation.
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’Sﬂ'n(t) = (fdll(l‘), fdxe(t), e ey fdmn,.(t))',

where
fd(f) = fdn(t), ‘5dtz(t), .. -)',

The performance index [,(«) for the system (4-1-31) is

]n(u) = ” u(+) “21-]’ + “lfzx” - en” LT, )y

where 1), and L:(7, )») are the following inner product spaces.

£ 0 € .

in= (511, 512, see gnm,.),:

D= P11y Yoy o0 o, ﬂnm,.)l»

{En, 77n>n" = E;Ll 2}’2‘1 fij‘fh'j(Pf +P§ lf),
357:4“:1,, = 2?::2&15?}‘(?5'%?535),

eu(')vfn(') & Lo T, f),;),

AT
<en, fn>Lz<T. Ot = jo@n(l)- .fﬂ(tl)rhldt

W1
lenllLer, o = | len(® [}, dt.

Let H'(T) x L:(T, §») be the following product space,

(2, ey, ('Um fn) = HI(T) X Lo(T, I),,),
<(Nn. e,,), (1)7;, ny) = <u7;, 1)71>Hl + <en, .fn>Lz(T, Nad»

”(uﬂ, en)“z = Hun”fw -+ ”enllzl.n_nrﬂ‘, Da)s

2
[
[

(4-1-34)

(4-1-35)

(4-1-36)

(4-1-37)

then the performance index (4-1-34) can be rewritten in the following form.

jn(u) = ”(u; Knu) - (0, en)lgz-

(4-1-38)

For this performance index /.(x) the optimal control #, of the system (4-1-31)

1S
Up = K:[[‘f‘ KnKz:l—]en =[I+ K:Knj—lK:em

which is obtained similarly as Eq. (4-1-20).

(4-1-39)

Next we show that #, converges to u, in the norm topology, i.e. #, converges

to o uniformly in the time interval (0, 7’] when » tends to infinity.

From Eq. (4-1-20) #,+ K *Ku, = K¢, and from Eq. (4-1-39) 2, + K} Kntn =

Kiiey.
Then

Uy — sy = (K"e— Kyey + (K Kntty — K*Ku,),
and

Pio —unll <l K*e— Kien!| + | Kj Knttn — K*Ku,)).

(4-1-40)
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Since K:en= (R;L) *éfi and H'én]iéi'.e”, then
IlK“be— K:;ey;" = ]]K*e - (Xn)*énﬁ
<& n) en— K*eull+ 1K 20— K™ell
<IE*— K e+ 1K 12— el
<WED* = K¥ el + 1 K" 2n—ell.

we define P, as the following orthogonal projection,

) T I L g (T T I ),
then
(Bn)* = K*P,.
Hence
lim IK*e— Knexli =0, (4-1-41)
because

lim |z, —ell =0, lim[[(K)* — K*||=lim [ K*(Ps— D=0
We can obtain the following inequalities.

WK § Kty — K* Kutg) — K* Kty — t00) ]

=K *K nttn — K*Kun||

WK Kt — Bonttnll+ 1 K* — (B * N Kl

<WEHINE — Bl a4+ 1 E* = D WKl Nl (4-1-42)

As llunl*<Juluy) <J(us) and | & <[ K[, then both ux|* and | K, are uniformly
bounded in ». Hence by Eq. (4-1-42),

Hm (K Kpitn — K*Kuty) = lim K*K(uy — ). (4-1-43)

From these Eq. (4-1-40), (4-1-41) and (4-1-43), we obtain the following
relation.

lim (J+ K*K) (o — 1) = (I + K*K) [lim (265 — %)] = 0. (4-1-44)

Since the null space of [/+K*K] is composed of only {0}, Eq. (4-1-44) implies

lim uy = #o. (4-1-45)
Therefore
lim sup |lus() — ue($) ]| =0. {4-1-46)
no tE(0,7)

Moreover there exist the following relations among the values of

]1(”1), fz(uz), e :]n(un),](uu).
Jw) €l <+ v« <Tnltn) <J (o) €J (i), i=1,2, ..., 1.
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Then the error of #, is evaluated by

0< Jhuy) — J(aue) < min J(a:) — Jalun). (4-1-47)
1=iZ=n

In the sequel we are concerned with the system (II), because the system (III)
is identified with the system (II) by changing the operator D by the operator B.
We approximate the system (II) by the following finite-dimensional system.

