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1. Introduction

In this paper, is proposed the S.V.S. (Segquential Vector Space) theory which
is a humble theory for the discrete control system. In S.V.S. theory, the time
functions such as input, output, and impulse response of a system, are expressed
as sequential vectors composed of discrete functions which are, for example,
sectional pieces of the function defined only in the sampling period. And the
output S.V. (Sequential Vector) is related to input S.V. in simple product form
with S.T.M. (Sequential Transfer Matrix), each column of which is derived from
S.V. of impulse response of the system.

Although the sequential vector description is available to linear discrete
system, the features especially appears in analysis and synthesis of non-linear
discrete control system.

In this paper are treated at first the definition of S.V. and S.T.M., at second
the sequential vector description of simple descrete system subjected to discrete-
value input and discrete-function input, at last analysis and synthesis of a
representative non-linear control system.

2. Definition of Sequential Vector and Sequential Transfer Matrix

A deterministic function can be expressed as a vector which is composed of
discrete functions. We refer to that vector as Sequential Vector or S.V..

The sequential vector -of the input or output function of a general linear or
non-linear system is referred to as input or output sequential vector respectively.
The relation between the input and output sequential vectors of a system can be
expressed by means of a matrix which is named as Sequential Transfer Matrix
or S.T.M., which is composed of the sequential vector of the impulse response
of the system.

Now, we will use next notations:

Input S.V.: F() ={f,t—=t)V = (fe,(t—t), fe,(E =1, . . .)
Output S.V.: ¢(8) =der(t =)V = (er,(t =), cr,(t =8, . . .) (2-1*

(7=0,1,2, ...)
and

* The symbol ' means the transpose of a vector.
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STM.: H() =H(g®) (2-2)

where fy(t =) or c,(t—1)), j=0,1,2, ... is a time function starting at the
sampling time ¢;, relative to input £(#) or output ¢(#), (c.f. Figure 2-1). g(f) is
the sequential vector of impluse response of the system. The dimension of S.V.
can be definite and very large. Then the system response (input-output relation)
in the sequential vector space is generally expressed by a vector equation of

Eq. (2-3).
c(t) = H)*F (1) (2-3)%
When f;,(#) and ¢, (#) are defined only in a period of T;<¢<Tj.1, the input and

output vectors will be expressed by functions of = which is a time variable defined
only in that period. That is

FO) =7 ={ft,()V = (f1,(0), fr,(c), . . .)

(2-4)*
() =e(0) = Lo, ()} = (g(2), e, (), .. L)
And the input-output relation can be written as
ele) = H(o)*F (o). (2-5)%*

As a special case, all the components of a sequential vector or a sequential
transfer matrix can take the sampled values, as we will treat in Sec. 3.1. Then,
thereafter, we will refer to a sequential vector which is composed of only the
sampled values as (ordinary) Sequential Vector, and the sequential vector com-
posed of the sampled functions as the modified Sequential Vector or modified
S.V. In the same way, we will name a S.T.M. composed of the sample values as
the (ordinary) S.T.M. and a S.T.M. composed of the sampled functions as the
modified S.T.M..

General System

£ e(d).
[PA————— Ht) S m———
S5 t5(1)

S5() ()

FiG. 2-1. System response of a general system.

3. System Response of Linear System Described in
Seguential Vector Space

3. 1. System Response of A Single Discrete System in Sequential Vector Space

First of all, we will consider a most primitive sampled-data system as shown
in Figure 3.1-1, and assume that for simplicity the sampling action in the input
and output sides are both taking place at the same time. The input sequential

* The symbol / means the transpose of a matrix.
*¥ The symbol * means the convolution which will be explained in Sec. 3.2.
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Linear System

cd), ()

S
S — Hor H()
[+
R

Fi1G. 3.1-1, System response of a single discrete system.

vector is composed of the sampled values of f(1), and the output sequential vector
is composed of the sampled values or the sampled functions of ¢(#). They can
be expressed by Eq. (3. 1-1).

fz{f(jT)>':{fi>': (foy fl, o a e :f;z)’
= {C(]T) ’={Cj},: (Co, Ciy, o« » Cn)l (8.1"1)
(o) ={cUT+ )V ={c()} = (alr), ale), ..., calz))

where 7=0,1,2, ..., %
Let the sequence vector of impulse response of the system be

g= (&, g1, « « « gn)l- (3.1-2)

By the fundamental theory of linear system, the relation of Eqg. (3.1-3) can
be directly derived.

c={ci={g O »--O]fe‘
€1 £ £ : f
. ;i .. . (3.1-3)
Cn } En &n-1" " " Lo fn
Comparing Eq. (2-1) and Eq. (3.1-3), the S.T.M. of a linear system can be
generally expressed by Eq. (3.1-4).

H={g 0 NP

g1 &

o (3.1-4)

n n-1° " " &o

Now, we will introduce a matrix S defined by Eq. (3.1-5).
S-—__« 0 O ..... O

1 0

0 1-
. v (3.1-5)
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S is an operator which shifts the raw of a vector or matrix downward by one
raw, operating to it from the left side. Then the relations of Eq. (3.1-6) and

Eq. (3.1-7) can be derived.

0 ={ 0 [ I 0 S 1= Sg

&o 10 &1

&1 0 1 &2

gn-—] 0 O 1 0 gn

0 =f Q0 Q- oo 0 S )= S’g
0 0 0° . &1

Lo 1 0 o

gl O 1 Lo .

