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1. Introduetion

The previous works in filtration have been almost exclusively restricted to
uni-dimensional phenomena, because of the practical importance in actual indus-
tries. Strictly speaking, uni-dimensional phenomena are to be encountered only
when there is some sort of a retaining wall which compels the flow into uni-
dimension. If a cake is deposited either internally or externally on either a
cylindrical element or a spherical surface, or either on a circular or a rectangular
leaf, non uni-dimensional theories will play an important role in the analysis for
filtration. While some work has been done to apply a filtration theory to scale-
up problems, only an ideal case of a three-dimensional filtration on a circular
leaf has been considered by Brenner'?. Applying Brenner’s work, a term entitled
“effective filtration area factor” has been developed theoretically and empirically
for the cases of both a three-dimensional filtration on a circular leaf and a two-
dimensional filtration on a rectangular leaf®, while Yoshioka® has attempted to
analyze the flow variation through non uni-dimensional cakes.

Starting from basic differential equations for flow through porous media, non
uni-dimensional filtration theories are developed in view of the effective filtration
area factor jy¥. In this paper, theoretical and experimental methods are presented
for obtaining values of jv for two-dimensional filtration on cylindrical (tubular)
surfaces and three-dimensional filtration both on square leaves and spherical
surfaces.

2. Basic Equations for Non Uni-dimensional Filtration

The conventional Ruth’s equation, the basic equation for uni-dimensional
filtration, is written as

(do) _ gedp _ godp
dag /; W new (1
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In Eq. (1), the medium resistance R, is neglected, and v is the volume of filtrate
per unit area, § the time, 4p the filtration pressure, p the viscosity of filtrate, «
the average cake resistance, A the filtration area, and w(=W/A4) is the total
mass of dry cake solids per unit area.

280



Research Reports 281

In accordance with the concept of the “effective filtration area factor j»”,
Ruth’s equation is modified® for non uni-dimensional filtration as

(f?z{) — Geodp - geodp - e dp
N |14 w_ A w (2)

Sl A W A

where the subscript NV is employed to emphasize that the equation can be used
for general problems of uni-dimensional and non uni-dimensional filtrations, and
A. denotes the effective filtration area defined by Eq. (2).

i) Basic Flow Equation
Using vector notations, a basic flow equation through a non uni-dimensional
filter cake can be generally written as

a=9 - X  or ecu=q- X —g-er
e 1—¢ 1—e q

where u is a local value of the relative velocity of liguid to solids, g a local
apparent velocity of liquid, r a local apparent velocity of solids, ¢ a local porosity,
¢ is a local void ratio of filter cake defined by e=¢/(1—¢). Actually,u, g, 1, ¢ and
¢ are functions of position, time, and operational conditions. Since eu is the
apparent relative velocity of liquid to solids, the above equation can be presented
in view of a local value « of Ruth’s filtration resistance as

cu=q—er= — 8¢

N4
a{l—ze)ps b (3)

where ps is the true density of cake solids, and p denotes a local instantaneous
pressure in the cake.

it) Continuity Equation
The total mass of liquid M at a time § in a filter chamber of the volume Vs can
be written in the form

m@ ={{§ (o0)-ave (4)

ch

and the accumulation rate of liquid mass in chamber can be written as

where n represents the normal unit vector of a surface S. Differentiating Eq.
(4) with respect to 6, one gets

=W, % ave (®

while the right-hand side of Eq. (5) can be rewritten by Gauss’ divergence theorem
in the form
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Substituting Eq. (7) into Eq. (6) one obtains

Sgg,,a,j-i('a%i +7e (pq5;ldVr;, =0
or
%%e—)—%-V'(pq):O (8)

Filtrate being incompressible, Eq. (8) becomes

Ot
a6

+Peq=0 » 9)

In accordance with the same procedure as mentioned above, the continuity equa-
tion of solids may be represented in the following form

8{09(1—-53} ol . Oz — )
T (pst) =0 or ~— o5 T7r=0 (10)

Substitution of Eq. (10) into Eq. (9) gives
Peq+Per=0 (11)

Egs. (9), (10) and (11) can be viewed as the basic continuity equations for flow
through filter cakes.

3. Non Uni-dimensional Filtration on Cylindrical
and Spherical Surfaces

1) Simplified Equations for Incompressible Cakes

In this paper emphasis is placed on obtaining useful equations for practical
design purposes without making the analysis unduly complex. Current develop-
ment of the mathematical art of filtration depends on a number of assumptions
which have been indicated by Tiller.? In addition to these postulates, the fol-
lowing items are assumed.

1. An incompressible, homogeneous and isotropic filter-cake, that is, the
constant values of the specific resistance « and the porosity e.

2. Negligibly small resistance of the filter medium.

3. A constant applied filtration pressure.
Based upon the assumptions listed above, Egs. (3) and (9) may be rewritten as

- 8 py o _ kg,
4= pa(l—e)ps 7P P vp (a2)

respectively, where % is the permeability coefficient, represented by

k = const.

