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Summary

Forces and moment produced by the motion of an inclined flat plate, which is
supported by the ejection of compressed gas from the centre, are investigated. The
clearance between the plate and the ground is assumed to be very small compared
with the length of the plate moving with a consant velocity along the ground, and,
therefore, the theory on flow with low Reynolds number can be applied. The
coefficients of lift, drag and pithing moment about the centre of plate are expressed
by functions with two sets of parameters, one of which represents a relative angle
of inclination and another parameter which consists of pressure coefficient of jet

and reduced Reynolds number of moving flat plate.

1. Introduction

G.E.M. (Ground Effect Machines) can be divided into two categories?, i.e.
air cushions vehicles of pressure type and air lubricated vehicles of bearing type.
The latter can support the weight of vehicles with comparatively small area of
air bearings. An example of practical application to the high-speed rail-way is
shown in Fig. 1. Lubricating flow through bearing plate has been investigated
by many authors, for example, by Sommerfeld®, Rayleigh® and Michell®. The
characteristic of the circular plate nozzle and two-dimensional plate nozzle is
shown in Fig. 2, and we observe a difference of the pressure distribution between
them. In the present paper, the bearing force and moment by a set of two-
dimensional slide plates with air lubrication is investigated. The essential
features of this type of motion is shown by the model of a slide plate moving
on the ground surface in Fig. 3.

It is found that the small inclination of sliding plate gives an important
effect on the characteristics of the whole system.

Considering two-dimensional flows we fixed the axes on the sliding plate and
the ground is assumed to move with a constant velocity in the opposite direction.
Along the ground the x-axis is taken in the direction of motion, and the y-axis is
taken in the normal to it as shown in Fig. 3.

The height of the clearance between the sliding plate and the ground is
assumed to be very small as compared with the length of plate®.

G. I. Taylor and P. G. Saffman® have been demonstrated that the effect of
comressibility may become very important even at very low Reynolds number,
in spite of the fact that the Mach number may be very low. For the simplicity,
however, in this paper the case of two-dimensional incompressible steady flow™”
is investigated.
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2. Notations

a : half length of plate A, B: integral coefficients

b : half width of slit C : integral constant

d : plate width Cp : drag coefficient

Cp : reduced drag coefficient C. : lift coefficient

Cx : pitching moment coefficient Cy : pressure coefficient

D : drag F : normal force on plate

G : parallel force on plate i : local height

hm : mean height ! : plate length

L : lift M : pitching moment

p : local pressure pa : atmospheric pressure

ps : jet pressure Q : volume of flow

» : radial distance R. : Reynolds number

R, : reduced Reynolds number U : velocity of ground

Un: mean velocity of clearance u, v : velocity components

x, ¥: coordinates x; : distance from origin
i=1,2,3,4,¢

s : attack angle of plate : viscosity

p : density : kinematic viscosity

n : parameter as/hm
P#*: parameter (p—pa)/ (ps—ba)

The positive senses of forces, moment and angle are indicated in Fig. 4.

. parameter CpR-
: parameter (x—xc)/a

Wha ¥R

3. Basic Equation

For the case of incompressible two-dimensional steady flow in the x, y plane,
the Navier Stokes’ equations are expressed by

ou , ou _ 1 dp 'u | du
ox TV 2y  p dx +”( ox? oy? ) l )
w o 1 dp v | o J
“ax+”ay‘ pdy+”(ax2+8y2)
and the equation of continuity is
ou . ov _ .
By T oy - 0 (2)

The typical viscous term in the equation of motion for the x-direction is
udu/dy*. The ratio of inertia and viscous forces is estimated into the following
form:

inertia force _ O(pudu/ox) _ U/l . oUnl ( Bm )2—1?
viscous force ~ O(upd*u/oy®’) ~ nU/R* =~ n [ -

The inertia force can be neglected comparing to the viscous forces if the reduced
Reynolds number are sufficiently small.

In the equation in x-direction, 3% /dx* can be neglected comparing to 3% /3y,
because the former is smaller than the latter by a factor of the order (&//)%
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F1G. 1. Standard type. FIG. 2. Pressure distribution.

This equation can be simplified as 5% /9y*=9p/2x. Considering the very small
value of », y component of motion can reduce to 9p/3y=0 as given in boundary
layer flows. With these simplifications the differential equation (1) can be
reduced to

pujoy = dp/dx (3)

and the equation of continuity can be replaced by the condition that the volume
flow in any section should be constant.

b/

Q= S udy = const. (4)
1]

4. Velocity and Pressure Distributions

The boundary condition are

u=Uat y=0, u=0at y=nh
pP=pa at x=x, p=pp at %<x<A; (5)
D=pa at x=1x,.

The solution of equation (3) which satisfies the boundary conditions (5) is given
by

o= 0li-F)- 5 0= )

where dp/dx denotes the pressure gradient, which must be determined in such a
way as to satisfy the continuity equation (4), and the boundary conditions for
pressure.