. . 0

In~2 0 0--- 1 0 0 En

Therefore,
H= (g, Sg, 8’2, ...,S8")
and
c=H-f
= (g, Sg, S%, ..., S"a)f.

Eq. (3.1-9) can be further modified as follows:
[ =fo°g+f18g+f232g+ cet -%-fnSng
=(fo+ fiS+ L8+ -+ + 8N g
= (X%fisDe

Eq. (3.1-9) can be also written in the other form. That is,
c=(f, SF, 8f+ - -8"g
= (go+ &S+ &S+ + + « +g.S8"F

= égfs‘")f.
Since S' =0 for i>n,
then
3173’ = 316’ = [F() s = F(S)
and

Ses' =6 (2)Jr-s5= G(S),

(3.1-6)

(3.1-7)

(3.1-8)

(3.1-9)

(3.1-10)

(3.1-11)

(3.1-12)

(3.1-13)
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We will refer to 7(S) and G(S) in Eq. (3.1-12) and Eq. (3.1-13) as S-Transform
of the input f(#) and the impulse response g(#) respectively, and now use the
symbol of Eq. (3.1-14).

G(S) = SLg)]
or G(S)=./[G(s)] (3.1-14)

The symbol of .& means the taking of S-Transform of the function in the bracket.
G(S) or F(S) is a matrix which is obtained by the substitution of z7* and 1 in
G(z) or F(z) (Z-Transform of f(#) or g(¢)) by S and I respectively. Thus, Eq.
(3.1-11) can be written as Eq. (3.1-15) and Eq. (3.1-16).

? c=F(S)g (3.1-15)
e=G(S)f=Hf (3.1-16)

where
H=<Tg)]=G(9). (3.1-17)

Eq. (3.1-16) is the vector equation expressing the relation between the input and
output sequential vectors, and Eq. (3.1-17) shows that the sequential transfer
matrix of H is the S-Transform of the impulse response of the system and can
be directly derived from its pulse transfer function by substituting z=* and 1 by .S
and I respectively.

The modified output sequential vector e¢(r) can be also described by the
equation analogous to Eq. (3.1-16). Let the modified sequential vector of impulse
response g(f) be as Eq. (3.1-18).

g(t) = (go(f), gl(f), e e » ,gn(f))l (3.1_18)

Referring to Eq. (3.1-11), the modified sequential vector of output can be expressed
as

e(t) = (f, S, S°*f, ..., S g(r)

= (@), @8 ..., gul0)8F
= (g8 (3-1-19)
=G(S, Of,
where
G(8, )= g.:g,-(r)s'e [Gz, ) ]eas (3.1-20)
G(zt) =[2G (2, m) Jn=-/r. (3.1-21)*

Corresponding to the definition of Eq. (3.1-14), we will use the symbol of Eq.
(3.1-22) for the operation of Eq. (3.1-20).
G(S, ) =F-Lag)] \

' .1-22
or G(S, t) =.7-[G(s)] | 8.1722)

* G(z, m) is the conventional modified Z-Transform of g(),
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The symbol .%*. means the operation of modified S-Transformation. Then if we
put as

H(z) =FLg®)]=G(S, ), (3.1-23)

the modified input-output sequential vector relation of the system can be followed
as Eq. (3.1-24).

e(r) = H(o)f (3.1-24)

H(7) refers to as modified S.T.M. and can be derived from the modified Pulse
Transfer Function of the system by substituting z=!and 1 by S and I respectively
and is expressed by Eq. (3.1-25). \
H(x)=(g((x) 0 0«-vene 0
£ (T) go(‘!') 0 .
& (r) g(o) gu(7)
. . : ’ (3.1-25)

gn(f) gn-l(l‘) gn-z(f) . 'go(f)

3. 2. System Response of A Discrete System Subjected to Discrete Function Input
In this section, we will investigate the computing method of the output S.V.
of a plant subjected to the discrete function input. The discrete function is
referred to as a discontinuous function which has the different sectional function
in each sampling interval. For example, the input of a plant preceded by sampler
and hold circuit or sampler and interporator as shown in Figure 3. 2-1 is generally

a discrete function. The sequential vector of discrete function is the modified
sequential vector.

S / S Hold cct S Linear Plant ct)  elx)
— or

Interporator Hz) l
- C

FIG. 3.2-1. Linear plant subjected to the discrete function input.

Let the holding or interporating function of the hold circuit or interporator
be k(7). The output of the interporator can be expressed by Eq. (3.2-1).

f(r)=hic)rF (3.2-1)*

Now the output of plant is a summation of the sectional convolutional integral.
That is,

J—1 AT

ci(z) =Zgog(j-n(r—v)j}(u)du+ S(;go(r—y)ﬂ(u)du. 7=0,1,2, ... (3.2-2)

* Note that f(z) which expressed by Eq. 3.2-1 is different from the sequential vector
of the original input function f(¢).
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where fi(t), ¢;{¢) and g.(7) is respectively a component of the modified sequential

vectors of the input, output and impulse response of the system. If we introduce
a new expression of Eq. (3.2-3),

