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ABSTRACT

Calculations on temperature variations of the magnetizations for nickel and iron
metals are performed by the Stoner theory. Exchange energy is expanded as a pewer
series of the magnetization M and values of its coefficients are estimated from the
comparisons between calculated and experimental results of the temperature variations
of M for nickel and iron metals. In a phenomenological way, a new expression for
the magnetic energy due to fluctuations of the magnetization density is found for an
isotropic continuous ferromagnetic medium. By using the Holstein-Primakoff trans-
formation, it is shown that many terms in this expression, except the term discussed
by Herring and Kittel, correspond to spin wave-spin wave interactions. From the
microscopic point of view, the dispersion relations of spin waves in ferromagnetic
metals with multiple bands are obtained by the method of normal modes within
the random phase approximation and a certain approximation for the Coulomb
interaction. It is found that spin wave spectra consist of some branches; one
acoustical intra-band branch, one acoustical inter-band branch and some optical
intra- and inter-band branches. The inter-band transitions have an important effect
on the acoustical intra-band branch at larger momenta of spin waves. Within the
(extended) random phase approximation, the equation of motion for normal modes
in an electron gas is solved by the iteration method and the dispersion relations of
a plasmon in the paramagnetic and ferromagnetic electron gases are obtained. It is
shown that there is no difference between constant terms in the dispersion relation
with respect to the momentum of a plasmon in the paramagnetic and ferromagnetic
states, but coefficients of the terms proportional to the square of the momentum of
a plasmon are different in the two states. High field susceptibilities for ferromagnetic
iron metal and its alloys are estimated at 0°K, by making use of the density of states
curve determined by the rigid band model. A satisfactory agreement between the
calculated and observed results on the concentration dependences of high field
susceptibilities at 0°K is obtained for iron-cobalt and iron-nickel alloys. The de-
pendences on temperature and magnetic field of the high field susceptibility are
calculated by the model of non-interacting free spin waves. The observed temperature
dependence of the high field susceptibility is satisfactorily explained by the calculated
result,

Chapter I
Introduction and Summary

Ferromagnetism of 3 d-group transition metals and their alloys is usually
investigated on the basis of the itinerant electron model, where not only 4 s-
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electrons but also 3 d-electrons are itinerant electrons and run over the crystal.
The earlier theoretical works on the ferromagnetism in this model are carried
out by Bloch?, Slater®, Stoner® and Mott? and showed a great success in
qualitative explanations of experimental results such as non-integer Bohr magneton
numbers per atom for the spontaneous magnetization, the temperature variation
of the electronic specific heat and so on for 3 d-group transition metals and their
alloys. In their works it is shown that various magnetic properties are related
to two fundamental quantities, that is, the “density of states” and a ‘“‘molecular
field coefficient”.

By assuming the rigid band model, the density of states curve can be deduced
from the observed data of the low temperature specific heat, and the value of
the molecular field coefficient can also be deduced from the analyses of the
susceptibilities using the density of states curve. From this point of view,
Shimizu ef al.®' have obtained the density of states curves and the values of the
molecular field coefficient for 3d-, 4d- and 5d-group transition elements in a
series of their works. They have also shown that the correlation between the
temperature variations of the electronic specific heat and the susceptibility is
explained by the shape of the density of states curve. Moreover, they have
obtained a satisfactory agreement between the calculated and observed temperature
variations of the electronic specific heat and estimated the values of the orbital
susceptibility from the analyses of the temperature variation of the susceptibilities
for the transition metals and their alloys in the paramagnetic states.

Using the density of states curves given by Shimizu et «/®" we calculate
the temperature variations of the magnetizations for nickel and iron metals in the
Stoner model® and will estimate the magnetization dependences of the molecular
field coefficients, which are important to compare the calculated results with the
observed ones, in chapter II. The outline of the magnetic properties for 3 d-
group ferromagnetic metals and their alloys can be explained in the Stoner model®,
but the detailed magnetic properties, for instance, the temperature variation of
the magnetization at low temperature cannot be explained satisfactorily in the
Stoner model.

It is experimentally found that the spontaneous magnetization decreases with
increasing temperature 7" as 7°%* in lower temperatures®. Theoretically, Bloch®
has first shown that there exists a collective motion of spins in a ferromagnet,
so-called ““spin wave”, and the excitation of spin waves decreases the magnetiza-
tion as 7% in the Heisenberg model. Herring and Kittel® have phenomenolo-
gically obtained spin waves and shown that spin waves can also exist in the fer-
romagnetic metals. They have derived the spin wave motion from the leading
term in the energy due to the fluctuation of the magnetization. In chapter IIL,
we find the higher order terms in the energy due to the fluctuation of the
magnetization for an isotropic and continuous ferromagnetic medium from the
consideration of the symmetry. By using the Holstein-Primakoff transformation,
it is shown that the terms in our expression of the energy except the first term,
which was discussed by Herring and Kittel'®, correspond to spin wave-spin wave
interactions. An expression for the exchange field up to the term corresponding
to the fourth power of spin wave momentums in the energy of spin waves is
found.

Recently, by using the method of the many body problems, spin waves in
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the ferromagnetic metals have been discussed by many investigators!®, However,
in the most of works, the spin wave is treated in the single band model. In the
multiple band model, two attempts have been so far made by Mattis® and
Thompson?”. In both calculations, excitations of an electron from one sub-band
with up spin to another sub-band with down spin are neglected, so that the effects
of the inter-band transitions on the spin waves are not taken into account cor-
rectly. In chapter 1V, taking into account these inter-band transitions, we find
the dispersion relations of spin waves in ferromagnetic metals with multiple
bands by the method of normal modes within the random phase approximation
and a certain approximation for the Coulomb interaction. It is found that spin
wave spectra consist of one acoustical intra-band branch, some optical intra-band
branches and other branches due to inter-band transitions which are called “infer-
band spin waves”. The inter-band spin waves have an important effect on the
dispersion relation of the acoustical intra-band hranch of spin waves at larger
momentum. The coefficient of the square of momentum in the dispersion relation
of the acoutical intra-band branch of spin waves is found to be the sum of Dy
and Dy which are derived from the intra-atomic Coulomb and inter-atomic
exchange interactions, respectively. For nickel, the value of Dy is estimated as
about 0.1 eVA? by using the model of two overlapping bands and it is concluded
that Dx<Dy. Using the effective mass approximation for the bands of electrons,
we get the whole spectra of excitations of an electron with a reversed spin up
to the cut-off momentum of spin wave in the single band and two band models
and it is shown that the cut-off momentum of spin wave in the single band model
is fairly affected by the inter-atomic exchange integral.

It is well-known that there is another collective motion due to the density
fluctuation of electrons in metals, which is called a plasma oscillation or a
plasmon'”. We discuss a plasmon in a ferromagnetic electron gas in chapter V.
Within the frame of the extended random phase approximation, the equation of
motion for normal modes of the density oscillation in an electron gas is solved
by the iteration method and we get the dispersion relation of a plasmon for the
paramagnetic and ferromagnetic electron gases, including terms of the exchange
correction. It is shown that there is no difference between the constant terms
in the dispersion relation with respect to the momentum of a plasmon in the
paramagnetic and ferromagnetic states, but coefficients of the terms proportional
to the square of the momentum in the dispersion relation are different in the
paramagnetic and ferromagnetic states. This difference is roughly estimated for
the real ferromagnetic metals, iron, cobalt and nickel and a possibility of the
observations of this difference is discussed in chapter V.

The excitation energy of a plasmon is the order of 10 €V in the real fer-
romagnetic metals’” and the plasmon has no effect on the magnetic properties
at ordinary temperatures. On the other hand, the excitation energies of spin
waves are lower than the energies of the individual excitations of an electron
with a reversed spin, that is, Stoner excitations. Therefore, spin waves play an
important role to determine the magnetic properties of a ferromagnet at lower
temperatures. For instance, the temperature variations of the magnetization® and
the high field susceptibility’> at low temperature can be explained by spin waves.
In chapter VI, high field susceptibilities for ferromagnetic iron metal and its
alloys with cobalt, nickel, chromium and vanadium are estimated at 0°K, by
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using the same density of states curve as that used in chapter II. A satisfactory
agreement between the calculated and observed results’ on the concentration
dependences of the susceptibility at 0°K is obtained for iron-cobalt and iron-nickel
alloys. The dependences of susceptibility on temperature and magnetic field are
calculated by the model of non-interacting free spin waves, of which energies
are determined by the experiments of the inelastic neutron scattering. And it
is shown that the cbserved temperature dependences of the susceptibility'® are
explained by the calculated results.

Chapter I1I. Temperature Variations of the Magnetization
in the Stoner Model

§ 1. Introduction

Many years ago, Stoner® showed that ferromagnetism is expected for electrons
in a simple normal band, where the density of states is proportional to the square
root of the energy, if the assumed molecular field, which is proportional to the
magnetization, is sufficiently large. The model of a normal band is too simple
to apply to electrons in a real transition metal, where the density of states curve
shows a very complicated change with energy, although this model and some
extensions!® have been used with considerable success to explain the various
magnetic properties for transition metals and alloys. Shimizu'"'® has extended
the Stoner model to the case of a general density of states curve and magnetic
(exchange) energy, by discussing the difference between the free energies in the
ferromagnetic and paramagnetic states.

The density of states can be deduced from the observed data on the low
temperature specific heat and on the spontaneous magnetization for metals and
alloys by assuming the rigid band model. From this point of view, Shimizu
et al.9" have obtained the density of states curves for nickel and iron metals,
respectively. By making use of these density of states curves, we calculate the
temperature variations of magnetizations for nickel and iron metals in the Stoner
model®. The effective exchange energy is expanded as a power series of the
magnetization and the values of its coefficients are estimated from the comparison
between the calculated and experimental results on the temperature variation of
the magnetizations for nickel and iron metals, in §2 and §3, respectively. In
§4, we discuss the criticism of the Stoner model, by comparing the calculated
result of the temperature variation of the magnetization at low temperature in
the Stoner model with the experimental one.

§ 2. Calculation and Comparison with Experiment for Nickel Metal®

The calculation of the magnetization for nickel metal is performed by making
use of the density of states curve which was determined by Shimizu ef al.® from
the low temperature specific heat data for nickel and copper metals and nickel-
iron and nickel-copper alloys assuming the rigid band model, as shown in Fig. 1,
where ¢, ¢, and ¢_ denote the Fermi level in the paramagnetic state and the
Fermi levels of plus and minus spin bands in the ferromagnetic state at 0°K,
respectively, for nickel metal.
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F1G. 1. Density of states curve for nickel metal®. Fermi levels of
plus spin band, {+, and minus spin band, {-, in ferremagnetic state
and {o in paramagnetic state at 0°K are shown.

For a ferromagnetic state with the magnetization M in the band model, there
are following relations at 0°K:

o A4 (0)
S v{e)de = \ v(e)de = n, (2.1)
Z-(0) +'$o
M=2nus, (2.2)
and
C:(0) = <¢-(0) = 2 ppalM, (2.3)

where . (0), £-(0) and ¢, are the Fermi levels of plus and minus spin bands at
0°K in the ferromagnetic state and that in the paramagnetic state, respectively,
and »(s) and aB are the density of states and a molecular field, respectively.
At a temperature 7T,

Sm v(e)f( i_;%‘}(g:)—)de: +n, (2.4)
and
A =CAT) = ¢ AT) =2 pupaM, (2.5)

where f is the Fermi distribution function and
2o
N=S »(e) de. (2.6)

Using the equations (2. 1) to (2.6) and taking M/ as a parameter, we numeri-
cally calculate the temperature variations of ¢, ¢-, and « from (2.5). Calculated
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FI1G. 2. Temperature variation of the molecular field coefficient, @, where
M is taken as a parameter. The curves are specified by the values of M in
up/atom. The curve specified by M=0 is the reciprocal of the calculated value
of the spin paramagnetic susceptibility without the molecular field, X%.  Open
circles are the experimental values of a estimated from the experimental M
vs T curve for nickel metal?0),

05

FiG. 3. Temperature variation of the
magnetization of nickel metal. Curve
(1) is the calculated result with a=0.96
x 10 mole/emu. Curves (2) and (2°) are
the calculated result with «=0.95x10%
mole/emu. In the latter case two values
of M are obtained at each temperature
and curves (2) and (2') correspond to the
stable and unstable sclutions, respectively.
The curve specified by exp is the experi-
mental one?®.
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results are shown in Fig. 2 for some values of M. The curve specified by M =0
is the reciprocal of the calculated value of the spin paramagnetic susceptibility
without the molecular field, 7, for nickel metal.

We obtain a=0.96 x10* mole/emu from the condition that /;' —a =0 at the
Curie temperature, 630°K, and if we assume this value of « at all temperatures,
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the magnetization behaves like curve (1) in Fig. 3. In this case, the magnetiza-
tion shows larger values at lower temperatures (M =0.64 pup/atom at 0°K) and
smaller values at higher temperatures than the observed ones?. If « takes a
constant value, 0.95x10* mole/emu, which gives M=061 pp/atom at 0°K, the
magnetization behaves like curve (2) in Fig. 3. In this case, the corresponding
Curie temperature, 480°K, is too low.

Although a part of the reason for this discrepancy will be attributable to the
crudeness of the density of states curve, we have tried to get a better agreement
between the calculated result and the experiment, taking account of the magneti-
zation dependence of a. As easily seen from Fig. 2, the value of the magnetiza-
tion depends sensitively on the value of « at a constant temperature, while the
value of « does not so sensitively depend on the value of A4. Therefore, the
calculated values of M can be made agree with the experiment by taking account
of the magnetization dependence of «. Previously, Hunt had calculated the
temperature variation of A using the parabolic density of states curve and
taking into account the term proportional to M* as well as the term proportional
to M* in the exchange energy?". Here, if the effective exchange energy is expanded
as a power series in A7 and taken up to the term of M°, that is,

Epe= — (1/2)a'M* = (1/4 MDBM* ~ (1/6 M)vM°, 2.7
where M, is the value of M at 0°K, the molecular field, H;, is
m = {a’ + F(M/M)* + 7 (M/Mo)*} M, (2.8)
where (/a’ corresponds to A in Hunt's paper®”. Therefore, We get

AC = 2 ppM{a! + B(M/ M) + +(M/Mo)*} = 2 ppaM, (2.9)
where
a =a'+ UMM+ 7 (M M) . (2.10)

We take the value of a’ being equal to the value of « determined from the
relation, %7’ — a =0, at the Curie temperature, so that we get «’=0.96 x 10* mole/
emu. The experimental values of « are estimated from the « vs T curves shown
in Fig. 2 and the experimental M vs 7T curve. These experimental values of «
are shown by open circles in Fig. 2, and are plotted as a function of }/ in Fig.
4. The values of « calculated from (2.10) with a’=0.96 x10%, 3=218 and 7=0,
—40 and —95 mole/emu are shown by curves (1), (2) and (3) in Fig. 4, res-
pectively. From the comparison between these curves and the experimental
curve, we estimate the value of the coefficients as a’=0.96 x10%, =218 and 7=
—40~ —95 mole/emu. The disagreement with the experiment at large values of
M may be attributed to the effect of the spin wave, because we consider here
the single particle excitations only and do not take account of the spin wave
excitations which are dominant at low temperature. From the values of &/, 8
and 7 estimated above, we get 8/a’=0.023 and 7/a’=—-0.004~—001. On the
other hand, Hunt? estimated A=pg/a’=0.1 for nickel metal which is four times
larger than our value (In his analysis, the term of M°® in E.. was neglected.).
From the values of &/, 8 and 7 found above, the exchange splitting at 0°K,
Ao=C4(0) —C-(0) =2 ppMyo(a’+B+7), is estimated as 4£,=0.380 e¢V. This value is
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F1G. 4. Values of the molecular field coefficient, «, plotted
as a function of the magnetization, M. Curves (1), (2) and (3)
are calculated from (2.10) with o/=0.96x<10% 8=218 and 7=0,
—40 and -—95 mole/emu, respectively. Open circles are the
experimental values corresponding to the open circles in Fig. 2
which are obtained from the experimental M vs T curve?®),

FIG. 5. Temperature variation of
the reduced magnetization. Curves
(1) and (2) are the calculated result
with «=0.96x10' mole/emu and a=
0.95x 10! mole/emu, respectively, and
L,05 N a broken curve is Stoner’s result for
the parabolic band with kf'/ey=0.794
and {o=1 in Stoner’s notation3).
Wohlfarth’s result for the rectangular
band with £6'/ep = 1.0416) almost pre-
cisely coincides with the curve (1).
The curve specified by exp is the
experimental one?%).
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larger than the corresponding value, 0.364 eV, obtained directly from the separa-
tion between the Fermi levels at 0°K of plus spin and minus spin?’. The origin
of this discrepancy may be due to a fairly large tailing in the upper part of the
3d band shown in Fig. 1.

For the sake of comparison between our result and Stoner’s and Wohlfarth's
ones®®, the reduced M vs T curves are shown in Fig. 5. Although the density
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of states curve used in our calculation is fairly different from the parabolic band
used in Stoner’s calculation and the rectangular band used in Wohlfarth's one,
the obtained M vs T curves resemble with each other.

§ 8. Calculation and Comparison with Experiment for Iron Metal®®

Temperature variation of the magnetization for iron metal is calculated by
the same method given in the previous section. The density of states curve for
iron metal was deduced by Shimizu and Katsuki” from the experimental data
of the low temperature specific heat and spontaneous magnetization for iron
metal and iron-cobalt and chromium-iron alloys with bcc structure by assuming
the rigid band model and taking into account the effect of g-factor on the magneti-
zation, as shown in Fig. 6, where &, ¢, and ¢- are the Fermi level in the para-
magnetic state and the Fermi levels of the plus and minus spin bands in the
ferromagnetic state, respectively, for iron metal at 0°K.

Using (2.1)~(2.6) and taking M as a parameter, we numerically calculate
the temperature variations of . and ¢- and those of « from (2.5). Calculated
results of a=4¢/(2 psM) as a function of temperature are shown in Fig. 7 for
some values of 3/. The curve specified by M=0 in Fig. 7 corresponds to the
temperature variation of the reciprocal of the calculated spin paramagnetic sus-
ceptibility without the molecular field, %, for iron metal. Open circles in Fig.
7 are the experimental values of « which are obtained by fitting the calculated
M vs T curve with the experimental result for iron metal?®.
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FiG. 6. Density of states curve for iron metal, obtained from
low temperature specific heat data and saturation magnetization
data for iron metal and iron-cobalt and chromium-iron alloys?).
Fermi levels of up and down spin bands of iron, {+ and {-, in
the ferromagnetic state and (o in the paramagnetic state at 0°K
are shown,
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¥1G. 7. Temperature variation of the molecular field coef-
ficient, @, where curves are specified by values of M in up/atom.
The curve specified by M=0 is the reciprocal of the calculated
values of spin paramagnetic susceptibility without molecular
field, %o. Open circles are the experimental values of « estimated
from the experimental M vs T curve for iron?).

