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1. Introduction

Arithmetic codes are useful for error control in both arithmetic operations
and data transmission. When used in data transmission, they do not require
special coding equipment, as encoding and decoding operations may be easily
carried out in a general-purpose computer.

An arithmetic code is a code of the form AN (N=0,1, ..., B-1) where A is
an odd integer. As all code words here are numerals, the distance of this code
can not be defined by Hamming distance. This makes it difficult to evaluate the
distance of the arithmetic code. To the best of our knowledge, there are no
papers discussing the evaluation of the large distance of the arithmetic code
expect Mandelbaum's". In his recent work, he has found the upper and lower
bounds on the distance of a certain class of these codes.

In this paper we discuss the distance of the arithmetic code generated by an
odd integer A. After defining some symbols, a minimal representation for the
binary numbser and its property are introduced. By using this representation, a
distance of the code is defined and the main theorem in this paper is stated in
advance, in section 4. The proof is given in section 5. This main theorem gives
the formula to evaluate the distance of the code and its corollary gives the exact
value, not the upper or the lower bounds, of the distance of the Mandelboum’s
code. Theorem 2 in section 6 shows that the formula similar to that in the case
of symmetric error-detecting codes holds also for the asymmetric case.

2. Definitions of symbols

We use below the following symbols.
A; code generator, ie. an odd integer.
e(A); the minimum positive integer which satisfies

24 _1=0 (mod A)
B; an odd integer defined by
B= (2" -1)/A 1

J; an integer.
Ry={Jl1g]J<B-1}
Ri={Ji1<J<B/3}
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Py={al—-B/3<a < B/3, odd integer;
Pi={J|J=«a (mod B), JE€ Ry, a € Py}
Q,=1{J|J= R,, odd integer}

H ={]JlJe R, or twice of J€ R}
H;={]J|B/3<]<2B/3, odd integer}
Hy={J|2B/3<]< B}

asZ; a is in the set Z.

Z1UZ,; union of Z, and Z,

Z1NZ,; intersection of Z; and Z.

~; equivalence relation defined on integers, i.e., /i~ J if and only if /i,
J.=Ro and there exists j such that

=52  (mod B).

zx; an equivalence class on R, defined by the relation ~. For any
two distinct classes zg, zg,

2Nz = ¢
L; number of z¢’s, ie.,
L
Ry = U 2k
k=1

#(S); number of members in a set S.

we = #(2x N PDe(A) [%(zp)
We=%(z: N Qe(A)/#(zr)

Note that in general
e(A)=e(B)a; and e(B) =zx(zi)as,
where «, and «, are positive integers respectively. Thus, from Eq. (1),

A= (2% _1)/B (2)

3. Minimal representation

The binary minimal representation for any integer J is the expression of J
having the least number of nonzero terms among all expressions of the form

J=b2"+ b2+ -+ o+ 5,27, (2)

where b;=0 or +1 (=0,1, ...,m). The least number of nonzero terms is de-
noted by w(J) referring to the arithmetic weight of /.
P.1. (Reitwiesner?) If the expression in the form of Eq. (3) satisfies

bibiv1=0 (1':0,1,...,7%“1),

then the expression is the minimal representation for J.
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4. Distance of codes and main theorem

In the arithmetic codes the messages N are presented by the integers in R,
and by zero, and the corresponding code words are the binary representations
for A xN. If we discuss the symmetric errors where each digit may change both
from zero to one and from one to zero, then the distance between two code words
ANy and AN. must be defined by

M)(AN] - AN;,)

In general the distance of code, dy, is defined to be the minimum distance be-
tween distinct code words. In this coding, it follows that

dy=min (w(AN)), (4)
N&E By

because the difference (AN:—AN-) is also a word of the code generated by A.
Massey® proves the following. The arithmetic code correct all patterns of ¢
or fewer errors (or detect all patterns of 2¢ or fewer errors) if and only if its
distance d4 is at least 2#+1. In what follows we regard d. as an ability to detect
the symmetric errors.
One of the purposes of this note is to prove the following theorem.
Theorem 1. When the generator A is an odd integer,

d,j = min (w,’a), (5)
1FREL
where the length of code word is ¢(A) and the number of messages is B, that
is, N=0,1,...,B—1.
Our plan of the proof of this thecrem is as follows. First the non-restoring
binary division®, of which quotient digits satisfy P.1, is introduced. Then it is
shown that if the divisor is B and the dividend is Nezp, then the arithmetic

weight for the sequence of quotient digits (qigz--- o)z 18 we. Using this result
and

N 23(.4) — N

AN =5 B

(6)

the arithmetic weight of (AN). is evaluated. Finally a simple number theoretic
consideration leads us to Theorem 1.

