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1. Introduction

Partial differential equations for heat conduction systems are easily trans-
formed into their corresponding difference equations, and various electrical simula-
tion techniques for solving the former have most commonly their analogy basis
on the latter.

In these cases, two kinds of main causes given under may give rise to solu-
tion errors.

(1) difference of mathematical solutions between the two (often called “trunca-
tion error’).

(2) allowances of constants set in particular simulation devices (in this text,
called “coefficient error”).

These errors depend in general upon number of divisions in space coordinates,
principle of simulation techniques adopted and boundary conditions given to
original equations, either.

In this paper, commonly known three kinds of simulation techniques that are
Beuken Model (CR network simulator) and two well known methods by means
of general purpose analogue computers (electronic differential analyzers) are
considered for three kinds of boundary conditions respectively.

Thereupon emphasis is given to quantitative comparisons of errors in eigen
values for each case.
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2. General Descriptions for One Dimensional Cases

2.1. Partial differential equation
One dimensional heat conduction equation, when normalized, is given as
follows.

20(¢t, x)/ot = 2°0(¢, x)/ox%, where 0<x<1 (1)

Boundary conditions given at both ends of heat conducting medium may
generally be represented by three cases given under.

(1) Fixed temperatures are given at both ends.

(2) Fixed temperature at one end, while constant heat flow at the other end.

(3) Constant heat flows at both ends.

It may be worth saying that though only cases for particular boundary values
of 0 and 1 (for either temperature or heat flow respectively) with 0 initial condition
throughout the space coordinate are considered, conclusions given about eigen
values in the following text still retain its generality.

2.2. Difference equation
Refering to Fig. 1 with §; denoting 4(¢, ¢/N), Equation (1) may be transformed
approximately into difference ordinary differential Equation (2) or (3).

df; 1 _oa. )

"32‘ - -“( 1‘—/N)z—(61—-1 2 61 + 61#1)
= N%(0i-1— 2 0i + 0;31) (2)
=N2<(55-1—{9i) - (5:’“!91’4-1)} (3)

Hereupon we define a column vector ¥ as following.

b
.
Y=i - (4)
Oy
and ensues the vector equation,
dY/dt=N*AY + F (5)

where N24 is a rectangular coefficient matrix, and F is a constant column vector
of which elements are determined by given boundary conditions.

Thus comes from Equation (5) a problem of finding out all of eigen values
as well as corresponding eigen vectors.
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Fi1G. 1. One dimensional heat conduction.
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2.3. Descriptions of simulation methods ,

Considered three kinds of simulation methods are shown in Figs. 2, 3 and 4
respectively. Both Figs. 2 and 3 refer to analogue computer methods and Fig. 4
to Beuken Model. It is evident that Fig. 2 expresses faithfully Equation (2),
while Figs. 3 and 4 Equation (3). So, Fig. 2 is called 2nd difference mechaniza-
tion, and Fig. 3 1st difference mechanization, Beuken Model also corresponding
to the latter. Hereupon, difference of the two 1st differences appearing in Equa-
tion (3) is realized in Figs. 3 and 4.
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F16. 2. 2nd difference mechanization by means of analogue computer.
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F1G. 3. 1st difference mechanization by means of analogue computer.
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In Figs. 2 and 3, signal voltages representing respective temperatures, which
are indicated close to connecting lines, are showing, for simplicity, values which
are to be so when all coefficients, «, b, etc. assume their own ideal value, 1
respectively.

Time scale factor which is to be taken into consideration when simulating
Equation (2) or (3) by any one of Figs. 2, 3 and 4 has practically nothing to do
with relative values of both truncation errors and coefficient errors, therefore
the factor is always assumed to be 1 throughout the text.

2.4. Detailed aspects of causes for solution errors

(1) Approximation by difference equations.

(2) Coefficient allowances for analogue computers, and allowances of set
values of condensers (C;) and resistors (R;) for Beuken Model (the latter is also
called “coefficient” hereafter). In addition to the above two causes, the third one
is to be mentioned somewhat.

(3) Imperfections of computing elements, such as (i) leakage resistance or
absorption phenomenon in integrating condensers, (ii) stray time constant of
operational resistors, (iii) amplification factor of operational amplifiers being less
than infinity and also (iv) its dependency upon frequency, etc. are to be taken
into consideration for use of analogue computers. For use of Beuke Model, the
same is true also except that the above mentioned amplification factor is allowed
to assume infinity.

It is to be recalled that solution of Equation (1) is inherently sum of ex-
ponentially decaying terms and comprises none of oscillating ones. So, frequency
characteristics of operational amplifiers as well as stray time constant of opera-
tional resistors given in (3) may hardly affect solution errors. Accordingly we
are enough to consider (1), (2) and (i) and (iii) in (3) for this study.

