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General Introduction

When there are nonlinear spring characteristics in vibratory systems having
multiple degree-of freedom, the so-called “summed and differential harmonic
oscillations” take place?? with ordinary sub-harmonic oscillations. Summed and
differential harmonic oscillations may be grouped into two classes, as follows:

(1) Summed and differential harmonic oscillations in vibratory systems with
unsymmetrical nonlinearity occur when the frequency o of external periodic force
becomes nearly equal to sum of or difference in two natural frequencies p; and
p; of the system, ‘e,
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w=pikp; (P> p). (1)

At the frequency o of the external force satisfied Eq. (1), two vibrations of
frequencies o; and w; which are nearly equal to the natural frequencies p; and
p; respectively, i.e.,

wi = i, wj = pj. (2)

appear simultaneously, and the so-called “summed and differential harmonic
oscillations” take place®.

(2) Summed and differential harmonic oscillations in vibratory systems with
symmetrical nonlinear spring characteristics occur when the frequency « satisffies
the following relation:

w=12p;i = pjl, (3)
or

w=|piEpi = el (4)

When the relation of Eq. (3) holds, two vibrations of frequencies wi(=p;) and
w;{*=p;) appear?, and when the relation of Eq. (4) is satisfied, three vibrations
with frequencies wi(=p:), wi(=p;) and wr(=pr) occur simultaneously?

In the present paper, summed and differential harmonic oscillations induced
by unsymmetrical and symmetrical nonlinearities are treated in Part A and Part
B severally. Summed and differential harmonic oscillations occurring when the
frequency o of external force satisfies the relations of Egs. (1), (3) and (4) are
represented by the expressions [pixp;1, [2p:xp;] and [pitp;£pe] separately.

Incidentally, when pi=p; or pi=p;=pr in Egs. (1), (3) and (4), summed and
differential harmonic oscillations become sub-harmonic oscillations of order 1/2 or
1/3.  Accordingly sub-harmonic oscillations are considered as special cases of
summed and differential harmonic oscillations. In this paper, sub-harmonic
oscillations of order 1/2 and order 1/3 are expressed by [2p:] and [3p:] re-
spectively.

Part A. Summed and Differential Harmonic Oscillations
Induced by Unsymmeirical Nonlinearity

In Part A, summed and differential harmonic oscillations of [p;+p;] which
are caused by unsymmetrical nonlinear spring characteristics are discussed, and
in Chaper I, summed and differential harmonic oscillations appearing in usual
vibratory systems with »n degree-of-freedom in which rectilinear vibrations occur,
are treated, and in Chapter II, summed and differential harmonic oscillations of
rotating shaft systems are researched. Generally, in the rotating shaft systems,
lateral vibrations of the shaft are not rectilinear vibrations, but whirling motions®.
Consequently all modes of vibrations of summed and differential harmonic oscil-
lations of the rotating shaft are always whirling motions.
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Chapter I. Summed and Differential Harmonic Oscillations [ p;+p;]
in Vibratroy Systems with Unsymmetrical Nonlinear
Spring Characteristics
1. Introduction

In the present chapter, summed and differential harmonic oscillations of
rectilinear vibratroy systems are treated. @ When multiple degree-of-freedom
systems have unsymmetrical nonlinear spring characteristics, this nonlinearity
results in occurrence of sub-harmonic oscillations and summed and differential
harmonic oscillations. Analytically conditions for possibility of occurrence of
summed and differential harmonic oscillations induced by unsymmetrical
nonlinearity are discussed, and modes of vibrations which can take place actually
and equations of response curves are determined. Further stability problems
for summed and differential harmonic oscillations are studied and comparison of
obtained theoretical conclusions with experimental results is performed.

2. Summed and differential harmonic oscillations [p;+p;] in rectilinear
vibratory systems?®

The equation of motion of # degree-of-freedom systems are given as follows:
SVmi i+ ciji; + kit + €%, %, . . ., %) =qgicosot, (i=1,2,...,n) (1-1)
=1

in which x; is coordinate; m;;%; is term of inertia; ki; is spring constant; cij
damping coefficient; ¢: nonlinear term; ¢ cos ot external force. Here, ¢i; and ¢i
are small quantities and obviously the relations mij=m;i, ki;=Fkj; hold here. For

brevity, notation S is used in place of >). The frequency equation of system
i=1
represented by Eq. (1-1) is
4= |(kij — mijp*) = 0, (1-2)

where p is natural frequency, 4 is a determinant consisting of (kij—mi;jp*). Let
the cofactor of 4 be 4i;, and 4 and 4;; when p=p, be 4, and 4,,;; respectively,
then transformation from generalized coordinates x; into normal coordinates X;
is given by

xi= >, Bi; X, (1=1,2,...,7%n)
where (1-3)
Bij = 45, { > mrs 4, ridy,sit

Inserting Eq. (1-3) into Eq. (1-1), we have
Z((%mtk Aj',kj)(rzs”’lrsdj,rjdj,si)_l/z' (X +p2X0)}
= q; COS wt — @; — >, Cij%;. (1-4)

If we denote the determinant consisting of (E mix 4;, k])(}_mrszt] »idi Y " by D,
and the cofactor of D by D;;, we have the followmg relatlon
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By = .%J;. (1-5)

From the simultaneous linear equations of (X;+piX5), ie., from Eq. (1-4), the
following equation is given by using of the above relation:

Xi+ pr X = 20 Bij(qi cos wt — @3 — > cipdin)
k

=Ficosof = ¢i( X1, Xoy - .., Xn) — 23C; X (1-6)
(i=1,2,...,n)

In Eq. (1-6), the symbols Fi, ¢:, Ci; are as follows:

= ZBjiqb Qbi(Xl, Xe, BRI Xn) = ZBji(,ﬁj(xia Xzy o v s ,xn), 1 1 7
Cij = 21 Byibrs Bs;. J
Eq. (1-6) gives the equations of motion represented by normal coordinate X;.

Kinetic energy 7, potential energy V and dissipation function C'' are expres-
sed by

2T= E”’l?’sf{?rﬁ‘?s = §3X;;
2V =D kstrxs+ 205 = 2 pIX W5, (1-8)
2 C” = 267‘3?‘:’7‘5‘35 = ZCrstXs.

