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Summary

A supersonic boundary layer is interacted by the pressure rise produced by a
wedge slope. This interaction is found to be similar with the shock wave reflection
from the boundary layer. In the present paper the line of displacement thickness is
calculated by the momentum integral equation and the outer supersonic flow along
this line is obtained by the theory of linearized supersonic flow. Matching the outer
and the inner flows, we can solve the entire flow field. The principle of calculation
and some numerical results are presented.

1. Introduction

In a supersonic boundary layer the effect of abrupt change of surface slope
is extended in some upstream distance, resulting in the change of external flow,
which will react as a change of flow in the boundary layer. This is one of the
interaction phenomena between supersonic external flow and that of boundary
layer.

When a shock wave is impinged on the boundary layer of a flat plate, the
pressure rise behind shock wave leaks out to the forward region through the
subsonic part of boundary layer. Ritter and Kuo®, Kuo? and others have investi-
gated such form of interaction problems.

In the present paper a quite similar method of analysis developed by Ritter
and Kuo is found to be useful to solve the supersonic boundary layer near the
corner as shown in Fig. 1, and the general descriptions of the process are
presented.
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F1G. 1. Flow pattern of the boundary layer around a wedge slope.
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2. Fundamental Equations in the Compressible Boundary Layer

The steady two-dimensional boundary layer flow of a compressible fluid is
governed by equations of state, continuity, momentum in x and y directions and
of energy as follows:

p=ReT (1)

2(505? a(;;;) =0 (2)

"%2'*”?;; == ; 252 +%’a§y'( a“) (3)
0=- ,IT%fT (4)

R A i a1

where p denotes density, p pressure, T absolute temperature, R gas constant, and

u, v are x, y components of velocity, respectively. k& is heat conductivity and g
is coefficient of viscosity.

Assuming the unity of Prandtl number, ie. Pr=ucp /k=1, we can integrate
the energy equation (5). For the adiabatic wall it is given

(1/2)2* + ¢pT = constant = (1/2)ut+ cpTe = c5T% (6)

where suffix ¢ and 0 express the quantities of external flow and of stagnation
point.

The stream function is introduced by eq. (2) defining
ou = p(d¥/3y), pv = — po(3¥/ox) (7)
Assuming po>7, Howarth transformation

xi=7, yi= (-i",’;)l/zjy—%—dy, 7= (}%)mz(x,-, ») @)

is applied to the equation of motion. Substituting egs. (6) and (8) into eq. (3)
we have

Y oy LD _ d“ﬂ[ /alJ d/
0x{0yioyi  9y: oxi i L Te 240 ayid " oy
_ a / due T f'l 2 o _/_f
+ e g {1 + 2al [ue (ay,) J 2ae/ i (9)

Integration of eq. (9) across the boundary layer from y;=0 to y;=4d; gives the
momentum integral equation.

%Jf[(z“ffg)ﬁ (1+’21;‘§)6* o uoé_(g)%)w (10)

where 4/ and #; are displacement and momentum thickness, respectively, defined
by
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5f = S:L(I —%)dyz, 0; ~§ (1 -—w>%dyi (1)

3. A Solution of Momentum Integral Equation

In order to solve eq. (10) the fourth power expression of velocity profile is
introduced, denoting 7=y;/8;

e =F(n) +AG(n) ; F=29—29"+4", G=(1/6)9(1—»)° (12)
where
. B? T—l 2 du_e_
A=0i(14 L dpgz) a0 (13)
The boundary layer thicknsses are
sx_ (3 (37 _ a4 L ouy ANue
of = (15~ 120)6" ?"(315 615~ 9472)%" (ay,-)w‘(Hs)a; (14)

Transformation of §;° is reduced by substituting egs. (6) and (12) as follows:
o ~S (1= )= (£)"§ R (1= L)y
1/2
=(5) 2 (F-1)+ (lmge)]dy

B B

B30 " 7560 T 9072 (15)
where
& _‘S - pe%e
Eliminating 87 from egs. (14) and (15), we have
1 7~1, [ 1duef,  v— -
sor2 2 Me| o T(1+15 Me)J i
L 1 due T‘—l 2 71 T R 263['_‘1
"":7&";(” 7 M) (75575 M€+120> ~ (G M+ )
_ p 1/27‘0“’<
(po) 7 (16)

When the change of wall slope is very small, the external flow does not
much deviate from the initial uniform flow. In such a case #. can be expressed
by

e=Ul+u'4+ ~++), ' <1

(17)
Subsitiuting eq. (17) into eq. (16) and neglecting the higher order of #/, we have
U/ 71 1 \du'y, (37 _ 263  2637—1
%(7560112 9450>?zx"*+ (315 6305 630 o7 Lagint)o.
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_ (UET—z _ __gj(Mggz—r:fu,)B* (18)

where o =1—[(y—1)/21M;, and M, = U/as.