We can estimate the value of « as 0.96 x 10* mole/emu from the condition,
77l —a =0, at T.=1040°K. On the other hand, we can estimate the value of «
at 0°K as 1.16 x 10* mole/emu from the exchange splitting 4¢ in (2.3) (4¢=1.59
eV) shown in the density of states curve in Fig. 6, and from the experimental
value of the Bohr magneton number, 2.125 up/atom, which is deduced from the
observed value of the saturation magnetization at 0°K, 2.2 up/atom, by taking
into account the effect of g-factor. There is a considerable difference between
the values of « at 0°K and 7.. As discussed in the last section, we expand the
exchange energy as a power series of M, and take up to the term of M/*° as (2.7).

We take the value of a' in (2.10) being equal to the value of « determined
from the relation, /7'~ a =0, at T¢, then a’'=0.96 x 10! mole/emu. The experi-
mental values of «, which are obtained from the comparison between the « vs
T curves shown in Fig. 7 and the experimental M vs T curves®, and shown by
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FIG. 8. Values of the molecular field coefficient, a, plotted as a function
of M. The curve is calculated from (2.10) in the text with a'=0.96x10,
£=10.10x10" and r=0.06x10* mole/emu. Open circles are the experimental
values corresponding to the open circles in Fig. 7.

the open circles in Fig. 7, are plotted as a function of M by open circles in Fig.
8. We can estimate the values of the coefficients 2 and 7 in (2.10) so as to give
the experimental values of « which are determined from the experimental M vs
T curve, using «'=0.96 x10* mole/emu fixed above, and we find 8=0.10 x 10* mole/
emuiand 7=0.06 x10* mole/emu. The values of a given by (2.10) with these
numerical values of «/, # and v are shown by a solid curve in Fig. 8. From
these estimated values of a', 8 and 7, we get #/a’=0.104 and 7/a’=0.063 for iron
metal. On the other hand, we have estimated a’=0.96 x 10°, =218 and 7= —40~
—95 mole/emu for nickel metal in the last section. It is noted that the wvalues
of B and 7 in (2.10) are larger for iron metal than those absolute values for
nickel metal.

We estimate the temperature variation of the molecular field coefficient above
Te, by comparing the calculated and experimental results of the temperature
variation of the magnetic susceptibility above 7. for bcc iron. The relation
between the calculated and measured paramagnetic susceptibilities, 7, and 7, is
given by 7' =7;"— ' above T., where we neglect the contribution to the 7 from
the constant magnetic susceptibility, namely, a sum of core diamagnetic and
orbital paramagnetic susceptibilities®’, which will not depend on the temperature.
From this relation, using the calculated result of 7;' shown in Fig. 7 and the
observed data of 7?", we can estimate the temperature dependence of the molecular
field coefficient a' above 7. for iron metal as shown by solid curves in Fig. 9
(a=a' above 7. because M=0.). Since the iron metal shows fcc structure in
the temperature range shown by the broken line above 7, we can get no
information about « for bcc iron in this temperature range.

If the contribution of the constant susceptibility to the measured susceptibility
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is taken into account, the values of

J\ «' at higher temperatures in ¢ phase
RN of iron, shown in Fig. 9, will be
\ reduced a little. This effect, how-
\ ever, seems to be not so important,
N because the measured value of sus-
% ceptibility at 1805°K is still large
i R and 1.70 x 10~* emu/mole?®” as com-
\ pared with the estimated value of
\ the constant susceptibility, ~1.4x
10-*emu,/mole, for chromium metal®'.
For the sake of comparison

\ between the temperature depend-
' ences of « above and below T, the
\ values of « shown in Fig. 7, which
X are determined from the calculations
\ and experiments, are denoted by
] open circles in Fig. 9. As seen
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o7
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& from Fig. 9, it may be concluded

‘i that the temperature dependences

9 of « are different from each other

" ?\\\\ above and below 7. This fact will

Te T be explained in the following way.

! % ) It is considered that the molecular

50 1000 1500 field coefficient a depends in general

T (°K) hoth on the magnitude of the mag-

FIG. 9. Temperature dependence of the netization and temperature, so that
molecular field coefficient, estimated from the below T, the value of @ may be
calculated and observed?® values of spin expanded as a power series of A/?
susceptibility above T, for bee iron. Open for small M as (2.10), and the
circles below 7. are the same as shown in coefficients will be dependent on
Fig. 7. temperature. We have estimated

the values of o/, 8 and 7, neglecting
their temperature dependences. On the other hand, above 7., the values of «
decrease with increasing temperature as shown by solid curves in Fig. 9 and
this behavior of a will be an intrinsic temperature dependence of « or «' in
(2. 10) as M=0.

The origin of the molecular field coefficient is considered to be an average
value of the exchange integrals over singly occupied electrons®?  which is
proportional to an average value of the terms, |k—Z%'[? in the case of an electron
gas, where k and %' are momenta of electrons. At higher temperatures, the
terms with large difference between k and %' will appear by thermal excitations,
so that the average value of the terms |k—Fk'|%, that is, a will decrease with
increasing temperature for an electron gas. For the real transition metals, the
circumstances are more complex because we must consider several sub-bands and
the correlation energy among Bloch electrons. We consider, however, that the
discussion similar to that given above for « in an electron gas may be applicable
to the qualitative understanding for the decrease of a above T¢ for bcc iron metal.
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§ 4. Utility and Criticism of the Stoner Model

In the preceding two sections, the temperature variations of the magnetiza-
tions for nickel and iron metals have been calculated in the Stoner model® and
it has been concluded that the magnetization dependence of « is important to fit
the calculated result on the observed one. The values of 8/a’ and r/a’ for nickel
and iron metals are shown in Table 1.

TABLE 1. The Estimated values of a', 8/a’ and 7/a’
for nickel and iron metals

e (exgl;,}iﬁole)} B/ { /e i
08610 0023 | —0.004~ —001 | present
S 0.1 " Hunt
Fe | 096x100 | 0104 | 0068 | present

Previously Wohlfarth? has shown that within the Hartree-Fock approximation
the dependence on M of the exchange energy is of the form JX,A4.M", taking
into account not only intra-atomic Coulomb integral but also inter-atomic Coulomb,
exchange and other two-center integrals based on the wave functions in the tight-
binding approximation. Until now we do not satisfactorily get even the value of
a from the first principle, although a few attempts are made by Kanamori?” and
Hubbard?*, taking into account correlations between electrons in metals. These
problems are left in future.

It is experimentally found?®” that specific heats for ferromagnetic metals and
alloys at low temperature are proportional to 7. This experimental fact can be
explained in the Stoner model, ..s the electronic specific heat is written as

Cr= 5’§—T(IJ++V—); (2.11)
at low temperature, where », and p_ are the values of the density of states at
the Fermi levels of the plus and minus spin bands, respectively. On the other
hand, it is considered that the change of the specific heat at the Curie temperature
for ferromagnetic metals cannot be explained in the Stoner model®®. Recently,
however, it is shown by Shimizu and Terao®" that this change of specific heat
can be well explained in the improved Stoner model’™®. They have shown the
difference between the specific heats in the ferromagnetic and paramagnetic states
is composed of that part due to the ordinary magnetic ordering and the one due
to the intrinsic variation of a« with temperature. The former is obtained from
the simple Stoner model, but the latter is a new term and plays an important
role at 7= 7¢. Shimizu and Terao®" have obtained an excellent agreement
between the calculated and observed results of the electronic specific heat for
iron and nickel metals below 7., by making use of the density of states curve
shown in Fig. 1 and Fig. 6 and the intrinsic variations of « with temperature
which are deduced from the comparison between the calculated and expeirmental
results of the susceptibility above 7T¢ (¢f. Fig. 9 for iron metal).
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It is noted that not only for paramagnetic metals and alloys but also for
ferromagnetic ones, the temperature variation of the electronic specific heat can
be explained in the band model, by making use of the density of states curve
which is determined from the experimental data of the low temperature specific
heat by assuming the rigid band model.

As seen in this chapter, the outline of the magnetic and caloric properties
for ferromagnetic metals and alloys can be explained in the Stoner model. How-
ever, the detailed magnetic properties, for instance, the temperature variation
of the magnetization at low temperature® and the temperature variations of the
susceptibility and specific heat just above 7¢**, cannot be explained in the Stoner
model. The precise calculation of thermodynamical properties just above 7 has
been carried out in the Ising model and the Heisenberg model and it is found
that the short-range ordering of spins seems to play an important role®! Until
now, these properties, however, have not been studied in the itinerant electron
model.

In the Stoner model?®, the temperature variation of the magnetization at low
temperature is expanded in the power series of k7T as

My— M _ (=kT)* 1;:_/_1'..:1-1/;/7;{__2-.___ ) (2.12)
I 3 vy +v2"— 4 upa

up to the power of 77, where ». and ». are first derivatives of the density of
states with respect to the energy at the Fermi levels of the plus and minus spin
bands, respectively, and M, denotes the value of the magnetization at 0°K. The
numerical values of the coefficient of 7% in the right-hand side of (2.12) for
nickel and iron metals are roughly estimated from the densities of states shown
in Fig. 1 and Fig. 6 as 0.2 x 107° deg™* atom~! and 0.1 = 10-7 deg~? atom™', re-
spectively. It is, however, experimentally found that the magnetization decreases
with increasing temperature as 7%* not as 7° at low temperatures®. This
discrepancy between the calculated and experimental results on the temperature
variation of M depends on the fact that the fluctuations of the magnetization,
that is, spin waves are neglected in the Stoner model, which is discussed in the
next two chapters.

Chapter III. Phenomenological Theory of Spin Waves

§ 1. Introduction

In the Heisenberg model, Bloch® has first shown that spin waves exist in a
ferromagnet and make the magnetization to decrease with increasing temperature
as 7%* Herring and Kittel* have shown in a phenomenological way that spin
waves can exist in ferromagnetic metals and alloys as follows; the energy due
to the fluctuation of the magnetization can be expressed as

A oM., \*
o S(—a—%) ds, (3.1)
for an isotropic ferromagnetic medium, where M., M, and x, are the »-component
of the magnetization, the magnitude cof the magnetization and one of the coordi-
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nates, respectively. Herring and Kittel! showed that the Hamiltonian for free
spin waves is derived from (3.1) as

= D hwang, (3.2)
q

where 7, 18 the number operator of spin waves with momentum ¢ and
hwg= D¢, (3.3)

for the long wave length limit of a spin wave, and D=4 pzA/Ms. The coefficient
A in (3.1) is the so-called *‘exchange stiffness constant”.

From (3.3) and by using the Bose distribution function for spin waves, it
is easily shown that both the magnetization and the specific heat at lower
temperatures vary with temperature as 7T%% At first sight, the fact that the
specific heat at lower temperatures varies with temperature as 7%* seems to be
incompatible with the experimental results, although the dependence on 7T of the
magnetization can be explained in this theory. But this is not true, because
(3.1) denotes only the energy due to the fluctuation of the magnetization. For
ferromagnetic metals, there is another energy which depends on the average
magnetization and is taken into account in the Stoner model, as shown by
Shimizu!™®, Therefore, at lower temperatures the dependence on T of the specific
heat given by (2.11) in the Stoner model is a dominant term, but the dependence
on T of the magnetization (2.12) is not so.

In this chapter, we treat only the energy due to the fluctuation of the
magnetization. The Hamiltonian for the free spin wave is derived from (3. 1),
while the spin wave interactions are not contained in (3.1), as suggested by
Keffer and Loudon®. This is due to the fact that the expression (3.1) is valid
only for the long wave length limit of a spin wave. Thus we must find an
expression for higher-order terms than the terms in (3.1), in order to discuss the
spin wave interactions.

Recently, Marshall®® has phenomenologically discussed the spin wave interac-
tions and obtained a dispersion relation for spin waves,

Bwr = ak’ + S bE R n, (3.4)
<

by a simple physical consideration, where nz is the occupation number of spin
wave with momentum %’. The second term in (3.4) shows the spin wave-spin
wave interactions. In the Heisenberg model®®®, the spin wave interactions are
obtained in the same form as the second term in (3.4). On the other hand, a
form similar to (3. 4) was derived in the itinerant electron model®.

Herring has semi-phenomenologically obtained the value of 4 in (3.1), by
studying the response of a uniformly magnetized material to a perturbing field®®.
In §4, we try to determine the parameters given in §2, in the perturbation
method.

§ 2. Spin Wave Interactions by a Continuous Medium Model®

(A) Effective Energy
The energy density due to the fluctuation of the magnetization density M (r)
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may be expressed by a power series of the derivatives of M with respect to the
space coordinates. For an isotropic ferromagnetic medium, the expression for
the energy density should be invariant for the inversion of the direction of the
magnetization and for that of the coordinate axes. The expression for the energy
density can be classified in the following way.

1) Terms with two M.,’s and two derivatives:

2 2
(L), D

II) Terms with four M,’s and two derivatives:

o M,L
oxe

an aMu

i oM, ) .
OXe OXa

MM Dy

M2 MM,

1) Terms with two M,’s and four derivatives:

o'M, oM, M.,
0%« 0X30X10Xs OXe OXy0X+0X;5

oM, M,

OXoOXy OX10%;

M,

1V) Terms with four M.,'s and four derivatives:

oM., oM, oM, aM;L
O%. OXxs OX+ OX;

oM. oM, M.

IYe *M, oM. oM,

M.,

2%, Oxs Ox.0%; Y Px,0%; Ox; OX;
2 M. M, M, M,
M, DX,0%, OX:OX5 vM, OXLOXy OX1OXs
2 0M,.  °M, Mo oM M,
Y O%e O0X30%,0%; VI D% OX50X10K;
4
MM oM,

¥ OX 0%y 00Xy

where o =8, r=6 or a=7, =0 or =4, B=7 in IlI) and IV). We discuss only
the terms which belong to these four classes in the expression for the energy
density. As discussing in (B), we need not find the terms which have more M.’s
and more derivatives than the terms shown above, in order to discuss the leading
terms in the spin wave interactions.

As an energy of the isotropic ferromagnetic medium is given by an integra-
tion of the energy density over the whole volume, all terms in the above expres-
sion I)-IV) for the energy density can be reduced to a few terms. As we assume
an isotropic medium, the energy density must be invariant with respect to a
rotation of the coordinate axes by an arbitrary angle. A term in one class of
D-IV) is never mixed with a term in another class by a rotation of the coordinate
axes, because the expression in the new coordinate system after a rotation must
be the same derivative form of the magnetization as that in the old coordinate
system; for instance, 9M,/9x, is transformed to a linear combination of 9,/2&;
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by a rotation of the coordinate axes, where & is a new axis after the rotation
and is connected with old axes, x, by Euler’s angles and A/, is the zn-component
of M in the new coordinate system, Therefore, we can treat the terms I)-IV)
separately.

Case I) The second term is reduced to the first one by a partial integration,
The expression for the energy in this case can be written as

8]% v

= M ax (3.5)

where Ms is the average magnetization. This expression is the same as (3.1)
obtained by Herring and Kittel™,

Case IT) Since the first and second terms are not mixed with the third one
by a rotation of the coordinate axes, we treat the first and second terms at first.
The energy density for these terms is written generally as,

z vaPGMuM;A, ?Mp aﬂ/jc .

@Yl Py O 0%y OXu (3.6)

From the condition for the invariance of this expression (3.6) by a rotation of
the coordinate axes, we can obtain the following relations,

b\a\ay_;‘; bu,.z,‘;p. b Tty — 1/3)5\:‘4\;»’

for all » and u (v*=p), and other p*#7’s are zero. Substituting these into (3. 6),
we can obtain the same expression as (3.5) by using the relation, >, M% = 2.
(As mentioned in § 1, there is another kind of energy which depends on the
average magnetization, from which the value of A is determined. Using that
value of Ms, we calculate only the energy due to the fluctuation of the direction
of Ms, but we do not consider the energy due to the change of the value of
(M1

By the same consideration as shown above, the third term in II) is also
reduced to (3.5).

Case III) As the energy of the medium is given by an integration of the
energy density over the whole volume, the first and second terms in III) can be
reduced to the third term by partial integrations. By the consideration similar
to that in the case II), we can obtain a new expression for the energy in the
case 1II) as,

B = %v’;,A‘( aifg;ﬁ )2dr, (3.7)

Case I'V) We can obtain another expression for the energy connected with
the terms in IV) as follows:

pv = Lo 5 [(9 (O Y g
* z\?s ey Al %f)(%ﬂﬁ)(if;"”)ﬁiﬁ )d=. (3.8)
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The expression for the total energy due to the fluctuation of M can be written
by the sum of (3.5), (3.7) and (3.8).

(B) Transformation to Spin Wave Operators
We transform M () to the field variables defined by Holstein and Primakoff,
a(r) and a*(r), which are assumed to satisfy the following commutation relation'®,

la(®), a" (¥ =6(r— ). (3.9)
We have

/
M) = (2g3M3)1’2{1 gB T WPalr) }lza(r),

M) = (2g8M) " a* () 1= 50— a* (Na(n |, (3.10)

M*(v) = Ms— gBa*(r)a(r),

where M*=M,+iM,, g and @ are the gyromagnetic ratio and Bohr magneton,
respectively.

Creation and annihilation operators of spin waves, afay, are obtained by the
Fourier transformation of a*(r) and a(r) as follows:

(l(?‘) \/ //// EeXp (lkr)dk >

(3.11)
a (r) = N V Stexp (—ikr)a,
for volume V, and the commutation relation is given by
Lag, ail=idr, v (3.12)

Assuming that M, is large enough, we can expand the square roots in (3. 10),
and by using (3.11), M * and M? are expressed by the spin wave operators in
the following way.

12
M*= (w‘?«gt’g/_Mi) [E exp ( £ ikr)af
4M 7, Zexp {i( =kt B+ k) riaial as ]
M= Ms— «—%722 exp { — (k& — ko) r}iai ar, (3.13)

where 1, 2, 3 denote ki, %, ks. We assume that & has a cutoff momentum ke
such as (V/6x°)kl= N, where N is the total number of particles with spin.

By substituting those expressions (3.13) into (3.5), (3.7) and (3.8), the
Hamiltonian can be written by the field variables of spin waves. For the first
part of the energy (3.5), we can obtain diagonal part, taking up to the order
of Ms*, as follows,

2 gBA BN <o
Ms {H" 2VMSJ%;3”5" (3.14)
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without a constant energy, where 7 = a¢fa;. On the other hand, the off-diagonal
part is obtained as,

é’fﬁ 2 (2t~ k)= K - Kibal a7 @ a0+ e — ke — R, (3.15)

where 3’ denotes the summation except the terms of ki=Fk;, ki=k and kh=k,
ky=Fs.  Therefore, the contribution to the energy from this off-diagonal part is
higher-order than A/;°.

For the second and third parts of the energy, (3.7) and (3.8), we can obtain
the diagonal part up to the order of Ms°.