50

i
B0 £10)+ | 9t =) Gulo) de

= ? RE3 T
(1) £,(0) + Soa)n(t — ) D Hp () 2(0) de + \ Onlt— T)Dan‘O(}‘)(x — W Gulp) dudr
B o .
(4-1-48)
This the »n-th ap;goximate system of the system (II). Furthermore let L,(#),
L), fu(#) and f,{t) be defined as follows.

© ol
j¢(t~r) Gu(z)dr

L;;(t) U = 2 < B
{ o= D?;HS ¢z — 1) Gulw) dude
<0 0

Lﬂ(i)
0

Za(#) — () 2(0)
f?z(i) = ~ g — 3
Eanlt) = 0,4(8) £4(0) — | 0,2 = ©) DuHp(o) 2(0) dr

S u(t)
0

./;;;z(t) =

The performance index J,(u) for this system (4-1-48) is
Tty = Do (O Vo - 1 Lzt — full s, X<t (4-1-49)
where L,(T, X xY,) is the following inner product space,
ey ful*) € LA T, X xBa),

v
<3n, ,f71>Lg(T, é’x Ny = jo <e7l(t)s ](n(t)>{{_x !‘}ndty (4_1_50)

.
eallbuen emo = | len(t) [ cn, .
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We define Y (T)x LAT, X x§,' to be the following product space.

(”n, en), (Vs fn> = Hl(T) X LZ(T, 2&:X f)n);
Lttn, en), (v fn)> = <Z¢n, vn>Hi + <en, fn>L3(7', XXt (4-1-51)
i! (2%, ey) HZ = Hun“i]‘ + Hennng(T,Xxnn)v
By Eq. (4-1-51), the performance index (4-1-49) can be rewritten as follows:
]n(%) = U (% Lnu) - (0, fn) P“) (4‘1“52)

Then the n-th sub-optimal control u, is obtained similarly as Eq. (4-1-41), so
that

Uy = L:[I+ L?zL;ik]_lfn = [["‘}' L:Ln]—lL:fny

and we can show in the same way as Eq. (4-1-51) that u, tends to o (Eq. (4-1-28))
uniformly in time when » tends to infinity.

It is clear that the results obtained in this section are easily extended to the
systems which are described by hyperbolic equations.

4-2. Convergence of Sub-Optimal Regulators of Discrete-Time Systems

In the Sec. 3, are derived the recurrence relations which are satisfied by the
optimal feedback controllers and the optimal state-estimators. But these recurrence
relations are difficult to be solved, because they are infinite-dimensional equations.
Then we have to calculate the sub-optimal feedback controllers and sub-optimal
state-estimators by approximating the infinite-dimensional system by the finite-
dimensional system which consists of finite-main modes of the orginal system.
And we show that in the operator topology the sub-optimal feedback controllers
and the sub-optimal state-estimators converge to the optimal ones respectively
when the number of the modes used increases. From this result, we say that the
estimated state of the finite-dimensional system converges to the one of the
infinite-dimensional system, and the optimal control and optimal trajectory of the
former converge to ones of the latter.

We construct the following finite-dimensional approximating system by using
n-main modes.

S, i+ 1) =6(n)Cn, i)+ B uld) + Dn) d(D), (4-2-1)
where ¢(n, *) = (G(*), &(*), .. ., Cu()),

o(n) =[0;5], 1<i, j<n, B(n) =[Bi, By, . .., By,

D)=LD), Ds, . ..,Dy]1.

