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I. Preliminaries

Since the early works of Poincaré?, Fermi*, and others®, it has been a long
standing desire to unify particle mechanics and statistical mechanics by exhibiting
a mechanical systsm, whose exact solution can be shown to yield an approach to
thermodynamic equilibrium. Physicists now tend to believe that weakly coupled
nonlinear systems will exhibit the ergodic behavior which is considered necessary
for an approach to thermodynamic equilibrium. In accepting ergodicity, however,
we should give up almost all hope making analytic solution of the system; for in
that case, the equations of motion of the system would become so much compli-
cated that we should be oblized to make computations by means of electronic
computers®®.

To their surprise, Fermi and his collaborators” found that their nonlinear
oscillator systems yielded very little energy sharing and did not exhibit ergodic
behavior. And the result obtained by Ford and Waters® by means of computer
also showed that their nonlinear systems have many features in common with
linear systems. Particularly, after perturbation theory® their systems are not
likely to be ergodic, although theirs are energy sharing oscillator systems.

On the other hand, according to studies by Debye” and Peierls® on the heat
conduction in crystals, the existence of anharmonicities in the interatomic force
could be necessary to yield a finite thermal conductivity in crystals. They in-
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troduced the concept of mean free path of phonons, as a measure of the strength
of the coupling of normal modes brought about by the anharmonicity involved
in the Hamiltonian of the system.

The nonlinear oscillator systems of Peierls® on lattice thermal conductivity,
however, make us hesitate to believe that his systems do not exhibit an approach
to thermodynamic equilibrium. Up to the present, we have had a growing amount
of evidence showing that many physically interesting systems are not ergodic. For
example, Resibois and Prigogine® have found constants of motion for gas systems,
and Kolmogorov'® has shown that his more general nonlinear systems are not
ergodic.

Linear systems also have been investigated from the view-point of statistical
dynamics of irreversible phenomena, especially in the fields of lattice vibrations
and rheoclogy. The statistical dynamical approach to the stationary state in the
linear system gives much information and instructive fundamental concept on the
irreversibility of a statistical ensemble.

If one gives up nonlinearity and, accordingly, ergodicity, then one can treat
oscillator systems wholly analytically. The ensemble of harmonic oscillators seems
to be the only one of the many-body systems with strong coupling between
particles which admits of precisely analytical and statistical calculations.

Klein and Prigogine™ took linear systems of harmonic oscillators, and calcu-
lated the correlation functions and showed that their systems approach finally to
a stationary state, where the energy of the systems is <« constant of motion.
Hemmer'®, Teramoto®, and Takizawa and Kobayasi?, each made study of heat
flow in a linear system of harmonically coupled oscillators. They all showed that
the large system of oscillators approaches finally to a stationary state, but not
to an equilibrinm state. Starting from an ensemble half of whose system is at
temperature zero, and the other half at temperature 7, they showed that the
average value of the potential energies and that of the kinetic energies of each
particle in a large system approach to the same stationary value at the final
state, viz. after infinitely long time. This means that the microscopic local
tempertures of any particle in the system approach to the same stationary value
and that there is no temperature gradient in the system at the final state. They
also showed that the energy flow' still exists at every point of the system at the
final state. According to the works™ mentioned above, on the problems of energy
floww in the one-dimensional harmonic lattice, it seems true that the harmonic
model is incapable of discribing the phenomena of heat conduction in a system
of coupled oscillators. However, it is not yet clear®® how the anharmonic coupling
plays an essential réle in the fundamental molecular kinetic theory of heat con-
duction. Rubin® investigated the heat flow in a harmonic lattice with arbitrary
distribution of two kinds of isotopes by means of the electronic computors.

Meixner'), Kashiwamura and Teramoto®, Hemmer*?, Turner*, Rubin®, and
Mazur and Montrol?V, also investigated the model of linear chain with external
force, or with a heavy mass. They treated the chain by means of normal modes
or Laplace transform of the solutions of equations of motion of the system, with
particular reference to thermal fluctuation, or heat conduction, or recurrence time,
In the previous paper®, Takizawa and Kobayasi took a one-dimensional harmonic
lattice and investigated heat flow in the system by means of the Schrédinger
coordinates®™. They layed special emphasis on elucidating the superiority of
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using the Schrodinger coodinates; for by means of these coordinates one can take
explicitly into account the initial conditions in the solutions of dynamical equation
of the one-dimensional harmonic lattice.

In the present paper, the authors show that if we want to make a study of a
one-dimensional lattice with isotopic impurities, we can also use the Schrodinger
coordinates; by means:of the coordinates the dynamical solutions with initial
conditions can be easily obtained. And in these solutions the initial conditions
can be seen explicitly. Whereas if we use, in stead, normal mode expressions®? of
the solutions of the dynamical system, the initial conditions can not be seen very
explicitly in the expressions of the dynamical solutions. In this study statistics
is introduced in the initial conditions, and the timal behavior thereafter of the
system is persued. Here let us assume that we start with an initial ensemble
corresponding to such a macroscopic state that half the system is at temperature
zero, and the other half at temperature 7. The timal evolution of this ensemble
is determined purely by the law of classical dynamics. Mathematical formulation
of the dynamical solution is given in Chapter II. The initial ensemble and the
expressions of momentum-momentum correlation functions and position position
correlation functions as well as momentum-position correlation functions are given
in Chapter III.

By introducing the Schriédinger coordinates and by means of the solutions of
the dynamical system expressed in Bessel functions'™, one can easily pursue
the timal behavior of the correlation functions of the particles in the system. It
should also be noted that the method used here is simpler by far than by means
of the trigonometric eigenfunctions of the dynamical system.

From these correlation functions, the average kinetic and potential energies
of each particle in the largeTsystem are derived, and the asymptotic behavior of
these energies is examined in Chapters III and IV. The instantaneous energy
flow is obtained from momentum-position correlation functions. In Chapter III,
the authors show that the average kinetic and potential energies of each particle
in a large system of perfect lattice approach to the same stationary value of
kT/4 after infinitely long time. On the other hand, it is also shown that in such
a system the momentum-position correlation functions do not vanish but remain
finite even after infinitely long time. In other words, at the final state the
instantaneous flow of energy still exists at every point in the system. And, the
energy flow does not obey the classical Fourier’s law, which states that the
vector of heat flax is proportional to the negative gradient of temperature. This
shows clearly that the final state thus obtained in our system is by no means
the state of thermodynamic equilibrium, but a stationary state.

In Chapter IV, a study is made on the effect of an impurity atom in a large
system of linear harmonic oscillators. There the dynamical solutions of the
system are obtained in the expression of the Schrédinger coordinates, and then
the initial canonical ensemble with temperature 7 is introduced, and the cor-
relation functions of particles are calculated as functions of time. From these
correlation functions, the authors show that the average kinetic and potential
energies of each particle in a large system approach to stationary values, which
are different, on either side of the impurity atom, in other words, the system
approaches to a stationary state which has a gap of the energy distribution at
the impurity site. And_the energy flow still exists at every point of the system



Stochastic Motion of Coupled Harmonic Oscillators 147

at the final state, though there is no temperature gradient at any point of the
system except at the impurity site. As for the system having an isotopic im-
purity of small mass, there exist stationary and oscillating terms in the ex-
pressions of microscopic local temperatures. Aside from oscillating terms, the
constant energy flow of the same magnitude also exists at every point of the
system at the final state. Some discussions on the problems of flow of energy
in the lattice system with isotopic impurities are also made in this chapter.

Lastly, in chapter V, the authors make mention of the existence of localized
vibrations and discuss the localized vibration in an infinitely extended system of
linear harmonic oscillators, especially in relation to the Schrédinger coordinates.
In our opinion, a locally reduced mass, or local strong interactions between
particles, or an applied external force of high frequency, forms the cause of the
existence of the localized vibration in an infinitely extended system. The authors
also make brief discussion on the range of extension of the localized vibration by
means of the Schrédinger coordinates.

II. Solutions of the Equations of Motion of the Coupled
Harmonic Oscillators in the Schrodinger Coordinates

In this chapter, various types of systems of one-dimensional harmonic lattice
are treated by means of the Schrédinger coordinates, and the solutions of equations
of motion are expressed by Bessel functions.

We shall take a system of one-dimensional harmoumic iatiice onoistiig i wil
infinite number of particles. Let the perticles of the system be located at integer
sites numbered from (—c) to (+ o) (from the left to the right side along the
system) (cf. Fig. 1).

mass M M M M M
site number NO.(-1) NO.O NO.1 NO. 2

F16. 1. Infinite linear lattice.

They interact each other with their two nearest neighbours which have the same
lattice constant K. They have the same mass J/. The displacement of the i-th
particle from equilibrium position will be written as x;(¢). Then the equations of
motion will read as follows:

2

—é%x,(t) = wid X () — 2%:(¢) + xi-1(D) ], for — o0 <i< + o 2-1

where wo = VK/M and t= time.
Now, let us introduce the Schrodinger coordinates®™, which are defined by
Yon(7) = () [ (owe),
y‘zn*l(f) = {xnﬂ(t) - xn(f))/(f’
(2-2)
and by

T =2uwl,
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where ¢ is a characteristic length, and #,(#) is the velocity of the n-th particle.
From definition (2-2), we can see that y,,(r) is the velocity of the m-th particle
for any integers m and that ysm.i(c) is the relative displacement between the
m-th and the (m+1)-th particles for any integers m. By means of the Schrodinger
coordinates (2-2), the equations of motion (2-1) can be written as follws:

2%‘3’71(7) =yn:-1(f) —-yn—z(T), (2-3)

for any integers ». The solutions of the equations of motion (2-3) are given at
once in the form:

Yulr) = g‘av]v-n(r), for — o <n< + (2-4)

v=-—o

where ¢, is the initial value of .(r) and Jm(r) the Bessel function of order m
and of argument r.