2888 <1+ SBN )Sjk‘;m;

Ms 2VMs

BB 0212 2Ry Ten) ) e, (3.16)

TV &

and

2% (67 N\ 4 .
S0 (5 o D)

252
+ %%9; 2H2C+3D) (ko ka)*+ (2C+ DVE B oume,  (3.17)
s 1,2
respectively. The off-diagonal parts of (3.7) and (3. 8) contribute to the energy
at the order of M°.
From (3.14), (3.16) and (3. 17), the total energy up to the order of M
given by

E= 2‘%%4 Zk 2g§~‘-8wl»2k4nk
5

2{/5’,;2 SH{(2 B+2C+3D) (ko) + (B+2C+ D) Bk, (3.18)

where A’ and B’ are written as,

o 5/8
21%\23}+ 5%’2%45(67§N) (5¢+D).

0g

In the case where C and D are zero (as in the case of the Heisenberg model),
our treatment is a good approximation, when (gfN/2 V) <1 (This condition is
equivalent to the condition, 2 S>1, in the Heisenberg model, because N is the
number of atoms and gB/Ms=V/NS in this model, where S is the magnitude of
the spin per one atom). The terms proportional to s, in (3.18) represent the
spin wave interactions and have the same form as (3.4), which was found by
Marshall®®, when we write



200 Hideji Yamada

1}:,2‘ (kpka)gnlng = % ]22/?3% %nin%

because n; does not depend on the direction of %k by the assumption of the isotropic
spin waves. These interaction terms can be approximately reduced to the coef-
ficient in the energy for one-body, A, as

5/2
S H ki non =2 3 G > K= 122 V(250 062 Sk,
> & 3
where ¢ > denotes the mean value for the thermal equilibrium states and kp and

¢(n) are the Boltzmann constant and ¢-function, respectively. The dispersion
relation for spin wave is given by

o= g‘? AR 288 “gﬁ B, (3.19)

where

oy 1%?(5?;&) (3B+—,§~C+2D>C(5/2>-

This shows that the effective exchange stiffness constant, A*, varies with the
temperature as 7'%%, which was observed by neutron diffraction experiments even
for 3 d-transition metals and alloys*.

Now we discuss the validity of the approximation where we have taken account
only of the terms in cases I)-IV) in the expression for the energy density in (A4)
of this section. As we can see from (3.13), one spin wave momentum, k, is
derived from the first derivative of M with respect to x in the energy. On the
other hand, it can be seen that one M gives at least one spin wave operator,
a; or a;, in the leading term of the energy as follows. The leading term of M *
is @i, but in the case of M?, one M? gives two spin wave operators, when a
term consists only of derivative forms of M,. When a term has one M, not as
a derivative, another M, must be included as a derivative unless this term will
be reduced to a simpler form by using >WM5 = M3, e.g. one M? gives M and
another M? gives two spin wave operators in the leading term, if »=2z  Thus
we can consider that the leading term in the energy has the same number of
spin wave operators as the number of M included in the energy due to the
fluctuation of the magnetization. Therefore, the three terms, k'nz, k'ng and
k" nrne are the leading terms obtained only from the cases I)-1V), and other
cases lead to higher-order terms in the expression for the energy than the terms
given in (3.18) at low temperature, for instance, &Snr, Bk ninz efc.

(C) Classical Treatment of Spin Waves with the New Expression for the
Energy

We have obtained the expressions (3.5), (3.7) and (3.8) for the energy due
to the fluctuation of the magnetization. It has been found that the leading term
derived from (3. 8) corresponds to the interactions between spin waves as shown
in the previous section, so that we can approximately include the contribution of
the interaction part in (3.8) to the energy if we make use of A* and B' instead
of A and B in (3.5) and (3.7), as shown in the following Hamiltonian,
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A% 7/ DM\ a M,
= m%j(a\:) ds + Ms v, a B ar“ax‘

The equations of motion for the magnetization density at point r are given
by

= iiMe(r) = [, Ma(r)].
Using the commutation relations such as,
[Mx), My(r"]=1igBM:(r)d(r—1'),

which are obtained from (3.9) and (3.10), we can get a equation of motion as

M= TMX He_t, (320)
where
2A% _, 2B _,
L2 i — ‘M, (3.21)
Hoe= Zpp VM= 0V
s @ gios 9
V=23 T i3 oxion

and 7 is gB/7i and H,. denotes the exchange field. The first term in H,. was
already derived by Landau and Lifshitz‘?, and Herring and Kittel*”. The second
term is the correction to the first term and corresponds to the fourth power of
spin wave momentum in the energy of the spin waves. It will be seen that this
expression (3.21) is very useful for the classical analyses of the spin wave with
finite wave length.

§ 3. Observed Values of the Exchange Stiffiness Constant

In experiments the values of D (=4 uzA/M;) are observed by the following
three methods for ferromagnetic metals and alloys.

(D) Inelastic neutron Scattering

In this method, Sinclair and Brockhouse®’ first observed the dispersion relation
of spin waves for fcc cobalt. Recently this method has been advanced and many
measurements of the spin waves for various ferromagnetic metals and alloys have
been reported by the diffraction method, the small angle inelastic scattering
method and the triple axis spectrometry. Shirane ef @/*V*® have reported the
dispersion relation of spin waves which deviates considerably from the quadratic
law (3.3) for iron and fcc cobalt metals. This fact shows that the value of B’
in (3.19) is large for these metals.

At present, there is an interesting question where the dispersion relation of
spin waves for fcc cobalt has an anomaly or not.  Frikkee and Riste'®, Furrer
et al.'” and Frikkee'® have found an anomaly in the dispersion relation of spin
waves for fcc cobalt. They have connected this anomaly with the Kohn anomaly
or with the interaction between spin waves and phonons. However, the connec-
tion with Kohn anomaly cannot be expected from the calculation within the
random phase approximation, as mentioned by Mattis*. On the other hand,
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Riste et al.®® and Pickart ef al.*® have not observed such an anomaly in the
dispersicn curve for fcc cobalt.

(IT) Spin wave resonance

The experiments of the spin wave resonance have been carried out for thin
ferromagnetic films. In the model which was proporsed by Kittel*”, the surface
spins on the film are pinned out by the surface anisotropy, under this boundary
condition for spins the equation of motion (3.20) with the first term of (3.21)
gives a series of resonance frequencies, and the value of D can be deduced from
the separations between these resonance frequencies.

Weber and Tannenwald®® have measured the temperature variation of the
absorbed line separations and reported the 7' dependence of D below 80°K for
permalloy film. On the other hand, Phillips and Rosenberg®’ have observed the
T4 dependence of D for nickel film. Recently Phillips®® has observed the
temperature variation of D for iron film and shown that the data can be analysed
into the terms of 7 and 7°%?, though the data show the dependence closed to
T%2  The T%* dependence of D is led from the spin wave-spin wave interactions
as shown in this chapter, A* in (3.19).

(III) Temperature variation of magnetization at low lemperature

As mentioned previously in this chapter, the magnetization decreases with
increasing temperature as 7% (Bloch's law). The coefficient of 7%* is propor-
tional to D-%*. Thompson ¢f al.* have shown that for unsaturated ferromagnetic
metals the coefficient of 7'%? in the temperature variation of the magnetization
is composed of the two terms which are derived from the free spin waves and
from the coupling between spin waves and individual electrons via the molecular
field. However the basis of this theory is not confirmed.

The observed values of D by the three methods mentioned above are shown

TABLE 2. Observed values of D by inelastic neutron scattering (NS),
spin wave resonance (SR) and the temperature variation of the
magnetization at low temperature (M). The unit is eV A?

NS ! SR M
Fe | 0.2 (41) ‘ 0.34 (55) | 031 (59)
028 (57) : 0.27 (58) 0.23 (60)
027 (44) i 0.28 (61)
| 028 (45) |
Co 037 (43) ’ 0.35 (62) | 0.33 (63)
(fce) 0.17 (46, 47)* i
C0.28 (48)* ?
0.38 (51) }
0.37 (45) |
(hep) 0.49 (64) j; 0.40 (60)
Ni 0.40 (41) 0.41 (62) 033 (65)
0.36 (50) 0.44 (58) 0.6 (8)
0.37 (51) 0.34 (60, 66)
0.37 (61)

Numbers in the bracket denote the number of references.
% An anomaly was found in the dispersion curve of the spin wave,
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in Table 2 for iron, cobalt and nickel metals. The fact that a good agreement
is obtained among those values shows the validity of the phenomenological theory
given in this chapter.

§ 4. Evaluation of Exchange Stiffness Constants 4 and B

In this section, we determine the coefficients 4 in (3.5) and B in (3.7) for
ferromagnetic metals by the perturbation method as Herring evaluated the value
of A%,

When a perturbing field

Hy =1 cos (g°7), |
. (3.22)
H, =hsin (g-r), f

is put on a uniformly magnetized material, the magnetization will fluctuate as

My =m cos (g-r), [ (5.29)
My =m sin (g*r), | '

where m is the amplitude determined later. The increase of the energy due to
the fluctuation of the magnetization (3.23) is obtained as

A 2 2 B C+D
{Mfé mq + M m g+ S m‘q"}V, (3.24)

from (3.5), (3.7) and (3.8), where V denotes the total volume. On the other
hand, the gain in the energy due to the magnetic fleld (3.22) is written as

- frmyde = = mav. (3.25)

The amplitude of the fluctuation of the magnetization m is determined so as to
minimize 4E, the sum of the energies (3.24) and (3.25), and we get

M (C+DVg'HM s

= - . s, o
m 2(A¢*+Bq') 4(Ag+Bg)' (3.26)
Using (3.24), (3.25) and (3.26), we obtain
oo MV BC+ DIMiGV
AE= " fag+Byy T T I6(A+Bg) (3.27)

From (3.27) it is found that the values of A and B can be evaluated from the
coefficient of k! in 4E, but C and D are evaluated from the coefficient of /2.

In the Heisenberg model the Hamiltonian is the sum of scalar products of
two spin vectors on the different lattice sites. Therefore, the term of 2! in (3.27)
does not appear in the Heisenberg model (¢f. (3.8)). On the other hand, in the
band model the change of the energy 4E by the perturbing field (3.22) in a
ferromagnetic metal can be expanded in an even power series of /2 by the usual
perturbation method, so that the terms of C and D are characteristic of the band
model (In the s-d model®, the indirect interaction between two spins is obtained
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by the second-order perturbation theory and fourth-order perturbation theory
gives an interaction between four spins, so that the terms C and D exist also in
the s-d model.). Unfortunately, the fourth-order perturbation calculation is very
complicated and tedious for electrons in metals and we calculate only the term
of the second-order perturbation, that is, the term proportional to 4* in 4E and
find the values of A and B.

The Hamiltonian of electrons in the perturbing field (3.22) is written as

- 2092 _ :
= E[ - %*Z?’ + 2V (i — Ry) — ’—%’«’ {exp (ig-ri)o- +exp ( —ig-ridor}

+ —;‘EU(IW" 7il), (3.28)
i%)

where V(r;j—R,) is the potential of the i-th electron due to the ion at R, ¢
denotes the Pauli spin matrix and ¢.=g:+iocy and »(|ri—r;|) is the Coulomb
interaction between the i-th and j-th electrons. We assume the wave function of
electrons to be expressed by a single Slater determinant.

For the sake of simplicity, we take the unperturbed ground state to be a
saturated ferromagnetic one and assume the unperturbed wave function of an
electron with momentum % and spin ¢ to be a product of the orbital wave func-
tion ¢x and the spin one £,. The perturbed wave function of an electron can be
expanded in a power series of . as

Gien = Prio+ 20 {hU ke, 0') + WV (ka, ld")} 150, (3.29)
L, o

where the quantities U and V are determined later so as to minimize the total
energy. The orthonormal condition of ¢, is written as

Ulka, ls') + U™ (1, ke) =0,

. l (3.30)
Vike, 16') + V*(Id', ko) + >3 U*(16', pa")U(ka, pa') = 0. I

l”all
Using the single Slater determinant which is constructed from (3.29), we

calculate the expectation value of the Hamiltonian (3.28) up to the order of A%
The wave function ¢r is expressed by the Wannier functions as

L

or(r) = N

Eexp (ik'Rn)W(r-Rﬂ,), (3. 31)

where N is the number of atoms. To calculate expectation value of the third
term in the square bracket of (3. 28), the quantity

S«p,’ﬁ_w exp (ig+r) prde

is rewritten by the Wannier functions. We assume that the Wannier functions
are well localized, and take only the integrals on a single lattice site as
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’%’T‘ES exp { - ?{(k -+ q) 'Rn + iq’?'+ Z‘k'R:m}w%( i Rn)u)(r - Rﬁz,)d'{'

’;jexp(z'q-r)lw(r)!zdrzP(q}. (3.32)

For the Coulomb matrix elements, we make use of the approximation

Vae[aeri 0060 = 1) g P g ()
;—jl\—,~<1+](k4—kg)}a(kﬁkg—ka—k4), (3.33)
where
1= {a{actw)Fwin Potr =21,

J@) = > exp (z‘q'Rn)j‘drydr’ w*(rw* (' = R)v(r = rDw(r — By w(+),

n{=x0)

5 (ot Ky — o — Je) j 1, for ki+ ke —ks— ki=0 or K,,
e For — Joy — Fet) =
' p l 0, otherwise,

here XK, is a reciprocal lattice vector and I and J denote the intra-atomic Coulomb
integral and the Fourier component of inter-atomic exchange integrals, respec-
tively.

Using the conditions (3.30) and approximations (3.32) and (3.33), we get
the total energy in the perturbed state as

E(h) =EY + E®p, (3.34)

up to the order of %%, where

E'" =33e(k) + -%2{](:%—1{')—](0)}, (3.35)
i ke, K )

E® = 2{&(1) —e(k) — };,U(z— Y~ J(E—K)}
. 4
—n{I+JO)1UQL, EVDUET, 1)
—/JBP(Q)%‘{U(M, E4+ql)—=Uk+ql, k1))

+<1+](q)}% Ulk+aql, kDU, B +gl), (3.36)
kK

7-?. 2
e(8) = {argi] - SL L V- R o

and z is the number of electrons, that is, usn is the magnetization because we
assume the ground state to be a saturated ferromagnetic one. In (3.35) and (3. 36),
the summations over k and %' are restricted in the occupied state, that is, k|,
|K'|<ks, where ks denotes the Fermi momentum of up spin band. The summa-
tion over I is not restricted because the down spin band is empty. The energy
(3. 35) is the unperturbed total energy and (3.36) denotes the change of the total
energy due to the perturbing field.
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The value of U is determined so as to minimize the energy (3. 34) with respect
to U and we get

P(q)‘LLB
Fk+q)— k) +n{l+J0)}

% 1 L (3.37)

_ I+ ]Jig)
1 % Sk +g)— k) +n{I+JO0)}

Ugt, 11 =0, k+q)

where

(k) = Zf(k k.

From (3.36) and (3. 37), we get

E=E® —%W(q), (3.38)
where
- Zo(q)
=P 2 CRRd .39
1) =P T )2 (3.39)
and
L (3. 40)

y — 2 .
@) =22 S T T I 00}

here (3.39) is the similar expression to that obtained within the random phase
approximation®® .
Inserting (3.38) into (3.27), we get

MV

A¢+ Bqg' = - ) (3.41)

Expanding 7(g) in a power series of g, we get A and B as,
Af = — »Ygi(q'V)zf(O)+ %%{%(q-vﬁs(m— —}T{(q'V) E<k)>2j~ (3.42)
Bg'=2Aq{1-P(g) )+ -9%— Zk}(q- Vs (k)
_ _EKZ SH(g- V@)Y
- E%E{(q-V)E(k)}((Q‘7)35(k)}
+ 842 Z((q (R (g V)*E (k)
- ‘473" %{(q-v)g(k)}4

2

N %Z[%ié(qwﬁ;w“ S R(CRIEISY

2
- %(q-vmo). (3,43)
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The result (3.42) is exactly the same with the corresponding term in the
dispersion relation of a spin wave, which was obtained within the random phase
approximation for a saturated ferromagnetic state®®® but in the case of the
higher-order term proportional to ¢' there is a difference between our result (3.43)
and the corresponding term which is obtained in the spin wave theory as,

By’ = g5 S3a- V2 (k) = 55 S (@ V7 ()’

|

%%guwmamM@w%%w
+§%%quamwmw%m>
- SiH(g- D)

“'E%ggffgg‘@’v>zg<k)3'iig<(q-V)zthfj

2V < Nt = ¢
- 2T IS e e

-+

o S (@ Vs

V(g7 T0)

+—%?%;(q~V)?10)-§§<(q~v>5(k>}? (3.44)
This difference is due to the fact that our results (3.42) and (3.43) are calculated
from the static susceptibility 7(g) and the dispersion relation of spin waves is
calculated from the dynamical susceptibility 7(g, w), that is, the response of the
magnetization to the external field with frequency w, within the random phase
approximation®. The dynamical effect is not treated in this section, because
we have calculated the response of the magnetization to the static field (3.22),
and it is a problem left in future how to treat this dynamical effect in the
phenomenological theory.

Chapter 1V. Microscopie Theory of Spin Waves™

§ 1. Introduction

Recently, using the method of normal mode, Englert and Antonoff* obtained
the dispersion relation of a long wave length spin wave in metals within the
random phase approximation which is used successfully in the theory of plasmon
in an electron gas™ ™. They have shown that the coefficient of the square of
momentum in the dispersion relation of spin waves consists of two parts. The
first part is derived from the intra-atomic Coulomb integral based on the Wannier
functions and is closely related to the electronic structures of the metals. The
second part is derived from the inter-atomic exchange integral. The latter is
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the same as the result which is obtained in the Heisenberg model. It is very
instructive that the contributions to the dispersion relation of spin wave from
the itinerant and localized characters of electrons are additive, because it is
considered that the ferromagnetism of 3 d-transition metals can be explained by
a compromised model of the itinerant model and the Heisenberg one.

Englert and Antonoff®®, however, have neglected the effects of the correlation
among electrons and of multiple bands on the spin wave spectrum in their calcula-
tion. An appropriate treatment of the former effect will be very difficult and
we will not discuss it. The purpose of this chapter is to investigate the latter
effect, that is, the dispersion relation of a spin wave in ferromagnetic metals
with multiple bands. Two attempts on this problem have been made by Mattis'®
and Thompson!?. Mattis'® has obtained the dispersion relation of a spin wave
from the equation of motion for spin operators, but his treatment is restricted
to the case of two degenerate bands with only the inter-band exchange interaction.
On the other hand, Thompson'?’ has treated more general case by the variation
method and obtained two kinds of spin wave spectra, optical and acoustical
branches. In-both calculations, the state of electrons with a spin wave is described
by a linear combination of the wave functions in the excited states which are
made by reversing one spin only in the same band in the ferromagnetic ground
state (¢f. (4.8)), and off-diagonal matrix elements of the Coulomb interactions
among different sub-bands are neglected, so that the effect of inter-band transitions
with a reversed spin on the dispersion relation of spin waves is neglected.