5. Proof of Theorem 1

Preparation 1. Non-vestoring binary division and ils quotients

We assume in what follows that the divisor is B and the dividend X, is the
number in Ro. Then each step of the non-restoring binary division is performed
in accordance with the equations

T RN
Xi=X;—-qB } (7)

Xiv1= ZX;'

where X; is the partial remainder and ¢ represents the step of division. The
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quotient digit g; is selected by the rules;*

If | X:1<2B/3, then ¢; = 0.
If 2B/3<X;<4B/3, then ¢; = 1. (8)
If —-4B/3£X;<~2B/3, then gi= ~ 1.

As B is an odd integer, this division produces the infinite sequence of the quotient
digits, i.e.,, for any integer N

=g (9)

From the quotient selection rule, it can be easily shown that
P.2.

qigi+:=0, (=0,1,2,...) . (10)

that is, the sequence of the quotient digits has the property stated in P. 1.
Since, in ordinary binary division, the partial remainders Y; always remain
positive and that

Yi: Yi%e(b’) (Z‘:O} 1! 2) .. ‘)y (11)

the corresponding quotients have also the same relation

di = Jit+en) (1=0,1,2, .. . (12)

However, in the non-restoring division, Eq. (12) does not always hold, because
the partial remainders are allowed to take negative values. But it is not difficult
to show that once the nonzero quotient, say ¢;=0, is obtained,

qi = {qi+e(p) = Ji+eia) (i=j+1, j=2, .. \’ (13)
Thus, from e(4) =e(B)ay,

Xo/B=1qyoqy " giGjr1 " ** Giremy)e
=(Qo qi """ @GGis1 * ** Givea)2 (14

where (§; --- ¢z) means infinite recurrences of the sequence ¢; - - - gs.

We will now consider the properties associated with the sequence of g¢i’s.
From Egs. (7) and (8), the partial remainders X; (i=0) are always even, and X;’s
are even or odd according as ¢;=0 or not. If X; is odd, its absolute value is less
than or equal to B/3, that is, otherwise X,€ P, noting that Xo>0.

P.3. In the non-restoring binary division, ¢i=0 (i%0) if and only if X} D,.

In other words, as X;=X;=Y; (mod B), ¢;=0 if and only if YeP. On the
other hand, since each number in z: is contained e(4)/#(z;) times in the sequence
(Y1Y2 -+ Yew), we have the following.

P.4. The number of nonzero digits in the sequence (¢i1g: - - - gewsy) is equal to
we, where the divisor Xo=ze.

* The selection rules are made to have the quotient digits possess property P.1. Here the
word non-restoring division means the division by these rules,
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Since (AN): is not always (g1 -+ gew)s, three cases must be considered in
order to evaluate w(AN) using Eq. (6). First, if Xoe H,, then the dividend Xo
might be regarded as the virtual partial remainder obtained at some step in a
fictious division process where g;=0 for some integer 7 and gi,1=¢gi2="---=q¢o=0
or gox=0. Thus j in Eq. (13) might be regarded as negative or zero. Hence

P.5-1. If XoeH,, then

Xo/B = (0. hag e Geiay)s.

Next we consider the case such that Xoe H..
P.5-2. If Xo€H;, then

Xo/B= (0.1() . Qe(A)—JOi)z,

where 1= -1,

Poof. As X, is an odd integer greater than B/3, it is not allowed to regard
X, as a partial remainder in non-restoring division process as before. From the
quotient selection rules, go=0. Since 2B/3<2Xo=X1<4B/3, ¢s=1. Thus Eq. (13)
shows

qi = Qrvets (1=2,8,...).