In the case of weak interaction &; should have a very close value with that
of non-interaction flow, where #'=0. Therefore, the first approximation will be
obtained by putting the zeroth order value of

5i=afgf%( 263 37)“6*

6300 415
into the higher terms of eq. (18).

2-7

fatmali - -1
o = 2*—2(%@%_%) Sk

2637 =1, A(263 _ 37\T7 2—7, 0 7 263 373\7'] s
| B Mi ™ (g, —515) + g Mie T g, 55) e

ur 71 1 263 37 \7' Ehdu s

ool 75607 5i55) (05~ 515) o ded (19)

This is the form of the first approximation of §; expressed by d¢*.
When the change of quantities is not much deviated from undisturbed boundary
layer, we can put

§¥ =671+ 4), d4<1 (20)

where 8 is the displacement thickness for the uniform external flow, which is
expressed by 0, (ddy/dx) = constant. Substituting eq. (20) into eq. (10) and re-
taining terms of the first power of 4 and #', we have

2,

2 “u’
dut | g A L dd( g B 01) )

d4
ng’in—g ‘—:gzu'"}‘gzag-i‘ gra;;—z _QEMTE\

where & =x/8F, Re= Udy /v and
1 (263)° -+ 74\
S e [ 1(1'28”3")
o _otT = lap 1 2—7
g = gl[l 2= M“(1—74o/263+27‘—-2)]

3—p ., . (15934 74588 \(. _ 74 \~'
g:="5, My=2 (9731+360047a)(1 263”)

gi= - Rea?}ﬁ—s—%g(g%g)s(l - %0)~3

(22)

4. Matching Condition with External Flow

The displacement effect of a boundary layer disturbs the external flow, which
reflects to the flow in a boundary layer. By the matching condition the velocity
vector of external flow should be tangential at the outer edge of the displace-
ment thickness. Denoting the small height of the wall from a reference plane
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by yw, the matching condition is expressed as follows:

Ue d

. dx( w+6") (23)

Since disturbances caused by the interaction are much greater than the gradual
change in undisturbed boundary layer, we can assume that ;" = constant. Intro-
ducing non-dimensional lengths

£=x/87, 1=y/88
the matching condition with the external flow of small perturbation is given by

Ve dpw , dd _
o= s atr=me (24)

5. Solution of the Matched External Flow

The small perturbation theory is applied to the supersonic external flow. The
perturbation potential ¢ which is defined by

W= (ue— U/ U=23¢/0%, v'=0v./U=0¢/dy (25)
is governed by the linearized equation

2
Bm—5p=0 B=VM\~1 (26)

The general solution is given by
¢ =f(&~ By) + g(£+ By) (27)

Since no disturbances are contained in the impinging wave, the second family
should be vanished, ie. g=0.
The matching condition (24) is deformed

dgb dﬁw d4

d¢+d>’-‘ at p= +0 (28)

(i) Solution in the Upstream Region (x<0).
The solution of ¢ is given by
#y = f1(§ — By) (29)
In this region, y»=constant=0. From the matching condition we have

(30).,= ~ B =G (20

Differentiating eq. (21) terms of the first order are retained.

dd  d'4 du! d'u' d'u'
gldﬁ'{ dﬁg gzdzf. +¢,3df/t2 + 4d¢g (3])
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Substituting eq. (30) into eq. (31) we have
gf (&) + g f (8 + (g+ B (8 + @Bfi(5) =0 (32)
The solution is given by
Fi(8) = Ao+ At + A + Al (33)
where 1 is the root of
g+ gk’ + (@ + B)h+ g B=0 (34)

Numerical values of i, 1. and 2; are shown in Figs. 2, 3 and 4, where 1,<0, 1:>0
and 215<0.
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From the condition
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fi=0 atf= — (35)
A1=0, As=0 and A4,=0. Therefore,
fil§ = By) = A (36)
The solution in upstream region is given by
¢ = A FTEET iy x— By<0 (37
Eq. (30) is integrated by the use of eq. (37), giving
4, = — A+Be’* + constant
Since 4;(—o0) =0, the constant is vanished. We have
8 =87 [1— A+Be¥°"] (38)

(ii) Solution in the Downstream Region (x=0)
The general form of solution is expressed by

In this region, py=e#, and therefore, the matching condition is reduced to

) _ _Brley=.p 94
(32)., = —Brite) ==+ 92 (40)
Substituting this equation into eq. (31) we have
gifi +&fi"+ g+ B fY + g Bfi= — gie (41)

The complementary solution is found to be identical with eq. (33). The complete
solution is