Taking account of the effect of inter-band transitions on the spin wave
spectra, we will investigate the spin wave spectra for ferromagnetic metals with
multiple bands by the method of normal modes in this chapter. In §2, we
transform the Hamiltonian for electrons with multipie bands so as to be appropriate
to the Hartree-Fock approximation for one particle energy, because we adopt the
(extended) random phase approximation’. Using this transformed Hamiltonian,
we study the equation of motion for spin flipping operators and obtain an
eigenvalue equation, which gives the excitation energy of normal modes, in § 3.
To examine the solution of this eigenvalue equation, we consider the limiting
case where the wave vector of the normal modes is zero in §4 and moreover, we
get the dispersion relation of a spin wave with long wave length in §5. In §4
and § 5, it is found that spin wave spectra consist of one acoustical intra-band
branch, some optical intra-band branches and other branches due to the inter-
band transitions. Hereafter we call this spin wave due to the inter-band transi-
tions as infer-band spin wave.

The coefficient of the square of momentum in the dispersion relation of the
acoustical intra-band spin wave is given by the sum of Dy and Dy which are
derived from the intra-atomic Coulomb interaction and inter-atomic exchange
interaction, respectively. We roughly estimate the value of Dp, which is closely
related to the electronic structures, for nickel metal, assuming two appropriate
sub-bands. In §7, it is pointed out that the inter-band transitions have important
effects on the dispersion relation of the acoustical intra-band spin wave in the
multiple band model. '

The whole spectra of the excitations of electrons with a reversed spin are
calculated in the single band and two band models and the cut-off momentum of
the spin wave is discussed in the single band model in §8 and §9.
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§ 2. Hamiltonian in the Multiple Band Model

The Hamiltonian describing electrons in a periodic lattice potential may be
written as,

= ity + A,
:.JJO b Eév(k)ck'mckvm

S = 5 > > IV kw, Bz ks, Favs)

]n kg vaerrve 6o’

X Clu\df’ ckz\'zo’ Clegvant Clepuyny (4.1)

where cj.. and cr,, are creation and annihilation operators of a Bloch electron
with momentum %, spin ¢ and sub-band index p in the first Brillouin zone, and
they satisfy the usual anti-commutation relations. © The matrix element V(Zu,
Feava; Kavs, ksws) is given by

V(kws, keve; kws, Kavs)

= SSdrxdrzqs;fl-,,(rﬂqﬁf,\,s(rz)v(l 7= 12 ) Pr o 71) Grpy(12), (4.2)

where gr. (r) is the eigen function of the one-electron Hamiltonian, that is, the
sum of kinetic energy and periodic lattice potential, and »(|m—7:|) denotes the
Coulomb interaction. The matrix element (4. 2) subjects to the following momentum
conservation,

k1+kz—kz—k4=0 or Kn. (4—-3)

where K, is a reciprocal lattice vector.

The sub-band indices »; in (4.1) are not suitable for describing one electron
states, because the off-diagonal inter-band matrix elements of %7 are not zero,
as shown in the Appendix A. In order to eliminate those off-diagonal inter-band
matrix elements of . within the Hartree-Fock approximation, we make use of
another expression for the Hamiltonian, which is derived in Appendix A, as follows,

= Z E,o( k& )a?,-'m [35%]

+ 5 2 > Z YWy, ko2 Kby, Kafas) @i malu 10t QL% Qe yn

fererka B34 507

-3 E WiEkiEy, Eafes Fafs, Eabo) Mieyt,o Qs Qieytyor

ST '1':3: an’

+l%_v h;272r W(ki&1, Fofas Fofe, Kifs) Migteo Ufsis Ciysns (4.4)
where the Hartree-Fock energy E,(k) and matrix element W(k:5:, k.55 ki, Eaf)
are given by (A.8) and (A.6), respectively. The first term in the right-hand
side of (4.4) is the Hartree-Fock Hamiltonian, the second term denotes the Coulomb
interaction and the third and fourth terms are corrections to the first term. The
Hamiltonian similar to (4.4) has been given by Hubbard?® for electrons in the
model of a single band which is paramagnetic.

From (A.9), we get the following condition for matrix element W, in the
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same approximation as that used in obtaining (4.4),

%W(ké, P pn kE) gz — mixy) =0, (A=) (4.5)
by taking up and down spins for ¢ in (A.9).

§ 3. Integral Equation for Normal Modes

An operator which represents a normal mode of spin flipping with momentum
¢ is defined by

A; = Eflu(qv P)[L;M;t\l Apusy (4.6)
AR

where we must interpret p-+q as p+g— K, in order to reduce p+g¢ in the first
Brillouin zone when p+¢ is outside this zone, and we take here up and down
spins to be majority and minority spins, respectively. Coefficients f.(g, p) are
determined by the following equation of motion,

hodgs =L Al (4.7)

where .7 is given by (4.4).
The spin wave state with momentum ¢ treated by Mattis'® and Thompson'® is

%fu-u(q, ) a;;+a.ul aput Vo, (4.8)
where ¥, is a wave function of the ground state. Our aim is to find the eigen-
values of the elementary excitation with a reversed spin for the Hamiltonian
(4.1) or (4.4) in the multiple band medel and to show that some of these excited
states correspond to the spin wave states. Therefore, we must not define ¢ priori
the spin wave state as (4.8), though (4.8) is equal to (4.6) at ¢=0 as shown in
§4.

Evaluation of the commutator (4. 7) is straightforward, but the result is a
complicated expression involving a sum of products of either two or four creation
and annihilation operators. For the products of four operators, we use the
(extended) random phase approximation™ as

"
Qpeyx40, a!tz?,:ﬂz Aiey5yos Qe gos
= 7214151“1{61. "a:’tﬁz"zaka‘w"a - 51.3a,;:"z‘,zdzak4?4’7()
+ (I NN (52,3021-‘.-;, Afegsang ™ Js, x(l;ﬁm,dl:,'.,o,}, (4.9)
where d1,, denotes a product of d-functions, 6(ki— ki) 6(&1—&:) 0(o1—a2), and g,
is the expectation value of an occupation number in the ground state of the

unperturbed Hamiltonian given by the first term in (4.4). Then, from (4. 6), (4. 7)
and (4.9) we get

{E\i(p+q) = E,+ (p) — fo} frulg, p)
=2 Wp+ad, kn; E+gi, pu) e = megry el 7) =0, (4.10)

by identifying the coefficients of @j.q:; @yt in the left- and right-hand sides of
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(4.7). The excitation energies of spin waves are given by eigenvalues 7w of
the integral equation (4. 10).

If we start from the Hamiltonian given by (4. 1) and the normal mode (4. 6)
where a* and ¢ are replaced by ¢+ and ¢ we get a very complicated integral
equation which is not so simple as (4.10), and furthermore this treatment is
meaningless, because the sub-band indices p; in (4. 1) are not suitable for describing
one electron states, as mentioned in § 2.

Before discussing (4. 10), we simplify this equation by using some approxi-
mations for the matrix elements, W(p+aql, ky; k+¢gf, pp). We first write the
matrix elements in terms of the Wannier function,

wilr — R) = ijﬁh}exp (—1kR) ¢r:(1), (4.11)

where IV is the number of lattice sites. From (A.6), we can get

W ki1, kb2 Eifa, Ksbs)

= 1 S exp (= ikRy— iTaRs + iRy + ikaRy)
R Ry

X SSdrdr’w?’,(r« R)wi (v — B o(lr — vDws,(r — R)ws, (v — Ry).
(4.12)

The inter-atomic exchange integral (Bi=R;, R,=R, in (4.12)) is important,
although the intra-atomic Coulomb integral (Bi=R,=R,=R,) is fairly larger than
this integral, because these two integrals contribute to the dispersion relation of
a spin wave in different ways as mentioned in §1. Following the treatment of

- Englert and Antonoff*®, we also make use of the approximation,

W(ki&r, Fobe; ks, Eafs)

:Jﬁ{U(&, Eo; £ &) F T ks — Ky ¢ £r, Ba5 Ea &), (4.13)

where J denotes the inter-atomic exchange integral and U denotes the sum of the
intra-atomic Coulomb integral and other multi-center integrals. Here, the mo-
mentum dependences of the multi-center integrals are neglected.

Using the approximation (4.13) we can rewrite E.(p) given by (A.8) and
(4.5) as,
Eulp) =5.p) = 3 SHUG A O FTO 60 4, D) mess, (1.14)
and

E{U(é,x; w EYF 0 T8 05 4, )tme=0 (A=), (4.15)

respectively, where
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. ) [ X2vel
ilp) = Sa’rtp;,x(r){ - _é%_ + >vlr— Rn)}sﬂm(r)

+ %,‘E;{Uu,e; L +Jk=pt L2 28} s, (4.16)
and
Mme = 71\72(nm — ngzy ). (4.17)
I3

From (4. 14), we can define the exchange splitting between the 2-th sub-band
with down spin and the u-th sub-band with up spin as
= N DUUG 5w T & s m O by
—{UE A L8 +J0: 6,25 2 &) hagsy . (4.18)

Using the approximation (4. 13), we can get an integral equation for f..(g, p)
from (4. 10) as follows,

P _ Nput ™ MNprary —1—— S U(A, N .x )
w(q) % Sip+q)—cu(p)+ by —To N %’{ NS M

+Jg : An; & u)) Fulg) =0,  (4.19)
where

F(g) = E(n,,w = prgns ) S, ). (4.20)

It is difficult to solve (4.19) in a general case, but, in principle, we can find the
eigenvalues 7iw if the »?x#? determinant is solved, where.» is the number of sub-
bands.

Although we solve (4. 19) directly in §5 for the case of two sub-bands, in
order to discuss a more general case in this section, we make use of further
approximations for matrix elements U(&, &; &, &) and J(q: &, &; &, &), and
the sums of these matrix elements are written by

Ki(q) = Us + Jo(q) if &i=&= &

Kex(g) = Uer+ Jex(g) if &= = £y,

Ka(g) = Uz + Jo(g) if &= 53, &% &y,
or &=4¢&;, &ixdy, (4.21)

Klq@) = Uc+ Je(q) if &i=&i%&=§;,

and

Ky(q) = Up+ Jo(q), otherwise,

4s

m m
Il

respectively. U, and Ji(g) are intra-band Coulomb integrals, U.. and J..(q) are
inter-band exchange integrals, U. and J.(q) are inter-band Coulomb integrals and
Ue, Ja(q@), Us and J;(q) are off-diagonal matrix elements with respect to sub-band
indices.

From (4.18) and (4.21), we obtain
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dp= 3 A0) = Kex(0)Y S Uttt = 110y ) + Kex (O M. (4.22)
In particular, the exchange splitting between the i-th sub-bands with down and
up spins is given by

Ay = o= {Ko(0) — Kez(0) } 115 + Kex(0) M, (4.23)

where M=J3m: and m- is given by (4.17). This formula, (4.23), shows that
the exchange splitting in the A-th sub-band is the sum of the term proportional
to m,, the magnetization per atom of the A-th sub-band, and the term proportional
to (M —m,), the remaining magnetization per atom except the magnetization of
the A-th sub-band, and their coefficients are the intra band Coulomb integral and
inter-band exchange integral, respectively. Moreover, it is easily seen from (4.23)
that a simple molecular field approximation is valid only when K(0)=K..(0) in
the multiple band model, and that for a sub-band with a larger sub-band mag-
netization its exchange splitting will become larger as it is most probable that
Ky (0) —K.2(0)>0. Except at high symmetry points in the Brillouin zone, this
relation between the magnetization and the exchange splitting of each sub-band
seems to be consistent with the calculated results of the electronic structures for
ferromagnetic metals by the self-consistent method™ ™.
Using the approximations (4.21), we can write (4.19) as,

Fulg) = Zou(g, o) [{(Ei(q) — Kex(@)) Fi(q)
+ Ke(g) 21 Fs(q) +Ka(q)§;§Feq(q)}3w
+ (’(Kc(q}’- Kp(g)) Fou(g) -:Ka(q)g Fg)
+ E@ SN P} (1 = 40120, (4.24)

where F:(q)=F:(q) and

) 1 Hpur — 7
Zila o) = L ot~ Mpragry . 4.25)
wle, o N % SHp+ @) — 5P + b —Bo (

We can write (4. 15) as

K,(0)=0. (4.26)

As seen from (4.24), F:(g) couples with F:n(g) through K.(g). In the case
of g=0, two cases of (4.24), where 1= and A=y, are considered. We consider
this case of ¢g=0 in the next section.

§$ 4. Rigenvalues of Normal Modes with Zero Momentum

We first consider the case of g=0 in (4. 24), because this case is mathematically
simple and gives us useful insights about the spin flipping excitations in metals.

For A==y, that is, the case of the inter-band spin flipping excitation, we get
from (4.24)

Fru(0) = 20,00, o) [{K:(0) = Kp(0) } Fo(0) + Kp(0) D> Fen( 0)1=0.  (4.27)
T
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We cannot solve (4.27) without the detailed knowledge of ,(p) in Z:.(0, o).

We can, however, estimate the minimum eigenvalue of the (collective) spin
wave excitations due to the inter-band transitions from (4.27) in the case of two
sub-bands, which are completely degenerate. Solving the second-order secular
determinant which is derived from (4.27), we can get the collective excitation
energies of the inter-band spin wave as,

ha = A (K3(0) + Kanl0) = Ko(0) — Kb(0)), (4.28)
and
on = L (K0 + Kee0) — K(0) + Kn(0)), (4.29)
because 4, is given by
= 2L K0 + Kal0)),

for all values of 2 and x in this case. From (4.27) we can find Fy,,(0) =Fs,:(0)
for the eigenvalue given by (4.28) and Fi,.(0)=—F,(0) for the one given by
(4. 29). Therefore, (4.28) and (4. 29) are the energies of the acoustical and optical
inter-band branches of spin waves, respectively.

Next, we consider the case of g=0 and A=, that is, the case of the intra-
band spin flipping excitations, in (4. 24), and we have

— _ my L o () = i
F(0){1 = (Bo(0) = Koel0)) 55 = Kon(0) ™ SIF(0) =0, (4.30)
In the case of the two sub-bands as assumed above, solving the second-order

secular determinant which is derived from (4.30), we can get the collective ex-
citation energies of spin waves as

fiw=0,
and (4.31)
72&) = Kex(O)M.

From (4.30), we can find Fi(0)/F2(0) =mi/m; for w=0 and Fi(0)/F2(0)=—1 for
fiw=Kex(0) M, respectively, where 1 and 2 denote sub-band indices. Two modes
of spin waves obtained above are inphase and out-of-phase branches with respect
to the two sub-bands and correspond to the acoustical and optical intra-band
branches of spin waves, respectively.

In the case of Zw=0, if f.(0, p) is constant it is seen from (4.20) that
F1(0)/F2(0) =mu/m.. In this case, from (4.6) A{ is written as

A P
Ay = Zﬂpw Qput,
i

and it is just a lowering spin operator S-. The state derived by the operation
of A on the total wave function of the ground state is nothing else the state
derived by the rotation of the spin quantized axis without changing the spin
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arrangement of the ground state, so that the excitation energy of the state
derived thus is zero. Such circumstance always occurs in the treatment of spin
waves.

We can easily show that the excitation energy of the acoustical magnon is
zero when g=0 not only for the case of two sub-bands but also for the general
case of many sub-bands. Multiplying (4.30) by

- _ m
{1 (K0) = Kex(0)) 22}

and taking a sum over A, we get

Kez(o) mx?
1=§§ 4—ho — (4.32)
A
1"‘(K0(0)"Kex(0))m

Using (4.23), we can obtain Zw=0 from (4.23) when 7w is not equal to 4, and
K- (0)M. The method used to obtain (4.32) is useful to find the dispersion rela-
tion of acoustical branches of spin waves, but we cannot obtain that of optical
branches by this method, because energies of the optical branches may be in the
energy range of the individual excitations. We will find the dispersion relation
of an acoustical branch by this method in the next section.

§ 5. General Dispersion Relations of Spin Waves in the Multiple Bands

From (4.24), we can get the following simultaneous equations for F,(g) and
ka(Q),
(g) - Zulg, o) [{Kslg) — Ke(g) Y o (g)
+ Kol )20 Fe(g) + Ko@) 233 Fin(@)1 =0, (4.33)

and

Fulg) = Zwlg, o)[{K(q) — Ks(g) } Frulq)
+ Kb(Q')Et#;}FEn(Q) + K2 F(g)1=0, (A=x) (4.34)

where Zy,(g, ) is given by (4.25). From (4.33) and (4. 34) we can obtain the
following equation, from which the dispersion relations of spin waves are de-
termined,

PR~ Zulg, ) Kex(g) e Zulg, ) Kplg)
{1 2; 1-Z01(q, w){Ko(q) —Kex (@) } J[l 2“%;’ 1-Z(q, a))(Kc(q)—Kb(q)}J
_ v Znlge) | Zulg, ©)
= Kl S K@~ E(@)] S0 T=Z (g, o (@)~ Eo (@]
(4.35)
where

>IA(g) =0 and X030 Fa.(g) 0.

A
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Eq. (4.35) shows that the acoustical intra-band and inter-band branches in the
dispersion relations are coupled with each other via the right-hand side in (4. 35).

First, the eigenvalue equation for the inter-band branch of spin wave is
obtained from (4.35) as

_ Zw(a, o)
1=32 7@ o) K@ Ko@)
Zulg, 0)Ka(q)?
* 1"'ZM(Qy 0)) <KO(Q)"Kex(q)>
x | Ks(g) + - Zola. 0\ Konlq)
= 1—-2Zu(q, w){K,(a)—Ke(q)} -

(4.36)

If a crystal has an inversion symmetry, K,(q) is proportional to ¢* for small
g values, because K,(0) is zero from (4.26), so that the second term in the square
bracket in (4. 36) is proportional to ¢'. Neglecting K,(g) in (4.36), we can get
the dispersion relation of the inter-band branch from (4.36) as,

o = fw, + aq’ (4. 37)
Here %wo is determined from the following equation,
_ 7.0, wa) Kp(0)
1=22307270, a0 Kol 0) - 0) ] el
and aq® in (4.37) is written as,
o _ [ Kp(0) — Kp(g) | <~ a(g)
ag’ = K0 T2 700, o0 {Ke(0) =K (0) ] T
| Zn (0, wo) 2 _ _ )
‘\ Xiplwg) -t :
B T s E T I I (4.39)
where
1 (g V50 1pus + (@ V(DI npny
w == ? 2 DAY
wulg) N % Z(Ex(p)—gu(p)+/1m—7iwo}2
- A DB s = g DED s ],
(EA(P) - ju(,p) -+ A)\p. - ;7(1}&}3 -
and

_ 1 : Mput — Bpry .
Xo(n) = N % {(s:(p) - g, p) + 4y — Bawe)”

In the case of two sub-bands, which are completely degenerate, we can obtain
fiwo as (4.28) and

ag’ = W LE0) - Kolg) + Kb(0) - Kslg))

+ YV%’M"%M'V)Z@(P)(”P* + 1)

4 St -V)E 2 -
- NM?(Ko(0) -+ K5 (0)) %.:((Q’ Ve(@) (s — npy). (4.40)
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Secondly, the eigenvalue equation for an acoustical intra-band branch is
rewritten from (4.35) as,

1= Zulg, @) o
T 1-2Z0(g, o) Ki(g) —Kex(q)}
Zula, oYK (g)*
s Zulg, o)1
X | Kex(g) + ‘T"‘?"_‘ 1=2 (q, o) Kc(q)—Kp(q) } ) (4.41)
-3 Zula, 0 Kplq)

i 1=2Z(q, w){Ke(@) —Ko(q)}

If a crystal has an inversion symmetry, the numerator of the second term
in the square bracket in (4.41) is proportional to ¢*. On the other hand, the
solution of %w, which makes the denominator of the second term in the square
bracket in (4.41) zero, is just the solution of (4.36) which gives the energies of
the inter-band branch, and the value of this denominator is finite for the energy
of an acoustical intra-band branch of spin waves when ¢ is sufficiently small,
because the energy of the acoustical intra-band branch at ¢=0 is zero, but the
corresponding energy of the acoustical inter-band branch at g=0 is finite (for
example, 7w, given by (4.28) in the case of two degenerate sub-bands), as
mentioned in § 4.