This expression, which was devised by Schrodinger’™ and adapted by Klein
and Prigogine™, and Hemmer™, is more convenient than the one obtained by
means of the trigonometric eigenfunctions of the system. In terms of solutions
(2-4) expressed by Bessel functions, we can take explicitly into account the initial
conditions of the system, and we can diagonalize covariance matrix* in the distri-
bution function of the canonical ensemble, as and when we want to introduce the
statistics at the initial instant of time.

Here, we can show the equations of the motion of finitely extended systems
which have various end conditions, and we take their solutions expressed by
Bessel functions.

a) For alinear lattice with both ends free (cf. Fig. 2), we have the equations
of motion in the Schrédinger coordinates, viz.:

2~g;y1(r) =y1e1(0) —y1(z), for I=2un+1, 2u+2, ..., 2(m+m)—1

a - c
2 dTyzn(T) = Yane1(7), (2-5)
and

2—dd7y2<n+m)(r) = —yz(n+m>-1(r>.
mass M M M M M

site number NO. n NO.(n+1) NO.(n+m~1} NO.[n+m)
FIG. 2. Linear lattice with both ends free.

We shall take the solutions of equations (2-5):

yi(r) = § a Jv-1(2). (2-6)

V= -0
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The expression (2-6) satisfies the first equation of (2-5). We put (2-6) into the
second equation of (2-5):

2 aw]u—?rz &1(?) =0,

V= —

i.e.

2—.‘} (lv.*eﬂ—l]»(\f) ={),

Y= 0

azn—l]o(f) + 2:1‘152\:1%71—]]»(7) -+ 2_314-»1‘271—1]_»(7) =0.
Ay+29~1 = { - l)w‘la—wvzn—]- (2-7)

Accordingly, the expression (2-7) is the necessary condition for establishing the
second equation of (2-5).

In a similar manner, we shall obtain the condition between «’s satisfying the
third equation of (2-5):

+1
@yranemir= (—1)" A=y to(n+ny+1- (2-8)

From (2-7) and (2-8), we shall obtain

Ayrok-2(mr1y = Gy,
and (2-9)

v
Ayrhiy 20meny = (= 1) Qunsomes.

From (2-6) and (2-9), we shall finally obtain the solutions of equations (2-5):

2{n+m) + 0
yz(r) - -Zz ay k—z {]v+2ie.z(m+1)—l(f) -+ (" 1)‘J]4n+2m—»+(2k+1)-2{m+1)~l(?) >, (2"10)
for =2 2n+1, ..., 2(n+m)
with @, the initial values of y.(z) (for »=2#, 2n-+1, ..., 2(n+m)).

b) For a linear lattice with both ends fixed (cf. Fig. 3), the equations of
motion will be:

271%73’1(7) =y11(0) —y-ale), for [=2n+1, 20+2, ..., 2n+m)—1
Y2n(c) =0, (2-11)
and

yZ(ner}(T) =0.

mass M M M M
site number NO.(n+1) NO.(n+2) NO.(h+m-1)

F1G. 3. Linear lattice with both ends fixed,
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In the same manner as in the case of a), we shall obtain the solutions of
equations (2-11):

2{n+my—1 + o
,'VI(T) = . ;+lav kZ (]wzk-zmd(l‘) + (“ 1)v+l]4.n+2m-v+(2k+l)-2m~Z(T) } (2“12)
for I=2n+1, 2n+2, ..., 2m+m)—1
with @, the initial values of y.(r) (for »=2n+1, 2n+2, ..., 2(n+m) —1).

c) For a linear lattice with one end fixed and the other end free (cf. Fig. 4),
the equations of motion will be:

2———‘?1,})1(1‘) =y1:1(¢) = y-1(z), for I=2n-+1, 2042, ..., 2n4+m) —1

21( ):O,

i (2-13)
and

d
2~d7yz<n+m>(f) = = Yatmrmy-1(1).

mass

site number NO.(n+1)  NO.(n+2) NO.(n+m)

FIG. 4. Linear latttice with one end fixed and other end free.

The solutions of equations (2-13) will be given by:

2(n$n)

y'(f) = > a 2 {]»+4k LEmEly - (D) + (=1 Y iniomiiovt (kb1 - @mrly— () —

v=2n+1 k= -2
—‘fv+(4k4»2)-(2m+1)—l(7) + (—‘ 1)v+1f4n#—2m‘r1-—\4+(4k+3)-(2711%1)--2(7))) (2‘14)
for I=2n+1, 2n+2, ..., 2(n+m)

with g, the initial values of y,(¢) (for »=2n+1, 2n+2, ..., 2(nt+m)).
d) For a ring consisting of 2N particles (cf. Fig. 5), the equations of motion
will be:

2’—%—3)1(1) =91(t) —y-1(r), for any integers / }

and (2-15)

w(z) =yv+4y(r). for — x<p< +

mass

WWM@OMW

site number NO(-N) NO(-N+1)  NO(-N+2) 0. NO(N+1)
= NON = NO.(-N+1)

FI1G. 5. Periodic lattice consisting of 2V particles,
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The solutions of (2-15) will be given as follows:

2N+1

yile) = > avk:}iw]v—-dks"l(f), (2-16)

V=—2N+2

with @, the initial values of y,(¢) (for p=—-2N-+2, —2N+3, ..., 2N+1).
For a sufficiently long chain, however, by means of the following formula,
viz.:

S

s . T
dm B e = Jim 0 5 ol i{ 7 2sin )
(=157 .
fﬁ—;—~\) exp [{@2sx+zsin2x)dx
e 1)S R
=t 271_} S _exp Li(sx+ zsinx) 1 dx
=(—=1°J(—2) =J(2), for any integers s (2-17)

we can express approximately solutions of equations of motion whatever boundary
condition it may have, as follows:

yn(T) = Za»]‘,—n(f), (2“18)

where the summation with regard to » covers the whole region of the lattice,
and ¢, is the initial value of y,(r).

As mentioned above, the initial values appear explicitly in the solutions (2-4),
(2-10), (2-12), (2-14) and (2-16). We can then easily introduce the statistics into
the initial values and we calculate the covariance matrix.

We shall use the Schrodinger coordinates in the following investigation.

III. Energy Flow in a System of One-Dimensional Harmoniec Oscillators

In this chapter, we shall consider the phenomenon of energy flow in the
classical system of a linear lattice consisting of an infinite number of particles.
Starting with an initial ensemble which corresponds to such a macroscopic state
that half the system is at temperature 7 and the other half is at temperature
zero, the correlation functions of particles are calculated explicitly as functions
of time. The average values of kinetic and potential energies are essentially the
same as those obtained by means of the solutions in trigonometric eigenfunctions®’,
However, the correlation functions between different positions and the momentum
correlation functions between different particles vanish after a sufficiently long
time; while the average kinetic and potential energies of each particle approach
to the same stationary value of 27/4 after a sufficiently long time. On the other
hand, the correlation functions between the momentum of a particle and the
position of another particle do not vanish and remain finite, even after a long
time. In other words, at the final state ==+ oo, the instantaneous flow of energy
still exists at any point throughout the system.

§ 3.1 Initial Ensemble
We shall consider a system of harmonic lattice which consists of an infinite
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number of particles having the same mass M. Each particle is located at integer
site from —oo to 4o (cf. Fig. 1). Assuming the interaction with their nearest
neighbours with the same lattice constant K, we have the equations of motion
(2-3) and their solutions (2-4) in the Schrédinger coordinates.

Now, let us introduce an initial ensemble in which particles located at the
non-positive integer sites are fixed at their equilibrium positions, namely:

G=0-1=02= ... =0, (3-1)
and particles at the positive integer sites are distributed with canonical distri-

bution at temperature 7. That is to say, we shall take the distribution function:

) = 'K { 7K . ai_}’

=11 /o7 X0 ~ 357 (3-2)

W(a;, Aoy, A2y « .«

where £ is the Boltzmann constant. The initial ensemble with (3-1) and (3-2)
has the averages:
40
amd av = §-~-S¢sz(a1, G, as, ...)IIday=0, for any integers m
e .

R

<dm'an>,m=3“ ~Sam-anW(a1, Qs, Q3 . . .)Hdﬂp
—w »

(3-3)
B [%5’”*’?’ for m=1 and n=1
10, for m<0 or n=0

where 8.,, is Kronecker's delta.