Let A, denote eigen value of Equation (1), 1 denote characteristic root of
Equation (2) or (3), 4* denote characteristic root of the similar Equation to (2)
or {3) which exactly represents a particular simulator mathematically, and 42
denote 1*—1,, then neglecting 2nd order infinitesimal terms, we get

g= (Z* - Zo) /Xo = Au/lo = A)»tr/lo + Alin/lo + Alco/lo
= &tr + €in+ &co, (6)
and A= Ao+ dier

where ¢’'s mean relative eigen value errors, and suffixes, “#”, “in” and “co”
abbrebiate “truncation”, “integrator” and ¢ coeflicient” respectively, and of course
each corresponds to the mentioned causes (1), (i) and (iii) in (3), and (2) in

order.

2.5. Eigen value ervor due to imperfection of integrators, diin

Many authors report analyses of eigen value errors due to the mentioned
inperfection of integrators, so on referring to them we can easily write down
4kin as follows.

S+1 1 cy®

dhin= = =4 T CR T Co )
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where 1 means a value of characteristic root when integrators being assumed
ideal, A amplification factor of operational amplifiers used for integrators, S sum
of coefficient values set for each integrator, CR; leakage time constant of in-
tegrating condenser C, and the third term in right members of Equation (7) is
a term due to absorption phenomenon of C.

In deriving Formula (7), it is assumed that each constant appearing in the
formula takes the same value throughout all integrators used.

Formula (71 is applicable to both Ist and 2nd mechanizations of analogue
computers, and is also good for Beuken Model only if A4 is taken to be infinity.

In case when a time scale factor is chosen some appropriate value, as is
usually the case, 41;» shall become unimportant compared to the other errors.
However, this may not be true for an unfavourable case such as given under.
For instance, the more N, number of coordinate division, become, the more N?
namely a coefficient of the right member in Equation (2) or (3), will become.
This results inevitably in a larger time scale factor, because input coefficients of
integrators are not practically allowed to take so large values. This ensues in
general the less magnitude in eigen value, whereas magnitude of 1/CR; keeps
constant. Therefore the error 4i;, might hardly become negligible for such
unfavouahle cases.

2.6. Eigen value ervor due to coefficient allowances, dlco

Variation of coefficients from their respective ideal values means a small
change of coefficient matrix N*4 in Equation (5).

So, solutions obtained by the mentioned analogue simulations depend on the
perturbed matrix, N*A*{=N?*(4-+44)}, and naturally corresponding eigen values
and eigen vectors should be found thereof. Hereupon 4A4 is of course a small
vaviation from the ideal A.

Perturbation theory of mathematics tells us that: neglecting 2nd order
infinitesimals, ks order eigen value deviation, 42'% is generally given as follows.

AP = T (N?4A4) X5, (8)

where N?A is in general a nth order rectangular matrix, and its eigen values
A8 (B=1,2, ..., n) are assumed to differ between one another, and X is cor-
responding eigen vectors. Again, X and x} are defined as under.

X=X, Xop o+ oy Xty o o -, Xn), (9)

a row vector, of which each element consists of a column vector.

X‘l = * s (]0)
xi

a column vector, of which each element consists of a row vector.
Applying the above theory to the case of 4%, we get

ik k k
A ) :__x(é).*_d‘xéo).
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Owing to Formula (8), 415 is able to be calculated for each boundary condi-
tion and again for each of the three simulation methods.

3. Bigen Value Errors in Case of Both Boundary
Conditions given by Heat Flows

This case seems to be most important particularly for electro-heat systems.
because it is considered usual for the systems to have KW rating for heat sources
on one hand, and to have some heat insulation medium on the other hand. That
is to say, both boundary conditions of the systems are given by something like
heat flows not by temperatures. Therefore, some detailed descriptions for this
case have been made under, while for the remaining cases (conf, 2. 1) conclusions
only have been summarized later.

3.1. Solutions of partial differential equation and of corresponding difference
equation, and relative truncation error, e

Fig. 5 shows the case, and initial as well as boundary conditions are formulated
as under.

80, ) =0; —0o6(¢, 0)/ox=1, —20(t, 1)/ox=0 (1D

Taking advantage of Laplace transformation we get a solution for Equation
(1y with (1D).
- h{vs(1—-2x)}
02, x) = s7~1| oS
( [ sy se+sinhvs
Laplace transformation,

}, where s is an independent variable for

=1+ e PR > —327 < TH L cos krx (12)
2 3 k=1 kﬂ‘
W= =B E=0,1,2, .. .. (13)

For difference equation, the boundary condition at x=0 can be approximated
as follows.