>Y:gle(r - v)fi(v)dv = f.gk(r) *ﬁ(r)]: = (gk*fi)c

- (3.2-3)
jo gele =) i(wdy = Lg() =/ () e = {ge*fi)r
the following expressions can be obtained.
Co(T) = (go"f‘ﬁ):
ci(r) = (gl*fo)’f + (gu*ﬁ)-:
62'(1‘) :{gz*fo)rf(gz*fl)y*-i-(go*fa): (3.2-4)

cn('f) = (gn*ﬁ)M“?- (gn~1*fl)1’+ LR {go*fn)':

A set of equations of Eq. (3.2-4) can be rewritten by the vector equation of Eq.
(3.2-5) and Eq. (3.2-6)

e()={ e 1= g 0 0+ o FifmW
cilt) &1 (r) go(T) 0 0 S (o)
Cz(f) gz(f) g1(l') go(f) 0 fa (o)
. . . . . . ES - (3.2_5)
¢ (o) L gn(r) gn—l(T) Gn-2(7) go(f) | fn(i'>
e(r) = [H (@« ()] (3.2-6)

The symbol of the thick brackets appeared in Eq. (3.2-4) ~Eq. (3.2-6) shows
that the time shifting of » in the convolutional integrand is to be subjected to
the definition of Eq. (3.2-3). It must be noted that the upper limit of the con-
volutional integral involving g(7) is =, and those of the other convolutions are
7. Here it should be noted that Eq. (3.2-6) is an extention of Eq. (3.1-15) which
is for the case of a discrete value input, to the case of a discrete function input.
Ex. 3.2-1

Now, we will learn the practical calculating procedure through a very simple
example.

Hio)
Gs)

y, ¥ ] st f 1 c(l), e(m)

s s+a l
i

F1G. 3.2-2, Control system for Ex. 3,2-1,
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By applying Eq. (3.1-23),

_ B e_(ZT _ e‘a’:I
H(t) = -[G(s)]= [i*:"eqlzjj srng . I—e-9T8
i1
= T+ TS 47 TIS 4 -t (i)

On the other hand, the discrete function input f(r) is expressed by Eq. (ii).

F(o) =[1() ~ TALF = fo * 1(2)
f1 ® 1(1')

fo o 1(z)

. (ii)

fn ° 1(7)

where 1(r): unit function

Then the modified output sequential vector e(r) is obtained by using Eq. (3.2-5)
and Eq. (3.2-6).

=]
() =LH()*f()]= [“f:é:arg *f(‘l')J (iif)
()= & 0 0 R N (D)
g TR P 0 0 fi e 1(z)
g eRITR et Pt . f2 ¢ 1(1)
% .
e~ AT pman=iT+T) e g Jne (o)

c(o) = 1 () fo
T 1 (e fo + (e +1(e))-f
G % () efo + (&7 T 1)) fi 4+ (e #1(0)) 2 S

2 1)) s fo + (e TT+ 95 1(2)) sfi + » + + F (@ THFL(D))fn
(iv)
Referring to the convolution Table in APPENDIX,
1 —at
CQ(T) = —5(1—'2 )fO

(e = LU= fot = (1= ),

clt) = %e"”e"”(l —e ) fo + 61; e Q-+ % (1-e*)fe

.

" i o 1 gt —atn—2y1 - —at
Cn(‘l') =%e~a»e~—a(n 1)1(1___e al)f0+ze a e a(n u)[(l_e aT)f1+ . .. 'f"cl;(l"e a )fn
(v)
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¢ is obtained by putting =0 in e(z).
Cyp = 0

C = ;(1 - G—m‘)fo

Cy = }~(1 - N "H+ 1)

(vi)

R

Cn= ‘lz(l _e-az‘)(e—atn-l;rﬂ)_+ e—r:(rl-Z\Tﬁ+ e +e—mlfn—2+fn-l)

3. 3. System Response of Continuous System Described in Sequential Vector Space

In this section we will study how to treat the continuous system in sequential
vector space. The input-output relation of continuous system, of course, can be
described very simply and clearly by Laplace Transformation method. While
the object of treatment in this section about the continuous system very lies in
showing that the sequential vector method is also available for the continuous
system.

Linear System

(1) gut), Gig, 7 o)

PRSI
i g7, H\9) e(7)

F1G. 3.3-1. System response of general continucus system.

Now, let us consider a simple continuous system shown in Figure 3.3-1. The
output of the system ¢(#) is clearly given by the next convolutional integral:

o) = =gz (3.3-1)

By putting as
t=jT+t;7=01,2, ...,
A=iT+v;i=0,1,...,7
and making further modification, we can derive the expression of Eq. (3.3-2).
co (7) = (go* fods

a (o) = (gef): + (@*fr
e (2) = (@*fds + (g fde + (g fdr - (3.3-2)

cn(7) = (gn*_fo): + (gn-l"fl)-r R o (go*fn)z'
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Where

SZgi(7J)ﬁ:(T —v)dv=Lgi(e)fel) ] = (gixfi)-
7 (3.3-3)
jogi(v)ffe(r —v)dv =Lgi(0)*fe(D ) r = (gifidr

The expression of Eq. (3.3-2) causes the vector expression of Eq. (3.3-4) or
Eq. (3.3-5).