$3.2 Correlation Function

Starting with the initial ensemble of (3-1) and (3-2), we shall consider the
timal behavior of the system. Now, we define the correlation functions and the
microscopic local temperature as follows:

Co, () =%<ya(7)yﬁ(r)>ﬂ, for any integers « and j (3-4)
and
Tin(e) = Com,om(c) + —%‘{szu.wzﬂ(f) + Cosm—1,0m-1(7) . (3-5)

for any integers m

The expression (3-5) measures the average value of the thermal energy of
the me-th particle and has a dimension of temperature. From (2-4) and (3-4),
we shall have the following expressions of the correlation functions:

@11,n+m(7-') = Czn,2n+2m(f) = f%{ <§av]v—2n(7) ° Edvf“—zn—zm(‘5)>1;u

2
=227I§' [ Zl<ﬂ»au>1w']v—zn(f)]u-zn—zm(‘?)], (3_6)

V=

for « =2n and B=2n+2m,
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and

Un n*m('i’) = Cznq "T;}-q?ﬂkl(r) = <>_ga\,]\,—2n 1('(') }_;(1 ]\;—’?42»-2771 1( )>Ay

\.élg>,4u ]» 27~ 1(7)]L—2n—-°m I(T)j (3“7)

v,u=1

fora=2n-+1and B=2n+2m-+ 1.
By means of the averages of the initial values (3-3), we shall obtain the
momentum-momentum correlation functions:

@n,nwn(?) = “g:‘ ° E]\,—zn(f)]»—an—zm(f)

=L S L), (3-8)

w=l—24—m

and we shall obtain the position-position correlation functions:

Un nFm(T)—“Q“ %] —291— 1(T)f» 27271~ 1(1')
SN Iy ey e (3-9)
V=—-2n—m

If we put m=0 in (3-8) and (3-9), then the average values of kinetic energy
K. (r) and of potential energy @.(r) of the zn-th particle will be obtained as
follows:

Kn(t) =k 8n, n(1) =—/%~]; . Z Ji(z), for any integers (3-10)

v=1l=2n

and

Qn(f) —'—‘ [Un n(T)‘]"Un ~1, 17— I(T)]——'"* [ E jv(T) 2_1 ] (T)] (3"11)

V= —dn—2

for any integers »

Moreover, from (3-4), (2-4), and (3-3), we shall obtain the momentum-
position correlation functions at any instant of time:

Vn m( )——C"n 2n+2mr1(7) 2}8 <2av]v Zﬂ(T) L(l ]-—zn -2 J(T>>Av

B S 0t a T Jamanomes ()
v, u=

= -—:;—:— M i]b_zﬂ(f)]\,-gn~2m—l(f)

v=1

~

= 5t i ]v-*-m¥1/2(T)]v-m~1/2(?)~ (3"12)

VaE=lfi—=2n—n

™o

Here, by means of the formula:

»::waJWm(T)fv—m(’t‘) = Bm?o, £3_13)
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the expressions (3-8) and (3-9) can be written in the following form:

@n,nﬂn('() =
0

_.47:[51“—— (=D +2 S Leem(Do-m(e)],  for 2z> —m  (3-14)

v=l-2n—t

= %[5?71,0— (= D"h(0)],  for 2un= —m (3-15)
lomo= (= D" =2 3 Jorm@ o], for 2n<=m  (3-16)
and
Un,n+m(7) =
(%[am,o — (= D"h(c)+2 w.i_ Jvsm( ) Joem(D)], for 2n> —m—1 (3-17)
%[am,o— (= D"Jm()],  for 2n=—m—1 (3-18)

—1-2n~m

%D‘m_w (=D () —2 ;1 Torm( Joom()1 for 2n<—m—1 (3-19)

For m=0, we shall have:

%}[1 + o) + 2Z§lff(r>], for n=1 (3-20)
Onn(e) = TL1=Ji2)],  for n=0 (3-21)
T i) =230, for nx =1 (3-22)

and
%{1 +:(0) + 2%}3&)1 for n>1 (3-23)
Unn(e) = | ZL1+ D], for n=0 (3-24)
T g -2 253“] 1. for n= —1 (3-25)

Accordingly, from (3-20)~ (3-25), the microscopic local temperatures (3-5)
of the xn-th particle will be obtained:

Tn(r)/T—»;-+f(’)+2§2]( )+ 4]2,, (o) + 4]”,(7) for n=1 (3-26)

To(r)/T—M~—~— — (3-27)

and

1)/ T= 4 = LD S0 - 270 @ = . @28)

forn<—1
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The expressions (3-20), (3-21), and (3-22), are essentitlly the same as those
obtained by the solutions in trigonometric eigenfunctions.
For 0<vr<-+c, we can see, from (3-20) ~ (3-25), the following relations:

(a) if 1<i<mn,

%g@z,z(r) < Bn () S%a (3-29)
b if #nxiI<o,
0< Bnnl) < Or1() < s - (3-30)
() if 0<i<m,
< Unie) < Uy, n(r)_<_ (3-31)
(@) if n<i< -1,
0< Unnle)< Upi() g%—- (3-32)

In the case of r— o, the expressions (3-14)~ (3-25) approach to the same
stationary value of (7/4)8m,5. In other words, the covariance matrices {|@x, n1m (7))
and | Uy, n4m(c) || have vanishing off-diagonal elements at the final state: c—+o;
while their diagonal elements €, »(v) and U, »(r) remain constant 7'/4 at t=+ 0.

From (3-10), (3-11), and (3-20) ~ (3-25), the kinetic and the potential energies
of each particle approach to the same stationary value of 27/4 when v goes to
infinity.

As for the microscopic local temperature, we shall have the following results,
after differentiating T,(r) with regard to r:

I = =270 (01 20 for nz1 (3-39)
d 2
%To(r) = 'g%]i(r), }l
and (3-34)
Lo =T =2, o 22D e o) forms -1 J

The right-hand side of (3-33) is always negative for positive ¢, and the right-
hand sides of (3-34) are positive for positive r. Accordingly, we see that the
terms T,(r) for any positive n are monotonously decreasing with increasing
positive ¢, while the expressions 7T.(r) for any non-positive n are monotonously
increasing with increasing positive z. In other words, the microscopic local tem-
perature 7T,(r) of any particles at the positive sites are steadily decreasing with
increasing positive ¢, while the microscopic local temperature at the non-positive
sites are steadily increasing with increasing positive r.

For a sufficiently large =, we can see from (3-26) ~ (3-28), (3-33) and (3-34):

lim Tu(z) = -

L 2

(3-35)
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for any integers n. That is to say, the microscopic local temperature of each
particle approaches to the same stationary value 7/2 at t=- oo.

In Fig. 6, the numerical values of 7, (r) versus t are plotted for some values
of .

T
n=7 \n=8 \0=9 \0=10
Ta(D
N=1
X
2
=0
n=-3 /n=-3 /N=-4 /n=-5 /N=-¢ /N=-7 /N=-8 /MN=-9 N=-10
OO 5 10 15 20 T

FI1G. 6. Average value of microscopic local temperature versus time r.

It is worth while remarking here that our results (3-20)~ (3-22), (3-23)~
(3-25) and (3-26) ~ (3-28) have similar properties to the solution:

Q Y — T} Wl,‘ » ) 2 _
@ (x, t) “'2'1“'*.{1\/%50 expl x/(4az‘)]dx}~ (3-36)

of the classical equation of heat flow in an infinite rod:

%0 _ .50
ot 7 oxt’

(3-37)

with the initial condition:

T, for x>0
0 t=0={ for 220 (3-38)

The expressions (3-20)~ (3-22), (3-23)~(3-25), (3-26)~ (3-28) and (3-36),
represent the process of thermal conduction to establish a uniform temperature

in the system. The solution (3-36) for x<0 increases monotonously and the
solution (3-36) for x>0 decreases monotonously, with increasing time. From
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(3-33) and (3-34), the microscopic local temperatures 75 (r) also change monoto-
nously, with increasing time, while, the energies (3-20) ~ (3-22) and (3-23) ~ (3-25)
oscillate with increasing time (cf. Fig. 7). In brief, all the expressions mentioned
above approach to the stationary value after a sufficiently long time. It should
be added, however, that the timal behavior of (3-20)~ (3-22) and (3-23) ~ (3-25)
is essentially different from the process of thermal diffusion in a rod given by
(3-36),

n=6 \n=7 \n=8 \0=9 \n=10

28,5

n=-7 /nN=-8N=-9 /N=~-10

0 5 10 15 20 T

F1G. 7. Average value of thermal energy versus time r.

while, the timal behavior of (3-26)~(3-28) is very simillar to the process of
thermal diffusion in a rod. As shown in (3-33) and (3-34), the microscopic local
temperatures 7T»(r) decrease monotonously for n=>1 and increase monotonously
for # <0, with increasing time (cf. Fig. 6). In this respect, the timal behavior
of (3-28) is more similar to the process of thermal diffusion in a rod (3-36)
than to that of (3-20)~ (3-25).