-1
a(l—e)ps
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Substitution of Eq. (12) in Eq. (13) leads to

div[ ~ 8 yp|= - 28 giv 7p) =0
or 7p=0 (14

In order to obtain the solution for a non uni-dimensional problem in a specified
coordinate system, the pressure variation is to be calculated from Eq. (14), and
then the flow rate may be determined from Eq. (12). It should be noted that
the cake profiles of non uni-dimensional filtration coincide with the equi-pressure
surfaces, the pattern of filtrate flow following to potential flow.

1) Two-dimensional Filtration on Cylindrical Surfaces
The problem of determining the filter cake deposition on a cylindrical surface
as a function of time is best discussed in a system of the cylindrical coordinates

(7, ¢, z), as shown in Fig. 1. According to the coordinates, the following equa-
tions hold.

F1G6. 1. Cake on Cylindrical Coordinates.

rp=Le g{; est Le. (15)
=308 50 AR

where e,, e5; and e, are the unit vectors for the cyiindrical system.

The equi-pressure surface within the filter cake being identical with the
cylindrical surface of a constant radius », that is p=p(r, #), Egs. (14) and (16)
yield

Po= 1.2 ()=

Integrating the above equation and substituting both the boundary conditions
(p=p: at the medium surface r=r;, p=p, at the cake surface r=7y) and the initial
condition (r=ry=7; at §=0), one gets
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In (7’/7’0)
In (ro/74)

P =1+ (po—pi)
Differentiating the above equation partially with respect to » leads to

o _ 1 4

o — v In(n/r)

where the filtration pressure 4p=po—p;=const. Substituting in Eq. (12) yields

kgc Fp= — kgc 1 4p

4= I ' In (ro/7i) *er
_ kge (1. 4
or ¢=laf= w v In(n/ri)

Therefore, the flow rate of filtrate at the medium is given by

(90)  =qlyey = e L.
di ey " VT T I (o))
S gerdp (17)

- (X(l—s)ps y27 83 In (70/71
The total volume V. of the filter cake is given by
Ve=nh(ri—r}H (18)

where } is the length of the cylinder. The total mass of dry cake per unit
filter-medium area is given by

V il 7\
w= M,E.ps(l —¢) = VZM[(;?J — 1Jps(1 — )
Substituting in Eq. (17), one obtains

()00 = 3G =1 by s as)

Eq. (19) represents the rate equation for the two-dimensional filtration on a
cylindrical surface at a constant pressure and the subscripted (dv/df).,cy is
employed.

i1) Three-dimensional filtration on Spherical Surfaces

The three-dimensional filtration on a spherical surface may be best discussed
in a system of the spherical coordinates (r, 2, ¢), as shown in Fig. 2, where the
following equations hold.

w—@,+w@ ot e P

or ror & rsina " og
SRNSTREYSNREARE (RNE S YRWES)

The pressure distribution within a spherical cake being independent of 2 and ¢,
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Fi1G. 2. Cake on Spherical Coordinates.

the equi-pressure surfaces coincide with the spherical surfaces of constant radii
¥ and p=p (7, ).

According to the same mathematical procedure mentioned in (ii), one obtains
the rate equation for the three-dimensional filtration on a spherical surface at a
constant pressure.

(45),0m BN ()2 e

4. Effective Filtration Area Factor

In constant pressure filtration, the flow rate equations on a cylindrical and a
spherical surface have been represented in the forms of Egs. (19) and (20). It
is apparent that the flow rate for non uni-dimensional filtration is a function of
(74/7;). For practical purposes of numerical calculations, it may be more convenient
to replace #, by the volume of cake v, per unit medium area. For two-dimensional
filtration on a cylindrical surface of radius 7;:

Cake forming outside the surface;

e Al G

SHPA Y T = 7

Fo _ [ 4q7e 21)
/ 1+2-7 (
Cake forming inside the surface;

o / 1o (217
7i 73

For three-dimensional filtration on a spherical surface of radius 7;:
Cake forming outside the surface;

o _ 3/ Ve 22
po = A 1E3 (22)

Cake forming inside the surface
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With these changes of (7/r;) in the right hand side of Egs. (19) and (20), the
reference of Egs. (2), (19) and (20) will serve to define the filtration area factors
jy as follow:

Jiey = %‘[(%)2 - 1.} ln(T:tM/ﬁ
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In Fig. 3, the theoretical values of jy are illustrated. jy is a unique function
of (ve/ri) or (»/r;) for each non uni-dimensional filtration.

4.0

g,

3.5

. . J
% Jusptizti) {/
3.0
2.5 / ‘ S “Ju,cy (A1)
T 20 /

)

4

1.5

4/3 .