This system is the n-th approximate system of the infinite-dimensional system
(3-1-3). The operator Q(n, j) is the projection of Q(j) to the n-dimensional
state space X», and the performance index is

EC K, ), Qu, ) Cln, > +<u(j=1), HGG—Du(j—1D>D.  (4-2-2)

We embed this n-dimensional system into the state space X of the system
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(3-1-3), and then obtain the following system.
I, i+ D =00 Z(n, )+ Blo)uli) + Do di), (4-2-3)
where Z (7, ) = (S, £),0, . ..),

B =[B'n),0,...7, Dy =[D'(),0,0,...7,

. o) 0
) = . .
@(n l 0 0 J
4-2-1. Convergence of Sub-Optimal Feedback Controllers

The optimal feedback controller F(u, «) of the system (4-2-1) with the P.I
(4-2-2) is obtained from the following recurrence relations as done in Sec. 3-2-1.

F(n, N=k+1) = —[B*(n)Sn, k) B(n) + HIN—k+1D1'B*(n)S(n, k) o(n),
Stn, k) = P(n, &) + Q(n, N— k), P(n,0) =0,
Pln, k+1)=[®(n) + B(n) F(n, N—k+1)1*S(n, )(®(n) + B(n) Fn, N~ p-+1)]
+ F*(n, N—k+1) HIN = k+1) Fin, N—k+1).
(4-2-4)

These equations can be easily solved because they contain only finite unknowns.
We set

F(n, ) =[Fn 7,00, ...],

Aooon | Qn, ) 0 o Pz, )0
Qo p = Rl ] Py =| P

|

S, jr =210 o

These are linear bounded operators from X to X.
Clearly

lim [Q(n, /) — Q| =0.

n=x%

Next we show by the mathematical induction, that #(n, 7) converges to F(j), i.c.

’

lim [|[F(n, ) = F(j)} =0, j=0,1,...,N—1,

lim [P (n, ) = PN =0, j=1.2,...,N, |

lim S, /) =S(HI =0, 7=0,1,2, ..., N.

wss )

(4-2-6)

In the following proof the uniform boundedness of the operators F(n, 1), P(n, 7)
and S(n, 7) in n plays an essential role.
Since P(n, 0) =0, then Sizn, 0) = Qun, N) and

1Stn, O] =[S, 0] = QUn, N\ <IIQIN)]. (4-2-7)
From Eq. (4-2-4),

F(n, N=1)= —[B*(») S(n, 0) B(n) + H(N - 1] 'B*(n) S(n, 0)&(n),
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and clearly
IB*G) < | B*[, 1S(n, V< IQ(NI, e <]o]. (4-2-8)
Then
|Fn, N—=D | = F(n, N-1)|
<IB*I 1Q(N) | @] ILB* (1) S(xn, 0) B(n) + H(N—1]17]. (4-2-9)

Since the matrix H(N—1) is a positive definite diagonal matrix, H }(N-1) is
also diagonal and positive definite. Hence

[B*(n)S(n,0) B(n) + HIN—-1]""
=H Y(N—-D[H NN-1)B*n)S(n, 0)Bn)+117". (4-2-10)
We put
L, NV = HYUN—-1) B*(n) S(n, 0) B(n). (4-2-11)

Since L(n, N) is a self-adjoint positive semi-definite matrix, there exists a self-
adjoint positive semi-definite matrix Li.(zn, N) such that

L(?’l, N) =L1/2(ﬂ, N)Lm(n, 1\]).{-‘3j (4'2“12)
Therefore

[+ Ltn, N =1+ Lin(n, N) Lij(n, N, )

[T+ LG, T <10 | e
With these Egs. (4-2-10) and (4-2-13), it can be shown
I[B*(n) Sn. 0) Bn) + HHN—- D1 < IHT(N =D (4-2-14)
From Egs. (9) and (14), it follows
1B, N— DI<IB* JQUN] o] [H (N =DI. (4-2-15)