—-36(¢, 0)/ox= — (6-1— 6 /2(1/N) =1 (14)

Thus referring to Equations (2) and (5) and using the boundary conditions,
the corresponding difference equation reduces to

-3%-1 -2o
const, = (he&t wnduc‘tirﬁ md?um)

o~ . ideatl
);eg:«; & ?’ .9‘ 6 'heat

input_.i YW X=i/N E {nsulation
Tx=0 x=

Fi1G. 5. Both boundary conditions are given by heat flows.
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(0) (1) . (N)
0o -2 2 0 0 0 o 1
6, 1 -2 1 0 - 0 61 0
o R ' I | A E-DY (15)
0N—1 l O . O 1 “2 1 0zq-1 0
Oy 0 . 0 0 2 =2 Ov ) 0
Through mathematical manipulation, we get
A= 2 N¥1-cos(kn/N)}, k=0,1, ..., N (16)
i 1
cos (kr/N)
X =| €S CRr/N) e =01, ..., N (17)
i cos (N — 1kx/N
cos Nkrn/N
r_ 2ar(l kr [iar— 1) em 1 ke
Xp = N (‘2‘, COS‘N‘s - e ey COSl(N 1) N }s "f COS<NW))
where ai=ay=1/2, a1 =as=*** =qy_1= 1. (18)

After finding out a particular integral of Equation (15), using (16), (17) and
(18), we get the solution,

N T3 4N/ AN
N1 2
B S TR RN RN SR
,EZN”‘ cosec(ZN) cos i—re e h (19)

The above solution naturally reduces to Solution (12) as N approaches to
infinity.

From Formulae (6), (13) and (16), relative truncation error, efff’ is obtained.

au for e <1 (20)

(ky 2N* kr _ Bt
(2 )*1-“1“21\72“' N

iy = W— — COS "N‘

As seen above, relative truncation error is approximately proportional to &%,
while inversely proportional to N?, square of number of division.

The fact that '‘zero” eigen value exists for both partial differential and dif-
ference equations, namely A\” = 2'” =0, is to be emphasized. @We are hereupon
to understand that in regard to Oth order eigen value, of which value is zero,
any number of division in a space coordinate gives rise to no truncation error.

3.2. Eigen value errors due to coefficient allowances, dico

Letting (4, ) element of 44 be 4:;, we get 4% as a function of 4;; from
Formulae (8), (17) and (18) as following.

4 = de[ (doo+ dyn) + (dor + dun-1) * COS %

N-1

+2 gcos (Z%’H {AiiCOS(i%Z) +Aii—1COS{(i - 1)%,’_} + dij 1y COS {(i+1)%}}J

(21)
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where «r is the same as given in (18).

We are to pay attention to the fact that relation between 4;; and coefficient
allowances differs depending on a simulation method adopted, and so these rela-
tions will be given under for each of the three simulations.

a) 2nd difference mechanization
Refering to Fig. 2 and letting relative coefficient variation from the ideal
value of 1 be o', we get, for example,

N*ea;j =N (1+aly),

and from Equation (2) and Fig. 2 the following equation ensues.

(Zi = N*ajj-10i-1— 2 @ji0; + Gii+10i+1)
= N*(0i-1 — 2 0;+ 0;:1) + (Gl 10i-1— 2 a}0; + @liaiv1) ) (22)
Therefore,  dii-y=ali-y, dii= —2a}, diir1= @i (23)

For particular simulation of ¢, however, the corresponding simulation circuit
differs somewhat from those of #; (¢<0): it is to be as shown in Fig. 6, and
Equation (24) is applied instead of (22).

F1G. 6. Diagram for 6o in 2nd diff. mech.

%%‘L =2N* — @by + anby) + 2N
=2 N*{( = o+ 00) + (— albo+ a6} + 2 N (24)
Therefore, dow= —2al, do=2al. (25)

Thus substituting (23) and (25) for 4’s in Formula (21), we have

. N-1 ~
M =2 N[ — (af+ ayy) — 22 a{-f-cosz( %) + Z} (a4 al1;)

I

cos(z‘%)cos { (i — 1)1}8\—77E }J

) = MR INP = — A8 K , (26)
where £=1,2, ..., N—1, and for 2= N, multiply 1/2 to the right member.
N N=1
e = N’{ (@lie1+ al-y) — (030 +ayy+ 2 gd;,» (27)

i=1 §—1 !
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Example 1) As an example, we take up the case that all ai;'s assume the
same absolute value of ¢/, and their signs are such that all terms in the right
member of (26) add to one another to produce the worst case.

Assuming N is an integer multiple of %, we have from (26)

et = 2 N%e'+ {1+ coslkn/N)}/ (k*z*) ~4 N%'/ (F*z?), k=0, kn<N. (28)

As seen above, relative eigen value error due to coefficient allowances of
2nd diff. mechanization is approximately proportional to N? and inversely pro-
portional to £%. The situation is, therefore, just oppsite to that of truncation
error.

Example 2) As the 2nd example, we take up a case that af;'s are considered
to be independent probability variables of which each average value is zero, and

each distribution assumes symmetry with the same standard deviation o'

From Formula (26), we easily have standard deviation of P as following.

o = N*2.(8 + cos (2 kn/N) — 8/ N} | (B*n%)
~3 N*25/(E’n*), where N=>3, k=0 and krx<AN. (29)

Therefore it is generally considered that for 2nd difference mechanization coefficient
error increases as one and a half power of number of division.

b) Ist difference mechanization
Refering to Fig. 3 and letting relative coefficient variation from their ideal
value of 1 be &', ', ¢!, etc., we have the following equation like the same way.