If nonlinear terms ¢; in Eq. (1-1) consist of the second and the third powers of

coordinates, @; and ¥; are quadratic equations of x; and X; respectively. Further,
the relations

Eaﬂ;{ = SVkijai+ O = 2 kijx; 4+ DN icrsXr ks 20 iBars g Xy Xs,

1 8 a7, 8

S;K’/ ZP?X1+¢1:ﬁ§X1+ZlaYSX7XS+ Z isqrsXquXs, i (1‘9)
1 T,E a, r, s

acl’ . ac” .

ey = >\cij %5, S =>\Cy5 X;,

are obtained, where ;a;s and ;a,s are coefficients of the second power terms, 8),s
and 7845 are those of the third power terms. If we define

i) = 2iecyj, 2:Bciii = 3iBisis iBlrr = iBirr +
+ iBrir +iBrris iBiirs = iBirs + iBisr + iBsir + iBsri + iBris + ifrsi,  (1-10)
it is found that the following relations hold:
& (j7) = j&dfy, JAUT) = iQif), iX(jr) = j&ir),
2i8.iipy = iBdin, B in = 2iBuiiy, iBisi = jB iy, I (1-11)

iﬂ(jrr; = j,B(i?‘r): 21‘6(;7',7'7; = iBijry, iﬁ(jrs) = jﬁ(irs,s,
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Similar reltations are given for ;al; and ;8is. Between coefficients of nonlinear
terms in the original equation (1-1) and those in Eq. (1-6) represented by normal
coordinates, there are the relations

!
m&ij = 2 q@&rsBqnBriBsj,

g, 7, 8 .
mBiji =3} 1Bors BinBaiBrsBk. (1-12)

sy S

Since the dissipation funtion C'' takes the minimum value zero when all X; are
zero, we conclude

Cii > 0. (i=1,2,...,n) (1-13)

In the neighborhood of the frequency w of external force which satisfies the fol-
lowing relation:

w=pixp;  (pi>pi), (1-14)

that is, in the neighborhood of w where the absolute value of sum of or difference
in two natural frequencies p; and p; is equal to w, both amplitudes of two vibra-
tions with frequencies w;(=p) and w;(=p;) build up and form the peak of summed
and differentical harmonic oscillation. Further the relation

wikwi=w (wi > wj) (1-15)

is always satisfied.

In the present section, solutions for summed and differential harmonic oscil-
lations will be obtained through perturbation method. Eq. (1-6) is rewritten as
follows:

i+ olX = (o ~pf~)X,~+F,- cos wt — ¢i — E]Ci,X,,
Xi+ 0l Xj= (0} — pj) X; + Fjcos ot — ¢j — 2CirXr, (1-6a)
X‘s*{'Png:FsCOS&)If“‘Gl)s"‘ZCsrXr, (s=1, ])

In Eq. (1-6 a), damping terms, nonlinear terms and detunings (o} —p}), (0} —p})
are small quantities. We put

Xr:Xro+€Xr1+52Xr2+ ey, (7’= 1, 2, PR n), (1“16)

in which ¢ is a small parameter. As the solutions of Eq. (1-6 a) of the first
approximation, we put
Xio = Ricos (wit — 6;) + P; cos wt,
Xjo = Rj cos (wjt — 8;) + Pjcos wi, (1-16a)
Xs0 = Pscos wt.
In Eq. (1-16 a), R and R; are amplitudes of summed and differential harmonic oscil-

lations, and 6; and 6, are phase angles. Inserting Egs. (1-16) and (1-16 a) into Eq.
(1-6 a) and referring the relation of Eq. (1-15), the following equations are derived



Summed and Differential Harmonic Oscillations ' 91

by the condition that resonant terms sin wif, C0Os wif, sin w;# and cos w; should not
be contained in the right hand sides of the first and second equation of Eq. (1-6 a):

AR~ wviRjcos (0; = 0;) = (0; R+ 0i R Ry, |
MR —wv;Ricos (6;=0;) = (o, R}+a; RV R,

. (1-17)
Cijw; Ri + »i Rj sin (6; = 0;) =0, I
Cijw; Rjxv; Risin (0; = ;) =0,
where
= Fi (0l = o®) 7, Pj=Fj (0} — o)™}, Ps=Fe (ps— )7}, (1-18)
}4:: ((‘)3 '—pf) - —%' <Ziﬁ(i7‘3)P7‘PS + Ziﬂ(iif)Pipr},
Aj = (UJ] P; 5 <EJB(JrS>P7Ps+2119\]1f>PJPf:
(1-19)

1
vi= —Z*Eia’u'mpr, vji= %*Ef‘x“'”‘p”

1 1 1 1
0i= o iBuiis 0= 5 iBuin, 0i= 5 iBuain, 0= o B

The upper and lower signs of + in Eq. (1-17) correspond to the summed and
differential harmonic oscillations respectively. Observing Egs. (1-17) and (1-19),
it is seen that >)ia(jr Py = 0 leads to v;=»;=0 and R;=R;=0, further if8 ;= iBuin=0

rj () 3 (3i) 7 (339)
leads to oi=0;= 0 and R,=R;=0. Consequently it is concluded that existence of
nonlinear terms of both the second and third powers needs for occurrence of
summed and differential harmonic oscillation [ p;==p;]. From the third and fourth
equations in Eq. (1-17), we have

2
R; _  viCjjwj
v; Cii wi

Considering the relation »;=»; which is obtained from Egs. (1 11) and (1-19), we
attain
2
R; - C;]w, (1_20)

R; czzCOz

Since R:>0, R;>0, C:;>0 and C;;>0 [see Eq. (1-13)], the value +w;/w; must be
positive. Accordingly only the summed harmonic oscillation can take place
because +w;/w;>0, and the differential harmonic oscillation cannot occur because
—wi/w;<0. In the rotating shaft system, on the other hand, both summed and
differential harmonic oscillations can appear, as is seen later.

3. Response curves of summed harmonic oscillation [pi+p,;19"

Since the procedure to obtain five values Ri, Rj, 0:+0;, o and w; from five
equations wi+w;=w and Eq. (1-17) is quite complicated, then a comparatively
simple case of two degree-of-freedom system governed by Eq. (1-21) is treated in
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the present section.

M X+ Ry + RoXe + cud + “xf_*_ Bx? = qu.C0S ot ] (1 21)

P ¥o + Ror 21+ Roa Xa + Coo b2 = 0.

In Eq. (1-21), an external force and nonlinear terms exist only in the first equa-
tion. If mu=mun=m and ku=*k: in Eq. (1-21), calculation can be more simplified
because the amplitude ratio for free vibration is given by 1: 1 or 1: —1. Then
Eq. (1-21) is rewritten as follows:

%14 2+ 720+ cnd + axl + Fxi = g cos wt, \

. (1-22)
Xy 741+ X2+ CpXp = 0. I
The following transformation
X1 Xz Xl Xz
o= e oy 9 = e == 1"3 )
X1 NE) -+ NE) X2 V2 ( a

results in

Xl‘i‘ CU%XI = (wf ~1§f)X1—* CX1 ad Cngg— Cto(X1+X2)2 - %*Bo(Xl'FXz)s“FFCOS wt,

Xt 03 Xo = (0] = p)) Xo = CXo — Ca X1 — a0 (X1 + Xo)? — —:jf—eo(xl + X3)° + F cos wt,
(1-6 b)
Xio= Ry cos (wit — 0;) + Pcos wt, Xa= Rocos (wst —02) + Pcoswt, (1-16 D)

{(wl = p1) —2 B P*} Ry — ag P cos (6; + 02) e Ro = Bl RE+ 2 RY) Ry,
{(wg—ﬁi) _2BOP2>R2_(XOPCOS (ﬁ]+00) R = Bo([‘ez“l 2R )Rz,

) (1~17 a)
Coit R + ao Psin (6y-+ 05)  Ro=0
CU)2R2+CKQPSin (ﬁl-f-@g)'Rl:O
in which
q a 1 1
F=—= ) = = R
V2 xo 2V 2 Bo 166 P= \/2<wf~—a)2+w§—*w2 (1-23)
C= ‘2];(6‘11+6‘22), Cp= *%‘ (cu— o), sz 1+, P§= 1-7r
Solving Eq. (1-17 a), we attain
_ (92 _ )2y 2
w1 =P + m[(l%—mm){w (pr+p)’) =28, P
I\/—(Ltop —’7]17750(0)]
(?7 y (1_24—)
_ 2 _ 2
we = N — ———*——2(1_)_2 - )w[(l’l"/h/}z){w (Pr+p)° =28, P
i ,
e \/W((xﬁP — 17 C*0?) ]'
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R S A o? — % - .
B Bo(1-+2 7170) [7?17}-<CO (Pr+ D)) — 2B, P
/
i27m?2«/%%{ (e P “771772C2w2)]'
7 ’ (1-25)
P | S 2_ 2 .
Ry = Bo(1F+2 7 72) [ﬁmz{w (pr+p)?y— 28, P
= 27 %:%};(ain—“fuﬁzCzwg)J- ‘
where
= _‘p‘!* s 5 = ._‘?3.%, B
= ot T it (1-26)

Clearly w; and w. given by Eq. (1-24) satisfy the relation wi+w:=w. The sign
+ in Eq. (1-25) of response curves corresyonds to = in Eq. (1-24).