C(T) ={ ¢y (T) ={ & (Z‘) 0 0 «e--- 0 B fo (r) ]
C[(‘E‘) gl(T) go(f) O ccv-e 0 ﬂ(f)
e (7) () gi(x) Solz)e v+ 0 fa (r)
- : : - A (3.3-4)
Cn('i') gn(f) gn—x(f) gn—’z(T) gO(T) B fn(T) n
e(o) = [H(0)*f ()] (3.3-5)

where, the meaning of the thick brackets in Eq. (3.3-2) to Eq. (3.3-5) is clarified
in the similar way to that in Sec. 3.2. It is noticeable that the upper limit of
the convolutional integrals involving fi(z) are =, and those of the other convolutions
are 7.

Now, we must take note that, as being exchangeable of f and g in convolu-
tion integral of Eq. (3.3-1), the output ¢(¢) can be also expressed as Eq. (3.3-6).

e(r) = LH(D) ## ()] (3.3-6)

The relation of Eq. (3.3-6) is the same form as Eq. (3.2-6). The difference
between Eq. (3.3-5) and Eq. (3.3-6) presents in the execution of matrix opera-
tion, and can be conclusively said as follows: “The shifting of the denominator
of H(r) to the left side of the vector oquation is possible in the execution of
matrix operation by Eq. (3.3-5), but is impossible by Eq. (3.3-6)". This is
caused by the fact that

(a) The denominator of H{r) performs the weighting operation on elements
of each column,

(b) On the integration limits of the convolution integrals made by fi(z) and
the first column of H(r), all of them are r for the case of Eq. (3.3-5) but not
for Eq. (3.3-6).

In accordance with the above two facts, the weighting operation by the
denominator can be put off after the execution of the convolution integral for
the case of Eq. (3.3-5), but not for Eq. (3.3-6). This is the very reason for
whether or not the shifting of the denominator of H(r) is possible.

Next, we will consider briefly the computation method of ¢;(7), j=0, 1,2, ....
When =7, all the integration limits in Eq. (3.3-5) and in Eq. (3.2-4) are 7.
Then, the shifting of the denominator of H(r) is always possible.

3. 4. Introduction of Initial Condition to Sequential Vector Equation

It is very simple how to introduce the initial conditions to the sequential
vector equation. Now, for convenience, we will consider the second order system.
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Let the system differential equation be

itat+bx=m (3.4-1)
X(s) = G()M(s) +G(s)i(0) + (s + a)G(s)x(0)
X(z, t) = Z[G(OM()T+ Gz, )i(0) + [aG(z, ) + Gy, )1x (0)

Then () =[H@*m()]+ 20O H(De+ x(0)[aH (z) + H () e (3.4-2)
or x(e) =[H()=m()]+ %(0) g(c) + x(0) [ag(c) + &()] (3.4-3)
where
1
GO = grastb

Gz, v) = Z-[G(s)]
Glz, o) = 2 [sG(s)]
H() = S [G(s)1=[G(z, -:)]f:xl.,s (3.4-4)
i (2) = LG =[Gz T)];:_:*’—»s
g(r) = (gul=), g@i(2) - - gu(c))
&) = (&o(0), g1(e)+ =+ gn(0))
e=(1,0,0,...,0)
Eq. (3.4-2) or Eq. (3.4-3) is the system sequential vector equation involving the

initial condition. It is quite possible to extend the above discussion to the
general higher order system.

4, System Response of Non-linear System Described
in Sequential Vector Space

4. 1. General Aspects of Sequential Vector Method for Non-linear System
In general, any non-linear system can be described by combination of linear
systems and zero memory non-linear systems (7]. For example, a non-linear
system which is described by the following non-linear equation
E+xi+a'=f (4.1-1)

can be expressed by the block diagram of Figure (4.1-1).

x(T)

X

Multiplier

()

Squaring Unit

FIG. 4.1-1. General non-linear system.
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In general, it is very difficult to obtain the dynamical behavior of this system
by the conventional procedure. The author now proposes a method to secure the
transient response of such complex non-linear system by applying the sequential
vector space procedure. The very merit of the sequential vector space method
is based on the matter that the output sequential vector of zero memory non-
linear element can be easily obtained by executing the corresponding non-linear
operation on each component of the input sequential vector.

4.2. System Response of Nown-Linear Open Loop System
4. 2. 1. Open Loop System with Squaring Unit

Now we consider a discrete system with a squaring unit shown in Figure
4.2-1.

_o-ST v(z) w(r)
/o l1-e 1 YR
w s s+1

FI1G. 4.2-1. Open loop non-linear system with squaring unit.

The system relation can be expressed by Equation (4.2-1) and Equation (4.2-2).

v(0) = H(Du (4.2-1)
w(z) = () xole) =) = (i), vX(z), ..., 04 (4.2~2)
The symbol x in the vector equation of Equation (4.2-2) means the non-linear
scalar operation of v;(r) xv;(z) relative to components of the vector v(r).
By applying the computed result of Ex. 3.2-1, v(r) is straightly given by
Equation (4.2-3).
2 (T\) = uo(l - e_t>
v (D) =w(l—e Ne " +u(l—e )
v () = (e T+ u) (1 — e De™™ (1 —e™7)
03 (2) = (e " Fue " Fu)(1—e e " +us(1—e ") (4.2-3)

oa(e) = (o™ " P b e L e b ) U —e De T Fua(1—e77)

The squaring operation in Equation (4.2-2) are performed by the way shown by
Equation (4.2-4).

wele) =vi(0) = ud(1—e™™)?

wi(D) =vi() =uf(1—e N2 +ul(1—¢ )+ 2up(1 —e (1~ e e~

wy(7) =03(r) = (e " +u) (1 — e %2 4+ 4k (1 — ¢77)?