§$3.8 Energy Flow in the System
From the expression (3-12) and the following formula (cf. appendix 1), viz.:
+o1/2

Hm S Jera(e) Jooa(c) = SIB7E (3-39)

—3
T+ =1/2 2730(

ke (}2_ -+ non-negative integers))

we find
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im Vam(e) = Tos D" (3-40)
tstw 2r(2m+1)
In the case of m=0 and m=—1, we shall obtain:
lim Vio(c) = lim Vi, 3(s) = oL (3-41)
T> k0 T b o 2/

The energy flow from the n-th particle to the (n—1)-th particle is given by
the rate of change of total energy contained in the system of particles in the
right-hand side (in the positive side) of the n-th particle. Let us indicate the
total energy in the positive side of the n-th particle with Ex(r). Then we shall
obtain,

En,(r) M Zk 2 Yg+ (xS—l-[ xs)z}' (3_4‘2)

s=n

Differentiating the expression (3-42) with regard to ¢, we shall obtain:

B _TIC S e (320(0) = prsra(Dyassal )

2

s IO} (3-43)

The above expression corresponds to the energy flow from the right-hand side
of the n-th particle to the left-hand side of the (n-1)-th particle, and corresponds
physically to the work done by the n-th particle upon the (z-1)-th particle.
Calculating the average value of (3-43), we shall obtain:

(- dE"(”> =RV -a(e). (3-44)

At the final state: r=- oo, we shall obtain from (3-41) and (3-44),

(3-45)

< dEn( )> kT,
T 2n

This result serves to prove the existence of the instantaneous flow of energy
lim ( — dE;LQ\ ~ k0T from the right-hand side to the left-hand side at every

t~>+> ¢ /nv T
point of the system.

In brief, the kinetic and potential energies at every point of the system ap-
proach to the same stationary value of £7/4, while there exists the instantaneous
flow of energy at every point throughout the system, at the final state: v=+ .
That is to say, our system attains by no means to the thermodynamic equi-
librium at t=+4co.

1V. Effect of an Isotopic Impurity on the Energy Flow in a
System of One-Dimensional Coupled Harmonic Oscillators

In this chapter, the authors investigate the effect of an impurity atom on the
energy transport in a one-dimensional linear system of coupled harmonic oscil-
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lators. Let us assume an initial canonical ensemble of which half the system is
at temperature 7 and other half at temperature zero, and calculate the correlation
functions of particles in the system as functions of time. Thus, it is shown that
the average kinetic and potential energies of each particle in the infinitely large
system approach to stationary values, which are different, on either side of the
impurity atom, and that the system approaches to a stationary state with a gap
of energy distribution along the system at the impurity site. This result, it is to
be noted, is essentially the same with that obtained by Kashiwamura and Tera-
moto™ by means of the trigonometric eigenfunctions of the dynamical system.

Momentum-position correlation functions are also calculated. And from these
the energy flow in the large system is derived, and it is also proved that after a
sufficiently long time the finite energy flow still exists at every site in the system
though there is no temperature gradient at that site.

A comparison is made in the following two cases:

a) oscillator system with an isotopic impurity of large mass,

b) oscillator system with an isotopic impurity of small mass.

The similarity and difference between the two systems at the final state are
also discussed.

§4.1 Dynamical System

We shall consider again the same model as we dealt with in the last chapter.
Let us assume that only 0-th particle has mass A’ (cf. Fig. 8), which is different
from the mass M of the other particles, »iz. the mother crystal.

mass M M M’ M M
site number NO.(-1) NO.0 NO.1 NO. 2

F1G. 8. Linear lattice with one impurity atom.

The equations of motion will be

d2

i () = w§<1 Q 6;_0)- {21 (t) = 22:(8) + xi-1(8) }, (4-1)

T14Q
with the displacement of the ¢-th particle x;(#) and Q = -%—I— 1. By means of the

Schridinger coordinates defined by (2-2), the equations (4-1) can be rewritten in
the form:

Z%yn(r) = (1 - ~f@6n,o)(yn+x(r) —yn-l(r)), (4"2)
for any integers .

Now let us try to solve the equations (4-2). Introducing the generating
function:

Flzio) = ) ye) 2" (4-3)

n=—9"
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and applying the operétion: 12" to the equations (4-2), we shall obtain

n= -,

d . -
25FGe;) =(L=z) Feio (). (4-4)
The differential equation (4-4) will lead us to:
Flz;t) = ‘E z”j,‘-,.(z-)[a.,t-— ngju(x) . Ed—yo(x) odx | (4-5)
Ny = —c 0 X -

where @, is the initial values of y,(r), and Ji(r) is Bessel function of order %
and argument <.
Comparing (4-3) with (4-5), we shall have

yn(c) = u:}i‘:’of,‘_n(r) fa.- Qf:j#(x)-a%yo(x) dx - (4-6)

By partial integration and by exchanging integration and summation in (4-6), we
shall obtain

yn(f) (1+Q0n 0) = E ap]p n(T) (1+Q0p, 0)+QS (x—*:)'dx,

o= oo

(4-7)

where the following formula is used:

fk(y-f'Z) = ﬁ fm(y) ']/:-,;;(z)-

Put #=0 in (4-7), and we shall obtain:

30 = 120 30 B =9 - dr=plse S an@A 4@, 48

The integral equation (4-8) can be solved and we shall have its solution as
follows (cf. Appendix 2):

#E =g ug(lwou D)+ @ { Julo) +

m 4w

+ ( — l)us(‘u) . "‘S_‘,‘ (12+QQ) AZU( )k;+k;+ +k"‘j|ui+2m¢‘2(kx+ ‘,.k'")(f) }. (4—9)

where

1, for k=1

(k) =
: {o. for k<0

Substituting (4-9) for (4-7), we shall obtain the final solutions of the
difference-differential equations (4-2) in the following form (cf. Appendix 3):
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y”(r) = I?éﬁn,o‘ 2 U— + Qaiz,o) °ayu® ]}l—n(T) + ('- 1)(n+1;sm)+ps(—y_) X

p=—

+ o . p-1 .
XE%Q.E(%%_%) ¢ {]tﬂ—li’rlulﬂp—l(f) - ("‘ 1)5"") '_/T|n+1|+ |m+2p—1(‘€‘) }J' (4"10)

for — w0 <n< + o

with initial values a. of y.(1).

The series appearing in p-summation in (4-10) are essentially the same as
Lommel’s functions® of two variables U.(w, z) and Va(w,z), which are defined
by:

nram
]n+2m(z)’

Unlw,2) = 53 (= 1" (%)
and

—n=2771

Valw,2) = (=" (L) Jonoam(@),
M= 0 F4
with w=cz.

If the mass M’ of the isotopic impurity particle at site No. 0 is greater than
the mass M of other particles, ie if @>0, then we can easily see that the
functions expressed in p-summation in (4-10) are convergent and that we can
calculate correlation functions by means of (4-10).

While, if M is smaller than M, i.e. if —1<@Q<0 and accordingly

1-Q
1+Q>1’

then Lommel’s function of two variables appearing in p-summation in (4-10):
+2 2ptn
Unlez,2) =33 (= D7+(%) 7 openta),
»=0 z

is convergent, and for ¢>1 it is oscillatory at z=+ . Accordingly we should
treat the term more carefully.
Using the formula (cf. Appendix 4):

2\/7’217]21: rs(2) = 2_\/17-;[%1){%(‘/7 - 71,?)} +
+ (- l)geXP{ - %(‘/?”‘ 71?)}}_2\/7—23;]3_2?(2)’ (4-11)

for any integers s, we can rewrite (4-10) as follows:

1 R N ‘
yﬂ(l‘) = 1-—5-—@"37;,0‘- 2 (1+ QO»,O)G;L[]}L—N \T> =+

w= -

. EYINEL I FURRESN = B

+Q ‘
PN R e e (QF da+1]+ipl+D/2
X{(Q_:i) —<~1)5"<@“:i) }"
+ Dt -
'“pﬂ(%:i%} l'<]17z—1¥+lu!-21ﬁ—1(f)’ (—1)5"’0‘jfn+l$+lstl—217~1(7>}‘JJ' (4-12)
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After simple calculation, we shall find that the expressions (4-10) and (4-12)
coincide completely with the results obtained by Kashiwamura®, which are de-
rived by means of the trigonometric eigenfunctions (normal modes) of the dy-
namical system for the perfect lattice. But the method used in the present paper

is simpler and easier to understand than that by means of the trigonometric
eigenfunctions of the system.

§4.2 Correlation Functions
Now, we shall take again the initial ensemble (3-1) and (3-2), i.e.

U=aA-1=0a-2= *++ =0, (3-1)
and

1 /oK oK i
W(a,, dz, dg , . . . ) = I,,I\/ZTZ'kT exp{ "‘m(l”]- (3 2‘)

Accordingly, we shall have

kT
O, 1y for m=1 and n=1
Lam* Anpsv = [ s K" (3-3)
0. for m<0 or n<0

The correlation functions can be calculated from (3-3), (4-10), and (4-12).