Consequently F(n, N—1) is uniformly bounded in #.
From Eq. (4-2-4), it follows

[B*n) S(n, OB+ HN=D1F(n, N—1) = — B*(n)S(n, 0) 8 (n).
On the other hand, from Eq. (3-2-2)
[B*S(0) B+ HIN-1D1F(N—-1) = — B*S(0) 0.
The differences of the both sides of these two equations are
[B*W)S(n, OB + HN—-1D1F(n, N—1) —=[B*S(0) B+ HIN—DIF(N-1
=B*S(0)0— B*(n)S(n,0)8(n).  (4-2-16)
The right hand term of this equation is

B*S(0)o — B*(n) S (5, 0Y&(n)
= B*S(0)0 — S (%, 0)8(n)1+[B*~B*(#)]1S(n,0)8(xn).
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And
lim S (1, 0) &(») = S(0) o,
li’;n B*n) = B¥
%3%(72, Dol <SSl
Then

lim [B*S(0)® — B*(12)S (1, 0) & (n)] = 0. (4-2-17)

The left hand term of Eq. (4-2-16) is

LB*(n) S (n,0) B(n) + HN—-D1F(n, N—1)
~[B*S(0)B+ HIN—1)]F(N~-1)
=[B*m)S (n, 0) B(n) — B*S(0) B1F(n, N—1)
+[B*S(0) B+ HN-1DIFn N-1) - F(N-1)].
Since
lim LB*(1) S(n, 0) B(n) —~ B*S(0) Bl =0,

and from Eq. (4-2-15), [F(n, N~1)| is uniformly bounded in 7, then the left hand
term tends to lim [B*S(0) B+ HWN—-1)]1[F(n, N—1)~ F(N—1)]. From Eq.

(4-2-17), the above operator equals to 0. Then
lim[B*S(0) B+ HN—-1DI1[F(n, N—1) -~ F(N-1)]
= [B*S(0) B+ BN~ D1[lim (F(s, N1 = N = 1)]=0.
Therefore for any ¢ in X,
LB*S(0) B+ HN—1)] im (F(z, N=1) = F(N~1)¢]=0.

As [B*S(0)B-+ H(N—1)] is positive definite,

im[F(n, N—1) -~ FIN—1)]¢=0.

This implies that

im F(n, N—1)—F(N-1)| = sup JCtim F(n, N=1) - F(N-11¢| =0.
(4-2-18)
From Eq. (4-2-4)
P(n,1)=[80n) + Bn) F(n, N~ DTS (n, O[B(n) + Bn) Fln, N—1)]
+F*(n, N-1) HN—1) F(n, N~ 1).
Since

lim B*(#) = B*, lim F¥*(n, N—1) = F¥*(N—1), lim 8*(n) = 0¥,

then from Eq. (3-2-3) it follows:
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li_m Pn,1)=[0+BF(N-1DT*S(0)[¢+ BF(N - 1]
+ F*(N—=1)H(N—-1) F(N-1) = P(1), (4-2-19)
1Pz, D
<|[8(n) + B(x) Fn. N=D1*S (n, O[6(n) + B)1F(n, N—1)|
+ | F¥*(n, N—1) HIN—=1) F(n, N= D1
From Eq. (4-2-9)
NE5(n, N— 1)} = | F*(n, N=- D]
= |0*(n) S(n, 0) B(n) [B*(n) S(n, 0) B(n) +H(N— DI
<[o*| IS Bl [H(N-DI.

Moreover [|P(n, 1)|| is also uniformly bounded in 7, because by Eq. (4-2-15),
I F(n, N—1)| is uniformly bounded in z.
Now we suppose that lim P (1, j) = P(§), hm F(n, N—j) = F(N—j) and |P(n, j)

is uniformly bounded in #. As lim Qn, j) = Q( 7), it follows:

lim §(n, ) =1lim (£ (n, /) + @(n, N= N1 = P(j) + QN - j) =S()).
Since
1SGz, I = 1S Gy, DI<IP G, DI+ 1Qn, N= NI PG, NI+ [QIN =,

and we suppose that |£(, /)| is uniformly bounded in #, then [S(s, j) | is uniformly
bounded in n. By Eq. (4-2-4)

Fy, N—j+1) = —[B*n)Sn, j) B(n) + H ) 1'B*(n)S(n, j) @(n).
Similarly as Eq. (4-2-14),

ICB*(n) S(n, ) Bn) + H(NI < H ().