/8 ‘ Js
1.0 ‘ Y

Jm,spllog i)
/""'—“"‘“—‘“—‘

0 173 05 0 15 20 25 30
\L/ﬁ i:_]
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5. Experimental Results

1) Experimental Equipment

For studying the problems of non uni-dimensional filtration, square test sur-
faces of 3x3, 5x5 and 8x8 cm? (Fig. 4-1 a) and cylindrical surfaces of 7;=1.25,
2.50, 375 and 5.00 cm (Fig. 4-1 b) are used. The schematic picture of the ap-
paratus used is shown in Fig. 4-2,  Filter-cel slurry (compressibility coefficient
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FIG. 4-2, Schematic Picture of Experimental Apparatus,
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of cake #=0.03; slurry concentration s=0.059) is filtered at a constant pressure
of 4p=0.835 Kg/cm? vacuum. For numerical treatment of three-dimensional filtra-
tion on the square leaves, the equivalent radius 7.,=a/2 is used as a representative
size of a leaf, where a is the side length of a square leaf.
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ii) Experimental Results and Procedures

Figs. 5 and 6 show experimental data of (df/dv)y Vs. ve, together with uni-
dimensional filtration data. It is apparent that [(1/r;) (df/dv)]1y vs. (vc/ri)
represents a unique relation as may be seen from Fig. 7 or Eq. (17).

The experimental values of jy can be well determined from experimental
values of (dv/df); and (dv/df)y in view of the defining equation of jy. It is
apparrent from Egs. (1) and (2) that the ratio of (dv/df)y to (dv/dl), at an equal
value of w or v, equals jy.

A (dv/db)y (d/dv).

in= 4= Cavrdey, = 1dd)dv)s (25)
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5.0
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FIG. 9. jursy vs. (vef7eq).

Experimental jy-values thus obtained are compared favorably with the
theoretical jy-values as show in Fig. 8.

Experimental jy-values for three-dimensional filtration on square leaves are
illustrated in Fig. 9, together with j,;; on circular leaves and j,, on rectangular
leaves®. It can be safely said that j.., s approaches j.;; as both the cake volume
ve and the side length ¢ increase.

6. Conclusions

It has been demonstrated that the non uni-dimensional filtration problems on
a cylindrical surface, a spherical surface and a square leaf can be solved in view
of the effective filtration area factor jy as previously defined?.

Basic equations for non uni-dimensional filtration are presented. j,; ., on a
cylindrical surface and j;;,sp on a spherical surface are evaluated theoretically.
An analytical method of determining jy from experimental data are also discussed.

Reasonable coincidence between theories and experiments are reported. To
increase still further the accuracy for non uni-dimensional calculations, both the
medium resistance and the cake compressibility should be considered.
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Nomenclatures

. filter-cloth area

: effective filtration area

: side length of a square medium
: local void ratio, e=¢/(1—¢)

e, €5, €, €. unit vectors

e
h
jx
k
M
7
b
bi
Do
4p
vp
q

q
T

7

: coversion factor

: length of a cylindrical filter surface

: effective filtration area factor, defined by Eq. (2)
: permeability coefficient

: liquid mass in cake

: compressibility coefficient of cake

: local pressure in cake at time f

: pressure at filter medium

. pressure at cake surface

: applied filtration pressure

. gradient of p

: velocity vector of filtrate

: superficial local velocity of filtrate at time 6
: local apparent solid-migration velocity vector
. radius

: equivalent radius of square medium

: radius of filter medium

: radius of cake surface

: hypothetical enclosure in space

: mass fraction of solids in slurry

. relative velocity vector of filtrate to solids

: volume of filtrate per unit medium area

: cake volume

: filter chamber volume

: cake volume per unit medium area

: total mass of dry solids in cake

: mass of dry cake solids per unit medium area
: coordinate

Greek letters

: specific resistance of cake
: coordinate

: porosity of filter cake

: time

: viscosity of filrate

: density of filtrate

: true density of cake solids
: coordinate

Suffix

. uni-dimensional filtration

291

[cm?®]
[em?®]
[em]

[-]

[dyne/G]
[em]

(—1

[em?]

[g]

[-1]
[G/cm?]
[G/em?]
[G/cm*]
[G/cm?]
[G/(cm?-cm)]
[cm/sec]
[cm/sec]
[cm/sec]
fem]
[em]
[em]
[em]
[cm?]

[-]
[cm/sec]
[cm?®/cm?]
[cm®]
[em?®]
[em®/cm?]
[g]
[g/cm?]
[em]

[g/(cm—sec)]
[g/cm?]
[g/cm?®]

[~]
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7 : two-dimensional filtration on rectangular leaf
II, ¢y : two-dimensional filtration on cylindrical surface
[II  : three-dimensional filtration on circular leaf

III, sq: three-dimensional filtration on square leaf
III, sp: three-dimensional filtration on spherical surface
N : non uni-dimensional filtration
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