By a similar procedure, response curves of sub-harmonic oscillations of
order 1/2 are obtained as follows:

Ri= 43 -l -2ars far (3]

pP=F(-

- )
4 1 . . (1252
*3—5f+m), (Z,]"—“—I,Z,Z#]).

25 T T

IS
Y

~
“

Amplitude

f.0

Xy

2.7 2.2 2.3 z.4 2.5 2.6 2.7
/:reguency w

FIG. 1. Response curves of summed harmonic oscillation [pi+p2] and sub-harmonic
oscillations of order 1/2.

(F=0.372, a0=0.1, Bo=0.1, 2p1=1.788, p1-pe=1.989, 2 p;=2.190)

(F: magnitude of external force, w: frequency of external force, ao: coefficient of
unsymmetrical nonlinearity, fo: coefficient of symmetrical nonlinarity, C: coefficient of

damping ).
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The form of Eq. (1-25) is quite similar to that of the equation of response curves
of sub-harmonic oscillation of order 1/2.

Since it is impossible to give Ri, Rs, w1, w: and 6:+0, analytically by using
Eq. (1-17 a) and the relation wi-w.=w, Eqs. (1-24) and (1-25) are determined by
the following approximate method. That is, as the first approximation of wi and
wy satisfying the relation wi+ww=w, we adopt

W= N0 = E%-Lj;; 0, On=T0= fopz o, (1-27)
which results in Egs. (1-24) and (1-25). Adoption of Eq. (1-27) does not contradict
the experimental results (see e.g. Fig. 13).

Amplitudes of summed harmonic and sub-harmonic oscillations given by Eqgs.
(1-25) and (1-25a) are graphically represented in Figs. 1, 2 and 4, and for summed
harmonic oscillation, sum of amplitudes R:+R, is plotted as amplitude in Figs.
1, 2 and 4, where full lines indicate stable response curves which correspond to
stable vibrations, and broken lines represent unstable response curves, and chain

lines give the boundaries of stable
and unstable zones. Since the coef-

“o
s ficient B, of symmetrical nonlinearity
32 o is positive in Figs. 1, 2, all response
2 / curves are of hard spring type.
2., v co For a small damping force, jump
) 7 phenomena take place near the top
i s of response curves, while for a large
Py =90.08 . .
,/4;" . damping force the jump phenomena
70 aj
o i ’ can not occur and response curves
’ /i
"
;oA
l’J
0.3
oy
i ’
.0 ~ 4‘7\\ LA
//'}‘," C=0.700
l’
i GRS
!
i |
4;;’ Cz0s28 02
o i ‘ Q
/-5 2.0 2.5 v.0 © [.QP 2]
Frequency « ® i
F e BN
C=0 QU
5 . T Soi
- » ‘\
Sz 3 5 ) .§
S
§ C=0/28 C=0.700 Cevos §
2 g S
I
= —1 i
= o C=0 0 i N
xs 2.0 z.5 2o 0 02 04 06 0.8 09
Freguency w oo
FIG. 2. Response curves and phase angles F1G. 3. Critical damping coefficient.
of summed harmonic oscillation [p1-+p2]. (F=0.372, p1=0.894, pp==1.095)

(F=0.372, aa=0.5, fy=0.1, p1-+p2=1.989)
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are continuous as the curve of C=0.125 shown in Fig. 2.

According as the increase of damping force, the maximum value of the
response curves falls gradually, and finally it vanishes on the abscissa at a certain
value of damping coefficient, i.e., at the critical damping. These critical damping
coefficient C, is derived by

R, €) =0, s {R* (% O)) =0, (1-28)
in which R%(w?, C) represents Eq. (1-25) or Eq. (1-25a). In Fig. 3, the critical

damping coefficient C. determined by Eq. (1-28) is shown. When |«P|< 1, ap-
proximate value of C; is given as follows:

Cc%~{“°P[ for summed harmonic oscillation [p;+ p.],
Di1pa
(1-29)
Ce= %@ for sub-harmonic oscillation of order 1/2.

When C. is somewhat larger, the exact value of C. given by Eq. (1-28) becomes
larger than approximate value of Eq. (1-29). Comparison of C. among [2p1],
[2 p,] and [ p1+p.] in Fig. 3 shows that oscillation with low frequency can easily
occur, because vibration of lower frequency has smaller value of Ce.

Fig. 4 is response curves of summed harmonic and sub-harmonic oscillations

20—
D
=
AN
s
N
™~
Q
= 5
~z
40
C=0
C=0.0/5
C=0.020
C=0.028
a.8
a9 i
L4 Xy 7.6 2.7 2.2

Frequency ¥

F1G. 4. Response curves of summed harmonic oscillation [p1+p:] and sub-harmonic
cscillations of order 1/2.
(F=0.372, ae=0.1, Bo= —0.1, p1=0.894, p2=1.095)
(F=magnitude of disturbing force, w={frequency of disturbing force, pi1, p2=natural
frequencies, wmo=coefficient of unsymmetrical nonlinearity, fi=coefficient of symmetrical
nonlinearity, C=coefficient of damping)
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for negative value of B, (coefficient of symmetrical nonlinearity), and all curves
are of soft spring type. For [,<0,
response curves have a lower limit
of amplitude when the damping coef-
ficient becomes smoewhat large.
For both cases of £,>0 and B.<0,
frequencies w:; and w; of summed
harmonic oscillations are shown in
Fig. 5, where full and broken lines
/I ! correspond to stable and unstable
=
|

vibrations separately, and chain lines
| | give the curues of wn=710, Cu=7w
5 ‘ 20 25 3.0 which given by Eq. (1-27).
Freguency @ (f=o1) Phase angles of ¢=0,+0. for
12 : ; — summed harmonic oscillations can be
| ‘ obtained through Eq. (1-17 a), and
= I an example of ¢ when $>0 is indi-
cated in the lower figure of Fig. 2,
in which full and broken lines mean
phase angles of stable and unstable
vibrations separately, and phase
p angles for C=0 are represented by
02 " straight lines. Boundary between
1.0 1.5 2.0 . . .
Frequency @ (w01 stable and unstable regions is a line
) of p=n/2 and the lower and the upper
FIG. 5. Frequencies w1 and w; of summed parts corresponds to stable and
harmonic oscillation [p1-p2] for both cases of unstable regions when >0 as shown

Bo>0 and Bo<0. . . o B
(F=0372, ay=1.0, C=0) in Fig. 2; vice versa for f,<0.