Case of an Isotopic Impurity of Large Mass

The mass M' of the isotopic impurity particle is greater than the mass M of
the other particles, i.e. @>0. In this case, from (3-3) and (4-10), we shall
obtain the correlation functions as follows:

1
Cnn(e) =5+ (1+Q6m D AF00m0) .le” mfy-nt

v=1

+ ( - 1)“””5”” Q+1 E(Q“i‘ i) j\a rn{jv+|n 1]+2p=-1 (_ 1)6"' nj‘/+|71+1|+2!7-1} +

v=1

+®

+ (= 1)Umrnsem, Q+1 E( oF i)p Y-l Josimerieap-1—= C= DTy s imarjeapoi) +

p=1

+(_ 1)(mi-l.ls(m)+(n+l)£(n‘). (@;%i)z.pgl(8+i)p+q z{fn-fm 1 +2p— 1],”” H+1g-1 _
u

- ("‘ 1)8"" ’ jv-!- Im+1l+2p-1 fu+|n-u+2a—1 - ( - 1)0"' ofw.!m-u »2p—1]vk:n #i+zg-1+

+ (- 1) %m0t s, °fw1mu[+2p-1]y+|rz+11+zq-n}]v (4-13)

and

2 e _q.bra-2
Cu,n(‘?)=? (1+Q0n oy ,,21{ v— ;+(Q’(_Q*_‘1‘) > (%) ’ {Jorm-t122p-1 X

Pa=1
Xju+ln-1|+2q—1 - 2( - 1)6"'o].c+|n+!|+2jr-lju+|n-u+zq-—1 +]H-1n+1|+211—1]v+;n+||+zq—1> +
+ (— 1)’"”)5("\ ] -n* i('Q——_l)p-I{] +in=1l+2p=-1 " ( - 1)6"’0 /\ + 1]+12 1> l-
Q+1 1Q+l v Jy+{n+ 1‘-1)-»

(4-13")
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for any integers m and #, with J. = J.(z).
‘We shall obtain:
(i) for n>1,
T S e L QNS Q-1
Cn,n ——? E[_]\,—n s (“@"_‘)_’i> .p?q‘—il(Q_ﬁ) {]»+n+2ﬁ~2]u+nf—2q—2"’
- wanwp]wmhzq—z + Jointanfvenregl +
1+l = Q“‘l p1 )
+ (= 1) Q;l o Jv-n Z(Q-{- 1> (]»~z~7:+2p-2 - f\,+n+zp}}’ (4-19
(i1) for n =0,
+ @ Q 2 +c_o‘ Q_ 1 prg-2
Co, ol ) = 2 ( + ) = (] +4(Q+1> %——_‘1(@?) Jorop Jurog+
+ -1 »—1
+g_g AN ‘?(g+1> v+2i>]’ (4-15)
(iii) for n< — 1,
T + o 2 4> ~1\j>+q-2
Cu,n(t) =5 2{ ]» n (QQ 1> p%l<§m) {]»~n+2pfv—n+zq"
- 2]\ cnrapes Jomnrarg+ Joensop-a Jy-ntag-a} +
+ % — 4
]; ” 21 Q 1 {]\a~71+2p—']\4—'ﬂ+21§"2> . (4“16)
Q+1 Q-+ 1

Case of an Isotopic Impurity of Small Mass
For M’'<M, i.e for —1<Q<0, we obtain, from (3-3) and (4-12),

Connl) = F g ory Sl Jeomient
QD o) ) e ()T (= D" x
% [exp (=)} ( 1)
+ Q= 1)2::2;;“7”1)5("; A=D"H (=D ey m) oy () - (Q )
+ & ;(11) ng;s‘m cr(n)cexp(+)- <g+ %) * Jo-m
+ %ﬁ%l)mm\ er(m) +exp(+ ) - (%———})m *Jo-m
. Q— ?(‘“;:Z;Hmm cr(m)eexp( =) (g.%)/z T
$ QLT - exnt =)+ (9
— QD e, vt =10 = Do = S DT

XEL,v+lm—1] =1 Joon
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Q( . 1)6,,’ o F(n+1)5(m)
1+Q

Q( — 1)Fmeromrnaom
1+Q
x&(1, y+[m+1["‘1)']u—n

+ S(Ly+ln+11-1)  Jo-m+

X

Qz( - 1)(m+1)6(m) F(ntl)ding

cr(m)oexp(+)- *’:( +1, v ln—ll—l)

2(1+Q)*
2( _ Sy, ot (MDA + (1 +1)8(0)
+ (=D TTO) cr(m)-exp(+) - £( % +1Lv+ln+11-1)
2( (m+14 (my+(n+1)5(n)
@ 1)2(1+Q)2 er(n) cexp(+) - S( +1, v—}-lm—l{“l)
2( Sm, 0T N ELS (1) + (1+1)5(n)
+Q( D 2010Q)" -r(n)-exp(+)-5('g—+l,v+|m+1l—1)
20 vtm+(m+1)§(m) +H(n+Hs(n)
(=1 211 0)* cr(m)eexp(—)- E( +1v+|n—-1l—1)
20 ) VM, ot (mELs(my+(nt1y5(n)
Q@ (-1 21T 0)? cr(m)-exp(~)- 5(-—2 +1Lp+ln+1]-1 )
2( _ v+t mt1)s(m)+(n+1)6(n)
(-1 i cr(n)eexp(—)- 5( +1,0+m—1] —1)
20 _ VEREEy, ot (mE1)§(my+(nir1)5in)
Q-1 TTOT cr(m)eexpl =) &(L+1, vt lmt1l-1)
Qz( — 1)(m+1)6(m)+(n+1)5(n) )
+ SEToL E(1p+ln—-11=1D-2, v +Him—11-1)
%o 1)\On, ot tF LB F 1B ()
Q=1 o Lot lnt1l =1 &0 v +lm—11-1)
20 S, o H (M F 1M+ (nt1)5(n)
-1 AT Ly +ln—1 =D& v+ m+11-1)
2 _ 1\&m,ot8n, 0t (FHEDSM +(n+1)5(m)
Q=D o5 E(Lotln 1= 2 st mt11-1) |
(4-17)
and
1 & Q° Q+1
Crn® =5 gz 2l ot gy o eos g2 (§21)
— vin __1)(7“‘1)5\71) 11 v/
+ QD ey (§3) + LB - exp(+)+(8E]) s
Q(_l)\:+nf(‘1+1)5(ﬂ)- . Y Qi;}- V/Z‘ —%g)( _1)(71'4-1)6(?1)
+ 170 r(n)-exp(—) <Q—1> I o m

xXEL, v+ln—11=1)Jyon

ZQ( — 1\6,;y0+(n+1)6(n)
+ 140

%
'5(1,v+|n+1l-1)']y-n~a;%j@'r(n)'exp(—l-)x
xg(—%%—l,v—i—ln—ll——l)

Q?'( — 15513,0

+W'T(n>‘eXD(+)‘€('g~+1, 1}+i%+11"1>
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—Q‘?( );Hz
1+

1)Vt até,
.;_Q_i_%‘z.@—) sr(n)eexp(— ) 6(2 +1, v+in+1l"1>

(n)-exp(—%f(—%%—l,v+ln-11~1)

Q . _ s 2@(_1) n, 0‘ _ _
+(‘1T{_“Q"")g'{‘;(1,v+l% 11-1} AT s(Lv+ln—11-1)
xE(Lv+ln+1l-1
Qz ~ 2 -
+m-~{;(1,p+ln+1i—1)}} (4-18)

for any integers m and 7, with

‘)"(MZ) — f 1m=11+1)/2 _ ( 1)5,,1J0,T(|m+1;+1)/2’

exp( %)= exp(\/l o )

t@d) =3 (3 Do S=s0),

and

1, for m=>1

6(”1)2{0. for m<0

‘We shall obtain:
(1) for n=1,

ot T G s 2 G e LB
ZQ( —‘1)”+1.<_Q__t}>w+m/° /‘ 7777777 > ]v . ZQ( _ 1)\'.(@-}— 1)<\'+71)/2

T Q-1 XD \yI— @ -7 \g=1
—1iT

I exp(ﬁ*———@;)%_n

_2Q(=D"" L+l f” 2Q(— 1" LR+ 1"
1+Q y:O\Q"]_) —2p+n- 2]»~n+"“ 1+Q %<Q-1) ]v—z;ﬂn]v-—n

28 () () B (8 s
)

X

1= I+
(vrmy/2 i o
2¢° (Q+1) - exp \/12 Q9>Z(gi}

T (T
ZQ ( 1'),.+n /Q+1)(v+n)/2.
(1= Q)(HQ)2

20°(— 1" (Q+1>‘ e

T Irr\e—1
g S s
‘(11%)2 E

* g, S

]v—zp+n—2]v—-2q+n

(Q+ 1>ﬁ+q+2

(Q+1>PWT2] —21:»}-n]»—2q+n]’ (4‘19)
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(ii) for n=0,
+o ZQ Q"' 1 vt+2 2'[‘ \ ZQZ(—‘ 1)"" Q+l v
Co, 0(7‘)— 5 (1+Q)2 %L]+(1+Q)z (Q”‘l) ° COS ;1___Q2”T (1+Q)? <Q—-—1)

112)+2 < . )» (o242
T =

2 (vizr+2
% <g+ 1) (LT Sy g (liQQ)Z <8_—tl> 'exp(

_ 4@ ( _ l)v.(Q—l— 1)(»/2)+2
(1+@)* ‘-1

) e
: Qz/ g(%ﬁfﬂf»-w

eXP<\/1_ZQ2> ,fé(gﬂ) J- 21>+(1%+QQ)”><

8 péo<%%)p+q+’.f“'zl’fv-MJy (4‘20)

(iii) for n< —1,

+» =1 2 9 2 1)vin v=n
Cn,n(?') g \,2";[]' nt (12%2)2 (gj“l> COS\/I_TQz'f' Q(l Qz)z (Q-; !
(v=ny/2 2 (__ 1\)u+n + {(v—=71})/2
_1"21%%%) eXp(\/le2> “Joen = Ql—Q2 <8—%) x

X exp (\/1%%}‘2) *Jo-n
pH1 :

._Vl : }:_,( ) fv-—zp-—n]»-—n'f‘i%;% 2(8‘{‘%) Jo—2p-n-2Sv-n

v=0

= Q)(1+Q)”