+ 2w (1 — )2 T2 4 2(ugmme™ T + wn) (1 — e (1 —e e "
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wa(2) =22 = (sl T+ e T+ ud) (1 —e e +us(1—e")?
+ 2wt + ugne " + wine™ ) (1 — e )T

+ 2 ugrege™ " + sz F a0024) (1= ) (1 — €~

Wplc) = vh(7)
= (uge-ﬂ?l-lﬂ'+u}e-‘2l7l-2)7’+ e . ‘+‘2£31_1)(1 _e"‘T)2e-?,'.

+ u?l(l - )?

(4.2-4)

-(2n=-3)T

+2x{ wuae + agune” ETIT e (1—e ")

—+ ueu,,_,e"‘"‘l” + uiuze—\zn—sﬂ'

~(2n—6)T —(n—-2)T

-+ e G+t UUnaC
=T

+ ot Un—slUp-1€

+ e +un-1un)

x(1=eN(1-ee"

—(n-1,T ~(n=2)T

+ 2(uortne + wsttne

4.3. System Response of Non-linear Discrele Feedback System

4.3. 1. Servo System with Multiplier in the Loop

In this section, we will discuss how to secure the transient response of the
non-linear discrete feedback control system. Now, we will show the calculating
procedure for the system shown in Figure 4. 3-1.

1-e57 1 v (%) w(s) 1
) = x(7)
s s+1 s+3

FIG. 4.3-1. A discrete feedback control system containing squaring unit.

The executing procedure to calculate the system response is as follows:
1. Calculation of w(r) by Equation (4.2-4).
2. Computation of x(r).
3. Computation of «

The output sequential vector x(r) is given by Equation (4.3-1).

_3—-

I
x(r )—_7[ 3] w(c )— TS ww(7)
=[e ¥ T+ eI S+ TG L« o Jrw(r) (4.3-1)

The sequential vector w(r) can be calculated directly by using Equation (4.2-4).
As w(z) is a discrete function, the final output x(<) should be computed by the
procedure which is described in Section 3.2.
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%n(2) )= e . 0 0 0 0 wo (7)
% (7) e T g 0 0 . wi (7)
% (T) e-3|2'11+'z) e—au'n) e-a: 0 ws (T)
X (T) e--’mu.;.-:) 8_3‘2“”” e—alr+1) e—at . ws (2')
xn(,l.) B 6‘3(717'*“?) e—-sl'n——'-i T+71) e-szTz THT) v o o o » e‘a'v i w"(.‘.)

(e'“*wo(r))x
e e () p 4+ (€7 T 5y ()<
e e T rwg(2) e 4 ¢ e  rw (7)) + (€7 T un () ) -

=L e e wo(e)) s+ e (e ki (e)) e + € (e wn (2))r + (& T Hws ()

ek wo () r + eV ke () ) e+ ¢ 0 4 (@ T W) s

(4.3-2)
%olr) = »:l),—uﬁ(l -3¢ 43¢ —¢7)
xi(r) = _é_ul +ul(1=eNDug—ude " +L(1 ~ e g — ugl’e™*"
-3
+ [ (1= M*2+e™" :1,’ 1ty — %uf +(1— e'T)uoulJe
() = %ui +wl (1 - Ve + uy) — wde™™ + 01— e "V uge™ + 161) — 1o ]Pe™*"

+ [ —(1=e™%2+e™) %-(uﬁe’” +ul) — é wy— (1= e V(1 + e Nugree™

+ (1= ™) Qutotte™ + 203205) ]e"”

() = —i;uﬁ + ol (1 — ™) (see™ " + ™" + t0s) — 2051
F 01— e (e + e + ) — uslle™"
- [ — (1= M2+ e"')—:lg—(u:e'“' +ule +us) — —é-u§
= (1= (14 e™) (wprre™* " + wqtse™*" + tyitne™)

+ (1= (we™ + e + ) usJe'”

%n(7) = %ui +un (1 =) (™" " b s " o ugn) —unle "
FLA =) (™" ™ e " e fsny) — up e

+ [ (1= 2+ e'T)% (g™ "™ 4 sie ™I e )

_ %u;_ (1 _e—r)z(l +e7) (uoule-(sn-s)r_i_uuuze-(an—m'_{_ e

+ub“n_Le—(ft—I|T+uluze—(sn—S)T+ ... +u‘u”_le-(n—2)l’+ P

dtpsttye ") + (1= ) (we™ ™ 4 e P4 e fg,s) u,,Je'z‘

(4.3-3)
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Thus, the deviation or control z can be secured as follows:

The relation of Equation (4. 3-4) or Equation (4.3-5) is satisfied on the system
of Figure 4.3-1, because the output x(r) does not have discontinuous component
at sampling time.

=70 — x(0) (4.3-4)
or
Mo = 7o — Xo

Uy =¥ — X

Un = TVn ™ Xn

while, z;, 7=0,1,2, ..., n is obtained as Equation (4.3-6) by putting ¢=0 in
Equation (4.3-3).