4. Stability of summed harmonie oscillation [ pi+p;]

Since the perturbation method used in Sections 2 and 3 is rather inconvenient
to stability criteria, the solutions induced by the method of Andronow and Witt®
is treated in this section. In Eq. (1-16 b), amplitudes R:, R, and phase angles
61 and 0, are considered as slowly varying functions of time ¢  Substituting Eq.
(1-16 b) into Eq. (1-6 b) and neglecting the terms smaller than the second order
of small quantities, we have

—Zwliigi =CW1R1+(XQPSin (01+02)’Rg,

dR, _

— 2 ws “dt = Cws Ro + ao Psin (0,4 02)* Ry,
2601R1 cciftl = {((Df—p%) - ZBQPZ}Rl “doPCOS (ﬂ1+ﬂ2)'R2‘- BO(R%—[-ZR%)R[,

szkz%%z‘ =<(w§—p§) “ZﬁoPZ}Rz—lXQPCOS (614‘52)']?1‘“80(]3%—#2]?%)}23

(1-17h)
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. dR, _ dR, _ dé: _ db.
Putting T @ T ar ={, we obtain the steady state solutions of
Egs. (1-24) and (1-25).

Let

Ri=Ru+& Re=RptC ¢o=0i+0=¢+¢, (1-30)

be solutions which differ slightly from the steady state solutions R, Ry and ¢,.
Inserting Eq. (1-30) into Eq. (1-17 b) and neglecting all but the linear terms in
£, ¢ and ¢, we get

""2(01 Cjit —Cah [ -"R—~CU72C+{)» “.GO(Rw“"ZRzo) )Rlo 55,
dc Ry » " 2 2
— 2wy = — Cwi &+ Conl +{h— B2 Ri + R%) ) R ¢, {1-31)
dt R
G)AR;)% = BOR‘O(RQQ‘P‘szo)f BQR20(2R0+R20)—CG71R10",5’,
where
Ji= (0} = pD) = 2B P, ho= (0}~ p7) — 2B P°. (1-19 a)

Substituting the assumed solutions
¢=¢te”, C=Ge”, 0 =950, (1-32)
into Eq. (1-31), we have
01 Ri(C+28) & — RuCunlo+{h — Bo(RL+2 Ry} Rt o =0,

— RigCo o+ w3 Rop(C+ 2 5)o+{ A — Bo(2 Rl + R%) ) R3¢0 = 0, (1-33)
BoRu(Ri+2 Ri) &0+ BoRaol 2 Rl + R3) & + wn RHW(C+S) ¢, = 0.

Elimination of &, & and ¢, in Eq. (1-33) leads to

40l RS+ 8 wlwRLCS?+

Bol @} + 4 w109 + w})
w:{wi— oh)

4[0)?&)2(:21‘?%0 - {(2 (131'1"0)9)20" (w1+2wz)]1}Rxo]S

“—M (wi -+ 4 wiws + U);){(Z wy + (02) Xz - (LLM + 2 602)11} = O (1'34)
0)2(602 - (01)

Routh-Hurwitz stability criterion for the above equation results in
—ﬁo<(2 a71+(02) Ao — ((m+2w2)31)>0. (1“’35)

Using the relation of Eq. (1-25), Eq. (1-35) can be rewritten as follows:

R}.> @(1#22177 ] Cpgedo® — (pi+p2)°) —2 B P71 (1-36)

The expression obtained by replacing inequality with equality furnishes the
boundary line between stable and unstable ranges, and it can be verified that the
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locus of vertical tangent on response curves coincides with this boundary line.
Accordingly it is concluded that the situation of stability of summed harmonic
osillation [ pi+p.] is qualitatively analogous to that of harmonic oscillations and
sub-harmonic oscillations occurring in a single degree-of-freedom system with
nonlinearity.

5. Experimental apparatus and experimental results?®

5.1. Experiment I
As shown in Fig. 6, a vibratory body W (120 mm x 120 mm x50 mm; weight
=5.3 kg) is mounted on a leaf spring S (length=a-+b=265 mm, width=9 mm,
thickness=1 mm) at the position «: b
= s =1:2. The vibratory system is
! mounted on a table T which vibrates
| with amplitude 0.015 mm, then an
A g exciting force is induced. Nonlinear
o spring characteristics are given by

3 Sy small helical springs Ci, C, which
e are fixed on thread screws Si, S..
Since the screws Si, S, are adjusted
so that clearances between the vibra-
tory body W and the small springs
C:, C, may almost vanish in equili-
3 brium state, unsymmetrical nonli-
2 nearity appears in the spring chara-
cteristics. The vibratory system
shown in Fig. 6 is a two degree-of-
freedom system. Then both deflec-
tion and inclination angle of W are
measured by optical method. By
changing frequency o of the exciting
force, the response curves shown in
e R — Fig. 7 are obtained experimentally.
LTI 1717 T 1T 2 2 v 77 In the peak [p:] at w=5 c/sec and
FIG. 6. Apparatus of Experiment I the peak [p.] at w=8.5 c/sec, har-
monic oscillations induced by exciting
force take place and response curves are of hard and soft spring types respectively.
In the peak [2 1] at w=9.5¢c/sec and the peak [2 p.] at =17 ¢/sec, sub-harmonic
oscillations of order 1/2 caused by unsymmetrical nonlinear spring characteristics
appear, and response curves are of soft spring type. Summed harmonic oscillation
of [pi+p.] occurs at w=13.5 c/sec where the relation p1+p.=w is satisfied.
Vibratory waves of summed harmonic oscillation in the peak [ p:+p.] in Fig.
7 are shown in Fig. 8 where fine black vertical lines are marks recorded at each
period of the oscillatory table 7° shown in Fig. 6. In Fig. 8, vibratory waves
change periodically between each mark A. At intervals of marks A the table T°
oscillates 14 times and one vibration (frequency w:) oscillates 5 times and the
other (frequecy w;) 9 times. So we can see w: w1 : w=14:5:9 and wi+w:=o.
In the experiment in which the vibratory body W is mounted at location
a:b=1:24 and spring constants of C; and C; are changed, experimental results

— | | T
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FI1G. 7. Response curves of summed harmonic oscillation [p1-p2] and sub-

harmonic oscillations of order 1/2.

(location of vibratory body W=a:b=1:2)

F1G. 8. Vibratory waves of summed harmonic oscillation [p1+p2].
(0=13.6 ¢/sec, m1=5/1sw, 02=9/14e0)

Amplitude (deflection) mm

Amplitude (inclination) “degree”

105 1.0 s 2.0

w Ysec

o & e —Amplitude of
deflection

o © & —Amplitude of
inclination
Fi1G. 9. Response curve of summed har-
monic oscillation [p1+p2] and sub-harmonic
oscillations of order 1/2 (a:b=1:24, see
Fig. 6).

as shown in Fig. 9 are obtained. In
Fig. 9, sub-harmonic oscillations at
the peaks [2 ] and [2 p,] have
response curves of soft spring type,
and summed harmonic oscillation
[ p1+p.] takes place at w=11.2 ¢/sec.