Fo(8) = Co+ Cie"® + Coe™ + Coe™™ — (¢/ B) 2 (42)

Since f:(£) should have a finite value at infinite downstream, C,=0. The constant

value of velocity potential can be nullified without any loss of generality. There-
fore

f2(& = Bp) = Cie" 7 4 PV — (o/B) (2 — By) (43)
The solution in downstream region is given by

x-RBy x— By
¢, = CeM i _*_Dex:‘go‘r e Xx— By

B J g*

(44)
Integrating eq. (40) with eq. (44) we have
4= ~C*Be** =D B+ E

where E=4;(+), since ;<0 and 23<0. The displacement thickness in down-
stream region is given by
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07 = 8711 — C+ B30y — D+ Be™*%" 1 E] (45)
The thickness at the infinite downstream is

8F (+ o0) =871+ E] (46)

(iii) Determination of Integral Constants

Integral constants can be determined by some boundary conditions and
matching conditions at x=0. Since the present calculation is based on a linearized
theory, quantities can not be connected to all higher order derivatives at the
origin. In this connection four conditions are introduced as follows:

(a) 8% is continuous at x=0.

(b) p is continuous at x=0, y=0.

(c) Integrated deviation of total momentum should be vanished in the region
of origin. It is shown later that this condition is equivalent to the continuity of
pressure gradient at x=0.

(d) Since perturbations caused by interaction should be vanished at x= -+ oo,
the displacement thickness at infinite downstream can be assumed to be the same
as that of undisturbed boundary layer. Individual conditions are now formulated.

(a) The continuity of §* at x=0.

This condition is given by

of =087 atx=0 (47)
Substituting eqgs. (38) and (45) into eq. (47) we have
A=C+D-E/B (48)

(b)Y The continuity of pressure at x=0, y=0.
Denoting the perturbation of pressure by p' we have

P=potp; P = — Ut = — p U39/ 0F) (49)

From egs. (37) and (44) we have

x-By
pi= —rMipaLAke™ ] (50)
[ Vs x};{? xa%?y _ & A
P = fM:spn[C/zle + Dhse B] (51)

It is found that p. = (yM=%/B)pee at x=-+o is just the same value of pressure
growth in inviscid flow caused by the wedge with deflection angle of e.
Condition (b) is described by

pr=py atx=0,y=0 (52)
Equating egs. (50) and (51) we have
Al =Cl+Dis— (e/B) (53)

(c) Continuity of pressure gradient at x=0.
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The momentum integral equation can be expressed by

K= i(peuéﬁ) - 6*% - Tw

7(922{90 8" ]5) +17—— — =0 (54)

The present condition is expressed initially by

limS%%de ~0

ap-0s —
or

gr_fé[{pguiﬁ-z?*p!ioxo—{-g p@fdx Sig rwdx] 0 (55)

Since p(do*/dx) is discontinuous but is finite and 7, is also finite, the limits of
the last two terms are vanished. Eq. (55) is reduced to

(pertzf) s — (peush): = (pe — P &*(0) (56)
From the condition (b), ie. p1=p. at x=y=0, we have
(Peuéﬁ)z = (Ogufgﬁh (57)

Linearizing by w.=U(l+u'+ - - -), the differentiated form of eq. (57) is re-
duced toV

aﬁ?‘(%gx—; - %) = a(ub — up) (58)
where
- -3 f- 1
- RS- s) T i+ (e o) (S ) |
= =T 1(33175 -6%%%)“[2+M;(%§%'”;1—1)] (59)

The continuity of pressure p at the origin and p’'= —p.U%’ lead the continuity
of #'. At the origin of external flow it is written

UL = uh (60)
Eq. (58) is reduced to
i/ dx = dus/dx (61)

which expresses the continuity of pressure gradient at the origin. Using egs.
(37) and (44) we have

diy 1 (@) 1 gy
(G ).y = 5540 (52), =55 \Cit+ 2D (62)

The present condition gives
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Al =Cill+ DA} (63)

So far the conditions (a) to (c), which are expressed by egs. (48), (53) and
(63), give A, C, D by E as follows:

“(Xs—f*h)_ __ & XXg __]2
A= T =1 ] ]+ (o—7s) (/12—/11)[ B}
 ktA R E
C==n (zz~zJ[ 5 (=) (o= 1) -5 (64)

= =i <zz—x3)[ B] + (Zs“l%i(%:g[ %}

(d) The displacement thickness at the infinite downstream.
The momentum integral equation is expressed by

Do Lot (24 ) ] - oo (657

Considering the flow condition close to the separation region, it is assumed that
7w is negligible small and that form parameter H=4§*/f is constant as a mean
through concerned region. Eq. (65) is reduced to