Hence
|F(n, N= D] = |Fn, N=j+D I <lof |B*| IH (DI 1S, 1.

As |S(n, j)| is uniformly bounded in #, | F(n, N—j+1)] is uniformly bounded in
n. From Eq (4-2-4), it follows:

—[B*)S (n, j) Bw) + HN=jF D1 F(n, N=j+1) = B*)S (n, /) &(n).
And from Eq. (3-2-4),
—[B*S(j) B+ HIN—j+1DIFIN—j+1) =B*S(j)2.

The differences of both sides of these two equations are

~[B*n)S(n, ) B(w) + HIN=j+1]IF(n, N—j+1 +[B*S(j)B
+ HIN=-jF+DIF(N=j+1) = B*n)S (n, j)o(n) — B*S()) &.
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When » tends to infinity, the right hand term to 0. On the other hand, the left
hand term tends to

ILB*S(j) B+ H(N—j+1Dim F(n, N~ j+1) - F(N—-j+1]|,

as | Fin, N—j+1)| is uniformly bounded in 7. Therefore

I[B*S(j) B+ H(N—j+1D]lim F(n, N—j+1) = FIN—j+1)]| =0.

Since B*S(j) B+ H\N —j--1) is positive definite, we can show that
im F(n, N—j+1) = F(N—j+1), (4-2-20)

as we proved Eq. (4-2-18).
By Eq. (4-2-4),

P, j+1)=[8(n) + B Fn, N=j+1T*S(n, H[(n)

(4-2-21)

We have shown that ||S(», /)| and | F(n, N—j+1)] are uniformly bounded in 7.
Therefore ||P(n, j+1)| =FPin, j+ 1) is uniformly bounded in . Since
lim B(n) = B and lim #(n) = @, it follows similary as Eq. (4-2-19)

lim P (n, j+1) = P(j+1),

by Egs. (3-2-5) and (4-2-21).
From above results, we obtain Eq. (4-2-6). Consequently F(n,7) is the n-th
approximate solution of F(z), i=0,1,2,..., N—1.

4-2-2. Convergence of Sub-Optimal State-Estimators

We investigate the sub-optimal state-estimator. We suppose that the output
measurement operator M(n) of the system (4-2-1) is the projection of M to X,.
That is

m(i) = Min)&n, 1) +ni), |

- (4-2-22)
M) =[M=n),0,...0 |
m(7) is the actual measurement output and the stochastic properties of the
measurement noise is given. Then the estimated value Z(#, i!7) of £(n,¢) which
is calculated with Eq. (4-2-22) is generally not equal to the first # components
of the estimated value Z(i|7) of ¢(i) calculated with Eq. (3-1-5). Then we must
show that C(#, i|i) converges to Z(i|) in order to say that £(n, i|i) is the n-th
approximate solution of Z(i|i{). In this section we prove that the estimator
which estimates Z(#, i) converges in the operator topology to the one which
estimates ¢(¢). From this we can show that ¢(z, i|{) converges to C(il7).
Let Z(7, ilk) be the optimal estimate of £(n, /) with measured outputs m(0),
m(1), ..., m(k), and define Z(n, ilk) by
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E(n, i1B) =C(n, i) = C(n, iR, (4-2-23)
The convariance matrix C(xn, k) is defined as
Cln, ) = E([F(n, k|k— DI kIE—1)T). (4-2-24)
This is a self-adjoint operator from X, to X». We set
Win, BY=6(n)+ Bn) E(n, N— k). (4-2-25)
and define K(n, k+1) by
Em, b+ 11k+1) = K, b+ 1) mlk+11F). (4-2-26)

Then similarly as Egs. (3-3-11), (3-3-18), (3-3-20), the following equations can
be derived.