One can expand (4.41) as a power series of g for small ¢ values. After
tedious but straightfoward calculations, we can obtain the dispersion relation of
the acoustical intra-band branch up to the term of ¢* as

fiwae = Dpq” + Dyuq’, (4.42)

where

Dy’ = 'Z'M]"'N'%(Q'V (K (mzng + 1ny)

)5 2
- IWIN %I {(g V):‘A(k)'}*‘ (Raey s = 1212y, (4.43)

DH(IZ = (fo(O) —]o(q) —]ex(O) 'i"]ez(q) }E);”Zf/M‘l- (fex(o) _‘]ex(q))M. (4.44)

The second term in the square bracket in (4.41) has a contribution to the
dispersion relation of an acoustical intra-band branch as

Zu(0, D Kalg)®

22 700) 1K (0) — Ko (0)
oSS 20, 0K(0) ]
e m I_Z/.;.,(O: 0)<K¢(0) _Kb(o)}

x M, (4.45)

which is proportional ¢'.

In the ordinary case an acoustical intra-band branch and an inter-band branch
will approach with each other at the larger values of ¢. In such a case, the
second term in the square bracket in (4.41) is large, because the denominator
of this term becomes nearly equal to zero, and an acoustical intra-band branch
will be shifted downward in the dispersion curve by the inter-band branch. At
the same time, a similar circumstance occurs in the inter-band branch, of which
eigenvalue equation is given by (4.36), and this branch will be shifted upwarc
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by the acoustical intra-band branch. When the energy of the inter-band excitation
with a reversed spin is small, the coefficient of ¢* in the dispersion relation of
the acoustical intra-band branch becomes large and the leading term proportional
to ¢* will be given by (4.45). The recent experimental result shows that the
coefficient of ¢' in the dispersion relation of an acoustical intra-band branch is
relatively large for iron and fcc cobalt metals@* and this fact means that the
inter-band transitions have an important effect on the coefficient of ¢! in these
metals.

Finally, we solve the integral equation (4.19) for the case of two sub-bands,
instead of using the approximations (4.21), by neglecting such off-diagonal matrix
elements with respect to the sub-band indices as

K(q y S )as/«‘)“U(zy> 95 /«L)’f‘](q 15 )3, ,U) (ZAFU), (4.46)

because these terms have no effect on the dispersion relation of spin wave up to
the term proportional to g2 We can get a fourth-order secular equation, but
this secular determinant is decomposed into two second-order determinants, by
neglecting K(g: 2, £; £, ) for A=pu given by (4.46), as follows,
1= Zulg, 0 K(q 1 115 11) = Zu(g, o) K(g * 12 5 21) | 4.47)
— Znlq, 0)K(g * 21 ; 12) 1= Zn(g, ) K(g 1 22 ; 22) l '

and

i 1—Zulg, w)K(g : 12 ; 12) - Zwn(a, CU)K(Q D11 22) g 0 (4. 48)
! = {, .
| Zulg, 0 K(q 1 225 1) 1~ Zuu(g, 0)K(g : 21 5 21) |

From (4.47), we can obtain the dispersion relations,

Moae = 3 SUIO 2 0y s ) =Ja + o5 2))mmam,
+ """" NZ(Q V) €A(k)(nkn+%ku)
MlN S @ D EE) Flrar = o) (4.49)

for the acoustical intra-band branch, and

Bwp=K(0 :1,2; 2, 1)M+bq, (4.50)

where

b’ = %ﬂm,m(E(K(o SAAT A —K(g A A )
A

~2(K0:1,2;2,1)—-Kl(g:1,2;2, 1))}
+}JZ'!’}?}‘_W 2 ~(q V) (p)(%yuf+npy$)

ap M,

_ {(g*V&u(P) Y (Hpus — 1pu) }]
(KO oy s p ) =K Oy A5 4 p) by

(4.51)



Spin Wave Spectrum and Related Problems 219

for an optical intra-band branch, where 2 and 2 are sub-band indices 1 and 2.
The results similar to (4.49), (4.50) and (4.51) were obtained before by Thomp-
son!?),

The dispersion relations of the inter-band branches of spin waves in the case
of two sub-bands can be obtained from (4.48), but they are complicated formulas.
If further approximations for K as (4.21) are made use of, these dispersion
relations are reduced to the relations given by (4.37), (4.38) and (4.39).

§ 6. Numerical Calculations of D for Nickel

Now, we will estimate the coefficient of ¢* in the dispersion relation of the
acoustical intra-band branch of spin waves. Recently, Shimizu’ has roughly
estimated Dy to be 0.05 eVA? for nickel and 0.08 eVA? for iron, assuming a single
normal band with an effective mass and has concluded Dp< Dy for nickel and
iron.

In this section, we ascertain this conclusion from the estimation of D, by
(4.43) using a more realistic electronic structure for nickel. The approximations
for the matrix elements of the Coulomb interactions which we have assumed to
obtain (4.43) and (4.44), will be appropriate only for d-bands, so that we make
use of these approximations for d-bands and for the sake of simplicity we neglect
s-band.

As seen from the calculations by Fletcher™ and Yamashita ef al.’”, the Fermi
surfaces of the ferromagnetic nickel, roughly speaking, are constructed from a
large sphere of electrons with down spin about I" point and a small sphere of
holes with down spin about X points. Therefore, we adopt the two band model
where the energy spectra are given by

113

5 (k) = — %A cos {9( %) r}. (4.52)
and
_ i? 3
D) = — 5 A —EOP (4.53)
m” x3

where ¢ is the lattice constant 3.52 A, A is a band width of sub-band 1, %k(X)
denotes the value of k at the X points and 1 and 2 denote sub-band indices.
These energy specra are schematically shown in Fig. 10 for the I'-X direction.
The bands with up and down spins are drawn at the left- and right-hand sides'
in Fig. 10, respectively. For the sub-band 1, we assume that the Brillouin zone
is a sphere with the same volume as the real Brillouin zone. Further we assume
a simple molecular field approximation mentioned in § 3, that is, K(0) =Ke(0),
in (4.23), so that the exchange splittings of the sub-bands 1 and 2 are identical.

In order to estimate the value of D by (4.43), (4.52) and (4.53), we must
determine the band width 4 in (4.52) and number of electrons per atom with
down spin, n, for the sub-band 1, the exchange splitting, 4, and the effective
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mass m* for the sub-band 2, which
(k) contains (#-0.4) holes per atom as seen
1 | from the Bohr magneton number per
atom, 0.6 for nickel. Here we assume
that the highest energy of the sub-bands
with up spin is equal to the Fermi level
of the sub-bands with down spin, as
shown by the broken line in Fig. 10.
In our model of two sub-bands for nickel
we assume that the two sub-bands with
up spin are all filled up by electrons and
sub-bands 1 and 2 with down spin are
occupied by (1-z) and (#2-0.4) holes per
atom, respectively. We can find a fol-
lowing relation among n, A and m* from
the experimental data of low temperature
FIG. 10. Schematic electronic structure specific heat coefficient for nickel, 7=
of two sub-bands for nickel. The up- and 1.68 x 10~* cal/deg?® mole*,
down-spin bands are drawn at the Jeft- and
right-hand sides, respectively, and the Fermi
level is denoted by a broken line.

% K < r — K X

r=r+t71,
2 nky n*?
= U4 sin (et)
e akydm* { n—0. 4_}”“
: 4 f* T

There is another relation among m*, (n—0.4) and 4 if the highest energy of the
sub-band 2 is higher than that of the sub-band 1, or among A4, (1-x) and 4 if
the highest energy of the sub-band 1 is higher than that of the sub-band 2.

Using (4.52) and (4.53), we calculate the values of D by (4.43) for some
values of » and A as parameters, and the numerical results are shown in Table
3 and Fig. 11. In Table 3, the numerical values of reduced effective mass of
sub-band 2, m*/m., low temperature specific heat coefficients for sub-bands 1 and
2, v, and 7., exchange splitting, 4, D» for each sub-band, Dp: and Dy, and
Dr(=Dp1+Dps) are shown for some values of » and A as parameters. In Fig.
11, the curves of Dp1 vs n are shown for some values of A. Katsuki and Wohlfarth™
have calculated the numerical relations between D, and the electron numbers
per atom for the case of a single band with simple cubic structure.

The exchange splitting for nickel is considered to be about 0.35 eV'"™), so
that we can guess

Dr=0.1~0.2 eV A% (4.54)

from Table 3, although the value of Dy may depend sensitively on the value of
the exchange splitting.

Therefore, as the observed value of D= D+ Dy for nickel obtained by Hatherly
et al* is 0.4 eVA? we can conclude that Dp= Dy for nickel, although the inter-
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TABLE 3. Numerical values of m*/mo, 71, 72, 4, Dpi, Dp2 and Dp in the
two band model, as shown in Fig. 10, for nickel

7 ‘! A om*m | " L 4 Dpn | Dm D
-1 | %1074 i 2
atom eV | cal/mole deg? eV | eV A

0.46 .06 0 0.89 16.3 05 | 0973 | 0.083 | 0.086 0174
07 4.9 14.0 28 | 0178 | 0.027 | 0016 | 0043

| 08| 7.8 12.2 4.6 0111 & —0.055 | 0.010 = -—0045

0.9 | 102 10.9 5.9 0.111 | —0.088 | 0014 | —0,074

[ 1.0 | 120 9.8 ‘ 7.0 0.123 | —0.098 0.017 | —0.081

0.48 07 | 29 15.0 1.8 | 0367 | 0080 | 9036 | 0116
. 08 538 13.1 3.7 | 0182 | 0030 | 0013 0.048

0.9 80 11.6 52 | 0131  -0031 @ 0013 | -—-0.018

1.0 9.8 10.5 63 | 0112 —0.094 | 0.012 | —0.082

0.50 07 ' 11 f 16.0 J 0.8 | 1125 0102 | 0117 | 0.219
0.3 4.0 14.0 2.8 0.307 0.076 0.032 | 0108

09 | 62 l 12.5 4.3 0.197 0.041 0.020 | 0.061

1.0 80 11.2 56 | 0152 | —0.006 0.016 = 0.010

1.1 95 I 10.2 \ 6.6 | 0128 | —0.062 0013 = —0.019

0.52 0.8 | 23 | 151 ‘ 1.7 0.589 0.102 0.065 = 0167
0.9 | 46 | 134 | 34 0.299 & 0.082 0.032 | 0115

10 0 64 | 121 | 47 0.214 0.054 0.024 0.078
1179 0 110 | 58 | 0174 0.019 | 0.019 0.038

p 1z 92 | 101 ! 6.7 0.306 0085 0.080 } 0.165

1 i

0.4% 048 Q.50 0.52
n (atom™)

FIG, 11. Values of Dpi1 vs n. The numbers along each

curve give the value of the band width, A (The experimental
value of D is 0.4 eV Az 1),

atomic exchange integral will be smaller than the intra-atomic Coulomb integral.

On the other hand. we can estimate an upper limit of Dy, from (4.43) in
the limit of strong correlation, U= <o, namerly, by neglecting the second term
in (4.43) since d=o0 when U=co, as follows,

D51 <0.17x A eVA? (4.55)
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for any value of #n. The value of A is 0.6 eV and 15 eV according to the
calculated results of electronic structure for nickel by Fletcher’™ and by Yama-
shita ef al.™ respectively. Both values of A give smaller values of Dy, than the
observed value of D for nickel*".

§7. General Consideration of Excitation Spectra
with a Reversed Spin

We discuss the relation between the excitation energies of spin waves and
individual transitions with a reversed spin (Stoner excitations). As schematically
shown in Fig. 12, the spectrum of
an acoustical intra-band branch of
spin waves denoted by curve « is
isolated from the region of the
individual intra-band transitions,
@\ which is denoted by the region

above curve ¢ in Fig. 12, because

OPTICAL [NTRA-BAND AND INTER-BAND the exchange splitting, which is

BRANCHES shown by the energy gap at ¢=0,

is large. In the usual case, the

C excitation spectra of the intra-band

transitions are considered to be in

INTER-BAND TRANSITIONS the sea of the excitation spectra

of the individual inter-band transi-

tions, which are denoted by the

2 region ahove curve b in Fig. 12.

[ (ACOUSTICAL INTER-BAND BRANCH - From the calculations in §5, it is

b seen that under the sea of the

ACOUSTICAL INTRA-RAND BRANCH individual inter-band transitions

= there is a lower collective spectrum

9] q due to the inter-band transitions,

MOMENTUN that is, the spectrum of the inter-

band branch, denoted by curve d
in Fig. 12.

It will be incorrect that the
only excitations, strongly in evi-

Aw
INTRA -BAND TRANSITIONS

ENERGY

EXCITATION

FIG. 12. Schematic curves of the excitation
spectra with a reversed spin. Curves @, b, ¢, d
and e are the spectrum of the acoustical intra-
band branch of spin waves, the bottoms of the

spectra of the inter-band transitions and the dence in metal such as iron, will
intra-band transitions, the spectrum of the inter- be those corresponding to the
band branches of spin waves, and the spectrum single spin wave because the
of the optical intra- and inter-band branches of bottom of the individual excitations
spin waves, respectively. is rised at ¢=0 by an energy equal

to the exchange splitting®. On
the other hand, according to the calculated electronic structure of iron by Wakoh
and Yamashita™, there seems to be a small region where the excitation energies
of the inter-band transitions are lower than the acoustical spin wave spectrum
at small finite values of ¢, that is, at about ¢~0.04 A-1. If there are other
excitations whose energies are lower than the acoustical spin wave spectrum, the
spin wave should be instable and is damped into the individual excited state with
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a reversed spin via the interactions such as electron correlations, although such
a damping mechanism is not considered in our treatments within the random
phase approximation. For iron, however, the dispersion relation of an acoustical
spin wave has been observed by the inelastic neutron scattering for the value
of g, 04 A-1

The higher-order terms of the momentum in the dispersion relation of spin
waves have not so far been treated satisfactorily in the microscopic theory,
though the macroscopic theory of spin waves in metals teaches us that the terms
of ¢ in the dispersion relation of spin waves are derived from the quadratic
terms of the second derivative of the magnetization density by co-ordinates, as
discussed in chapter III. It should be noted that in ferromagnetic metals and
alloys the fourth-power terms of momentum in the dispersion relation of spin
waves are relatively important as seen from the experiments by Shirane ef @l.*9%.

The fact that in metals the dispersion relation of the acoustical intra-band
branch may be strongly interfered by the inter-band transitions, instead of the
intra-band transitions, at a relatively smaller value of g and the spin wave becomes
unstable above this value of ¢, as discussed in §5, can explain the question why
the coefficients of ¢' in the dispersion relation for iron and fcc cobalt are fairly

= =
3 ghuw
£ £
+ '
s e INTRA- & INTER-BAND
2 TRANSITIONS
—fer e
L
\ \j OPTICAL INTER-BAND BRANCH

ACOUSTICAL INTER-BAND BRANCH

I

= OPTICAL INTRA-BAND

S BRANCH

3

.

a

;_?3 =

— 8

g ACOUSTICAL INTRA-BAND BRANCH
0

d
MOMENTUM

FI1G. 13. Schematic curves of the energy spectra of spin
waves and individual excitations in the case of two degenerate
sub-bands. The energy gaps at ¢g=0 are given by (4.31) for
the optical intra-band branch of spin waves and by (4.28) and

(4.29) for acoustical and optical inter-band branches of spin
waves in the text,
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large®,

On the other hand, the spectra of the optical branches will lie in the region
of the individual intra- and inter-band transitions. In the two band model,
however, the energy of the optical intra-band branch at ¢=0, given by %o =Ke:(0)
M from (4.31), is expected to be smaller than any exchange splitting of each
sub-band, given by (4.23), because perhaps Ki(0)—Ke(0)>0. Therefore, the
spectrum of the optical intra-band branch will lie below the bottom of the spectra
of the intra-band excitations in the neighbourhood of ¢=0 as shown by curve ¢
in Fig. 12. The detailed properties of the optical intra-band branches of spin
waves, whose energy spectrum for the two band model is given by (4.50), and
the inter-band branches given by (4.37) cannot be discussed further without the
detailed knowledge on the electronic structure; they depend sensitively on the
electronic structure of ferromagnetic metals, although we can get the energy
spectra of spin waves and individual excitations at ¢g=0 in the case of two
degenerate sub-bands as shown in §4 and the results are shown schematically in
Fig. 13. In Fig. 13, it is assumed that Ki(0)>Kex(0) ~Kc(0) > K3(0)>0, and this
assumption seems to be most natural.

§ 8. Cut-Off Momentum of Spin Wave in Single Band Model

In §7, we have qualitatively considered the excitation spectra with a reversed
spin. In this section, we discuss the details of the dispersion relation of a spin
wave in the single band model and evaluate the cut-off momentum of a spin wave.

In the case of the single band model, using the random phase approximation
and the approximation similar to (4.13) for the Coulomb matrix elements, we
get the following eigenvalue equation®™,

- L Mk = Nicray -
1= N U DI a0 ) S Y a e (4.56)

where
4={U+J(0)} M,

by the same method as that used for deriving (4.19).