%é?f%ﬁ“é‘iﬁ @+ mLdeg
It is integrated to give
fpeus ™ = constant
or removing suffix e
Ovore” ™ = 0sp200,"" (66)
We have
§F16F =0,/0, = (pi/ o) Cutrf ) > (67)

When po»T, Pr=1 and (37/3y)w=0, the form parameter for the laminar com-
pressible boundary layer is given by Lees as

H=250+1.75(r — D M2 (68)

For the linearized flow we have

01/o2=1—Mz(e/B), ur/us =1+ (¢/B) (69)(70)
0¥/ =1+ Q+H-MY (/B =1+E
E=(2+H—-M-(e/B) =[4.50—- (1.757—2.75)ML1(c/ B) (71)

Substituting this value of E into eq. (64), A, C, and D are obtained. We can,
then, calculate displacement thickness and pressure distribution as shown in the
following sections.
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6. Pressure Distribution
As shown in eq. (49) pressure is calculated by
P=Do+p =p.— 0. U(59/08) (49)
The pressure in upstream and downstream region are given respectively by

X~ BY

pl :pw[l - T/W;zn 'AZQQ‘zV?;.-] (72)
- x— Ry x-FPy
- A MUEE A5t €
po=pe| 1= ME(CHE T+ Dre W~ £ | (73)

At the infinite distance they tend to limit values.

Pl = 0) =p., po(+ ) =p[1+7M%(s/B)] (74)

Two examples of pressure distribution are shown in Fig. 5. They have the

overshoot and arrive the maximum value. The situation of this maximum is
calculated by

(2/05 ) pmax = (As — A) "' Inl — CAH/Di5) (75)

Me

10 20 30 40
x/8
F1G. 5. Pressure distribution along the wall.

7. Displacement Thickness and Upstream Influence
Displacement thickness in upstream and downstream region are given, re-
spectively, by
67 =671~ A»Be™*%"] (38)
0y =00 [1~ C+BeMV™" — D+ BV + E] (45)

Fig. 6 shows a numerical example of perturbed displacement thickness along wedge
slope which are both proportionate to .

The perturbed displacement thickness in upstream region is given by
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FIG. 6. Distribution of displacement thickness.

o — 8 =8 A+ Be (76)

Definining the influence distance x4 by the situation where 47" — 43, is « times of
sF — 5 at the origin, it is given

al88 = — (1/2) In{1/a) (77)

Some numerical examples are shown in Figs. 7, 8 and 9. Taking «=0.05 we
have xs/80F =30 at M=2, which meet with experimental result fairly well.

8. Separation Point

When the angle of wedge slope is increased, the perturbation becomes so
strong that the flow is separated. The separation of flow occurs at (du/dy)w=0
or at (ou/9yi)w=0. It is given

-12 -12
-10 } -10 } 1
o 4 | Xd_1 |
S0 5 In()
Tu-8 -8 r
L R
Az Az
-6 - -6 t B
-4} -4 +
i 25 ] |
-2} -2
0 500 1000 500 2000 2500 0 12 5 20 24 08
Re= U83/% Meo

FI1G. 7. Influence distance (1). FI1G. 8. Influence distance (2).
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F1G. 9. Effect of wedge angle on the influence distance.

(D129 = (el 0:)(2+ 4/6) =0 (78)

Therefore, separation point is given by A= —12 as in incompressible flow.
In the present linearized external flow A is given by egs. (13) and (17).

ol -2 3-27
_oiUdu _ o s 37 _ 263\ 5= du! -
A= vo dx Redo (315 6300) 7 dx \79)
where
C}u' l; Ae(X/d0%)
= AL et )
dx A 6:e (80)
At the separation point xs
-2 g-2T .
As = AReZ§<3?¥5— 623?0_3(_7) g Tl 19
-20 T r
.
Res Vi’ = 2000
_16 L
XLe Ma=12
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-]2 L
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FIG. 10. Situation of separation point (1). FI1G. 11. Situation of separation point (2).
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and, therefore, we have

2~ =40 (- )

(81)

The value of x; is affected by R. through the effect of pressure gradient which
suffers interaction between external flow and boundary layer thickness. Examples
of numerical calculation are shown in Figs. 10 and 11. When the angle of wedge
slope ¢ is increased, (—A) and, therefore, (—xs) is increased. It is found that
separation point is getting forward by increasing ¢« and R. and by decreasing
M...

9. Conclusion

The effect of wedge slope in a supersonic boundary layer is investigated.
Changing the compressible boundary layer into the incompressible one by Howarth
transformation momentum integral equation is solved. It is connected with the
linearized external flow and the interaction is matched on the outer edge of
boundary layer. The growth of displacement thickness, the pressure distribution,
the influence distance and the separation point are calculated.
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