X()(Q) =0
-1
£ (0) = (1~ e“zy)z(l - g%ﬁ“}uﬁ = é—(l — &™) o
I A8 1 R Y 2+¢e " o\ -ar 2( 4 2+
(0 ={(1—e ){uo(l Sy )e +u1<1 _-3,——~>
+1zgr (2~ 1+ ™)) e”T]
= (1~ e‘T)g[uﬁ(l + —é«e’”’)e‘“’—% %ui+ uoule“"]
sl 24¢72 _op\ —ux ) Le™t N —ap
2(0) = (1 — e”)‘[ z«zﬁ(l* -2—-3€-e ”)e ”—%—u;(l - ,%jse,m e 1>e 2
—r _
+ ug\l - 2%L> a2 — (1+eDNe™ e + g (2~ (1 + e ))e
+Zi1%2(2“ (1“1“6*1’))6—11
— — 7 3‘ 2 -1 71 —27 ~47 2 i -1 ~-27 21
=(l—e )I,”“<1+e -+ 3¢ )e +u1(1+ 3¢ )e —}-arg

+ a2+ e N e + ugn et + uluge"Tj

12(0) = (1 —¢")*

. 24e”  —tnr) um-vr 4 afy 2 € _(nean —ain-ar
X[a;(lﬂ e =01 20 1,1_}_74?(1“ L (n wu)e 2n=2)1

—r
e e +u,§,~1(1 — V%iQ_m) g, (2 — (1+e“l’)e—(?l—z)fl')e—(z72~3)T
d g (2 — (14 D)™ ™) B e e i (2— (1 7))

day2a(2— (1 4+ e )™ 2779 4 oo v Ly, (2~ (1+e 7))

................

it sthn-1(2 — (1 + e'“’ne““’]

(4.3-6)
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Since 7, is given, by substituting x;(0) of Equation (4.3-6) in to Equation
(4.3-5), u; to be secured is obtained successively by solving the recurrent equation
of Equation (4.3-7)

Uy = %o

=11 — %(1 — e

ta=17s— (1— e”T)g[%(l + é‘ e_T> e+ é ui + “0”13_1’_] (4.3-7)

=1y — (1— 6_1')3[%(1 +e "+ é’-e"”)e—” + uf(l + %e'f)e'”

+ % +u (2 + e e+ wgrne™ " + wity e'T]

4. 3. 2. Second Ovder Non-Linear Servo System

By the way similar to the procedure developed for the system of Figure 4.3-1,
we can also secure the system response of the non-linear system shown in Figure
4.3-2. The important process is summarized as follows:

w I
R -
._‘D o= LS,/ x ()
w(r) X Multiplier

FIG. 4.3-2. A discrete feedback control system involving a multiplier.

1. Compute »(z) by v(z) =&’T[is]u

2. Compute x(z) by x(z) =y7[ﬂslr]*v(r)

3. Compute w(z) by w(z) = v(r) x x(7)
4. Compute z(0) by u = r(0) — w(0) — x(0)

The full explanation of the computation procedure is omitted.

4. 3. 3. Consideration of Saturation Phenomena

In the calculating procedure of the system response in sequential vector space,
it is very simple to take into consideration the effect of saturation.

Now, we will assume that the squaring unit in the system of Figure 4.3-11is
followed by a saturation unit. The effect of saturation should be appreciated in
the calculation process of w(z). After the evaluation of a #; by Equation (4.3-7),
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the value of wj(c) corresponding to that u; is checked whether it goes over the
saturation limit S or not. When any w; does not exceed the value of S, the
evaluation process can be progress: However, if some v; goes over S, the value
of x; to be used in Equation (4.3-7) must be specified to the value of x; calculated
by Equation (4.3-1) under the consideration of v;'s saturation. That is, the value
u; can be successively determined under the checking of wj.

5. System Response of Time Variable System

The system response of time-variable systems can be also secured by the
same way as the procedure which has been described in the preceding chapter.

(7)) + b7 1 x()

w(7)

at)

Fi1G. 5-1. A simple time-variable system.

Now, we will consider the simple time-variable system of Figure 5-1. The system
equation can be expressed by

_ 1 1(e)I ~
x(r)——y{»g—]u: -5 ¥ (5-1)
w(r) = A()x(7) (5-2)
where
Cae(7) 0 0-++++0
0 01(7) .
0 0 ag(’i')
Ar) = . . - (5-3)
0 0 O--v-- an(7)
ai(t) =altj+<), 7=0,1,2, . .., n.
From Eq. (5-1) and Eq. (5-2), Eq. (5-4) and Eq. (5-5) can be derived.
XQ(T) 2%01(2‘)
% () =u (T + ) +u1(x)
2 (0) =212 T+ 1) +u1(T+ 1) + 02 1(2) (5-4)

in(0) =t lT+ )+ lB—1T+7) + * -+ +upl(c)
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Wy (T) = Clo(f) xo(f)
wl(r) =CZ1(T)X1('L‘)

ws (7;) :az(l") xz('l‘) (5'5)

wa( T) = an (T)xn(f)

Then, the components of the error sequential vector u are calculated by the next
relation.

w; = 7;(0) — 2;(0)
= 7;(0) — a;(0) x;(0)
=7;(0) ~ a;(0) iom (5-6)
Then

Uu; = l_i:&l‘]TO*)*{-?’J(O) - Clj(0> gul]' (5-7)

Applying Eq. (5-7) to Eq. (5-4), the components of x(r) can be secured.