B, k+1lk+1) =0 (n, k) E(n, kR + K(n, b+ 1)k +11k)
Cin, b+1) =% (n, &) [I— K(n, k) M(n)1C(n, RYI— K, k) M(n)1*¥%n, k)
-+ D(n) R(k) D¥(n) + ¥ (n, B K(n, BYN(R) K™ (n, &) ¥*(n, k),
Kn, k+1) =Cln, k+1) M*)LM(n) C(n, k+1) M*(n) +N(E+1D17.
(4-2-27)

By Eq. (4-2-27), we can calculate the optimal estimate ¢(n, il7) of C(n, 7) with
the initial conditions ¢(#, 01 —1) and C(#n, 0) when the measured output m (i) is
obtained.

The block diagram of this estimator can be drwan as the following Fig. 2.

m(k) + m(klk—1) + E(klk)
K(k) » >
+ +
T - y(k—1) | -
—m(klk—1) E(klk—1) E(k—1k—1)

FIG. 2. Optimal Estimator for Finite-Dimensional System (4-2-1).

We define @ (n, k), K (n, k) and M (n) as

F(n, k) =0n)+ Bn) F(n, N—Fk),
K, b)) =[K'(n, k),0,...1, (4-2-28)
M) =LMn),0, ... .1

Clearly lim #(n, k) =¥ (&) and lim M (n) = M.

Hence if we can show that

lim K (n, &) = K(k), (4-2-29)
]
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then
lim Em, BVRY ™ =UHm (E(m, R, 0, .. ) =C(k]R).

In other wards, &(n, k%) is the n-th approximate solution of ¢(%|%). Therefore
we must prove Eq. (4-2-29), and the uniform boundedness of C(#, &) and K (%, &)
in # plays an essential role in the following mathematical induction.

We set

Cn, B =[¢(n, klb—1 "¢, klk—1)"1. (4-2-30)
Then
Cn, B)£(n)
B 0
Cin, B &= . , (4-2-31)
where &= (£, &,...), and £(n)=(£, %, ..., &,)’. By three equations (4-2-27),

(4-2-28) and (4-2-29), it follows:

Cln, b4+1) =T, LI =K, &) J(n)IC(n, BY[L— K (n, B) )T T (n, &)
+D(n) RCE) D*(n) + @ (n, &) K¥(n, &) N(BY E*(n, &) T (n, B,
K, k+-1)=Cln, kDM @) L) C, k+1) JI*n) + N k1)L

(4-2-32)
It is reasonable that we suppose
lim C(z, 0) = C(0). (4-2-33)
From Eq. (3-3-18)
C(0) M™* = K(0)[MC) M*+ N0)],
and from Eq. (4-2-32) (4-2-34)

Cln, 0) ) =K n, VLI (2)C(n, 0) J*(n) + NWO)I.

Since N(0) is a positive definite diagonal matrix, the invese matrix N ~!(0)
exists. Furthermore since the following inequalities hold ||C (7, 0)] < IC((0)] and
|35 | < | 3%)], then by Eq. (4-2-32) it follows:

1K (2, 0 = LK (32, < | CCOY |} 135 INTHO) ) NN ~H0) 3 (32) C (e, O) T * (32) + 1171

As N U O M R)Cln, 0) M (n) is self-adjoint and positive semi-definite, then
similarly as Eq. (4-2-14),

ILN7H0) 37(n) C (e, 0) BT () +I17Y < 1.

Hence

= i

1K, )< IO 1) |NT(0). (4-2-35)

From this, | K (n, 0)] is uniformly bounded in #.
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The differences of both sides of two equations of Eq. (4-2-34) are

COYM™*—Cn, O) M n)
=[K0) — & (n, ) ILMC0) M * + N(0) I+ K (n, D[ MCO)M* — j7(n)C(n, 0} (n)].
(4-2-36)