(Zi = N?ai{di(bj-10i-1 — ¢i0:) — €i(b;0; = ¢i+10i+1) }
= N*{(0i-1=20; + 0iv1) + (@} + b}y + d}) 0i -
—(2aj+b;+ci+di+e)bi+ (al+cisr+€)bise) (30)
Therefore, diioy=at+ b +di,  divi=aitcie + e,
dii= —(2a;+b;+c!+ di + ¢}). (31)
For particular simulation of f,, however, Fig. 7 and the following Equation
(32) are to be applied.

1

in'tejvatof L

B6

2N

eficient
- %r?u@i?)ker

FIG. 7. Diagram for 6§y in Ist diff. mech,
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%%0" =2N2(Zoeo( ”‘bo@oﬁ- 0161) +2Na’0
=2N2<(“‘00+01)— ((l«;+b£+66)ﬂg+(dé+€;+eé)0]}+2Nflo
Ago = -2 (aé+bé+cé), Ay = (GS+C;+€$) (32)

Thus substiting (31) and (32) for 4’s in Formula (21), we have

thy _ o , _ ke _ & _ ke \ o kx
Aheo’ = ZN[ (a5 + d;v)(l cos 7\7—) 2 Ea}(l cos 57 ) cos’ i
N-1
11y Lk R s i R
+§(b,+e,)cosz N {cos (z-+1) N T Cosiy }
¥ T . kr Lk
el dh A Ty AL
+i>=_l,(c;—rd1)cosz N {cos(z 1) N T Cosing }]

9

b = AN 2R = — A0 KR, where k=1,2, ..., N—1, (33)
and for &= N, multiply 1/2 to the right member.
A = (34)

As comparing (33) to (26), we may understand that coefficient error for this
case is in general smaller than that of the former 2nd diff. mechanization case,
though this very case comprises more factors of the cause for giving rise to the
error.

The situation may more easily be understood only if two special cases such
as given before are considered like the same way.

Example 1)
e =2 Neto[4 &+ N{1 — cos (kz/N)}1/(F*z*) for N being even multiple of &,
=2 Ne/*[2k{3—cos (kn/N)} + N{1— cos (kx/N)}1/(F’z®) for N being odd
multiple of . Therefore

B ~8 Ne'Jkx*, k=0 and kr<N (35)
Example 2)
dB =2 N¥g1[{1 — cos(ka/N)}{7 — 5 costkr/N)}
— 4{1—cos(kr/N)}*/N1*/(F’=*), N=3
~V2N <d'/br, k=0 and kr<N (36)
Therefore, in case of 1st diff. mechanization, coefficient error increases pro-

portionally to number of division IV for the worst case, whereas for general cases
does proportionally to half power of N.

¢) Beuken Model

Refering to Fig. 4, let actual set values of resistors and condensers be R; and
C; respectively, their idal value be R, C (RC=1/N?), and respective relative
errors be 7}, ¢}, then we have
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%%~—é{ By = 00) = i (0= B01)
=N (0i-1— 20+ 0i1) — (c; + 71)0i-1
+ Qe+ riF i) 0 — (¢l 7ien) Bi1) (37)
dii-y = = (cj+7]), dizer= — (c}+7is1),
(38)

dii=2ci+ri4 7.
For particular simulation of f,, however, Fig. 8 and the following Equation

(39) are to be applied.

dby 2 21
g = G B+
=2N2<((71"‘00)+(C;+7’:)(00 01)>+ ZC[
doo = —‘401:6;-}-7’:‘. (39)
From Formula (21), we have like the same way
) _ kx g R kr
Aco ~2N[ co%-civ)(l cosN)+2§c,~( N> cos’ z~N—

N 2
+Zr}{cosi%}1 —cos{(i - 1)%5}} } (40)

N, multiply 1/2 to the right member.

, N—1, and for k=
(41)

A5 =0

where k=1, 2,

Considering the same two special cases, situations for Beuken Model case may

be understood more.

const,
curre»t‘
source

F1G. 8. Diagram for 6 in Beuken Model.

Example 1)
(k}*4N25’{1-COS (bn/N)}/En® =2 ¢ (42}

Eco =

Example 2)
B = J12{1=2/(3N)}*N*?4"{1 — cos(kr/N)}/E*n?

deo =

~y3/N+o', N=3, k=0 and kr<N. (43)

Therefore, in case of Beuken Model, coefficient crror approximates a constant
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about twice of ¢/, even for the worst case, and for general cases it does decrease
nearly inversely proportionally to a half power of N. These remarkable features
seem to be worthy of special attention.