Now, as Xew=Xo (mod B) but X, is an odd number, X,y given in the non-
restoring division process must be a negative even integer

Xe(,g) = XQ - B

This means that g+ = — 1 =1, and by using P.2 g:=qew =0. (QED)
Finally, when X, H;, go=1 according to the selection rules. Thus Eq. (14)
shows that
P.5-3. If XyeHs, then

Xo/B={(1.¢1 * * * Qeay)2

We can obtain the following expressions from P.5 and Eq. (6).

AN = (q; AR C]g(,;))z, if NeH;. (15)
AN=(10q * - * qezg)—10)z“ 1, if N=H,. (16)
AN = (106]2 A qe(A))z— 1, if Ne H,. (17)

It follows from P.2 that Eq. (15) is a minimal representation for AN. Thus, by
virtue of P.4,
P.6-1. If NeH Nz, then

w(AN) = wg

For NeH:U Hs, Egs. (16) and (17) are not minimal representations due to the
last term ~1. In order to obtain the minimal representation for Egs. (16) and
(17), the following problem must be considered:

Calculate the weight of the number (g: - - ge))2—1 under the conditions that
(@1 -+ gew)2 is minimally represented and its weight is ws. To solve this problem,
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it is sufficient to consider the seven cases.

(+++00:—1=(+00:
(++210)s—1=(+=++01)
(+++0Dz—1=(--~00)

(-~ 107070 » - - 010)s — 1= (- -+ 0101 « - - 101),
(+++0010T = - - 010)2—1= (- +- 01010 - - - 101):
(++-10T0 - - - T0Ds~1=(- -+ 0101 + - - 010),
(- 007070 + = - T0T)s —1=(++ - 0T0T0T * - - 010):

N O O B W D

Clearly, all expressions in the right hand sides of above equations are the minimal
representation satisfying P.1. Then the arithmetic weights are invariably w: in
the cases 2, 4 and 7, (w:z—1) in 3 and 6, and (ws+1) in 1 and 5 respectively.
These results lead us to P. 6-2 and P. 6-3.

P.6-2. If Ne H:Nz, then

w(AN) = wr or wr+ 1.

Proof. From Eq. (16), gew=0. Then the cases 3 and 6 do not occur. (QED)
P.6-3. If N=H:Nz, then

w(AN) = wy, wp+ 1 or wr-+ 2.

Proof. Since NEH:, go=1. Thus w((qo - gey))2) =wr+1. In the cases 1,2,
., and 7, the weights change at most by 1. Therefore w(AN)=(wr+1)—1,
wr+1 or we+1-+1. (QED)

Preparation 2

The next lemma is useful for the proof of Theorem 1.

Lemma 1. If z:NHi=¢, there exists zp >z, such that z, N Hix¢ and we=w:.

Proof. Suppose z: is composed cf only the member in H.. Then, for some
number N.€zr, 2B/3<2N:<4B/3. Thus J=2N; (mod B) (JER,) is the number
included in HhU Hs. As zxNHi=¢, ] must be in H;. Hence

zzeNHy=x¢ and 2N H:%0.

Next suppose that both N and B-N are contained in zr. Then, for some
NezpNHs, B-N<HiNz,. This contradicts that z¢:NHi=¢. Therefore, if z:NHi=g¢,
then we find the other equivalence class zp such that

2w ={N'|N'"= B-N, N&z}.

Then, from a simple number theoretic consideration, it is known that z. is also
one of the equivalence class defined by ~. By the definition of we, we can say
that w is the sum of the numbers of odd integer in z; N H: and the number of even
integers in z,NH:. Since B is odd, the number of even integers in z. N Hz(zx N H1)
is equal to the number of the odd ones in zx NHi(zx NHs). Now, z:NHi=¢. Hence
W= Wh.

Finally zxN H:>¢ means zx NHi¢. (QED)
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Proof of Theorem 1
From Eq. (4) and P. 6, obviously

min (wr) <ds < n}ein (wy) + 2.
=k=r |=kSL

If zeN Hix¢ then from P.6-1

min (w(AN)) = wp,

NEzk
otherwise, from Lemma 1

min (w(AN)) = ws.