Inserting (6) into (4) we obtain
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Inserting the relation s =s%, equation (8) can be integrated into the following
form:

6 1@ 6 nU
p= ._d_é;i._ -_ ;;/;‘\: ~ — Do (9)
where po denotes the integral constant.

i) REGION I: 1 <x<x
Boundary conditions for pressure are

p-—_—pa at X=x
p=ps at x=x

The solutions of equations (9), (7) and (6) are expressed by

. @P=axiad _ _ 66U —x)(x—x)

p=ba= (27— x7)x* (25 = pa) (22 + 11)x? (10)
312 )

Q=oU- 5% 4 00T (h_p) (11)

X+ X 6 p(xi—x3)

= _ bunm + o' 21 % PR 2 ST 0 U -
w=13U (% + 2 x w(xs—axx (s pa)f ox (1 ox ) ' U( ox )
(12)

When the plate is at rest, equations (10) to (12) are simplified by putting U=0.

(x* — x}) x3
EEE G pa)

(5 —xhx

p—>Dba= (13)
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o % x)
Q= gty (o= pa) (14)
2.2 2
A ST 1 _ Y I =
u PP iy pe (P~ pa) - (l ax) (15)

1) REGION II: xs<x=< x4
Boundary conditions for pressure are

P=pDs at x=2xa3
P=pa at x =21

The solutions of equations (9), (7) and (6) are

(2l — 2" 6 nU(x, — x) (x — x3)

= Pa = g T - ) —_ 5 - 16)

p=p (2] — ad)xt Po=ta o X+ )8 (
X+ axix

_ _ (17)
Q=0U X3 X, 6 plxi — x3) (bo=pa)

e ay— 8Umx  _ dxmx NV Y (Y V(i Y
"= IBU (x5 + x)x ,u(xf—-xg) (B Pa)} gx (1 o'x> ' U(l ax>

(18)

The equations (10) and (16) are plotted in Fig. (6) to (9). When the plate is
at rest the equations (16) to (18) are simplified by putting U=0 as follow:

(xi— 2

— pu = RAath — Da )
p—b (af — 2Dx* (bo=2a) e
3,22
g X3Xy
A LI P Y 20)
0= Guxi—gh Do Pa) k
2..2.2
_ g X3Xy _ ) ¥ — _::y_ 21)
u= e o= ) (1 ax) (21
10 . - 10 ¥ 4
4 %
P ® 10 P
A0 &
05t 014 x 1 05
1 ® 1 1 0 (2]
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FIG. 6, Pressure distribution,
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F1G. 10. Pressure distribution: U=0.

The equations (13), (19) are plotted in Fig. (10). When we have no excess pressure
in the plenum chamber the equations (10) to (12) are simplified by putting ps=pe.

6 U X, — ) (x— x7)

p=be= = s 22
T

Q=0 X1+ %o (23)
i 6Uxnx \ v (1_ ¥ oy

w={-3U+ P } 2 (1 )+ (1 Ux) (24)

and the equations (16) to (18) are simplified

6 puU(x —x) (x— )

p=ba=— (s +x3) 27 (25)
_ :ch.[ P

Q—aU—xS_Hn (26)
L (+x)x—2x2 ¥y _ .\ Y

u= = 3R e — U (1= %) (27

5. Lift, Drag and Pitching Moment of the Plate

The resultant force from pressure can be obtained by integration of equations
(10) and (16).

F= S:z(p — pa)dx + j‘:(p - pa)dx

B B T SV T S\ — _ 6nU j %x; TEC L N T X
_{ Kot 2 *c+x x3}(p" pa) P {ln X143 2( X3 "t Xi+2s )}

(28)
The resultant force from shearing stress can be calculated in a similar manner:

X, 2y
G=-| #(au/ay),.,,dx—§ 2(oul3y) y-ndx
~ X3

S BT SR - T 70 | _2,_&9_ TN o B— X X X
- a{ X1+ %2 X3+ X4 (‘Db pa) = {ln X1X3 3( Xo+X Xy+2Xs )}

(29)
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Situations of four edges, x: to x are given by the use of plate mean height /im
and angle of inclination .

2= Rplo—a—D>b, xi=hulo—b } 30)
x9=1'lm/0+b, x4=11m/(7+a+b
Substituting (30) into (28) and (29), we obtain
2(a—b){2 hin—bo*la+b)}
= — pa)
F 4hm-—a(a+b)“ (pa b
6[1U Sdhm(d—b) (lZm+ ad)(hm“bd)
- B T 31)
- 02 4/1371’_(72(d+b)2 In - (hyn—ad)(h7n+bd) } (
_ _ 2gla+b)abd® = hm) ,
C= 4 hiw—d*(a+b) (£s=pa)
2/lU (hm‘*'aa)(hyn—ba) ]2o‘hm(d—'b)
- - : 2 - 32)
a {ln g — @) By + o) 4 hm—dla+b)* } ¢

Considering the small magnitude of the angle of inclination and b <a, lift and
drag are calculated from the resultant forces of pressure and of shearing force
as follows:

4 ahm 6 ,UU ’ }'lyu -+ aco 8 (Io'hm a
o  Cpem ) — . 3)
L F aG 4 hm (pb p ) 0'2 h m ad 4 hm } (J
2 (l(fllm 4 /lU hm + aO' 6 adhm l P
= —gF—G = i (py— pa) . tas _ _98ohm L (34)
? G 4 h?]; —a g I)b pﬁ + ag { hm ao 4 hfn - az(f- ! (