Summarizing results of the above a), b) and ¢), Fig. 9 shows s)’s, standard
deviations of relative errors in eigen values of 1st order due to coefficient al-
lowances. Also shown in the figure is ¢/, relative truncation error in eigen
value of 1st order. We see how N, number of coordinate division, affects two
kinds of eigen value errors just mentioned, and may read an optimum number
of division for realizing the minimum error. It is to be noteworthy that when
compared to 1st diff. mechanization, a less number of optimun division is obtained
for 2nd diff. mechanization which inherenty needs less numbers of operational
amplifiers, while in the latter case more error gives rise to.

N g{(:r) +605 (Anddi #f. mech.) /

]
\ P

|
~—_|

(2nd diff. mech.)

(lst dift. mech.)

e
-~

T ]

Rl P —

1) )
g\,’m::‘ (Begren Model) |

L] \\\
m diff. mech) <

~

Yelative ervor of eiqen value |in %

o ]
\
()]
Gco (Beuken Model)
£y, ¢ truncation evror, S ——
Geo : standavd deviation of eigen valus evror
due to coefficient wllowances,
0.0l I mumber of| coovdinate |division, N
0 5 10 15 A0 25 30

F16. 9. Dependency of relative errors of lst order eigen values upon number
of division, in case ¢'=0.1%.
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d) Special references to “0” eigen value, and simulator solutions

Special attention should be paid to the fact that “zero” eigen value must exist
for the considering boundary conditions, and 44%', namely error of this eigen
value due to coefficient allowances, is given by Formula (27) for 2nd diff. mech-
anization, whereas it always reduces to zero for 1st diff. mechanization as well
as for Beuken Model {cf. (34) and (41)}. ‘

Accordingly, for the latter two simulation methods, each of the simulation
solutions to be obtained should have a term of time “#” which represents a
particular integral term, just in the same way as seen in the Solution (19) which
represents the solution of Difference Equation (15), and again this equation cor-
responds to the ideal case with no coefficient allowances. (In case of the mentioned
two methods with coefficient allowances, however, a coefficient of time ¢ in the
solution equation may have some error (see footnote*)).

On the other hand, in case of 2nd -diff. mechanization, a small definit value
of 4% exists, and accordingly the corresponding solution may well become ex-
ponentially diverged or saturated as time elapses depending on the sign of 414,
thus the solution error might be so exaggerated as time increases, as is shown
later.

Seeing back again to Solution (19), we will have a following formula which
is good for large #(—AM¢=>~r%s>1) in place of (19).

6;=t+ K;, where K;=(1/2)(G/N)*—i/N— (1/3){1—1/(4 N*)} (44)

Corresponding formula for 2nd diff. mechanization with coefficient allowances
is given as follows through some methematical manipulation taking advantage
of Laplace transformation.

0F = ("~ 1) /7 + Ki*e" (45)

where 7 denotes 428).

Formulae (45) and (27) have been checked and proved by experiments such
as given under.

For example, Curve @ shown in Fig. 10 indicates plots of 6, ideal Solution
(19) for =0, namely temperature of the left boundary point in Fig. 5, when N
is taken 10. For enough time-elapse, the curve reduces, needless to say, to that
given by Formula (44).

Using an analog computer, partial differential equations in which N equals
10, or

d(6:/5)
d(20¢)

_cl Oi-1 — ﬁt_ Ot
=5| 2L — 9L 4 ! (46)
has been solved by means of 2nd diff. mechanization. The result for 6, is indicated
as Curve (2, in which we can observe a tendency of saturation as time elapses.
Three marks of 4 close to the Curve (@ show plots of values calculated from
Formula (45) by putting 7= -—0.023 and using K; which has been found from

* The coefficient of ¢ in the solution formula can be found by putting 6 =7%¢-+{ and
substituting this for ¢; in Equation (30) or (37), Thus we obtajn 7: which is not equal to 1,
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6
l

unit)

O mathematical solution of diffeve
@ 2d diff. mech. simulafor solution
@ st dif mech,  » ”

- _—
b, //

(in pe

@ 2nd diff. mech. Bh=0.5% aMition,
2 ® w 8be=0.5% addition,

® \stdiff meeh. €= 10,% addition.

t
Oo z U 3

FIiG. 10. Examples of solutions @ obtained with analogue computer
mechanization in case that boundary conditions are both given by constant
heat flows.

Curve @ or from Formula (44). Mark 4's are eo
found to be well on Curve ®. The result may 3 o
seem to prove Formula (45). //

, 5

For another example, an allowance of an = 10 -8,
0.5°% has been intentionally added as shown in —r
Fig. 11 to the very simulation circuit soon after |
getting Curve @. The result is shown as Curve 0.0%
@ from which 7~ —0.123 has been calculated. {three =10 0474
black circles indicate calculated values from 0,

Formula (45) by putting 7=-0.123}. While, Fic. 11. Intentional al-
Equation (27) theoretically gives that 4icy = —10  lowance addition of a!;=0.5%.
% 2x0.005—0.023 (the latter corresponds to the

value before addition of the 0.5%)=~—0.123. Thus we see good agreement with
the experimental value.