For the sake of simplicity, we assume the system to be a saturated fer-
romagnetic state and (k) =7°%K*/2m. In this simplified case, the excitation
spectrum and cut-off momentum of a spin wave without J(g) in (4.56) were
already discussed by Thompson®® and Mattis*), but we will show that the inter-
atomic exchange integral J{g) plays an important role for the excitation spectrum
and the cut-off momentum of a spin wave. The eigenvalue equation (4.56) can
be written as

derx 1

3 TR ST (4.57)

where

R PN
Fly)=y+ 5 A=y a5 | (4.58)

y={x*+ (4 -ho)/er}/2 x, (4.59)
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x=gq/kr and er and ksdenote the Fermi energy and Fermi momentum of up spin band,
respectively.
The cut-off momentum of a spin wave g, is obtained from

fiwg, = Minimum of {F(k+gc) — £(k) + 4}
= —2x+xl} + 4, (4.60)

where |k|<kys and xc=qc/kr. From (4.59) and (4.60) we get y=1, so that x is
given by

34 U+J(q)
N (O (4.61)

e =

from (4.57) and (4.58). We take an approximation for j(g) as
J(g) =]§ exp (ig*p), (4.62)
P

where p's denote lattice vectors to the nearest neighbours. For fcc structure,
(4.62) is written as

1 1 1 1 1 1
](q) = 4]{(:05 ‘2‘de COSs *2" aqV + CO0S *2“' GQy COS “2“an -+ COS“Z‘ an Ccos "2‘ aqva
(4.63)

where « is the lattice constant. Using (4.61) and (4 63), the reduced cut-off
momentum of a spin wave x in the (100) direction of the momentum space against
J/U is calculated as shown in Fig. 14 for e/ 4=0.6, 0.8 and 1.0, where solid and
broken curves denote M =0.6 and 1.0, respectively. As seen from Fig. 14, gc/kr
decreases rapidly with increasing
J/U for small values of J/U and it

seems that the inter-atomic exchange
integral is important for cut-off mo-
mentum. ~
The excitation spectrum of a X

. g 1.0
spin wave can be calculated from -
(4.57), (4.58), (4.59) and (4.63). =
Calculated results are shown in Figs. =
15, 16 and 17 for M=0.6 and &/d= o
1.0, 0.8 and 0.6, respectively. In :5?_‘
these figures, a parabolic curve in 3
the right-hand side denotes the mini- 0.5
mum energy of individual excita- , )
tions. In Fig. 15, the three curves 0.5 .0
for J/U=0.1 denote g=(g00) for the /U

upper curve, (g2, g/v 2,0) for the
middle curve and (¢N 3’.(17/ \ ?’ a/V'3) mentum of a spin wave on the inter-atomic
for the lower curve. This anisotropy exchange integrals for e;/4=0.6, 0.8 and 1.0.

is derived from that of J(g) in (4.63). Solid and broken curves denote M=0.6 and
Other curves in Fig. 15 and all curves 1.0, respectively.

F1G. 14. Dependence of the cut-off mo-
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in Fig. 16 and Fig. 17 are drawn for g=(g00). In the case of e/4=1 in Fig. 15,
a maximum appears in the excitation spectrum of a spin wave. But when the
value of ef/4 decreases, this maximum disappears.

[l
o=
T

[=3
)
T

EXCITATION ENERGY (hw/ €y )

O.‘ 5 1.0
REDUCED MomENTUM (T / Kf )

FI1G. 15. Dispersion relation of a spin wave for M=0.6 and ¢;/4=1.0
for some values of J/U. The parabolic curve in the right-hand side
denotes the minimum energy of the individual excitations with a
reversed spin.

<
=
T

o«
~N
T

EXCITATION ENERGY (fiwo/ € )

Il

0.5 1.0
REDUCED  MOMENTUM g /kg)

FIG. 16. Dispersion relation of a spin wave for M=0.6 and ¢//4=0.8
for some values of J/U. The parabolic curve in the right-hand side
denotes the minimum energy of the individual excitations with a
reversed spin.
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f>

EXCITATION ENERGY (hw/E
<
T

‘ ]
. 1.0

0
C

5
REDUCED MOMENTUM Q0 / kf)

Fi1G. 17. Dispersion relation of a spin wave for M=0.6 and ¢/4=0.6 for
some values of J/U. 'Tue parabolic curve in the right-hand side denotes the
minimum energy of the individual excitations with a reversed spin.

§ 9. Dispersion Relations of Spin Waves in the Two Band
Model and Stable Condition of Ferromagnetic State

In this section we calculate the dispersion relations of spin waves in the two
band model with the same effective mass as shown by the one-electron energies,

gl(k) = 2 m kza
" (4.64)
g(k) = Wk2+ a,

where « denotes the splitting between sub-bands 1 and 2 which are schematically
shown in Fig. 18, here we assume that the ground state is a saturated ferromagnetic
one. In Fig. 18, the solid and broken curves denote the energy spectra of electrons
with up and down spins, respectively. We assume a simple molecular field, that
is, Ko(0) =K..(0) in (4.23), so that the exchange splittings, 4, of the two sub-
bands are identical, as mentioned in the calculation of D; for nickel metal.
Furthermore, we assume for the sake of simplicity that

Ki(g) = Kex(g) = Ke(q) = Kb(q)
=U+4]{2cosag+1) = K(g), (4.65)

and

K,(g) = K(0) — K(q) =8]{1 - cos%~ aq}' (4.66)
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(2;@\ E(Kk)

FIG. 18. Schematical curves of the energy spectra of
electrons in two band model. Two sub-bands are assumed
to have same effective masses. The solid curves (1, 1) and
(2, 1) denote the sub-bands 1 and 2 with up spin, and broken
curves (1, }) and (2, ) denote the sub-bands 1 and 2 with
down spin.

for g=(q00), where the assumption (4.66) is taken so as to satisfy (4.26).
Using assumptions (4.65) and (4.66), we get the eigen-value equation of spin
waves as
Wiq, 0) ={1— K@) (Zn+ Zn) K1 = K(q@)(Zin + Zo1) }
“Ka(q)z(le'i'Zze) (Zio+ Zep) =0, (4.67)

from (4.35), where
3 krim;
Zij= ——— F(yij),
’ 4 q&:(ksj) (i

4ij— o+ 81k Ry
2 &:(ksi)alkyi

i =
and
dij=&i(k) —&;(k) + 4,

here F(y) and m; are given by (4.58) and (4.17), respectively, and %s; is the
Fermi momentum of the electrons in the j-th sub-band. In calculating (4.67),
we assume tentatively the following five relations for parameters,
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krilkre=2,
a/d4=23/5,
J/D =0.04,
U=1.126 eV,

M=1. (per atom)

]
o
@0

(4.68)

Using relations (4.68), we get the excitation spectra with a reversed spin from

(4.67) as shown in Fig. 19.

In Fig. 19, curves (a), (b) and (¢) denote the

dispersion relations of the acoustical intra-band, acoustical inter-band and optical

inter-band branches of spin waves, respectively.

The optical intra-band branch

cannot be obtained by the assumption (4.65), because when the simple molecular
field is assumed the excitation energy of the optical intra-band branch (4.31) is

0,51 l

a

! ! L 1
0.2 0.4 0.6 0.3

a/ ki

F1G. 19. Excitation spectra of electrons with a reversed
spin in the two band model. Curves (a), (b) and (¢) denote
acoustical intra-band, acoustical inter-band and optical inter-
band branches of spin waves, respectively. Other curves denote
the maximum and minimum energies of the individual excitations
of electrons with a reversed spin.
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always equal to the individual excitation energies at ¢=0. The curves (d), (d"),
(e), (e"), (f), (N, (g) and (g') denote the minimum and maximum energies of
the individual excitations of (2, )= (1, 1), (1, 1 )=(1, ), (2, 1)=(2, |) and
(1, 1)—>(2, {), respectively. In order to recognize this excitation spectra, W(g, )
in (4.67) is drawn in Fig. 20, Fig. 21 and Fig. 22 against w/es: for g/ks1=0.05,
0.1 and 0.4, respectively. In these figures the excitation energies of spin waves
are obtained from the intersections of W(q, w) with the horizontal axis W(g, ) =0,
excluding the regions denoted by heavy lines on the horizontal axis, which denote
the individual excitation energies with a reversed spin. In the left and upper
corner of each figure, an enlarged curve of W(g, w) for smaller values of  is
shown.

Finally, we discuss the properties of the inter-band branches of spin waves
in the simplified model denoted by (4.64), (4.65) and (4.66). The energies of
inter-band spin waves at ¢=0 are obtained from the eigenvalue equation (4.38)
as

0.006

0.004

0.00

-0.002]

-0.004]

-0.008¢

-20 - !
0 1.0 2.0

’ﬁ(.k)/gm

o

F1G. 20. Curve of W{(p, ») in (4.67) against fw/es1 for
q/ks1=0.05. Open circles denote the spin wave energies.
Heavy lines on the horizontal axis denote the individual
excitation energies with a reversed spin. In the left and
upper corner an enlarged curve for small o is shown.
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-20 1 !
[t} 1.0 2.0 3.0

'h(}.)/gm

FI1G. 21. Curve of W(gq, w) in (4.67) against JTe/esn for ¢/kn
=0.1. Open circles denote the spin wave energies. Heavy lines
on the horizontal axis denote the individual excitation energies
with a reversed spin. In the left and upper corner an enlarged
curve for small @ is shown.

FI1G. 22. Curve of W(q, @) in (4.67)
against fiw/es1 for g/k;1=0.4. Open circle
denotes the spin wave energy. Heavy
line on the horizontal axis denotes the
individual excitation energies with a

\_/ reversed spin. In the left and upper
corner an enlarged curve for small w is

shown.
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B = }imi\/mw @'~ 4 o (ma—mz) K(0) - (4.69)

for the saturated ferromagnetic state, where the solutions of plus and minus
signs in the square bracket of (4.69) denote the optical and acoustical inter-band
branches, respectively. Therefore, if

(my— ms) K(0) < «, (4.70)

the energy of the acoustical inter-band branch is negative and the ferromagnetic
state becomes unstable. Recently Katsuki and Wohlfarth’ have obtained the
stable condition of the ferromagnetic state in the single band model, by discussing
the sign of the excitation energy of a spin wave. In the multiple band model,
we must investigate not only the energy of the acoustical intra-band branch of
spin waves but alsc that of the acoustical inter-band branch, in order to discuss
the stable condition of the ferromagnetic state. When the excitation energy of
the acoustical inter-band branch is small, the magnetic properties at low tem-
perature are affected, for instance, the decrease of the magnetization with
increasing temperature becomes larger and the Curie temperature may decrease
even if the magnetization is large, as seen in the Invar alloys.

Recently Thompson and Myers®® have calculated the dispersion relation of
a spin wave (of the acoustical intra-band branch) for nickel metal. However in
their calculation the inter-band transitions are not taken into account, so that
the cut-off momentum does not exist. Taking account of the inter-band transi-
tions, we must calculate the dispersion relations of spin waves for real fer-
romagnetic metals.

Chapter V. Plasma Osciliation in a Ferromagnetic Electron Gas®
§ 1. Introduction

In the last chapter, we have studied collective modes of electron excitations
with a reversed spin in ferromagnetic metals. It is well-known that another
collective mode of electron motions due to the density fluctuation of electrons,
that is, a plasma oscillation or so-called “plasmon”, exists in metals'. This
plasmon is experimentally found by inelastic scattering of electrons not only for
alkali metals but also for ferromagnetic transition metals!®. Theoretically the
plasmon in an electron gas was first studied by Bohm and Pines®'®). After the
works of Bohm and Pines, the study of a plasmon in an electron gas has been
one of the most attractive topics in the connection with the study of the correla-
tion energy of elelctrons for many theoreticians?® 7%,

In this chapter, we study the dispersion relation of a plasmon in a ferro-
magnetic electron gas (An electron gas may not show ferromagnetism, but
tentatively we assume that a modified electron gas can be ferromagnetic in a
certain condition, e.g. in the case of an electron gas with a heavy thermal mass®.).
As shown by Bohm and Pines®?), a plasmon can be understood by the classical
considerations but it is interesting to study a plasmon in the ferromaguetic state
because the ferromagnetism is explained by the quantum mechanical exchange
interaction between electrons, which can not be understood by the classical theory.
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In the paramagnetic state, Kanazawa ef a/*® have studied the effect of the
exchange interaction between electrons on the dispersion relation of a plasmon.
We consider this problem in the ferrcmagnetic electron gas by the method of
normal modes. Although the model of an electron gas may not be appropriate
to the real ferromagnetic metals, this model is the most simple one for discussing
a plasmon, so that we adopt this model and see only the effect of the exchange
interaction on the dispersion relation of a plasmon in the ferromagnetic state.

§ 2. Integral Egquation for Normal Modes

The Hamiltonian % of an electron gas is given by

S = o+cﬂr~//1,

= SVE(K)ag, ar, -, (5.1)
ky 0
S = % Zq’;_‘; UZﬂv(q) QFrg 0lfi—g, o' A, 0100,
where
_ nF _ 4nd
E(k)— 2?7’1, v(q) —W‘ (52)

ar., and az, , are creation and annihilation operators of an electron with momentum
% and spin ¢, and V denotes the volume. The prime in the summation over g
denotes a sum in which g=0 is excluded, and this takes into account the uniform
background of positive charge.

An operator which represents a normal mode of a plasmon with momentum
p is defined by

A;=;f;(z)a¢+p,oa;,a. (5.3)

Coefficients f3(I) in (5.3) are determined by the following equation of motion,
rwAj =1, A} (5.4)

Using the extended random phase approximation (4.9) in the commutator between
s/ and AL™, we can linearize this equation of motion and obtain the integral
equation for f3({) as follows:

{E(l+ p) — E(D) — kot f5(D)
- v(P)i?_;’f;;(k) (nk+p,ar - R, o/)
+ };'v(k = D{f o8 = Fo(D Y (trr 0 — #r,0) =0, (5.5)

where #r, , denotes the occupation number with momentum % and spin ¢. The
prime in the summation over % in the last term denotes a sum in which k=1 is
excluded. The reason why we use the operator of the normal modes by summing
up over spin, as shown in (5.3), is explained in the following way. When we
consider the equation of motion of the excitation operator, ai.,, -4s -, this operator
is found to couple with the excitation operators with the antiparallel spin,
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@i p, oG, -5, in the same way as the operators with parallel spin, within the
approximation mentioned above.

Using the approximate Hamiltonian introduced by Sawada ef «l.", we can
obtain an equation without the last term in (5.5) and get the eigenvalue equation
directly. However, because of the appearance of the last term in (5.5), it is not
s0 easy to solve (5.5). A similar circumstance occurs in the problem of magnon
in metals, but the difficulty is restored by the approximation for the matrix
elements of the Coulomb interactions, as mentioned in chapter IV.

§ 3. Dispersion Relation of a Plasmon in Paramagnetic State

For small p, we can easily find the last term in the left-hand side of (5.5)
to be smaller by the order of »* than the second term. Therefore, we can find
the dispersion relation by the iteration method.

First we consider the case of the paramagnetic state. As the first approxi-
mation, if we neglect the last term in (5.5), we can obtain the same eigenvalue
equation as that given by Sawada ef al.™,

Ni+p — N _
20(p) Ez} E(l+p)—E()—fhw(p) ~— L (5.6)

and

N,
El+p)—ED) —ho(p)’

o) = (5.7)
where we neglect the spin suffix and N, is a normalization constant which depends
only on p, and f,(I) and %we(p) denote the corresponding values at the first
approximation. From (5.6), the dispersion relation of a plasmon is written as™,

B 3u'kp
Boo(p) = Bwe(0) + 10 1 hens (0" (5.8)
where
Hwe(0) =v4 nhitnet/m , (5.9)

and » and ks are the density of electrons and the Fermi momentum, respectively.

At the second approximation, we take account of the third term in (5.5) in
which fp is replaced by f5 and in the first and second terms of (5.5), fp and
hw are replaced by fjp+ 4f, and hwe+ 74w, respectively. Multipling the following
factor,

%Z-Fp — N
E(l+p)—E(I)—fhw(p)’

to the modified equation of (5.5) and taking the sum over I, we can obtain the
correction to the dispersion relation (5.8), within the linear terms of 4f, and
#dw as follows,

(an—n[) (nlﬁ-p_%k) . o )
721: B B0 o (o) v(k—D{fo(k) fp(l)}. (5.10)

S (Br+p — 1) £ 3(1)
7 E(l+p)—E() —hw(p)

hdo =
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To get (5.10), we have made use of (5.6). For small p, we can expand this
exchange correction (5.10) as a power series of p and get the leading term

. _ 82 Ezkfp2 .
740 = =y ko (0) (5.11)
From (5.8), (5.9) and (5.11), the dispersion relation for the paramagnetic electron

gas is given by,

_3n'ky me® |

oy B) =Boy(0) + T0 1% we(0) P \ 7371%%;5

(5.12)

This result agrees with that obtained by Kanazawa ef al.*® by using the Green's
function method.

§ 4. Dispersion Relation of a Plasmon in Ferromagnetic State

In the previous section, we have considered the collective modes of an
electron gas in the paramagnetic state. In this section we consider the collective
modes in the ferromagnetic electron gas, that is, the numbers of electrons with
up and down spins are different. It is a difficult problem to decide whether the
ferromagnetic state of an electron gas is stable or not. We assume tentatively,
however, that the ferromagnetic state is stable in the ground state of an electron
gas by a certain circumstance.

At the first approximation, f5 is independent of spin, as the second term in
(5.5) is summed over spin, and the corresponding expression of f7 is the same
as (5.7). On the other hand, the eigenvalue equation is given by

Ni+p,a ™ R0 .
uqnﬁjEu Tp) = EU%%wﬂp)—l‘ (5.13)

We can obtain the energy of a plasmon in the ferromagnetic state for small p
as follows,

(5.14)

2d,; 2 2 2
hol ) = hanl0) 4 o oBL(Mekretnkr ),

10 m* w0 (0) n

where 5wy (0) is given by (5.9), and n. and n- are the densities of electrons with
up and down spins, and %y, and ks are the Fermi momentums of electrons with
up and down spins, respectively.

At the second approximation, taking account of the third term in (5.5), we
get simultaneous equations with respect to up and down spins,

oz - Ni+p, o™ N,o o
403 ) ~ B <Fa P

+3 ?é{?ifg;f;“°;3??'““) S AF3(8) (i, = k)

{
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1 (nld-p,ts'“ nl,ﬂ) (nk4—p‘n_nk,n) . o _ o .
(5.15)

by the same method as given in §3. We can eliminate 473 in (5.15) by using
the relation (5.13) and get the exchange correction to the dispersion relation as
follows,

v Riap, o= 21,0) Rpip, o = Np,a) . orp) _ so

<1 Ryrp,0 ~ N0 o
2 Ep) —EW —ranp) ) *Y

Expanding the correction (5.16) as a power series of p, we get a leading
term,

ey Rtk
10 miwn(0) ke + K

(5.17)

for small p. From (5.14) and (5.17), we can get the dispersion relation for a
plasmon with small momentum p in the ferromagnetic electron gas as

3R ke +n-kr {1 __me® Rf+kf }

10 w700 (0) ” 3 it k}++k;f, (5.18)

Bws(p) = Bw.(0) +

Comparing the result (5.18) with the result in the paramagnetic case (5.12),
we find that the constant parts of #w(p) in the paramagnetic and ferromagnetic
states are the same, but the coefficients of p* in the expressions of #w(p) with
respect to p, are different from each other in these two states. This difference
will be roughly estimated for real ferromagnetic metals and a possibility that
this difference will be observed in experiments is discussed in the next section.