Pitching moment is calculated by the following integrations,

M=r2 (xc—x)([)—-pa)dx—Sn(xc—x)(p—pa)dx

T (th ac) { (hm 00)2 kmh a T gao—km}(m—?a)
i (2 hm+aa) { (h,,,+aa)z hmh-;aa %a”"hm}(!’b-ﬁa)
Z(Zk:zUao) {“% (3 %tm ‘/ o — a3 )|
‘Z(ZGIziZaa) {2 @bt 200 In &"E—a—” ~a(3hnt G)} @)

where positive pitching moment is taken in clockwise direction as shown in Fig. 4.

6. Lift, Drag and Pitching Moment Coefficients

The coefficients of lift, drag and pitching moment are defined, respectively

L Cn = ——"‘“‘*Q““_‘“"“ C;u =

Co= (pp—pa)+2a (pp—pa)-2a

M
"@m 2a) (36)
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Substituting equations (33) to (35) into equations (36), we obtain

SURCINERYHE P S )
R
- 4712(é+71) { e “%7}}
el 75wy e g
* ?72(2(:—7;) { 3—;2*4 ]n(1+”)—3—%"}] (39)

where the pressure coefficient Cp= (ps—pa)/tpU? Reynolds number Re= Ui/v and
the parameters y=as/hm, and «=CpRr. The equations (37) to (39) are plotted
in Fig. (11) to (13).

‘When the plate is at rest where U=0, these coefficients become, respectively

Co=2/(4—7") (40)

Cr=—n/4~7" (41)
3 1 (1—)* 1 4. 37
Cou= 4772(2—7}){ R ETL R }
_ 1 (1+7)° _._ 379

0T { S (L) = 1= } (42)

P0=Pc:¥Pb

91.0 05 0 05 7 T

F1G. 11. Lift coefficient of a plate.
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FIG. 13. Moment coefficient of a plate.

In the case of zero angle of inclination, ¢ =0, these coefficients become
Co=1/2, Ch=4/k, Cu=0 (43)

When the pressure of plenum chamber ps=pq, the present definition of coeflicients
can not be used. Alternative coefficients are defined, respectively

Co=L]%pU%2a), Co=D/%pU%2a), Cu=M/%pU2a)* (44)

Substituting equations (33) to (35) into equations (44), we obtain
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Cr= le;;z (n 11:;7 - f_?;e) (45)

Ch= oo (32 - 22) (46)

R e e i R R
+~7;2~(7(1_—5A{~3j:7277- 1n(1+77)—3—~7§~}] (47)

When %=1 the leading edge is attached to the ground, and the trailing edge is
attached in 9= —1. The attitudes of the sliding plate are shown in Fig. 5 whih
respect to the sign of parameter 3. The coefficients of forces and moment are
calculated as a unique function of two parameters, » and #, as shown in Figs. 6,
7 and 8. In Fig. 7 the reduced drag coefficient C3 = C»n/{(J,y/a) is used in place
of the usual drag coefficient. It is found that coefficients for x=10* coincide with
the values at k= co.

For the sake of practical use two examples are picked up from these results.
Choosing U=5 m/s, a=25 m, d=1m, hn=2 mm, ps—pe=1000 kg/m? »=1.5x10"°
m?/s, wehave the Reynolds number referred to the plate length Re=1.67 x 105,
the reduced Reynolds number Rr=0.267, and the parameter x£=1.7 x 10%

i) Example 1 (a case of head up)

o= —0.0005 (p=—0625), C.=0.54, L=2700 kg
Cr=018, D=027 kg
Cy=—0.05 M= —1,250 kg-m

i) Example 2 (a case of head down)

c=0.0005 (4=0625), C,=0.54, L=2700 kg
C¥=—018 D= -027 kg
Cy=0.05 M=1250 kg-m

7. Conclusions

1) The case of negative attack angle (>0, and plate nose down)

a) In low speed motion

As the magnitude of attack angle of the plate increases, or as the mean height
of the plate decreases, the lift coefficient increases gradually, the drag coefficient
decreases down to the negative value in high », and the pitching moment coeffi-
cient decreases gradually.

b) In high speed motion

As the attack angle of the plate increases, or as the mean height of the
plate decreases, the lift coefficient decreases and the drag coefficient decreases
initially and then increases, and the pitching moment coefficient increases rapidly
in the direction of nose down.
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2) The case of positive attack angle (y<0, and plate nose up)

As the attack angle of the plate increases, or as the mean height of the plate
decreases, the coefficients of lift, drag and pitching moment are all increases.
When the parameter r is small compared with 1, these coefficients show a great
change.

3) The range of application of the present calculation

The present theory can be applied to the case of extremely small value of
reduced Reynolds number, Ry < 1. When the mean height of plate is taken in
a small value, it means that the plate runs with comparatively high speed.
Since the leading edge and the trailing edge attach to the ground at »=*+1
respectively, the parameter should be limited in the range of —1<9<1.
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