AVEzkuzk/
Thus we can obtain Theorem 1. (QED)
Corollary 1. If B is an odd prime and has 2 as a primitive root, then
_o[ B+3
d1 - 2 _'__6"” ],

where e(A) =e(B).
Proof. Under the conditions stated in the corollary, Ro=z. Thus

di=w =¥ReN P = z[B—‘GLS]. (QED)

The generator A=(27"'—1)/B in this case coincides with Mandelbaum’s".
Corollary 2. If B is a prime and has —2 as a primitive root (but not 2), then

[ 25%)

where e(A4) =e(B).

Proof. Since —2 is a primitive root of B, e(4) =e(B) :%}—.
Hence the member of R, is devided into two equivalence classes z; and z. which
correspond to zr and zp mentioned in Lemma 1 respectively?. Thus wi=w.. On

the other hand, Ro=z:1Uz and ziNz:=¢ mean 2[§~g~3J = w; + wn. (QED)

For example, B=23 is a prime and has —2 as a primitive root. Then, by
virtue of Eq. (1), A=89 Thus from Corollary 2 d,=4. Table 1 shows the code
words and their minimal representations. The arithmetic weights presented in
the last column show that d,=4.

6. Detection of asymmetrie errors

When we discuss the asymmetric errors, where all digits may change only
from zero to one or only from one to zero, we must define the distance between
two code words by

W(AN, - AN>),
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TABLE 1. B=23 and A=89. The symbol * means —1.

N (AN)2 minimal reprr=sentat10n Wewht
¢ 00000000000 00000000000 0
1 00001011001 00010%0*001 4
2 00010110010 0010*0*0010 4
3 00100001011 00100010%0* 4
4 00101100100 010*0*00100 4
5 00110111101 0100*000*01 4
6 01000010110 0100010*0*0 4
7 01001101111 010100%000* 4
8 01011001000 10%0*001000 4
9 01100100001 10%#00100001 4

10 01101111010 100%#000%010 4
11 01111010011 1000%01010% 5
12 10000101100 100010%0*00 4
13 10010000101 10010000101 4
14 10011011110 10100%000%0 4
15 10100110111 1{)30100509 5
16 10110010000 g 4
17 10111101001 10% <()00*010(}1 5
18 11001000010 10001000010 4
19 11010011011 10*010100%0* 6
20 11011110100 100*000%#0100 4
21 11101001101 100%01010%01 6
22 11110100110 1000*01010%0 5

where W(J) denotes the number of nonzero digits in the ordinary binary re-
presentation for J. Except this point, definition of the distance of code is same
as that in symmetric case, that is, the distance of code D. for the asymmetric
error detection is the minimum distance among the distinct code words. The all
patterns of 27 or fewer errors are detected, if D,=2¢+1. However, it is not
always true that all patterns of ¢ or fewer errors are corrected.

By noting that for any Ni, N:=z;, the code word (AN1): is equal to (AN:).
shifted cyclically,

W(AN) = W(AN,) = W,
It follows that

D= min (W(AN)) = mm (W';’)

NE R,y
However, in this note, we will derive more strong result, that is,
Theorem 2. When the generator 4 is given by Eq. (1),

D, = mm( W(AN)) = min ( We).

1Sh=L

As the number of messages N, is arbitrary in this coding, so the length of the

code words must be long enough to represent the longest code word A(Noy—1).
Proof. For any integer N =1, there exist integers « and 7 such that N=aB+7

(«=0,1,2,...,0=Z7v=<B-1). Then, using the relation

W)+ W(K) = W(J+ K™,

where J and K are any integers,
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W(AN) = W(AaB+ A7) = W(a2* + Ay — «)
2W(a2®™ + Ar) — Wia) = W(A7p).

Hence, if 70 there exists some z, such that rez,, thus W(AN) = Wr, otherwise
W(AN) =W(a (2?4 —-1))Ze(A)?. Clearly e(A) is greater than each of Wy's. (QED)
From the definition of Wi, we get
Corollary 1. If B is a prime and has 2 as a primitive root,
B-1

DA:T

where ¢(4) =e(B).

7. Conclusion

Theorem 1 and 2 derived here are most useful for the evaluation of distances
of arithmetic codes. Especially, when B is a prime and ¢(A)=e(B), the equiva-
lence classes z»’s are the residue classes of the Abelian group R, derived by a
subgroup H={]|J=2/ (mod B), j=0,1,...,e(B)}. We are also interested in that
d. relates to the number theoretic property of Ro.
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