(/-n 2 i o pr
8 1 ) eXp(\,l QZ) Z(gii) ]\,—-zp_n
Q+
Q-

(v=n)f2 i o pri
1) eXp(\/l Q2> 2,20(84—%) Jv—2p-n-2

L Q-+ )(:—mlz

(
(1= Q) (H—Q)" (
(G2

QQ( )VT,L ——ZT + % Q+l ;)-f-l
(1-Q) (1+Q) eXp(\/l Q2> >—J<Q—1) Jo-2p-n

2 ( 1);%7; Q 1 (v=m)/2 —3 Q+1 pH1
(1 QQ)(1+Q)Z <Qtl> exp(\/l z:Q2>.%(Q+1) ]»-—215-—71—!
N pragtz
(1?@72 >3 (g_i—%) ]V‘ZP—ftfv—20~7z
i bragt2
(liQQ)?’ e 0<Qti) Jv-2p-nJv-2q-n-2

(1‘?;)2 172' <8+i)p+q“]‘“"7’ -n-2Jv-2q-n- 2] (4-21)

4=0

§4.3 Asymptotic Behavior of Correlation Functions and Thermal Energy

The probability distribution function of our total system is seen not to ap-
proach to a Gaussian distribution function with diagonal covariance matrix.
Accordingly our total system is seen never to approach to a thermodynamic
equilibrium. Therefore, we can say nothing about the timal change in the macro-
scopic temperature in the strict sence, except for the temperature at the initial
instant of time. In this case, the statistical quantities of the individual particles
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seem to be physically more concrete than those of the total system. Therefore,
in the statistical treatment of energy flow in the lattice system, we should take
the microscopic local temperature at any point of the system.

From (4-14) ~ (4-16) and (4-19) ~ (4-21), we shall find

(1) for m=>1 and for @>0,

Q -

(i) for m =0 and for Q>0,

‘hm%Co ole) = TEo) (H-Q) (4-23)

(iii) for m < —1 and for Q> 0,

1im Con(0) = o5 T, (4-24)

(iv) for m=>1 and for —1<Q<0,

— 41yt
hm Cm m(’é‘) Tl 2—1(]?—2_3)‘ - ‘?Q 11)) rrx+2Q{ (( 1);'71 (2@ - 1) + Q) Cos \/ll@ -+

+(=D™2Q-1) - Q-sin' Qz}] (4-25)

(v) for m=0 and for —1<Q<0,

1 Q Jogt -t 1-Q ., T ~
thoo(r) {2(1 0 (1__Q)2{cos\/1__Q2—+1_§_Q-sm\/1_Q2”, (4-26)

(vi) for m < —1 and for —1<Q<0,

1 (Q-D™QU-D™ '+ @} (~1)™ ~
T%mem m(T) = “‘{2 (1 Q) + = (Q+ 1)m+1 ( 1)7H*I+Q

ycos\/1 Q2+sm\/1 QZ} } (4-27)

Accordingly, from (4-22) ~ (4-27) we shall obtain the microscopic local tem-
peratures which have the initial value 7" at the positive sites, 7/4 at the 0-th
site, and zero at the negative sites, for any positive integers n:

2+ Q
lilzlm To(?) 4“m T, for Q >0 (4“29)
»Eﬂ T-nlt) = z(qu) for Q=0 (4-30)

lm Tu(c) = 2(1 Q) T+ (Oscillating term B,), for —1<Q<0 (4-31)

T ®
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lim To(r) = 2-Q — ¥ 7.4 (Oscillating term By), for —1<@Q<0 (4-32)

4(1-Q)
and
lim 7-,(7) =4, (1 o) T+ (Oscillating term B-n), for —1<Q<0 (4-33)
where

(Oscillating term Bn) =

= O e { (@ + 20 - Desint i = (@204 D -cosi)e (4030

(Oscillating term By) =

_ Q oned _
= 30=D(0FD {(BQ +1)- sm‘/1 Q‘ -(@-1) COS\/1—-Q’}' (4-35)

and

(Oscillating term B_‘n) =

Aside from the oscillating terms, we can unify the results (4-28) ~ (4-30) and
(4-31) ~ (4-33) into the following forms:

. o 1+21Ql ., 4-37"
tl_{t&ﬂ(r) =21+10) T, (4-37)
; _ 2+lQ] i}
_'1_1’rmeo(_r) = 11+1QD T, (4-38)
and
. _ 1 _
11-1‘13]”7‘—71(?) = 2(1—'+>| I) T, (4 39)

for any positive integers .

From (4-37)~(4-39), we can see that, without the oscillating terms, the
macroscopic local temperatures in positive sites and in negative sites, approach
to different stationary values, with a gap of the energy distribution remaining at
the impurity site. The height of the gap of the microscopic local temperature
at the impurity site is:

el
L+IQ1

The expression (4-40) has a limiting value 7" as @ goes to infinity, which
corresponds to the case of the impurity atom of an infinite mass (M'—-+<0). In
other words, the impurity atom plays the rdle of a fixed wall, and prevents the
flow of energy across that point. For a perfect lattice, i.e. in the case of Q=0,

(4-40)
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the stationary state in the system with a uniform microscopic local temperature,
viz.

lim Tu(e) = —é—T, (for any integers )
is established, as we expected. For —1<@Q<0, the local temperatures have the
oscillating terms, which proves the existence of the localized vibration in the
system. Finally, for @——1, i.e. M'—0, the height of the gap of microscopic local
temperature (4-40) has the value of 77/2.

§$ 4.4 Energy Flow in the System

In the previous section, we have seen that, aside from the oscillating terms,
the microscopic local temperatures approach to stationary values at the final
state: r=-oc. However, this does not mean that our system approaches to the
thermodynamic equilibrium at r=-+c. In fact, the correlation matrix ||Va, m|
(=1Com, 2042m+1]) has non-vanishing elements at the final state: r=+4c0, and we
can show that the energy flow still exists at every point of the system even at
7= o0,

Let us indicate the total energy in the positive side of the n-th particle with
E%(c). Then we shall obtain

+®m 2
Ei(0) = M| 4-(1+ Q30 )8 + 5 (s = 2%} (4-41>

s=n

Accordingly, we shall obtain

- dE(c) - %Ig'i[(l -+ Q@s,())(l —Ijg@é‘s,o )yzs(f\)\’yzsﬂ(ﬂ — yes—1{7) } +

=0

+y25+1(7)<,’yzskz(z‘) ‘“ygs(ﬂ}]' (4-42)
In a special case, i.e. if we take =0 in (4-42), we shall obtain

SIS K oy, (4-43)

This corresponds to the energy flow from the right-hand side of the zero-th
particle to the left-hand side of the (—1)-th particle, or in other words, the
expression (4-43) corresponds physically to the work done by the zero-th particle
upon the (-1)-th particle.

Calculating the average value of (4-43) and taking the limit: r—+4c0, we
shall obtain the following results:

sim (9B -

_ kT .y 4Q° .(Q+1)3’2
2z(I1+Q) \d+Q) '@ -1

- 12 z 1
- arctg (Mg < i) +J§?::*T°arctgx/€2’—— 1- Q{ll

for 1<Q  (4-44)

o .éz, ‘for Q =] (4“45)
H T
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2 /2 s
rT 1+ _ @ .(1+Q>3 -logl—t\%@:—@}, for 0<Q<1 (4-46)

T2\ T-Q 1+Q V=0

= }26%" for Q=0 (4-47)
_RT 11 Q* o lwI—gny . RTQ 2T
= 2(1+0) 10 U—QNi-@ ¢ —g } 2(1- QNI-@ S"Wi-¢

for —1<Q<0  (4-48)

It is worth while remarking that our results have very similar qualitative
properties to the change of temperature in a perfect lattice. We can also compare
the flow of energy in our system which contains an impurity atom, with the flow
of heat in an infinite rod. In our system, however, Fourier’s law that the vector
of heat flax is proportional to the negative gradient of temperature, does not hold
true at every point of the system, even at r=+c. We have seen in Chapter III
and we can also derive from our present results, that even in a perfect lattice
(M'=M) of infinite length, there exists a constant energy flow of 2T wo/n at every
point throughout the system, though the whoele system attains uniform distribution
of microscopic local temperature 7/2 at r=-+ . Also in our present system, the
constant flow of energy exists throughout the system from the right side to the
left side at the final state: v= -, while the uniform local temperature is at-
tained on both sides of the impurity atom. In this respect, energy flow in the
harmonic lattice is essentially different from heat flow in a classical system.

From these results, it would be possible for us to explain the effect of many
number of isotopic impurity atoms in a one-dimensional or in a three-dimensional
lattice. It would also be possible to explain the existence of stationary values of
the microscopic local temperatures in one-dimensional and in three-dimensional
lattices, and also the existence of gaps of energy distribution at the impurity sites
and the existence of the energy flow which does not obey the classical Fourier's
law.

V. Localized Vibration

The existence of localized vibrations in a system of coupled harmonic oscil-
lators has been mentioned by many investigators® in relation to the reduced mass
or random external force of high frequency. The localized vibrations occur in
the vicinity of a particle, when the mass of the particle is reduced, or when the
particle has harder springs than the other ones, or when the external force is
applied whose frequency is higher than the maximum frequency of the system.
In the present chapter, we shall show explicitly the existence of such localized
vibrations and make clear some dynamical aspects.