§ 5. Numerical Estimations for Iron, Cobalt and Nickel

Now, we will estimate numerically the order of magnitude of the difference
between plasma frequencies in the paramagnetic and ferromagnetic states for
the 3 d-group ferromagnetic metals, iron, cobalt and nickel, using the results
(5.12) and (5.18) obtained above. We have to consider at least six sub-bands,
one s-band and five d-bands, to discuss the plasmon in these metals. The model
of an electron gas is too simple to apply to these metals. We must take into
account the band structures and inter-band transitions etc. to estimate quantita-
tively the dispersion relations in these metals. We, however, consider the model
of an electron gas to be able to give an outline of the plasmon in the magnetic
states of real transition metals, as the first approximation.

From (5.12) and (5.18), the coefficients of p?, I, are written as,

______ii_-__ 2 \u3fq _ me® 1 13
[p" 10;:;@0(0)7%2 (3?“7’5) \1 377.’?22 (372,271} }. (5'19)

in the paramagnetic state, and



Spin Wave Spectrum and Related Problems 237

2 APy o s
T 1050 (0ym? T 7
J,o_ omé (1 VP plfig ity
{1 thz(%z) el (5.20)
in the ferromagnetic state, respectively.
Using the relation,
Ay Fu- =7, Ji+ 7~ = Np,

where 7, denotes the density of magnetic carriers, we can expand Iy in terms
of ny/n for the weak ferromagnetic case (n<n) and obtain,

2

(Zz). (5.21)

5 _ _zﬂzi(_;“)]’a
fr—=2 9 277i® \ 3n'n
L ﬁfi(g__)}“
3nit\ 3 'n

Numerical values of (I;—1,)/I, in (5.21), which are given in Tables 4 and 5 for
iron, cobalt and nickel metals, are obtained by the following ways. The theoretical

TABLE 4. Numbers of magnetic carriers, #g, densities of
electrons which were estimated from the observed values
of fwa(0), #nerr, and reduced values of the difference
between coefficients of the terms proportional to p?
in the dispersion relation of a plasmon, (I;—1p)/I»,
for Iron, cobalt and nickel metals

. T Fe | Co Ni
#npfatom 2.2 1.7 0.6
Htess/atom | 8T 3.55 418
(I—1)/1, % 0.204 f 0136 | 0012

TABLE 5. Numbers of magnetic carriers, nz, densities of
electrons, #, reduced effective masses which were esti-
mated from the observed values of jwo(0), merr/m, and

reduced values of the difference between coefficients
of the terms proportional to p? in the dispersion
relation of a plasmon, (I;~I,)/I,, for iron,
cobalt and nickel metals

i

Fe E Co : Ni
#ng/atom 2.2 ? 1.7 0.6
n/atom 8 9 10
ets/m ’ 213 253 239 .
(I~1,)/I» 1 0.0467 | 0.0224 { 0.0022
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values of %wi(0) for these metals were obtained by assuming all electrons outside
the approximate closed shell are free. These theoretical values of 7w.(0) for
these metals were different from the experimental values'®. In our numerical
estimation we make use of the effective density of electroms, nesr, or the effective
mass of an electron, mess, which can give the same numerical values of 7wi(0)
in (5.9) as the observed values. If we estimate ey, assuming mess/m=1, the
values of 7.7 are obtained as given in Table 4. Using these values of 7.sr and
the experimental data of 7z, we can get the values of (Iy—Ip)/Ip in (5.21), as
shown in Table 4. If we estimate mesr to fit the observed values of #wi(0) with
its calculated values by (5.9), the values of mus/m are obtained as shown in
Table 5 and the corresponding values of (Is—I)/Ip in (5.21) are obtained from
the experimental data of »z, as shown in Table 5.

Between these two numerical estimations of (Ir—1,)/I, there are differences
by one order of magnitude as seen from Tables 4 and 5, but it seems that the
difference between the coefficients of p* in the dispersion relation of a plasmon
in the ferromagnetic and paramagnetic states may be observed in the experiments
of the inelastic scattering of electrons for iron and cobalt metals, because the
values of (Ir—Iy)/I; are relatively large for these metals. There may be a
difficulty in this sort of experiments, because the Curie temperatures of iron and
cobalt are very high. However, we must notice that, as discussed above, the
model of an electron gas may be too simple to discuss in detail the dispersion
of a plasmon in the transition metal.

Chapter VI. High Field Susceptibility for Iron Metal and its Alloys®™

§ 1. Introduction

Recently, susceptibilities for ferromagnetic iron and nickel metals and their
alloys in high magnetic field have been measured below, the Curie temperature
by Stoelinga and Gersdorf', Freeman ef al.* and Herring el al®. It is well-
known that the high field susceptibility for a ferromagnetic metal at 0°K is
composed of the susceptibility due to electron spins, 7s(0), which corresponds
to the Pauli spin susceptibility in the paramagnetic state, and of the sum of the
orbital-paramagnetic susceptibility and the diamagnetic one, K9,

Wohlfarth® and Gersdorf have shown before that in the Stoner model the
values of the high field spin susceptibility, ¥s, at 0°K can be calculated by the
values of the density of states at the Fermi levels of up and down spin bands
and the value of a molecular field coefficient, «. Therefore, the data of the high
field susceptibility are useful to obtain informations and to discuss about the
values of the density of states at Fermi levels with up and down spins and the
values of « and 7. for ferromagnetic 3 d-group transition metals and their alloys.

In §2, a more general expression of Js for a ferromagnetic metal at finite
temperatures is derived in the band model by the method given before by
Shimizu®" (hereafter, to be referred to as I and II). By using this expression
of #s, the values of /s(0) for ferromagnetic metal and its alloys with bee structure
are calculated in §2 and § 3, where the density of states curve” shown in Fig.
6 and the values of «’™, which were estimated from the exchange splitting in
the same density of states curve, are made use of. The calculated value of 7:(0)
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for iron metal is compared with the experimental datum at 4.2°K obtained by
Stoelinga and Gersdorf'™ and the value of Y. is estimated for iron metal in §2.
In §3, the values of 7s(0) are calculated also for iron alloys with cobalt, nickel,
chromium and vanadium in the same way as that for iron metal.

In §4, the temperature dependence of the high field susceptibility which is
derived from the increase of the magnetization due to the suppression of spin
wave excitations by high magnetic field, /sw, is calculated by the model of non-
interacting spin waves, whose energies are determined from the experiments of
the neutron scattering. It is shown that the calculated results are consistent
with the observed results for iron metal and its alloys and the temperature varia-
tion of Ysw is fairly larger than that of ¥s for iron metal.

In §5, the field dependences of Ysw and ¥s are calculated and it is shown that
the field dependence of Ys, is fairly larger than that of /s for iron metal. - Finally,
in § 6 it is pointed out that for a special density of states curve there is a possibility
that the field dependence of ¥s shows a discontinuous change at a certain critical
field.

§ 2. High Field Susceptibility for Iron Metal at 0°K

Following the method given in II, the difference between free energies in
ferromagnetic and paramagnetic states with the external field H is written as

AF= Sz.dcw)dn' + Eoe(n) — 2 psnH, 6.1)

where
2n=| ve—code~| w0 fe-cd, 6.2)
4 (n) =84 (n) —C-(n), (6.3)

v(e) and f(e—<¢.) are the density of states and Fermi distribution function, res-
pectively, ¢, and ¢- are the Fermi levels of plus and minus spin bands when the
magnetization is given by M =2 usn, and E.. is the exchange energy.

From (6.1) and the extremum condition of 4F against n, 94F/on=0, we have

45(n) =4 pran — 2 ppH, (6.4)
where a molecular field coefficient « depends in general on » and is defined as

1 9Ee(n)
4 pin on

If we expand (6.4) in Taylor’s series of n~ni=d4dn(=4M/2 ps), where n, is the
value of » when H=0, we get

Zs = 88411}4 :t 4233 ( aAEgi(zn) )g —a(m) - n”(%)o]—l’ (6.5)

where the subscript of derivatives, 0, denotes their values at n=n,.
From (6.3), (6.5) and 9¢:/on=p(§:)"" the % at 0°K is given by
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/s(O) =( 4 /“2; { ) + ) } - 0((%0) - %0< é;)ol . (6.6)
The formula (6.6) is the same with that given by Wohlfarth® and Gersdorf® if
a does not depend on #, that is, the last term in (6.6) is neglected. The stable
condition of free energy (6. 1), 9°4F/on’>0, shows that (6. 5) and (6. 6) are positive
(¢f. eq. (8) in I and eq. (12) in II).

The dependence on # of a can be estimated from the analysis of the tem-
perature dependence of M by the band model. For nickel and iron metals, we
have already estimated the dependences on » of «, as shown in Fig. 2 and Fig. 7.
In these analyses, however, we have neglected the spin wave contribution to the
decrease of the magnetization, so that these dependences on 7 of & will not be
so reliable at lower temperatures where the spin wave contribution to the
decrease of M is dominant. If we use the dependence on n of « for iron metal
shown in Fig. 7, the values of n:(2a/omn)s in (6.6) and & become comparable with
each other and ¥ becomes negative. This curious result shows that the dependence
on # of « shown in Fig. 7 is not reliable at lower temperatures and the value
of ne(da/on)e will not be so large as the value of a. Therefore, for the sake of
simplicity we assume that « does not depend on # in the following discussions
of the chapter.

The values of a(no) in (6. 6) for iron metal and iron alloys with cobalt, nickel,
chromium and vanadium were already estimated from (6. 4), using the experimental
data of M and the exchange splittings 4¢(n,) which were obtained for the density
of states curve shown in Fig. 6 and the results were shown in Fig. 2 a of the
ref. 7 and Fig. 1 b of the ref. 75.

Other contributions to the total high field susceptibility, ¥, are 7c and Ysw.
The Ysw is zero at 0°K, because no spin wave is excited at 0°K (This susceptibility
is discussed in §4.). Therefore, at 0°K we have

1 =7s(0) + Ze. (6.7)

Using the density of states curve and the value of a=1.16x10* mole/emu
obtained in §3 of chapter II, we get from (6.6) Zs(0)=0.99x10~* emu/mole for
iron metal. On the other hand, the observed value of ¥ at 4.2°K is 2.32 x10~*
emu/mole!®. From (6.7) the difference between the observed value of ¥ and the
calculated value of ¥s(0) is given by Ze=1.33x10"* emu/mole. This value of %
seems to be reasonable because the values of 7., which were estimated from the
analyses of the temperature variation of the susceptibilities for vanadium and
chromium metals with the same bcc structure as that of iron metal, are 1.78 x10~*
and 140 x10-* emu/mole, respectively .,

§ 3. Concentration Dependences of High Field Susceptibility

In this section, we estimate the values of 7:(0) for iron alloys with cobalt,
nickel, chromium and vanadium, making use of the density of states curve shown
in Fig. 6 and the values of a(n) shown in Fig. 1b of the ref. 75.

For iron-cobalt alloys, the magnetization increases with increasing concentra-
tion of cobalt®®, the Fermi level of the plus spin band, ¢, shifts toward the
right-hand side and the height of the density of states at Fermi level, »({+),
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decreases rapidly up to about 30 at. % cobalt in iron. Therefore, the first term
in the square bracket of (6.6) increases rapidly at about this concentration of
cobalt. The first term in the square bracket of (6. 6), that is, {p(¢.) ™ +2(¢.) 4}/ 44%,
and « against the concentration of cobalt in iron are shown by solid curves in
Fig. 23, respectively. From these numerical values and (6. 6) the values of 7:(0)
for iron-cobalt alloys are obtained as shown in Fig. 24. In Fig. 24 the solid
curve shows the difference 4y between the calculated values of ¥:(0) for the
alloys and pure iron metal, and open circles show the difference 47 between the
observed values by Stoelinga and Gersdorf™ of 7 at 4.2°K for the alloys and
iron metal. A satisfactory agreement between the calculated results of 4ys and
experimental data of 47 is obtained for iron-cobalt alloys. From this agreement
it is considered that Y. scarcely has the concentration dependence in comparison
with that of 7s(0) and the concentration dependence of ¥ can be approximately
explained only by that of ¥s(0). f

For iron-nickel alloys, we can estimate 4Ys by the same method as that for
iron-cobalt alloys. The result is shown in Fig. 25 with experimental data of 47,
The agreement between the calculated and experimental results is not so bad.
(If we estimate the difference between energies in the ferromagnetic and para-
magnetic states by using the density of states curve and the values of « used
above for iron-nickel alloys, the energy of ferromagnetic states is higher than
that of paramagnetic state at 0°K for larger concentrations of nickel in iron
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Fi1G. 23. Concentration dependence of {u({+)~1-
(-1 /4 4% and « for iron-cobalt alloys.
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Fi1G. 24. Concentration dependence of Xs(0) for iron-cobalt alloys.

d%s denotes the differences between the calculated values of %s(0) for

the alloys and for pure iron metal. Open circles show the corresponding
differences of the experimental data®.
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FIG. 25. Concentration dependence of %s(0) for iron-nickel
alloys. dis denotes the differences between the calculated values
of %s(0) for the alloys and pure iron metal. Open circles show
the corresponding differences of the experimental datals),

than about 17 at. % nickel shown by the vertical dotted line in Fig. 25; in
experiments the ferromagnetic state is stable up to about 35 at. % nickel in
iron®, A part of this discrepancy may be due to the uncertainties of the density
of states curve and of the values of « for iron-nickel alloys, but the main part
will be improved by a slight modification of the density of states curve.) For
iron-chromium and iron-vanadium alloys, the calculated results of 4y are shown
in Fig. 26. Unfortunately, we have no experimental data of 4y for these alloys
at present and expect that the experiments are carried out for these alloys.
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F1G. 26. Concentration dependence of Zs(0) for iron-chromium

and iron-vanadium alloys. 4%s denotes the differences between
the calculated values of Zs(0) for the alloys and pure iron metal.

§ 4, Temperature Dependence of High Field Susceptibility

As the temperature rises from 0°K, spin waves are excited in a ferromagnet
and play an important role to determine the magnetic properties of the ferro-
magnet at low temperature. Another contribution due to the suppression of spin
wave excitations by high magnetic field to the high field susceptibility appears
at finite temperatures. This effect of spin waves on the high field susceptibility
was first discussed by Holstein and Primakoff® in the Heisenberg model. In the
band model, the calculation of the high field susceptibility similar to that shown
by Holstein and Primakoff can be made in the following way. The difference
between the magnetizations at T and 0°K in the magnetic field H is written as

_ e (e q°dgq
AMsw = = =5 So X ((ront2 pu I JRT =1° (6.8)

where we take a model of non-interacting isotropic spin waves with momentum
g and energy %wg, and gmax and £ denote the cut-off momentum of the spin waves

and the atomic volume, respectively. At low temperature, we approximately
take 7w;=Dg* and gma.x as infinity, and we obtain

2
Lsw = %%sw = i‘fﬂ (FD)*D™**F(H), (6.9)

where

con  (° 2" exp {x+ (2 uH/ET)}
PUH) = So [exp {xt (2 peHJRT) ) —1TF O

In (6.9) we have neglected the field dependence of D. It can be calculated from
the equation of motion for the normal modes of a spin flipping by the random
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FIG. 27. Temperature dependences of Zsw for iron metal
Solid curves (1), (2) and (3) are calculated for H=100, 150 and
200 KOe, respectively, by using the data of exchange stiffness
constant measured by Lowde ef al® Broken curves (17), (2')
and (3') are calculated by using the dispersion relation of spin
waves measured by Shirane ef al.*¥ Curve (4) denotes the
difference between the values of X at T and 0°K. Open circles
denote the experimental datals)

phase approximation and is derived from the redistribution of electrons in the
plus and minus spin bands by the external magnetic field, as shown in Appendix
B. The rate of this dependence is given by yH/M from (B.3), that is, ~10~?
at H=10° Qe for iron metal, so that it is neglected in this paper.

The temperature dependence of Ysw for iron metal is calculated numerically
from (6.9) for H=100, 150 and 200 KOe, as shown by solid curves (1), (2) and
(3), respectively, in Fig. 27, where we take the value of the exchange stiffness
constant D as 0.28 eVA? which was determined by the experiment of small angle
inelastic neutron scattering for iron metal®).

On the other hand, the temperature dependences of ¥s can be calculated from
(6.5) by using the numerical results of 4¢ obtained in §3 of chapter II and we
obtain curve (4) in Fig. 27 for iron metal. At 300°K, the temperature variation
of 7s is about five percents of that of Y for iron metal and we can neglect the
temperature variation of Y. as compared with that of Ysw. The temperature
variation of 7. will be the same order of magnitude as that of /s.  Therefore,
both temperature variations of s and Y. will be negligible as compared with that
of 7sw and we may assume that the temperature variation of the experimental
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Fi1G. 28. Calculated temperature dependence of ZewD¥? by
(6.9). Experimental values, obtained from the observed values
of D) and X%5), are denoted by closed circles for iron metal,
open circles for iron-cobalt alloys and square symboles for
iron-nickel alloys.

data of the high field susceptibility is given by only that of Y.

From (6.9), we can expect that Y.wD¥* will not depend on the composition
of alloys, as 2 does not so sensitively depend on the composition®, and it is a
function of 7 and H. The temperature variation of Y«.wD¥? calculated by (6.9)
is shown by solid curves in Fig. 28 for some values of H. Using the experimental
values of D determined from the neutron scattering experiments®” and experi-
mental values of 7 measured at H between 100 and 200 KOe by Stoelinga and
Gersdorf!®, we can obtain the experimental values of yD%% as shown in Fig. 28
by closed circles, open circles and square symboles for iron metal, iron-cobalt
alloys and iron-nickel alloys, respectively.

The scattering of experimental values of 7D?%? at higher temperatures in Fig.
28 may be attributed to the fact that Ysw shows a strong field dependence at
higher temperatures and the fact that the higher order terms in the dispersion
relation and the cut-off momentum of spin waves are neglected in (6.9). The
former fact is discussed in the next section. We can take into account the effect
of the latter fact on the temperature variation of 7. only for iron metal in the
following way. Using the experimental data of the dispersion relation of spin
waves for iron metal which was measured by neutron scattering experiment up
to the order of ¢* where 4 denotes the momentum of spin waves*’, we can obtain
the temperature variations of Ysw from (6.8) as shown by broken curves (17),
(2’) and (3') in Fig. 27 for some values of H. The discrepancies between the
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solid curves and broken curves at lower temperatures in Fig. 27 are due to the
difference between the values of D measured by Lowde ef ¢/.5” and Shirane et al.*9
For iron alloys we have, however, no experimental data of the higher-order terms
in the dispersion relation at present. If we take account of the effect of these
higher-order terms on the temperature variation of Y« for these alloys, the solid
curves in Fig. 28 may shift upwards. Moreover, we have no information about
the cut-off momentum of spin waves for iron metal and iron alloys. When we
take account of the cut-off momentum, the broken curves in Fig. 27 may, in
principle, shift downwards at higher temperatures.