2.5. Experiment II

Experiment II is performed by
using a quite different apparatus from
that of experiment I. This apparatus
is shown in Fig. 10 where the boss
B (dia.=26 ¢) is fixed on a free sup-
ported horizontal shaft with dia.=8¢
and length=a¢+b6=400 mm. A disk
D (dia. =360 ¢, thickness = 8.5 mm)
is mounted on the boss B at the
location ¢ : b=3:7. Nonlinear, un-
symmetrical spring characteristics
are given by backlash (=0.04 mm)
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FIG. 10. Apparatus of Experiment IIL
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FI1G. 11. Response curves of summed harmonic oscillation [pi-p2] and sub-har-
monic oscillations of order 1/2.

F1G. 12, Vibratory waves of summed harmonic oscillation [p1-+p2].
(w=3047 c/sec, w115/34w, wr=19/340)

between disk D and boss B and a long helical spring S which is streched under
somewhat weak tension. As one shaft end is fixed on a table oscillating with
frequency o and amplitude 0.05 mm, an exciting force is induced. In order to
check the axial displacement of disk D along the shaft, clearance tapes C are
inserted between disk D and boss B as shown in the left hand side figure of Fig.
10. By measuring the vertical displacement of disk D by optical method, experi-
mental results as shown in Fig. 11 are obtained. In Fig. 11, the peaks [#:] and
[p.] are harmonic oscillations and the peaks [2 ] and [2,] are sub-harmonic
oscillations of order 1/2. Summed harmonic oscillation [ p1+p.] occurs between
29-33 c/sec. Vibratory waves of summed harmonic oscillation [ p1+p.] shown in
Fig. 11 are given in Fig. 12. Vibratory waves change periodically at each mark
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A, and observing them it is seen that the relations o : wi: w.=34:15:19 and
wi+w:=w hold. By analyzing vibratory waves, the frequencies w:; and o, of
summed oscillation [ p1+.] are obtained experimentally, and they are indicated
in Fig. 13.

6. Conclusions

Obtained conclusions in the present chapter are as follows:

(1) When the vibratory systems with multiple degree-of-freedom have unsym-
metrical nonlinearity in restoring force, there is possibility of occurrence of
“summed and differential harmonic oscillations” [ p;+p;].

(2) Theoretical analysis verifies that only summed harmonic oscillation [ p;:+p;]
actually takes place, and differential harmonic oscillation [ p;—p,] does not appear.

(3) Summed harmonic oscillation [ p:+p;] appears with sub-harmonic oscilla-
tion of order 1/2.

(4) Occurrence of summed harmonic oscillation [ pi+p,] needs both symmetrical
and unsymmetrial nonlinearity.

(5) Response curves and frequencies wi, w, of summed harmonic oscillation
[D1+p.] are given by Egs. (1-25) and (1-24), severally.

(6) Response curves of summed harmonic oscillation [ pi+p.] are qualitatively
analogous to those of sub-harmonic oscillation of order 1/2.

(7) According as positive or negative symmetrical nonlinearity f,, response
curve of summed harmonic oscillation [ p1+p:] is of hard or of soft spring type.

(8) The stability of summed harmonic oscillation is studied, and the loci of
vertical tangent of response curves furnish the boundary between stable and
unstable regions.

(9) Between frequencies w;, w: of summed harmonic oscillation [ p:1+p.] and
frequency w of external force the relation wi+w:=w always holds.

(10) By using two kinds of apparatus, experiments are performed, and occur-
rence of summed harmonic oscillation [/ +p.] is verified, and further obtained
theoretical results are proved experimentally.
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Chapter II. Summed and Differential Harmonic Oscillations and
Sub-Harmonic Oscillations in Rotating Shaft Systems with
Unsymmetrical Nonlinear Spring Characteristies'®

Summed and differential harmonic oscillations treated in the present chapter
are not rectilinear vibrations but whirling motions, because gyroscopic action
results in whirls of lateral vibrations of the shaft®. Accordingly, all free vibra-
tions appearing in the shaft systems are also whirling motions, and natural
frequency p means here angular velocity of whirl. Usually frequency takes positive
value in rectilinear vibratory systems, however, in the rotating shaft symtems,
it takes positive or negative value according as forward or backward precessional
whirling motion. In the present chapter notations p. and p. which take both
positive and negative values are used in place of p; and p; used in Chaper I which
are always positive.

Sub-harmonic oscillations occurring with summed and differential harmonic
oscillations are still whirling motions of forward or backward precession. Since
there are few studies® for sub-harmonic oscillation of whirl, it is discussed with
summed and differential harmonic oscillations in the present chapter.

1. Analysis of summed and differential harmonic oscillations and sub-
harmonic oscillations in rotating shaft system

1. 1. Imtroduction

When a rotating body is supported by single-row radial ball bearings, the
unsymmetrical nonlinear spring characteristics appear in the elasticity of the
shaft supporting the rotating body®?. This nonlinearity of spring characteristics
results in occurrence of sub-harmonic and summed and differential harmonic
oscillations of the rotating shaft®™. In the present section, the authors will
discuss analytically conditions for the possibility of occurrence of summed and
differential harmonic oscillation, and they will determine the modes of vibration
which can take place and equations of response curves. Further the authors will
compare the obtained conclusions with the experimental results.

1. 2. Transformation into normal coordinates

The differential equations of a rotating shaft consisting of a light shaft and
a rotating body, as shown in Fig. 14, are given as follows:

mE + c15 -+ aox + 7ol + O = mew” COS o,
M+ 3 + aoy + roly + B = mew’ sin o, (5-1)
I+ Ipwly+ cabs+ rox+ 800x+ @ = (Ip— I) 0’ cos (ot + Bo), i

I//y" Ipa)ﬁx+040.y+7’0y+5oﬁy+@4: (]p —I)rwz sin (a)t—i—ﬁo),

where x, y are displacements of the rotating body in x, y directions (see Fig. 14);
0., 0, are components of inclination angles of the rotating body; m is mass of
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the rotating body; 7, is polar moment of inertia; 7 Z
moment of inertia about the axis perpendicular to I, !
axis; o the rotating speed of the shaft; as, 70 and 6
spring constants of the shaft; ¢ eccentricity of the
rotating body (static unbalance); ¢ small deviational Nal W
angle between the I, axis and the center line of the |
shaft (dynamic unbalance); f, the angle between direc-
tions ¢ and t; 1,2, coefficients of damping; @1,2,3,4
nonlinear terms. For convenience, we introduce the
dimensionless quantities as follows:

,,,,,,,, (2-2)

Substituting Eq. (2-2) into Eq. (2-1) and omitting primes on the dimensionless
quantities, we have

2j1+61q’1+ql+7«@s+%zwzcosm,
Jot GGt G4 710qs + o= o sin wf, (2-3)
o+ Liwgu+ cags+1oqi+ Goga+ Ca= (L1~ 1) ro’ cos (wf + fo),

Gi—TLiog+ cigs+ 70@+ 8oqs+ Ca= (I, — 1) rw’sin {wf + Bo).
The frequency equation is

(1“@2),(5o+11c0ﬁ ‘ﬁz) -1 = (p=Dp D =) p =D (p—ps) =0, (2-4)

in which p is the natural frequency, and ps,. s+ are roots of the frequency equa-
tion.