(1 (O — () S : _
xji(r) = Z_,:( 1+aj(0)v)[rf(0} a; (0) ?‘:‘3“[] 1T+ ) (5-8)

The above procedure can be straightly extended to the general time-variable
system such as the higher order time-variable system or the non-linear multi-
loop time-variable discrete system.

6. System Synthesis Through S.T.M.

The system synthesis through S.T.M. is applicable to the various system
such as linear, non-linear, and time-variable systems which operate in the discrete
or discrete-continuous combined mode. The fundamental features of this synthesis
method are:

(1) The method is a unique one available to almost all kinds of systems.

(2) Being possible to process in quite mechanical manner, the method is very
suitable to the computer processing, even if it will usually require the operation
and computation of matrixes and determinants.

We have two methods of synthesis in sequential vector space. One is a direct
method and the other is an asymptotic method. The former is suitable for the
design of control of the well-known plant and the latter is for the extremely
complex well-known or the poorly-known plant. And, the former is very convenient
for the general off-line design, while the latter may be a powerful approach for
the on-line or real-time designing of the sophiscated adaptive or learning control.

In this paper, only the direct synthesis method will be explained on the linear
and non-linear simple systems.

6. 1. Synthesis of Discrete Linear Control System
The design of discrete linear control system can be, of course, proceeded by
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the conventional Z-Transform method. Here, we will briefly state on the synthesis
in sequential vector space by a simple example,

Discrete
¢ Controller u Plant
7(7) \ 1—g™sT 1 (%)
L by b A
s s(s+ 1)

F1G. 6.1-1. A simple descrete linear control system.

We will design the system of Figure 6.1-1 so that it has the dead-beat

response.
The modified S. T.M. of the plant with hold is given by Equation (6.1-1).

1= 1

H(z)

il
s

(=14 et b1+ T —(1+6 e =26 1S4 { =14+ T "+ ¢ e+ ")
I-(I+e ) Ste s

(6.1-1)
Then, the modified output S.V. is obtained as follows:
x() = H(Du
[T=(14+eNDS+e S x(c) =[(~ 1+ )+ {1+ T+e "~ (1+¢ ) ~27}8
H =0+ De " +ec+e ™18 (6.1-2)
Zole) =uo(—1+1+€ )
st =ulT—(1—e e J+u(—1+c+e )
) =ul T~ (1= e "]+l T—(1—e e I+ u( —1+7c+2")
2ty =ulT— (1= De " ]k u [T~ 10— e 1+ ufT—(1-e e "]
) ) Ffou(~1+c+e ")

G = T~ (1= Ve 1] gy [T~ (1 —e e~ =20+ + -« -
FUu{—1+c+e ")

(6.1-3)
or
2 (T) = — o+ T + e
w(D)=uTl—wm+uwc+L—uw(l—e") +ude”
2(0) =+ u) T—ta+ v+ L — (1— &) (woe™ + u1) +usle "

() = (ot ui+u)T— g+ttt + L — (1 — &) (o™ ¥ +2ie™ + ) + usle™”

n(t) = (ot ota+ =+ Fu)T—ttn+uwc+L— (11— (ue™" "+ -+

F tp-r) + snle "
(6.1-4)
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The x;(r) in Equation (6.1-4) has the three terms with 1(¢), r and ¢-*. Then,
in order that the system presents the dead-beat response for the unit step
input, the three control of us, w#:, and % must be determined so that the
coeflicients of each term in the equation of x(r) in Equation (6.1-4) satisfy the
relation of Equation (6.1-5).

(%0+%1)T“%z= 1
Uy =0 (6.1-5)
(e +u)(1—e ") —us=0

Solving Equation (6.1-5), we obtain

_ 1
= =Ty
" = -t (6.1-6)
r= T(1—e 1)
Uy = 0

Applying Equation (6.1-6) to the quation of x;(r), 7>3 in Equation (6.1-4) and

considering x;(0)=0, j=3,4, ..., controls of us;, w4, ... are determined as Equation
(6.1-7).
Ug=Ug= =+ =0 : (6.1-7)
Thus
T(1—e ")
— e—‘zr
TA=e Ty
u = 0 (6.1-8)
0

Output vector components corresponding to u of Equation (6.1-8) are given by
Equation (6.1-9).

1 -
xo(T)=‘m‘_:-e-_“T-)—(—l+T+e )
_ 1 -r -7 -
xn(c) = Ta—eT) (T+e e fr—e") 6.1-9)
X2(T) = I(T)
%(0) =x4(z) =+« =1(c)

The components of x(0) are obtained by putting =0 in Equation (6.1-9).
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xo(o) =0
#(0)=—1+T+e " (6.1-10)
2(0) =2(0) = + = - =1

Then, the S.V. of deviation e(0) comes to

75(0) — x0(0) [ 1
9(0) = ?’1(0) -—xl(()) = 2-T- e_T
7’2(0) - xz(O) 0

Thus, the P.T.F. of the sampling controller is given by Equation (6.1-11).

U(z)

D(Z) = '—E(Z—)‘

1 T -1
= Toeny U17¢ % ) (6.1-11)

I+ @-T-eDz "

6. 2. Synthesis of Discrete Non-Linear Control System

In this section, we will investigate the synthesis procedure of the discrete
non-linear system through an example.