We shall consider an infinitely extended lattice with one-isotopic impurity.
Let us assume that the initial velocity of the 0-th particle &, is finite, and all the
other particles are at rest at the initial time =0, namely @,=d.,.. From (4-6)
above, we shall have, in the Schrédinger coordinates:

() = a0 = @ dreJulx =) L (), (5-1)
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for —co<n<e. In order to take out the localized vibration which remains for
infinitely large r, let us assume:

lim yn(T) = sz'efwt, (5*2)

>0

where A, is independent of r, and » is the frequency of localized vibration.
Inserting (5-2) into (5-1), we obtain:

Ay=( _1)?+7l( n)+1QA0J)(w —-1)" 1/9(Q+\/a) - ml,e—z(inlmlz (5_3)
for — oo <p< oo
where

s for n=0
e(n) = {
1. for n<0

In order to obtain the expression of w in terms of @, let us put »=0 in (5-3),
and we shall get

1

“J:\/Tj—@“ for —1<Q<0 (5-4)

Accordingly, the expression (5-2) will become:

p7]/2
}j{{;yn(ﬂ = (- 1)n+n8( n)A (1 +8 exp[ \/1 QZ = 1"2L>]’ (5_5)
for — o << o and —1<Q<O.

From (5-5), we can see that the amplitude of y, decreases in the powers of
[n| for infinitely large r. That is, the vibrations do not propagate through the
system but localize around the impurity particle when the mass of the impurity
atom is smaller than that of the other particles. We can also explain the ex-
istence of localized vibrations in a lattice system where a spring is harder than
the others. The maximum frequency of the perfect lattice is represented by the
square root of the ratio of its spring constant to the mass of the particle. There-
for, the harder a spring is, the higher is the frequency, and the smaller a mass
is, the higher is the frequency.

(i) External force acting on the 0-th particle

We shall consider the one-dimensional perfect lattice, consisting of infinite
number of particles, with an external force f(¢) acting on the 0-th particle. The
equations of motion can be written in the Schrédinger coordinates:

23%;31%(?) :yn+1(7> *-yn-l(r) +f(’£')5n,o. fO?’ —co <yl (5“6)
The solutions of the equations (5-6) can be obtained:

V() = Z avfs- n(r)+-~5 de f() Ja(x—7), for — o <n<oo  (5-7)

y=—-
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with @, the initial value of y.,(¢) (@»=..., =2, —1,0,1,2,...).
If we assume as follows, for the external force f(r) and initial values a,, viz.:

- T
f(¥) = Fsin L

and (5-8)
a, =0, forv=..., —2, —1,0,1, 2,

with constant F, and wo, for the maximum frequency of the system, then we
shall have

Inl(z) —~~S dxe ]n(x~r)sm——x
- (- 1>fm-'l>§§0dz-j,m(z)sinwﬂo(f —2), (5-9)

(= Elgn o (g [CIP R in@ .
=(—-1) 5 {sm o F godz Ji=1(2) cos o cos-— < Sodz Jim(2)sin mz}
for — o <n<o  (5-10)

Using the formula:
2 { P
=(1—‘2‘> e, for w<wp

PR o

o twfwgdZ
»So dzJime o Ty o AT inien
:i<7—1> ( ,,,,,,,,, +\/,,..5_1> e I for w> wo

where ¢ = arcsin (w/wo), we shall obtain at the final state v = + o,

2, —1/2

. . ns(—mF v . @ _ _
Tlf,rflwy"(r> =(=-1) 5 (1 a)é) sin <Iwof ln]c,O)- for w < wy (5-11)
and
. n(—nF f’_{z 1/2 —Inl (3] I l7l' .
ler&y,,(r):(—l) € Lf(a)ﬁ + 2_1/ cos(——r—}- 9 )
(5-12)

From the expression (5-11) for o<, it will be seen that yn(r) oscillates as
|n| increases, and that from (5-12) for w>ws, yn(r) vanishes for r-—-+oo and
|#]|=>-4co. This means that the localized vibration exists in the vicinity of the
0-th particle, when o is higher than w.. The expressions (5-11) and (5-12) are
essentially the same with the results obtained by Kashiwamura, Takeno and
Teramoto®®,

In our method by means of the Schrédinger coordinates, unlike in the case
of the method in trigonometric eigenfunction, there does not appear the term
that corresponds to the translation of the system as a whole at r=-+oc. There-
fore, we find that the Schridinger coordinates are very convenient in investigating
the problems of vibrations in individual particles in the lattice system.
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(ii) White noise acting at site No. 0
For external force f(r) and initial values a, of y.(r), we shall assume:

(e aw =0, (5-13)

Flr) flea)aw = 8(t1— 12), (5-14)
and

a,=0. forv=...,=-2,-1,0,1,2, ... (5-15)

The expression (5-14) means that the random force f(r) has a white spectrum.
In this case, the correlation function can be calculated from (5-7), (5-13),
(5-14) and (5-15) as follows:
2
Cm, n(T) /%‘Ikg = <ym(7)yﬂ(7)>,w
=) | sy - <FO £ a0 Tl = a3 = )
=)V andy 6= ) (e = 1= o)
0v D
= %Sodx 'jyn(x'_ T)jn(x— T)

( — 1 M7 AT

4 30d2’]m(2)]n(2>. for any integers m and n (5-16)

In the case of r—+ o, the correlation function (5-16) will become

2
Cm, n(7>/(12;*}[§=

ayE(mE )+ (M=) 2 F [t . -
{—— (— 1) ™ MYE( L)+ (M=) 2 -+t ?ﬁ 1 3 T ¢ /2
= Ix {2 > =@ D | logtan (‘4‘T7)L:0}’
for even integers (m—#n)  (5-17)
l (— 1) mstm b+ -n= L2t e
=g ,  for odd integers (m —n) (5-18)

From (5-17), the momentum-momentum correlation functions and the position-
position correlation functions do diverge at r=-+o. In the case of m=n, the
expression (5-17) above shows that the kinetic and potential energies diverge at
the final state: r=c. On the other hand, from (5-18), momentum-position cor-
relation functions remain finite. This means that there exists the instantaneous
flow of energy at every point throughout the system.

(iii) External forces acting on the particles No. 0 and No.

Let us take a perfect lattice of infinite length, with an external force f(r)
acting on the 0-th particle and with another external force g(r) acting on the
m-th (m>0) particle (cf. Fig. 9), then we shall obtain the following results.

The equations of motion will be:

Zadf‘yu(f) =yn+1(r) "yn—l(f) "‘f(’l') GOm0 +g(r') On, 2 me (5‘19)

for — o p<ew
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The solutions of (5-19) will read:

yalr) = ‘,g"ma*}""(r) + —%—jodx A ax— 1) + g(x) Ju-amlx— )} (5-20)

for — w0 <n<»

Now, let us take two cases for g(r), namely:

a) g(z) =f(1),
b) g(z) = —f(z).

From (5-20), we shall have, for case a):

_‘Vn('l‘) = ‘ngav]\wn(7> + "%“S:dx'f(x) {fn(x - T) +]n—2m(x - T) >, (5 -21)

for — o <np< o
and for case b):

yn(r) = % av]v— n(T) + '%‘j:dx ’f(Jf){]n(x - T) - ]n—-zm(x - T) }- (5_22)

ve—»

for — oo <n< o
If we assume (5-13), (5-14) for f(r), and (5-15) for a,, the correlation
2
functions C, 4(<) /‘52%? can be calculated from (5-21) and (5-22) as follows:

for the case a)
Con(® [5K = 1 a2 11u00) + Jumsml D HIE + Timsm(),
for the case b)
Cort) [5E = Lt Ju0) = Jemsm ) W) = e},
As a special case a=p4, we shall obtain for the case a) above:
Cu,a(r)/?;% =it Vaw = —H:dz < {J(2) + Ja-2m(2)}, (5-23)
and for the case b) above:
Cand) [ = G20 = [ e Ju2) = Fumaml V. (5-24)

Using recurrence formula of Bessel functions, we shall obtain from (5-23) and
(5-24),

f(r)’—-, g(r)r—»

site number  NO. 0 NO.1 NO. 2 NO.m

FI1G. 9. Linear lattice with external forces f(r) and g(r) acting
on the 0-th and m-th particles, respectively.