Since the present vibratory system is four degree-of-freedom system with
gyroscopic terms liwgs, — L@, there are four natural frequencies pi,s2,3,4 and a
whirling motion of forward or backward precession takes place. Rectilinear
vibration appears only when o=0. Assuming p>p:>ps>ps, P, p2 are positive
and ps, ps negative, and the relations

D21, >0 pe <, el <1 (2-5)
hold®.

4

Hereafter we use notation > in place of >,. Transformation into normal
i=1

coordinates can be carried out by putting®
= —200iXi, o= 20m, qa= 20piniXi, qu= — 2lkiki, (2-6)
where X; is indefinite integration of x;, and

ki ={1~pD) /10, (7:<0). (2-7)
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Transfering c¢;d;, ¢: of Eq. (2-3) into right hand sides of Eq. (2-3) and inserting
Eq. (2-6) into left hand sides of Eq. (2-3), the left hand sides of Eq. (2-3) becomes
linear equations of (%;+pix;). Let the determinant consisting of coefficients of
these four linear equations be D=]«;i;|, then
aij= —pj, arj=1, as;j= Go= 11— 000))/(r0p), asj= — (1—=p))/n.

Let the cofactor of D be Ai; and putting

dij = Aij/ D, (2-8)
we obtain

doj= —pjdij, dsj = —xjdij, dij=rkipjdij.

Using the above relations, we have

X+ pixi = a;i sin ot + b; cos wt = 41i(c141 — piC2 — kiCafs + kipiCsds)
— 41i(@1 ~ pi¥s— kiQs + ki i 04, (i=1,2,34) (2-9)

from the four linear equations of (¥; + pix). In Eq. (2-9),

ai= =o' (o+pi) 4iif{l+ ri(1— 1) 7 cos Bo}, |

, . (2-10)
bi= —w(w+p;) diiei(1— 1) v sin Bo. I

Assuming that nonlinear terms consist of the second and the third powers,
and that coordinates ¢i, g: (x direction) do not couple to ¢, g« (y direction)
through nonlinear terms, the nonlinear terms are given by

Oy 8= a,3qh, 3+ "r],sqi. 1+ &1,8q19s -+ 51,361?, 3T 5x,sq§, 1 +‘01,36]§, 3 Q1+ ‘:1,341,3@2:,1, }
o s= a2, 4G5, 4+ 70,4052+ 2,42 @i+ 52,¢qi, (0o 4qh 2 F 7?2}443, 1qa,2+ Cou s, .1(]?2»
(2-11)

Since the relations (g1,2+ 70¢s,4+ €1.2) =0V/3q1,: and (roqs.2 -+ dogs, 4 + @3,4) =2V /0gs,4
(V is the potential energy) hold, we have

E,3=273,1, £2,4=2 742, 1,3=30s1, T2 1=30s2, C1a2="Cs4. (2-12)

1. 3. Sub-harmonic oscillations

In the present section, we treat sub-harmonic oscillation of order 1/2 which
appears frequently in experiments®!®. Now we will consider sub-harmonic
oscillation occurring in the neighborhood of | p,|=1/2-w and will solve approximately
by perturbation method. Rewriting the equations of x, in Eq. (2-9), we get

" 9 . 1 E
Xr + % w’%r = ay sin wt + b, cos wf + (-‘4-60 —-pﬁ)xr
— di ey~ Drealn — krCalfs + krDrCaGs) ~ di (D1 — Pry — £ @3+ k,pr®g).  (2-13)

Putting
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Gi = GivF e+ Eqiat - .
K= Xjok Xk €K oo, (2-14)

2
Y= Qo+ ePig+ e Lo+ > =+,

and inserting Eq. (2-14) into Egs. (2-9) and (2-13), then assuming that damping
terms, non-linear terms and [(1/4)&’ — p,] are as small as the order of ¢, we have

1 = .
T &%y = ar Sin wl + b, cOS wl,

#so+ Pi%so = as Sin wi + bs COS wf,

X0+
’ (2-15)

1+ *41‘ 0%y = (%aﬁ - P3> Xro — A1 (Ciiro + DrCaGoo — k7 Cslso + £rPr €144)
= A1 (Cro~ pr P~ iy oot krpr P0).  (2-16)

Solutions of Eq. (2-15) are

2

Zso = As sin wt + Bs cos wi,

Zro= P cos—l— wt + Qsin~1~ wt + A, sin wt + B, cos o,
2 (2-17)

where
Ar:' "‘4627/(3 (02), Br= —4br/(3 !Dz), As=as/(p§“w2), B5=bs/(j7§—w2). (2"18)

Values of P and @ are determined by using the conditions that the periodicity
of solutions holds, namely, that the terms exciting resonance are not contained
in the right-hand side of Eq. (2-16). Inserting Eq. (2-17) into Eq. (2-16), and

vanishing the coefficients of terms cos —;— wt and sin %* wt, we get

{{g(P +Q% + ~—~]~>~( w —pr) +i;]P+ (fa+cw) @ =0,
(i ~cw>P+[{g(P~+Q)+ ( ~p}) +h)—iJe=o.

From the above equations, we obtain the equation of response curve of sub-
harmonic oscillation of order 1/2,

(ia))g ~pf
R?e 2 A U e s
= (Chopg) g tgYati—dd (2-19)

in which R is the amplitude of sub-harmonic oscillation and
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RZ:PQ+Q2, N

g= 13— {(Bi+ Be+ kf Bs + 17 Be) — 4 ity (k701 + k7 02+ B3+ 84) + 17 2060,

h= 2(‘23‘ Bi— i) (Fh+ £ + 'Ql—CKmﬁ(F%Jrfi) + (Fit D)

g CARHEL + 7D + (Fi4 7D} + B ei00+ 305 — 2108 (FLFs+ fif)

+ (3 “;’2'62—*'364—2/5r¢2)(F2F4+fgf4), &
b= @b R (i~ e

- (572‘683 — krés+ ’)’3);‘:—{- (r;ﬁm-— kr&a+ 7‘4\){5{1,

= g (et oot rbe+ried,

Iy = ‘%EPiAi, fi=— %ZP:‘BA F=3>14;, =28, F3= — %inzﬁifli,

fo= "%zfiipiBi, Fy= =2k Ai, fi= — 20k B
(2-20)

As seen from Eq. (2-20), g in Eq. (2-19) is coefficient of the third powers in
nonlinear terms Eq. (2-11), % is a product of coefficient of the third powers and
exciting force, 4; and 4, are products of coefficient of the second powers and
exciting force, ¢ is sum of damping coefficients. Accordingly, form of Eg. (2-19)
is quite similar to that of rectilinear vibratory system with one degree-of-freedom
[cf. Eq. (1-252)]*. Obviously sub-harmonic oscillation can take place when
both the second and third powers in nonlinearity exist.