Curve (® indicates the computer result when ay=0.5% has heen added in-
tentionally in the same way. From the curve we get r==-0.073 (three white
circles show plots of calculated values from Equation (45) by putting 7= —0.073).
While, Equation (27) gives theoretical value of 4icp being —0.073 (—10x0.005—
0.023). Good agreement of theory with experiment is thus obtained for 2nd diff.
mechanization.

For 1st diff. mechanization, theory claims, as already indicated, that “0” eigen
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value should always exist irrespective of existence of coeff. allowances.

In order to prove above experimentally, e¢; = 10%, a large allowance, has been
intentionally added to the very simulation circuit just after getting Curve @ which
is the result without such an artificial addition of allowance. Curve & shows
the result. Curves ® and ® thus obtained by means of 1lst diff. mechanization
definitely indicate linearity to larger values of time #, though a very little non-
linearity might exist owing to zero eigen value error caused by imperfection of
integrators adopted.

In order to prove existence of zero eigen value also for Beuken Model case,
no experiment was tried, since now it seemed very natural and proper from view
point of its physical construction consisting of a series of RC networks.

In the last place, though it does not seem to need add, zero eigen value does
never exist for cases of the other boundary conditions which will be treated next
((1), (2) cases in paragraph 2.1).

4. Eigen Value Errors in Case of Both Boundary
Conditions given by Temperatures

Fig. 12 shows the case. To find out eigen values, their errors, etc., almost
the same procedures as before are followed. So, special mentions except con-
clusions are not given under.

b= 6,=0
const, e . cow:t;
'feynlo. ve fem’g,
! x=i/N
X=0 x=]

FIG. 12. Both boundary conditions are given
by constant temperatures.

Numbers in parentheses to designate formulae or equations are shown with
one dash in this chapter. —Note that they are showing corresponding ones with
the same number without dash in parentheses already given in the preceding
chapter.

-1 sinh{ys (1 — %)}
00 = [ sesinhvs ]
=1—x - E%-e"kzﬂzt-sin krx (129
W= =% k=1,2, ..., the same with (13) except £%0. (13"
n @ - - - (WwN-1
-2 1 0 0 - 031D
1 -2 1 0 . 01(2)
0 1 -2 1 0 . .
A= o 0 - - . ol in (158"
. . 0 1 -2 1 .
0 0 . 0 1 -2 1(N-1)
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Note that 4 for this case is of symmetry and N — 1 order.
AP = — 2 N¥1— coslkr/N)} (16"

This is the same with (16), except that % takes onlyl, 2, ..., N—1, and in the
following also the same %’s are applied. (Note: Solutions (12/), (13') and (16’) may
often be found in reference books).

: N-1
1t 1 kre | awoe, o o R '
f;i=1 ~ k>:1'NCOt SN sin i = (199

The above reduces to (12') as N approches to infinity.
e =2 N1~ coslkn/N) }/ (K'n") ~ 1=~ — k*z*/12 N* (20
This is the same with (20).
a) 2nd diff. mechanization
e = 2 N*e/{1+ cos(kn/N) }/R*r* =4 N* (R’ (28)
This is the same with (28).
ots = N*%6/{8 + cos(2 kn/N) '/ Kn* = 3 N**s! [ K (29
Approximation formula only is the same with (29).
b) 1st diff. mechanization

B = 9 Ne'[d & + N{1 — cos(kr/N)}1/k%,
or 2Ne[2k{1+coslkr/N)}+ N{1—cos(kr/N)}1/k*=*

~8 N /kr® (35")
o) = V2 N ¥25'[{1 — cos(kr/N) {7 — 6 cos(kr/N)} '3/ k*n®
>~ 2N /kr (36")

As seen above two approximation formulae are the same with corresponding
ones in the preceding chapter.

¢) Beuken Model
etk =4 N°e'{1 — cos(kn/N)} E'n* =2 ¢ (42"
This is the same with (42).
o = JI2 N ¥2'{1 — cos(kn/N) /B =V 3/N o' (43"

Approximation formula only is the same with (43).

5. Eigen Value Errors in Case of Boundary Conditions
given by Temperature and Heat Flow

Fig. 13 shows the case. Two dashed numbers in parentheses designating
formulae, equations, etc., are showing corresponding ones in chapter 3.
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26
81 —é-'iN =0
const, f ; Q’g ideal
temp. ?‘ heat
| =i/ | imlstin
xX=0 x=|

F1G. 13. Boundary conditions are given by
const. temperature and heat flow.