Since ||K (%, 0)] is uniformly bounded in #, and

lim J* () = M*, lim C(n, 0) = C(0),

then the left hand term of Eq. (4-2-36) tends to 0 and the right hand term tends
to

lim L&(0) — K(n, 0)ILHC(0) M*+ N(0)],

when » tends to infinity. Then

lim [MC(0) M* + N(OYILE(0) ~ Kn, 001" =0.
Therefore

[HC(0) M ¥+ NO)YILE(0) — lim K (, 0% =0.
As MC(0) M*+ N(0) is positive definite, [lim & (#, 0) — K(0)1* = 0. Consequently,

lim & (1, 0) = #(0), (4-2-37)
By Eq. (3-3-20),

C(1) =w(0) [/ - K0 MI1C(0)[I~ K0)I*¥*(0) + DR(0) D*
+w(0) K(0)N(0) K*(0) Z¥(0).

By the first equation of Eq. (4-2-32)

Cin, 1) =0 n, 0 [I—Kn 0 lmI1Cwn, O)[I—K(n 0)Hn)I*F*(n, 0)
+ () RO) D) + T (1, 0) K (12, 0) N(0) K™ (52, 0) ¥ (2, 0).

This equation implies that |G (s, 1)} is uniformly bounded in .
Then it follows:

lim C(n, 1) = C(1), (4-2-38)
by Eq. (4-2-37), because
lim C(x, 0) =C(0), lim M*(n) = M*
lifn Dn) =D, lign F(n, 0)=¥(0).
We suppose that ||C(#n, )|l is uniformly bounded in »# and

lim C(n, £) =C(R), (4-2-39)
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By the second equation of Eq. (4-2-32), it follows:
VI G, XN <G, YUV BEF 0O IN TR NN R) 37 () Clo, B) B+ (n) + 117,
Since N7'(k) p1(n) Cln, k) B (») is self-adjoint and posiitve semi-definite,
ILN "' (R) BI () C(n, B) BT (n) + I <1,

similary as Eq. (4-2-13). Therefore | K{n, )| is uniformly bounded in n. By
the second equation of Eq. (4-2-32), the following equations can be derived

Cln, VIS n) =K, YL ) Cln, &) BT () + N,
and by Eq. (3-3-17) (4-2-40)
CRYM* = KR [MCE M*+NE]

Making use of the fact that || £ (», £ is uniformly bounded in %, we can show
from Egs. (4-2-39) and (4-2-40) that

lim K (n, ) = E(&), (4-2-41)

by the similar method which we used in order to obtain Eq. (4-2-37) from Egs.
(4-2-33) and (4-2-34).
By Eg. (3-3-20), it follows:

Cle+ 1) = (RI— K(k) MIC) [I— K(k) MI*®*(k) + DR(k) D*
+ (k) K(B) N(B) K*(R) ¥ (k),

and by the first equation of Eq. (4-2-23),

Cln, h+1)=Fn 2)[I—Kn, ) JH)IC 0, LI~ Ktn, b)) T ¥ 0, k)
+ D) REYD* () + @ n, YK (n, YNRYK n, B)w*(n, k).

Hence by Eq. (4-2-41), we can obtain the following equation

lim C(n, k+1) =C(k-+1), (4-2-42)

because ||C{x, k)| is uniformly bounded in » and
lim wn, k) =w(k).
And it can be easily shown that | C{zn, £+ 1)] is uniformly bounded in #.
Hence we have shown that
li'{n Cn, By =Clk), k=0,1,2,....
Iifn KEn b =K®&k), £=0,1,2,....

Then the state-estimator of Fig. 2 converges to the one of Fig. 1 in the operator
topology and the former is the n-th approximate solution of the latter,
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5. Concluding Remarks

An attempt has been made to present a general, unified discussion on the
synthesis of the optimal controllers for distributed-parameter systems. Since
“Functional Analysis” approach plays an essential role, portions of deriving pro-
cedures of optimal controls may seem to be somewhat abstract from the engine-
ering viewpoint. However it is worthy to emphasize that the abstract approach
with Functional Analysis can provide a better prospect of the basic properties
of the problems and an extension of certain research results obtained on lumped-
parameter systems.

The authors are much grateful to members of Automatic Control Laboratory of Nagoya
Iniversity for their useful discussions.
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