When a denominator of the first term in the right hand side of Eq. (2-19), i.e.,
(—4dy-prg) is positive, response curves are hard spring type; when negative, soft
spring type. By calculation, we conclude that spring characteristics is hard
spring type when all B;, 6;, » and ¢ in Eq. (2-11) are positive, and soft spring
type when all are negative. When p,=p, and p,=p;, we conclude that the hard
and soft spring characteristics results in response curves of hard and soft spring
type respectively, because of <0, £:>0, g>0 and —pidi;>0, then —p;4i;2>0.
For p,=p: and p-=p.; however, since x>0, the above conclusion does not hold.
Clearly for a more general case when £;, i, » and ¢; take both positive and
negative values, hard spring characteristics, for instance, results in both hard and
soft spring type of response curves. Consequently, one spring characteristic
results in hard response curves at one peak and soft response curves at another
peak. This fact will be shown experimentally in Section 2.

1. 4. Summed and diferential harmonic oscillations

Summed and differential harmonic oscillations consist of two vibrations having
frequencies wm=pn and ws=ps, and the absolute value of sum of or difference
in two frequencies w» and w, is equal to the rotating speed of the shaft w which
is also the frequency of periodic external force induced by eccentricity ¢ and
small deviational angle r. When wx Or w. is positive or negative, the whirling
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motion is forward or backward precession respectivelv. The peaks of these
vibrations appear in the neighborhood of the rotating speed

=P = Pl (2-21)

At first, we consider a case when one of p, and p, is positive, and here we
assume pm>0. Then, we can put

pm j—“pn::.(ﬂ (ﬁm>j771), (2—21 a)

Pml—:: Wiy pniz.u)n, Uiy &= ws = w. {2"21 b)
Rewriting the equations of x,, and %, in Egq. (2-9), we have

P 9 . 2 2
X, n + Wi, 5 %m, n = Gm,» SN 0T + bin, n COS wf + {Wm 1 ~ D, ) Xm,n
- dim, 1 n(Cl G1— Pm,nC éz = KEm,nCs{fs -+ K, nPm,n 04{;?4)

— Ay 1a(F1 = Do, nCe — &m, n‘,b:% + Em,npm,n‘;%). (2-22)

Substituting Eq. (2-14) into Egs. (2-9) and (2-22), and assuming that damping
terms, non-linear terms, {wi — ph) and (wh — p%) are as small as ¢, we get

. 2 M i
Eno,mo + Wi, nXmo, no = G, n SIN OFf + b, » COS I, 1

o 2 . | (2-23)
Hso -+ PsXso = as Sin wf + bs COS wi
. 2
Xm1,n1+ ‘U;n, nXmi,n1 = (wfn, n = Dim, ) Xom 0, 720
— A 10l €10+ P, nCallzo — Km, 1 CsG 30 + Ko, nDrm, 2w Cslla)
- A] m, 1 n({pw - pm, n§020 - Km,n {1’}30 -+ Ko, 7;?7?1, 7 wvﬂ))» {\2"24>
Putting
Ko, no= P, nCOS wm al + Qm,n SIn W, nt + Am, n sin wi -+ Bm, n COS wl, } (2-25)
Xs0 = Ag8in wi + Bs CoOs wf,
where
a b 4 bs
A= "*:z'i’ﬂ3 51 Bmn= —y" = 7o As Sge Bs= Y (2-26)

ps—w

2 = 3 3
Wm,n ™ W Wy o ™ W Ds—w

and considering that terms 5% w,¢ and 3 w. should not exist in the right-hand
side of equations x,; and x,: of Eq. (2-24) respectively, we obtain

Am P+ 11m Q= vm P = 1 Q= (pm Rl + 0m R %) Ppm,
— tm P+ 2 Qi+ tom P = 07 Q= (pm Rin+ 0mR %) Qm,
£ 0p P+ 100 Qi + A P+ 112 Qn = (00 R1n+ 05 R7) P,
E2a P 10 Qm— tn Pu+2n@n=(on R+ 0a R%) Qn,

(2-27)

where R, » is the amplitude of summed and differetial harmonic oscillation, i.e,

Rgn,nngn,n“f“gfn,n. (2“28)
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Putting

P, n COS @m, nt + Qum, n SIN W, nt = R, n $I0 (0, nt — Py ),
namely
P n= — R nSildmn, Qmn= KmnCOS@mn, (2-29)
Eq. (2-27) becomes

Am R — Rn{vm €OS (¢m = ¢n) £ mmSIn (Pm % ¢n) } = (o Rin+ om R Rom,
An Ry — Ronlv5 cOS (¢ %= ¢u) = 7aSin (fm % ¢n)} = (6n Rin+ 0nR%) Ru,
tm B — Rp{vm sin (¢m £ ¢n) F wm 08 (¢m £ ¢n)} =0,

ta Ry — Rpu{ £ vy sin (fm = ¢'n> — n COS (Ym = ¢n) } =0,

(2-27a)

where

Ao = (@i, n = Pin,n( + P, i, m[ 5 (B = kom,w03) (Fi+ f1) + (B = km, w30 (F2 + f3)
- me,n(51 - Km,nﬁa) (Fg"f‘fs) - iim,n(az - me,nB4) (F4 +f3)>
+ ’%‘( - ffm,n("?l"‘ Km,nC:x)(F§ +f%) - lfm,n(nz“‘ Km,nc4) (Fg'f‘f%)

+ (&= k) (Fi+ £3) 4+ (G — ko, wn) (Fi+ fD}

(0= 2 m nCot i) (B Fo+ fif3) + (= 2 oo+ i, wn) (B Fat £ f0) |,
oy n = P, dim, 1 n0m,nlCi + €2+ £ n(Ca -+ €O ) = P, n Ay, 1 1 Ormt, 1 Con, 1, V
Crmon = CL 4 Co + kin, ulca + ¢) >0,

W, npn, m

Dn, m
-+ (Ta - Km,n')'l) (/fn,mFl - F3)> iﬁm, ndlm,x n{‘“z - h‘m,nh)fz
- En,m(’)’z - Km,nm;)ﬁ - (T4 - lfm,nTz)(fin,mfz "f4)},

wm,npn,m

Wn, m
+ (T3 - /fm,nTI) (’Cn,mfl “f3)}‘ +f)m,nd1m,1n{ (a2 — Ifm,n’m) F,
- 'fn,m('fz - ’Cm,ncf4) Fy— (74 - l’fm,nTz)(Kn,sz - F4)}9

Um,n = Alm,lﬂ\’ - (011 e Iim,n‘fs) F1 + Kn,m('rl ha Em,naf.?)E".

Tm,n = & dimanl = Car = &m, nrs) i+ kn,m(71 = Km,nas) f

3 2
Pman = — Z“pm,ndim,ln{‘p? z (31 - /fm,nas) + (ﬁz - h’m,n&i)
W, n
- Kﬁn pm z (51 — KEm, nﬂ-’s) K?ﬂ,n(am,n - Km,nB:i)
n
Z"
= KEm,n (ﬂl”hm nCa) lfm,n("ﬂz_ifm,ani)
U)m,n
+ teon,n e " (L= ke, mme) F o n(Co —dom, nma) ),
m,

an

Om,n = — Pm, ndlmln[z { (Bi lim,nas)-l'(ﬂz“lim,na.;)
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2
- ff?ﬂ,ﬂ’le.m 3721,_7_?1_ (51 - fx’m,n,ga) - fim,nfigx, m(a‘z - ifm,nB4)}
Wn, m

1
“< > Km,n+ En m) 'f“ (m f’m,ngs)
Wy,

Km,n+ Kn, ) hmnC4)

(Cl - ’Cm,n‘lls)

-3
-+ (Km nt »—r:n, )Kfn m
( )

+ | ko, + I’ﬂ m | En,m (Cz-Km 71%)]
(2-30)

Values of F; and f; are given by Eq. (2-20). As seen from Egs. (2-27) and
(2-27 @), summed and differential harmonic oscillations can take place only when
both the second and the third terms of nonlinearity exist. The upper and lower
signs of = and F in Egs. (2-27) and (2-27 a) correspond to summed and dif-
ferential harmonic oscillation respectively.