6 %) = j‘l[ cosh{ys (1—x)} ]

secoshv's
-1 — > __q___zv__m':_“(k'l/?,)zxzt. : _ "
1 E SV sin(2 - 1/2)mx (12
W= —(k=1/2)%% k=12, ... (13")
(1D (2) (N)
-2 1 0 0 . o0l
1 -2 1 0 01
1 0 1-2 1 ol - ,
A=l o o T L, (15")
. . 0 1 -2 1 .
0 0 . 0 2 =2 }(N)
2 = — 2 N°[1 - cos{(k—1/2)z/N}] (16")
where £=1,2, ..., N, and in the following also the same £'s are applied.

o Y1 (k=1/2n e . ilk—1/2)x "
;i =1 lg»—cotwww € s1n--——N~—m~ (19')
e =2 N[1—cos{(k—1/2)n/N}1/(k—1/2)%2* — 1

~ — (B—1/2)%%/12 N?, for (¢ —1/2)n/N<1. (20

a) 2nd diff. mechanization

2

B =2 N%/[1+cos{(k — 1/2)n/N}1/(k—1/2)%2* for N being integer multiple
of 2£—1,

~4 N%'/(k—1/2)%" (28
o = N¥51[8 + cos{2(k —1/2)a/N} — 4/NI"*/(k— 1/2)7"
3N (b~ 1/2)7" (29')

b) Ist diff. mechanization

e = 2 Ne'[a(k — 1/2) + N[1— cos{(k—1/2)z/N}11/ (k~1/2)*7* for N being
integer multiple of 2%~ 1,

~8 N/ (k—1/2)7" (35"



Research Reports 245

otk = VTN Y21 = cos{ (& - 1/2)x/N}1-[7 — 5 cos{(k —1/2)z/N}]
—9[1— cos{(k—1/2)a/N}T/NI?/(k - 1/2)7
~J2NJ/E—1/2)x (36")
¢) Beuken Model

o =4 N%/1 - cos{{k —1/2)x/ N1/ (R —1/2)7°

~2¢ (42)
o = JI2(1=1/(3N)) N*?4'[1 — cos{(k — 1/2)x/N}1/(k = 1/2)%
~y3/N+d'. (43

Through three chapters of 3, 4 and 5, we can well say that as regards cor-
responding approximation formulae, they are the same with one another except
. is replaced by k—1/2 for chapter 5 case.

6. Analyses for Two and Three Dimensional Cases

We have seen hitherto that various approximation formulae derived for one
dimensional cases have the same form throughout the three different kinds of
boundary conditions, though eigen vector only differs somewhat to each other
for respective boundary condition. (their detailed description were omitted for
simplicity in the preceding chapters).

Therefore, we will take up here only the case for temperature boundary
conditions, and analyses for other cases, if wanted, may be performed in the same
way.

6.1. Two dimensional case

Refering to Fig. 14, normalized partial differential equation is

20 2% o'

A2 2
ST o T where «a = a*/B®, 0<%, y<1. (47)

For boundary condition of 6(0, y, ) =0(1, v, £) =0, 6(x,0,#) =0(x, 1, t) =0, we
have solution of Equation (47), as follows.

0 b b e, W@ g) )
. 4 SV a 7
: SPZ'J’.‘C b:;t (2, | to movmalize
ific gravity, ey 1 g
uo theymal condu Dbk-== g put x=x’/a,
1t fime I if i= 'é"/b/
a (-(",]\} ! . t=t'/T,.
T= c_g’a’/tc,
X a=a © then, 0l 44|
(dctual system) (movmalized system)

FI1G. 14. Two dimensional heat conduction system.
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0= > 3 Cpqsin prxesin grxee” P Hea=", (48)
p=lg=1l
where p and ¢ correspond to % in one dimensional case, and C,, will be defined
by given intial conditions and eigen values given under.
W=~ (PP +ad )7 pg=1,2,.... (49)

If x-coordinate is divided into N sections and y into M sections, we will have
the folling difference equation corresponding to Equation (2).

%—L = N2 (ic1; = 2055+ 0iv15) + aM*(Oij—1 — 2 055 + 0741 (50)

Put f=aM®/N? and 7 =1+ 8, then above equation reduces to

dg;j = N*{(0i-1 = 2 765 + Oi+15) + B(6ij—1+ 0ij+1)} (51)

Hereupon we define two vectors as following.

01]' X1
02]’ Xz
Oxn-1j | X n-1

We may herewith understand correspondency of the above to vector ¥ in
Formula (4), of which element §; has now been replaced by vector X; which
represents temperature distributions along x-coordinate at y=j.

Using X,’s, the following left members are expressed respectively by vector
products as are given in the following right side.

(1) ()
Oic1j=270ij4+0i+1;=(0, .. .,0,1, =27,1,0, ...,0X%;
Oij—1 =0,..., 0, 1,0 ...,00X
Bij+1 =0,..., 0 1,0, ...,0X
(1 () (1
—‘?f =N*0, ., 1, =211, ., 00X+ N80, ., 1, ., 0 (Xjoy+ Xjur)
(53)
Therefore, from (52) and (53), we get
(1) (N-1) (1) (N-1)
=27 1, 0, - 0 10 0
dx; L =27 1, 0 0 010 0
dtf =N 0 L =271, 0 |X+N8 001 0§(Xi(+X)

0, : 6, 1, —27r 00-01
(54)
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Again, put

A% =coefficient matrix of X; in Equation (54), and
IY=unit matrix appearing in (54).