Stochastic Motion of Coupled Harmonic Oscillators 175

1) for the case a) and odd integers m,

m—

(= D Uness(2) + Jrmsirin ()

V=0

Lpn(t) = Gl u) Do = <3t ue = %S:dz 4

X3 m—1
=jdpi{§x—1wm—2p—nhﬂwaaf
0 v=0

ZZ
m—1

==

v, =0

)fvz—ZH—l(Z)
] ’

z

(=" n—2p—1)n—-2p— 1)§ dz']”"g\’—l(z
0

(5-25)
and
2) for the case b) and even integers m,

<(yn( T) — <y;:(f)>Av>2>Av = <y3: (T>>A1)

m=1 .
= 2> (*13"‘“(%—21:-1)(%—2#—1)\ dg o Jrm2v-1lz
o

V=0

}]71-2 }L-l‘\Z)
2 ’

(5-26)

From the formula:

F(?Z—v”-/l“?fi-%)

4F<,u-v+1+'%~>T(11~u+1+*%*>ﬁ(n“/x~v+é")’

4

Swdz .]71—2\«%(\2){72—-2;“1(2) -
0

the correlation functions (5-25) and (5-26) converge at the final state r=- oo,
while the correlation function (5-23) or (5-24) diverges at r=-+c for m even
or odd integers, respectively. In brief, for sufficiently large r, the mean square
value of y, remains finite, either when two external forces act in the same
direction and m is odd integer, or when two external forces act in the opposite
direction and m is even integer. For r=+4 oo, the mean square value of y, di-
verges, either when two external forces act in the same direction and m is even
integer, or when two external forces act in the opposite direction and m is odd
integer.
If we put
lim <y§x(‘£')>,w = Dy,

Tert 0

the following relations will be obtained for converging cases:

DQ>D—1>D~2> R >D-w,
Dy> D> D> ¢ o+ 2 Dypy-12 Dy,
D> Dam-1> Domes™ * =+ 2 Dypr1> Doy, (5-27)

and
Doy > Dasms1 > Dagnra > =+« > D.,. for positive integers m
D, has the maximum values at #=0 or at n=2m (namely, the kinetic energy

of the particle on which the external force acts is maximum after a sufficiently
long time) and D. approaches to 4/(3z) when |n| is infinitely large. From
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(5-27) above, we can see that the localized vibrations exist in the vicinity of
the 0-th and m-th particles and that the vibrations do not propagate through the
system. The results mentioned above come from the fact that in the random
force f(r) there exist some components of vibrations with higher frequency than
the maximum frequency of the system, while, from (5-17), we can see that the
momentum-momentum correlation functions and the position-position correlation
functions do diverge at v=-co, when the external random force acts merely on
a lattice point. That is to say, the mean total energy at every site of the system
goes to infinity after a sufficiently long time®.

In two-dimensional and three-dimensional lattices, we may also expect such
localized vibrations to occur under somewhat restricted conitions.

This study has been carried out at the Faculty of Engineering, Nagoya University, and
has been financially supported by the Scientific Grant of the Ministry of Education.

Appendix 1

Using the formula®:
2 =f2
Jv+a(2) * Ju-a(2) = ?j Jeu(2zcos0) - cos(2al)-dd, (A-1)
0
for complex numbers » and «, with R(2») > —1, we shall have:

+ e =/2 +%
S Jera() #Jh-alt) = —2—j df-cos(2af)s > Jor(27cost)
k=12 TV

k=1f2

2 =/2 o
=~S di ~cos (2al)) - }]]e/.-“(Zrcosﬂ)
T Jo k
__LS’ a6+ cos (2af) - jz e (A-2)
- T Je UANSSERY
Taking the limit: z—+co in (A-2), we shall obtain the formula (3-39):
A2

fim 3 () < Jiea() =L a0 cos (@ad) - dz - J(2)

T+ k=1/2

_ 1 nf2
= RSQ d6 - cos (2a0)

_sin (mx)
zud

Appendix 2

The solution of integral equation (4-8) is expressed by:
yolt) = 1+Q 2, S Julo) o (14 Qdp,0) +

+ o uz_d a1+ Qo)+ 2 (155) " K2 e, (A-3)

m=1

where
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Z=Y AZM—1 IM-2 z2
Km(x,y) = S g S R S Jilx—y— 21)1—1)]x(zm-1 - Z-m—z)jl(Zm—z - Zm—a)
L ) 0 0

b ’11(22—21)_,1(21)(121(123 .. dzm_l.

By means of the formula:

S T8 Tz~ Ddt =2 g (= 1) Jurvrenaa(2), (A-4)

for Me(p)>—1 and Re(p)> -1

we shall get at once:

+®

Ku(x,y) =271 > (N T ¢ Pom-1tothys ket oo sk (X —3). (A-5)

K1y b2, enn, Bp=1=0

Putting (A-5) into (A-3), we shall obtain (4-9).

Appendix 3
Inserting (4-9) into (4-7), we shall obtain

(1 + Qb‘n,o)’yu(f) = _}::@ap (1 + qu,o) ']p.-n('l') +

2(1$§) “}m( 1) ADEm W (] L 05 ) eqy,e 5 {]u(Z) +L( ¥Q') x

+o

X o > . u( - l)k‘+}‘5+"'+k7n .]IH;+zm+2{z’e;+kz+--~+km)(z) AJin-n (= —-z)—(— 1)%me
12 K2y 0005 K=
X Jine (v — 2) }dz. (A-6)
If we put:

+m

Ryt etk
(—=1)% ”"]ml+2.'m2(k;+~-+km7(3)} X

. {]m(z) + 2( 2 Q) 3G
X {][m-ll(‘!' —2z) - ( —1)%me '];m-ll(f —2z) dz,

and evaluate the integral by means of (A-4), we shall have:
+ = +®
I= 2 (- 1)S°]|n—1|+lp[+2s+1(f') -(- 1)6"""%( - l)s']|n+u+;u|+2s+1(‘l') +

m o
+ E( ) . E (— l)k’+ +km”']|n-l]+[u[+2nl+2(k1+--‘+km+x)-.‘~l(T) -
1+Q Ky ko,

m=1 s kem+1=0
- 2 = cerls
—(—=1)% °'E(—*Q) . > (— l)k"' +Im“'jlm+ll+lul+2m+2{k;+--~+Iz1,.+;)u‘-1(f)
e A 4 T S S S

i 0

\’ ( 1)*"1'3"-’""‘"""/‘1"(-1
Z: . E - N * =1+ ) +2 Rytooe alr) —
1:;:0(1+Q/ O e {]In 1+ )+ 2m+2(Ry Fem+1) 1(

- ( - 1)5”’" ']|n+1|+(y.|+2m+2¢k1+kg+---km+;)+1(‘L')).

The multiple summation appearing in the above expression can be reduced to the
following simple form:
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+ + %
220 DN Fkit ket s Ryt a)

K1=0kz=0 k=0
—2(“” D Flp+a.

And we shall obtain:

-+ 00 2 "+ +
I= ,,,=o(ﬁQQ> 'g( - 17 (P mm> { Jin-11+ ut+amea per(z) —
—(=1)%m0 ']!n+1|+m&'+2m+21)+1('()}-

If we put r=p-+m-+1, we shall have:

+w r—1 r=1=p _
[:ré:]‘pzr.;')( l)p <]_2—J—QQ> (r 1) {]’1 4+ pl+27 - 1(?)’_
= (= 1% [inririuiezr—1(r)}

+w® . r—1 N
Zr—%;(gj%) ATin-ne ez r—1() = (=10 Jeiszr—1() } (A-7)

Inserting (A-7) into (A-6), we shall obtain the solutions (4-10).

Appendix 4
Let us prove the following formula:

jNf~1

+w . | . .
rgwpr"’-]m”(z) = [N 2 eXp P gl CFmI — p'le_“””’”“')J-e HrkelaDs
(A-8)
with integers N and s, where /,(z) is Bessel function of order » and argument z.

Proof. In the first place, we shall prove the formula (A-8) for any positive
integer N.
From the generating function of Bessel functions, we have

gpnijrzws(z) S dlf exp[ 5 (t_. _.1t,> ], £ j}::;j)’wf“v

_ 1 {0+ - z 1 t_s—l+N’ps ~
where the path of integration is to be taken in such a way that the integration
over C runs counterclockwise around the origin #=0 and that the closed curve C
entirely contains the circle |¢]|=]p].

The integrand of (A-9) has an essential singularity at the origin =0, and

also N simple-poles at points ¢ = q-exp[ <8+%)J (=0,1,2,..., N-1), whose

residues are respectively.

1 Tz P ¥ D e (Rl
7\7, exp —é—(qe’“”zk"”\" —-q 1y i(s+(2k ,,m) ce i(2k ,\,s’ (A-10)

(k=0,1,2,...,N-1)



Stochastic Motion of Coupled Harmonic Oscillators 179
where p=gq-exp[id], with real positive ¢ and 0 < §<27.

If we deform the curve C into a closed curve C; which lies inside the circle
[#]=1p! (cf. Fig. 10), then we shall obtain from (A-9) and (A-10) above:

o -1 .

N4 1 z i 2 N -1 _=i(g+(2kn/N —-1(2k )N
S—spr\ '3']rm-s(2) - "]\7' Zexp "2‘{431(6+(9kﬂ/\) -yq 1, ia+(2k /.\)} e 1(2;’2*:/\'}3_}_
r=0 k=0 -

] e[ 2( e 1) A1)

1

Imaginary Axis

_ : 24n
Circle ?~q'exp[/($+ N ):]

lti=1pl

&\\E Jcéi Real Axis

t-plane

F1G. 10. Path of integration in (A-9) and (A-11).

Here the integration over C; is to be taken in such a way that it rums couter-
clockwise around the origin #=0.

The second term in the right-hand side of (A-11) will become

il e[ (- 1) | EF

A(0+)
1 (

“prile, e[ 5 (e= ) [ G

-1 r=1

1

1l

-1
— >0 P Tones(2). (A-12)

r=—c

The expressions (A-11) and (A-12) prove the formula (A-8) for any positive
integer N.

From the proof given above, it is quite obvious that the formula (A-8) holds
also for any negative integer N.

If we take N=2 in the formula (A-8), we shall obtain (4-11).
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