Now, consider a non-linear servo system shown by Figure (6.2-1) and design
the system to present a dead-beat response for the step function input.

D(z)

T 4 e(r) u() 1 _g-sT 1 v(o) . we 1
_ . s s+1 s+3

FIG. 6.2-1. A discrete servo system with squaring unit.

The expression of x(r) is the same as the x(r) given by Equation (4.3-3).
All the components of x(r) have four terms with 1(c), 7%, ¢7*%, and ¢7°%, and
the dead-beat condition for the unit step input can be secured by putting as
Equation (6.2-1) on the x:(r) in Equation (4.3-3).

constant term =73 =1

T

term with ¢ =0
. - for xalc) (6.2-1)
term with ¢2" =0

term with ¢*" =0
However, as being clarified by the inspection of Equation (4.3-3), the second

and third condition in Equation (6.2-1) are quite the same. Then the condition
of Equation (6.2-1) should be substituted by Equation (6.2-2).
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constant term = 1
term with e " =0 ; for x(c) (6.2-2)

term with ¢ ** =0
Thus, we get the following simultaneous equations.

‘ui=3 or w=v3

L(%oe—T -+ %1) = U

(6.2-3)
— M(use " + 1) ~ %u? — Nugure ™" + L{we ™  +u)us=0
where
L=1-¢"
M=t(1=eQqe™) =2 o 4 Lot (6.2-4)
3 3 3 )
N=U-e"Q+e D=1 -+
Equation (6.2-3) reduces to Equation (6.2-5).
L™ 4 u)) =3
02 37 I 2 _r 1 (6.2-5)
MAuge " + 1) + Ne "o, — 2 =0 f
Solving Equation (6.2-5), us and u: can be secured.
I, \/‘37 — 1+Q“T
Uy = 2—6:7“("1“:“6‘_—2—55*[1 o= /\/1 +4e (\1”‘8“7.)]
(6.2-6)

o= 250 e e (EEDH

Here, it is noticeable that we have acquired the two kinds of control modes shown
by Equation (6.2-6).

The succeeding controls u;, j=3, 4, ... are obtained as Equation (6.2-7), by
solving the general condition of complete settling of Equation (6.2-8) using the
above secured i, and .

Us=1ts= > =43 (6.2-7)
;=3, j=3
L™ o™ oo e sy ) =15
M (ge ™ "7 + ™0 4 o v 4gl)

+ N(ugne™ ®" ™ 4 ougrine™ 07 o v o o gty e VY (6.2-8)

—-(8n-8)T (n=-2)7
[

-+ Uit e s b UUn e

...........

-+ %n—zun—leﬁi‘) —-2=0

The results of Equation (6.2-7) can also be derived by the mathematical reduction
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method on Equation (6.2-8).
The output x;(0) is calculated by applying the u; of Equation (6.2-6) and
Equation (6.2-7) to Equation (4.3-6). That is,

JCo(O) =0
%(0) = %(1 — ) (6.2-9)
5(0) =xa(0) = + - =1

and the ¢;(0) are derived as follows:
20(0) = #,(0) — %(0) =1
e(0) =1~ %(1 —e ") ’u; (6.2-10)
e(0)=e(0)=-+-=0
Consequently, the sampling controller can be designed as Equation (6.2-11).
D) = wtuwz Y31 -2H7 ]
1+[L~%U—fﬁ%ﬂ[‘ g
o~ (tto— )z '+ (V3 —u)z™?

1o mery e =1 fo_ 1 o _gry 9 -2
1+ 3 (1—e Nz {1 3 (1—e¢ )uo}z

(6.2-11)

Where the w, and #: in Equation (6.2-11) are evaluated by Equation (6.2-6).

Here, we must pay some attention on the following subjects.

(1) In this example, the complete settling condition of Equation (6.2-1) is
simplified to the form of Equation (6.2-2). However, for the general non-linear
servo system this deduction will be impossible.

(2) The dead-beat condition of Equation (6.2-3) has been solved very
simply, even though it is a quadratic simultaneous equation. However, for the
general case, the condition comes to the simultaneous non-linear equation, and
its solution will not be performed in a so simple way. The asymptotic method
which will be investigated in the other papers will be an available approach
to that case but has been omitted in this paper.

7. Conclusion

In this paper, the author has tried to make a new system description from
the view point of sequential vector space and to apply it to the calculation of
system responce of linear and nonlinear discrete system. Several interesting
principles and techniques have been developed. It has been clarified that regard-
less of variety and complxity of system construction, the system responce can
be always secured and the system synthesis can be also performed by an
unique method with S.T.M. Especially it is a valuable result that the com-
putation of tramsient responce and synthesis of optimal control (dead-beat
responce) for the time-variable and/or nonlinear system can be performed in a
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quite mechanical way. The proposed design procedure of discrete controller for
nonlinear discrete control system is quite a unique one and supply a very useful
argorithm for the design of computer control.

This work is a minor part of research which was developed at Battelle
Memorial Institute, Columbus Ohio, 1966 ~1967. And the author wishes to devote
a deep acknowledgement to Dr. J. T. Tou, Dr. J. D. Hill and other staff members
for their suggestions and continuous encouragement.
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