Then we finally get

(1) (M-1)
A¥ g 0 - 0
ir 3 Jall ol ,8 . 0
dt

0 - 0 BRI AY|

=N 0 BI¥ 4" pI¥ 0 |Y=N4AVY

where 4% denotes coefficient rectangular matrix shown above and is of (N —-1)-

(M-—1)th order.

Solution of equation (55) is obtained by finding out eigen values of NZ?4Y¥
and their corresponding eigen vectors just in the same way as in one dimensional

case.

Descriptions of the procedures are omitted in this text for simplicity, but

some of their conclusions are summarized in Table 1.

6.2. Three dimensional case

Referring to Fig. 15, we have in similar way three dimensional normalized

partial differential and difference equations as given under.

C Z(’Z‘}
U)'
1
! P:a‘/ct
i
:B =a M’/Nz
;"? l—j‘ﬁ_ 3 b ’ SaFL’/Nz
): (#5) (4
Y
(L)

F1G. 15. Three dimensional heat conduction system.

o0 3% %0 0
Bf T oxr TGyt TR

where a = a*/¥’, 8 =d*/c%, 0<x, ¥, z<1,

dZ ;2 4y
e N AV Z

where

(56)

(57)
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g [ Xk 0150
Y2 X?k ﬁgjk
zZ= Y ’ Yir= Xj » Xip = R
Vi | X1k Oy-1ji |
) s 0 4% 0
AV = or™, 4™, orI™, AN 1Y, A%, 17,

0 . SIY 4 | 0, I A

- 26, 1, 0

AY = 1, —-2& 1,

0 1, —2¢
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M7 =ynit matrix of (N—1)-(M—1)th order,
F¥ =ynit matrix of (N-1)th order,
E=1+7r+0, r=alM?N? 6=pL/N"

In order to facilitate comparison among one, two and three dimensional cases,
only some of the results which have been obtained for such simple case that
a=b=c and N=M=1L are shown in Table 1.

Description of the results for more general cases are omitted for favour of
simplicity.

TABLE 1. Comparison of s, er’'s and ged's
o By
©s5.8 a
S % 8 § 20 E Etr (G’ék), (g' qc)o’ 02,” q, )
S8ET (AW, ap @ PRI 0 0o e
EENH 0 70 ’ %“tr’trr’
250 3 ey P 7)) 2nd diff. mech./Ist diff. mech. Beuken Model
(=1
— B2 2. T 3/2, 0 5 N2O | <3,
One Wiz Mg | 3N pn | VENTE Nz
p4+q4 ’\/‘__
— . 45 Ne ' YR Y
212 — s 3 ~NpAEptgt gt
(A2 A2V s , pypp— W.ﬁ‘lbq ..
Two (PP+gh)m ) - ¢ . N7 JZN i G
2N (P+d')m
_p4+q4+r4 ‘ 3 12 i 3 ; 3\/’3*
Three | —(p24qt+72)a? Pttt 51/141'2{]\7 2N SN2
g s ! 2 g rd ,\/p4+q‘+f4+P2q2+quz+f2])2.o_,
12 N2 (p2+q2+72)752 N/P2+q2+7'2 | P2+q2+7'2

Note: &; p, g; b, g, r; indicate order of eigen values for ome, two and three dimensional
cases respectively.

X : eigen value of partial differential equation.
errt relative truncation error.
geo: standard deviation of relative eigen value error due to coeff. allowances.

7. Conclusions

Featuring points of results are summarized as following:
(1) For using an analog computer, 2nd diff. mechanization needs less opera-
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tional amplifiers, but gives rise to more error when compared to 1st diff.
mechanization.

(2) Optimum number of coordinate division for attaining overall least eigen
value error is less for 2nd diff. mechanization.

(3) Beuken Model is not only most economic for its construction, but also
gives rise to the least error among all of the considered methods.

(4) Eigen value errors generally decrease with increasing number of coordinate
division in Beuken Model, whereas in analog computer methods they usually do
increase especially for simulation of one dimensional heat conduction.

(5) Effects of dimensional numbers of heat conduction space.

For two or three dimensional heat conduction simulation, a great number of
simulation elements are needed, and naturally accumulation of errors due to such
many inevitable coefficient allowances seems to appear. But this is not quite
true, and on the contrary eigen value errors generally decrease as number of
space dimensions increases.

Accordingly it may well be stated at least from the analytical point of view
that reduction of dimensional number from three to two or from two fo one in
view to attain simplification of simulation seems to be avoided as much as pos-
sible, though of course more elements are needed.

Authors wish to add sincere acknowledgement of tacit encouragement given by Dr. C. L.
Beuken in Maastricht, Holland (18th Oct. 1967).