§ 5. Magnetic Field Dependence of High Field Susceptibility

The field dependence of s can be calculated from (6. 1) as follows, we expand
(6. 1) in a Taylor’s series of 4n up to the terms of 4n® and get

. _odM ., _ H .5 2 4C 2 D _ 2 [ O
1s(H) = S Zs —SEAIS \( i )0 - 4#3%0<W)0 8#3(65)0}' (6.10)
where 7 is given by (6.5).
At 0°K, (6.10) is written as,
] !
1aE) = 2:00) + - T 7002 P - 2 ), (6.11)
8/18 JER v_

where the dependence on n of « is neglected and

vl = <fllélifl)g=g:

It is noted that a linear term of H appears in the ferromagnetic susceptibility,
given by (6.10) or (6.11), and its coefficient has the exchange enhancement
similar to that given by the term proportional to H? in the paramagnetic sus-
ceptibility, as shown by Wohlfarth®®.

For iron metal, the second term in (6.11) is estimated from the density of
states curve shown in Fig. 6 and the same value of « as those used in § 2, and
it becomes —0.65 x10~* x H emu/mole. When H is about 10° Oe, the field variation
of 7s(0) is of the order of 10-7" emu/mole for iron metal and can be neglected.
The field dependence of Y. will be the same order of magnitude as that of ¥s(0).

From (6.9), we can estimate the field dependence of Ysw. As shown in the
last section, the field dependence of D is negligibly small and we neglect this
dependence. The calculated results of Ysw(H) are shown in Fig. 29 for iron metal
at some temperatures. At the magnetic field between 100 and 200 KOe, the field
variation of /s is negligible at lower temperatures, but large at higher tem-
peratures, for instance, about 10~* emu/mole at 300°K. Therefore, the experimental
errors in the experiments of the high field susceptibility will increase with
increasing temperature. The scattering of the experimental values of D% at
310°K in Fig. 28 may be attributable in part to this strong field dependence of
Asw.

For the magnetic field dependence of the high field susceptibility, Holstein
and Primakoff*® showed before that Y., (H) is proportional to the inverse of a
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FiG. 29. Calculated field dependences of Xsw for ircn metal at 20,
50, 100, 200 and 300°K by (6.9). The value of D is taken as 0.28 eVA®BN,

square root of H in the Heisenberg model, including the dipole-dipole interactions.
The result similar to their result is obtained from (6.8) and (6.9), if we assume
Bwg=Dqg* and take gm.. as infinity and if usH is far smaller than &7, as follows,

. 1/2
oo H) = #2ZET pros( 2 )7, (6.12)

However, this result is not applicable to the comparison with experimental
data used in this paper, because H is very high. about 10° Oe. The values of
Ysw{H)D¥? calculated by (6.9) and (6.12) at T'=20, 50, 100, 200 and 300°K are
shown by solid curves and broken lines in Fig. 30, respectively. From Fig. 30
it is seen that Ysw is not proportional to H~'? at higher magnetic fields.

Finally, it is pointed out that for a special density of states curve there is
a possibility of the transition from a ferromagnetic state to another ferromagnetic
state which has the larger magnetization with increasing magnetic field. (In the
case of the collective electron metamagnetism pointed out by Wohlfarth and
Rhodes®’, the transition from a paramagnetic state to a ferromagnetic state
occurs.) In the case where the difference between the energies in the ferro-
magnetic and paramagnetic states, 4FE, without magnetic field is schematically
drawn as a function of M by the curve specified by H=0 in Fig. 31 (a), the
energy of the state with a larger magnetization decreases with increasing magnetic
field and becomes lower than the energy of the state with a smaller magnetization
at the higher magnetic fields than the critical field H;,. The field dependence
of the magnetization is schematically shown in Fig. 31 (b) and that of susceptibility
becomes discontinuous at the critical field. There seems to be this possibility
when the density of states curve has a hump at a little higher (lower) energy
than the Fermi energy of plus (minus) spin band or has humps at both energy
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F1G. 30. Field dependences of ZswD¥? at some tem-
peratures. Solid curves and broken lines are calculated
by (6.9) and (6.12), respectively.
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F1G. 31. (a) Schematic curves of the difference between energies
in the ferromagmnetic and paramagnetic states in the field H against
the magnetization. H, is the critical field when the energies of two
states with smaller and larger magnetizations are equal. (b) Schematic
curve of the magnetization against H. When H>H., the state with

larger magnetization is stable as shown in (a), and the %s becomes
discontinuous at H.

sides, because the 4E vs M curve shows the behaviour similar to that shown in
Fig. 31 (a) in these cases (¢f. Fig. 3 of I).

Chapter VII. Conclusion and Discussion

In chapter II, we have calculated the temperature variations of the magneti-
zation for nickel and iron metals. As shown in §2 of chapter II, the ‘calculated
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result for nickel metal is not so strongly dependent on the details of the density
of states curve, and the situation similar to this fact will occur in the case of
iron metal. Therefore, the dependences of « on temperature and magnetization,
which are found in chapter II, are not an apparent effect due to the method or
model of our calculation but a natural result. Moreover, in chapter VI we have
calculated the concentration dependence of the high field susceptibility for iron-
cobalt and iron-nickel alloys, using the density of states curve shown in Fig. 6,
and got a good agreement between the calculated and experimental results. From
this fact it is concluded that the density of states curve for iron metal shown
in Fig. 6 is also considerably reliable.

The temperature variations of the magnetization and the high field suscepti-
bility cannot be explained in the Stoner model, as mentioned in chapters II and
VI, because the fluctuation of the magnetization, that is, the spin wave motion
is not taken into account in the Stoner model. In chapter III, it has been shown
that spin waves can be phenomenologically derived from the energy due to the
fluctuation of the magnetization and the energy of a spin wave with momentum
g is written as Dg? at small ¢ in a ferromagnetic medium. Further, the temper-
ature variations of the magnetization and the high field susceptibility can be
explained by assuming the non-interacting free spin waves, as shown in chapters
111 and VI  The numerical values of D for ferromagnetic metals which are
determined from the experiments of the inelastic neutron scattering, the spin
wave resonance and the temperature variation of the magnetization at low tem-
perature are compared with each other, and it is shown that a good agreement
among these values is obtained as shown in Table 2. This fact shows the validity
of the theory of spin waves in metals.

From the first principle, the dispersion coefficient D has been calculated from
the equation of motion for normal modes with a reversed spin within the random
phase approximation for ferromagnetic metals with multiple bands in chapter IV.
It has been shown that the acoustical intra-band branch of spin waves has the
excitation energy of D¢’ at small ¢ and optical intra band, acoustical inter-band
and optical inter-band branches of spin waves have finite excitation energies at
g=0. Therefore, the contribution to the magnetic properties from the acoustical
intra-band branch is dominant at low temperature for ferromagnetic metals.
Other branches of spin waves do not contribute to the magnetic properties at
low temperature but will take part in at higher temperatures.

It has also been shown that the acoustical intra-band branch in the dispersion
relation of spin waves is affected by the inter-band transitions at larger ¢. The
experimental fact that the coefficient of ¢* in the dispersion relation of the
acoustical intra-band branch is relatively large for iron and fcc cobalt metals* 9,
but small for nickel metal®® may be explained by the effect of inter-band transi-
tions as follows. There are only 0.6 holes per atom in nickel, so that the single
band model is appropriate and the effect of the inter-band transitions may be
small in nickel. On the other hand, the numbers of electrons or holes per atom
are large in iron and fcc cobalt metals, so that the multiple band model is ap-
propriate and the effect of the inter-band transitions on the dispersion relation
of the acoustical intra-band branch of spin waves may appear at relatively small
values of g.

In the calculations of spin wave spectrum in chapter IV, we have used some
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approximations, the random phase approximation (4.9) and approximations for
the Coulomb interaction (4.13) and (4.21). These approximations for the Coulomb
interaction may be appropriate only for 3d-electrons and not for 4s-electrons,
because the wave functions of 3d-electrons are considered to be well localized,
so that it should be considered that the effects of 4s-electrons on the spin wave
spectrum are neglected in our calculations. Essentially 3d-electrons take a main
part in ferromagnetism, so that the results obtained in chapter IV may not be
so changed by the inclusion of 4s-electrons. In future, we should take into
account the role of 4s-electrons in the calculations of spin waves. Recently
Thompson and Myers®) have calculated the dispersion relation of an acoustical
intra-band branch of spin waves for nickel. But in their calculation the inter-
band transitions are not taken into account, so that the spectrum at larger g in
their result is not so reliable, although the spectrum at smaller ¢ will be reliable.

Next we discuss the random phase approximation (RPA). In the case of a
plasmon in an electron gas, RPA is correct in the high density limit of electrons’®,
On the other hand, in the case of spin waves, the (extended) RPA corresponds
to the Hartree-Fock approximation, because the eigen-value equation for a spin
wave similar to that obtained in the RPA can be deduced by the approximation
similar to the Hartree-Fock one, that is, the first-order perturbation theory in
which the Coulomb interaction is treated as the perturbing Hamiltonian®,
This fact can also be supported from the calculation in &4 of chapter III
Therefore, the RPA will be appropriate if the Coulomb interaction is sufficiently
small. Roughly speaking, when the Coulomb matrix element, which is propor-
tional to the molecular field coefficient « given in chapters II and VI, is small,
the ferromagnetism cannot expected because the unstable condition of the para-
magnetic state is given by a> (2 uhw) ', where v, is the value of the density of
states at the paramagnetic Fermi level. But the value of « has an upper limit
from the stable condition of the ferromagnetic state!”

T

where v, and »- are the values of the density of states at the Fermi levels of
up and down spin bands, respectively, so that the value of &« must be restricted
in the region

1 /1

1
4u§1;:+;}>q>

1 1
2/1123 Vo

»

for a ferromagnetic state. Even if the value of « is so small that the perturba-
tion theory can be used, the ferromagnetism is expected only when the ahove
condition is satisfied. Recently Kanamori?’ has shown that the Coulomb inter-
action is screened by the correlation among electrons and the value of a becomes
relatively small. Moreover 4s-electrons will screen the effective interaction
between 3d-electrons. Therefore, we should take the values of U/ and J in chapter
IV to be the screened values and the RPA may not be unrealistic. At any rate,
the RPA is the most simple approximation to discuss spin waves in ferromagnetic
metals.

The optical intra-band and the acoustical and optical inter-band branches of
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spin waves, which are found in chapter IV, have not so far been observed, but
there is a possibility of the observations of these branches in the experiments
of inelastic neutron scattering, especially the acoustical inter-band branch may
be observed because its excitation energy is lower than that of individual excita-
tions as shown in Fig. 12 and Fig. 19.

Recently, Antonoff®® has calculated the spectrum of spin waves in two band
ferromagnetic metals, taking into account inter-band traunsitions. He has started
from the Hamiltonian (4.1) and calculated the equation of motion for spin-flip
operators in the random phase approximation. But, as mentioned in Appendix
A, the sub-band indices in (4. 1) are not suitable, so that the terms of <cf., Crouoy
for v+, which have been neglected in Antonoff’s work® should be taken into
account to solve the equation of motion in the random phase approximation, as
well as the terms of <{CivsCryor.

The dispersion relation of a plasmon in a ferromagnetic electron gas has
been found in chapter V by including the exchange correction and it has shown
that there is no difference between the constant terms in the dispersion relation
of a plasmon with respect to the momentum in the paramagnetic and ferro-
magnetic states, but the coefficients of the terms proportional to the square of
momentum in these two states are different from each other. In real metals
with multiple bands, we can treat the plasma oscillation also by the method of
the normal modes. From the equation of motion for normal modes and by making
use of the Hamiltonian (4. 4) and the random phase approximation (4.9), we can
get the same eigenvalue equation as that obtained by Pines®” and Ehrenreich
and Cohen'®. However, further numerical calculations are not yet achieved
for real ferromagnetic metals, because we must have a knowledge about the
higher and lower energy spectra than the Fermi level by about 10 eV.
Although it is an interesting problem to calculate the excitation spectrum of a
plasmon in real metals, the magnetic properties will not be affected by plasmons
at the ordinary temperatures because its excitation energy is too high.

Finally, we summarize the conclusions obtained in this paper.

(i) The magnetization dependence of the molecular field coefficient is im-
portant to fit the calculated temperature variations of the magnetization on the
experimental ones for iron and nickel metals.

(ii) Spin wave-spin wave interactions are phenomenologically derived from
the terms with the fourth power of the first derivative of the magnetization
density with respect to space coordinates in the magnetic energy.

(iii) The spin wave spectra for ferromagnetic metals with multiple bands
consist of one acoustical intra-band branch, some optical intra-band branches and
new acoustical and optical inter-band branches. The acoustical intra-band branch
plays an important role for magnetic properties.

(iv) Plasmons exist not only in the paramagnetic electron gas but also in
ferromagnetic one and there is a difference between the terms proportional to
the square of momentum of a plasmon in their respective dispersion relations.

(v) The experimental results of the high field susceptibilities for iron metal
and its alloys at 4.2°K can be satisfactorily explained in the Stoner model, by
making use of the density of states curve shown in Fig. 6. The temperature
and magnetic field dependences of the high field susceptibilities at lower temper-
atures can also be explained by non-interacting free spin waves.
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Appendix A

It is shown that the sub-band indices », in (4.1) are not suitable for describing
one electron states in the following way. Now, we consider a commutator of
Chse With %" in (4.1). Cubic terms with respect to ¢* and ¢, which are derived
from the commutator of cps, with .7, are linearized by picking up only the
terms containing #rv: (= ci,civs) and treating these occupation number operators
as cnumbers™, and we find

L% chsol = €5( ) Chsn
+ > V(puvi, kvs 5 ps, %v2) %kvac'c;‘/m

Evyivgo!

- 2 V(kvs, by ps, 1252)2) %kvwcgvlc- (A. 1)

Kvive

This shows that one electron state with momentum p, spin ¢ and sub-band index
s is coupled with other states with the same momentnm p, the same spin ¢ and
different sub-band indices, so that the sub-band indices in (4.1) are not suitable
for describing one electron states in the further calculations of spin wave spectra.

In order to diagonalize the one electron energy with respect to sub-band
indices, we add an effective potential to one electron Hamiltonian and % in (4.1)
is rewritten as follows,

S = S ot S pry
o= 20h(ri),

2
hix;) = — %ZXIL—’ + S0(r — Ra) +vesr(vi), (A.2)

S opr = = 2vers(ri) + %ZZ‘U(M— i),

i%y ¢
where the first, second and third terms in %(r;) are the kinetic energy, the
interaction between electrons and ions and an effective potential which is de-
termined later, respectively. Now, we can rewrite (A.2) by the second quantiza-
tion, taking the eigen functions of %(r;) as the basis and we have
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(,://= 2 Ekr; (k) a}r}c (2359

kMo

- 2 E <k§] Z"(&‘ffl k’$’> CZZEG Apryeg

2 2 ZW(MQ, Fafo 5 Eufy, Ksfy)

kg Saeeeig 007

X ak;’:zc’ akaizf)’ Qiyio Qrzyny (A. 3)
where
Buo(®) = [drefu () h() ¢ (), (A.4)
kg lverr| KD = Sdr O () vesr (1) Qs (7), (A.5)
and

Wkifs, ke 5 Eafs, Kofs)

= derld‘w (p;:ﬁl(rl) (/gz:z';z<T2) y(lrl - 7'2[) (;gkf:/:(rl) (107{3?'3(?‘2)' (A 6)

Here, ¢r:(r) is the eigen function of %(r) in which the spin dependence is
neglected. The matrix elements of v,z (r) are self-consistently determined such
that the sum of the second term and a part of the third term in (A. 3), which
can be rewritten as the second term by replacing the number operators ata by
c-numbers, as well as in the random phase approximation, vanishes. Thus, the
matrix elements of vesr(r) is determined as,

<EE |vepr(T) | K'ED
= Spnd kZ W kiéy, k2 5 Eiba, B2 iz,
15101

- EW(Abl, k&5 RE, kafy) Mgty ) (A.7)

Making use of (A.7), we can write E,, (k) as

TzV‘

EAO(k) —de WLA(T) +ET)(T"‘ 71)1‘5};)(7)
+ Z W(k,’f) k} 5 ik ‘f: k}\) Nirso
ks’

= DVWHEIE, A 5 k2, K'E) o, (A.8)
k%

and this expression is just the Hartree-Fock energy. The off-diagonal matrix
element of 4(r) must vanish, that is,

Sd: ‘Fm(r) Zm +2lv(r——Rn)}ww(r)
+ 20 WS, BA S RIS, Jept) miesar

=22 W(EE, k2 5 kp, K'E) nuse =0, (A.9)
P

for Axu. From (A.3), (A.7) and (A.8), we can get the Hamiltonian, shown by
(4.4) in the text.
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Appendix B

We will discuss the contribution to 7 due to the field dependence of the
dispersion relation of spin waves. In the magnetic field H, the eigenvalue equation
of a spin wave with momentum g is obtained from the equation of motion for
the spin flipping normal modes as,

&:](q) b ng, + (H) _‘nk-}q'a(H) (B.1)

l= =N 2 EGitq) —E k) +4H) +2 psH—fro(H)

where we use the single band model and the random phase approximation, U
and J(g) are an intra-atomic Coulomb integral and the Fourier component of
inter-atomic exchange integrals, respectively, 4 is the exchange splitting,
{U+]J(0)} M, E(k) is the energy of one electron with momentum k%, nz, +(H) and
ng. - (H) are occupation numbers of electrons with plus and minus spin and with
momentum % in the magnetic field H and N is the number of atoms.

By the effective mass approximation, we can obtain the dispersion relation
of spin waves with small ¢ as

fio(H) =2 ppsH~+ D(H) ¢,

up to the order of ¢*, where

D(H) = D];(H) + Du(H),
7 4 ne(AEH(HD —n-(NEs(H
DD = gy \* M(H) AU o B

Da(H) ={J(0) = J(q)} M(H),

and Er.(H) and n.(H) are the Fermi energies and number of electrons with plus
and minus spins in the magnetic field H, and n=n. (H)+n-(H) is the total number
of electrons.

Expanding #.(H) and Er.(H) in (B.2), by the usual way in power series of
H and using the relation M(H)=M(0)+}H, Ds(H) and Du(H) given by (B.2)
are expanded in power series of H as

YH ni TH
Dy(H) = D(0) = -5 ry D=0+ 555070y 2r(0y
4

x [m (1:(0) Ef+ (0) = n-(0) Ef-(0)} 59

_ 2M(0) |
3n4(0)

_ J.HA}
M©O) /S’

{Ere(0) + Er(0)} ]

Da(H) = Da(0) {1

up to the linear term of H. Therefore, the orders of magnitude of {D.(H)—
D#(0)}/Dr(0) and {Du(H)—Dgy(0)}/Ds(0) are given by yH/M, that is, 107° at
H=10° Oe, and the effect of H on D can be neglected in our estimations of Zsw
in chapter VI.  For the case of multiple bands, the order of magnitude of the
difference between D(H) and D(0) is also 7H/M, because the value of D is the
simple sum of the values of D in each sub-band as shown in §5 of chapter IV.
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