The frequency of sub-harmonic oscillation is 1/» (»: integer) times as large
as that of exciting force. Accordingly it is determined when w is given. However,
even if ¢ is given, w,; and w, of summed and differential harmonic oscillation
cannot be determined from only one relation |wm+wn|=w. In order to determine
om and wx, we must solve the equations of motion. Namely, amplitudes Rn, R,
frequencies wm, w.» and phase angle ¢m=+¢. are given by five equations of Eq.
(2-27) or Eq. (2-27 a) and |wm+ws|=w. Generally speaking w/wn» and w/wx are
not integers. Consequently individual phase angles ¢, and ¢, are meaningless,
and there is a physical meaning only in the quantity ¢m=¢n.

From the third and fourth equations of Eq. (2-27 a), we have

an Mn{ym Sin (Qbm ES ¢'n) = T COS ((/Jm 4 an)}

R; - /,Lm{])n Sin ((Pmiq')n)xﬂ'n COS ((pmiﬂbn)} ’

From Egs. (2-21b) and (2-30), we get

2 2 2
Row . + ( Dind1mCm ) Wi

Rz’ B pzl A?ncn Wn (2-31)

Value = %’)’—"« must be positive, because the inside of ( ) is positive and Rmu, Rx

77
are real numbers.

Since wn=pn>0 as we assumed,

(1) when w»>0, summed harmonic oscillation can take place because + wm/w,>0,
and differential harmonic oscillation cannot occur because —wn/w,<0,

(2) when ws<0, only the differential harmonic oscillation can appear, because
—wm/0a>0, +wm/w,<O.

When both p» and p. are negative and pa<ps(|pm|>|px|), we have

DmEpa=—0, DnZom, Pr=0n, omEtop=—o. (2-21¢)

By calculation, we conclude that we must use —fi,; and —F,,; in place of fi,3
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and Fy,; in Eq. (2-30) and others are the same as when p.>0. Accordingly even
for pm<0, p»<0, Eq. (2-31) holds good and only the summed harmonic oscillation
can take place. Consequently when both two vibrations are forward precessional
motions (p1, ), or both are backward precessional motions (ps, ps), only the
summed harmonic oscillation can occur. When one is forward and another is
back ward, only the differential harmonic oscillation can appear.

To summarize, since p; and p, are forward and ps, p» backward, the types
having possibility of occurrence are

Pithr=0, pr—pi=0w, Dri—Di= 0, } (2-32)
pr—Ds=w, pr—pi=w, |ps+pd =0,

and the following types
bi—pr=0, pripi=o0, prtpi=o, } (2-33)
Prtprs=0, ht+ps=0, P3—Dpi=w,

do not take place. When the magnitude of ] of moment of interia is comparable
with value of I of polar moment of inertia, the natural frequency p: is much
larger than o, then there is no rotating speed « satisfying the relations pi+p=o,
pi—p:=0w and pi—pi=w. Therefore only three types pr—pr=w, pr—ps=0 and
|ps+pil=w can occur. Experimental results using the rotating body of [=1/2-I,
agree with the above conclusion *

Since the procedure to obtain Rm, Rs, om and w. from Eq. (2-27) or Eq.
(2-27 a) is quite complicated, we shall treat a comparatively simple case in which
7o=0 and there are nonlinear terms 0} and 0} only in y direction. Equations of
motion are

Iy + Iyoly + sz + 8005 = (Iy — I) ww® cos wt, ) (2-12)
.. ) . “La
Iy~ Ipwlis+ coly -+ 300y + allh+ 865 = (I, — ) 7o’ sin f, )
where c;=c¢,. Putting
L/I=T, 6:/{c(1 = 1)} =gz, 0:/{c(1=1)} =gy, ©/N(G/I) = o, (3-2 a)
R I , N -2a
V(8o/I) ot =1, o, /N (0l) =¢, ar(1 = 1) /do=a', Bc°(1 = L,)* /30 = B, }
and inserting Eq. (2-2 a) into Eq. (2-1 a) and omitting primes, we have
Gr+Liody+cis+qgz= — @® cos wt,
o . . ) 3 . . } (2-3a)
gy — Liwgs + cgy + gy + agy + Bgy = — " sin wt.

The frequency equation is

* In bibliography (11) and Fig. 17, there is one exception. That is, there is one peak
appearing at p2-+ps=w. At this peak, however, w where sub-harmonic oscillation of order
'1/2 occurs, incidentally coincides with w at which the relation w=p:-+ps holds. Vibrations
appearing there are not summed and differential harmonic oscillation, but sub-harmonic
oscillation of order 1 /2.
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Pr=Twp—1=(p—pIp—p) =0, (2-4 a)

and >0, p<0.  Accordingly only the differential harmonic oscillation of type
P1—p2=w can take place. Putting

gx= ~ X —pp X, gy=x0+n0, (2-6a)
then

1+ pla = ~~1_:~2 {~(o+p)o’sinwt+clgs—pidy) — plagy + BB},

pep (2-92)
X2+ pg«";'z = P_a}—@ {(w +P2)m2 sin wt + C( - t}x+ﬁeéy} +P2(af¢]§r+ qu’>}
Further, for brevity, we introduce
w/(?l‘ﬁz)zw’, (Pl‘*ﬁ‘a)f:ﬁ, C/(PI”P3> =/, 1
al(pr=p) = a!, Bl (b= ) =B, Dol (b1 —p2) = phae )
If we omit the primes, Eq. (2-9 a) becomes
B pla= —(o+p) o’ sinwt+ (G — pray) — o (agy + B, } (2-0b)
Bt pim= (w+plosinot+c( —gx+000) + polaghs+ Bd).
Here
Pi—p=150, pi=w, ppSw, 01— 0= 0. (2-21 &)
Putting
Xi0,20 = Px,z COS un,of + Q1,2 sin w;,gz‘ -+ AI,Z sin o, (2“25 a)
we have by the similar procedure
ARy~ AR, sin (¢n — ) = 2 AR!+2RH R,
e Ko+ a ARy sin {¢y — ¢2) = — '2* B2 RI+ RD Ry, (;<i)'-27 b)
2 con Ry — AR, cos (¢ — ) = 0, )
2 cwz Rz -+ (XAR1 €08 ((/}1 - ¢’2> = O,
in which
A= dit Ay = ClotD) _ olotp)
0= P w D
hi= (a0l ~ PP = 5 BA?, , (2-30 2)

lo=(wi —pps '+ -;-BAZ. E
From the third and fourth equations of Eq. (2-27 b), we obtain

RI/Ri= — w/w. (2-31a)
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Using Eq. (2-31 a) and the first and the second equations of Eq. (2-27 b), we get

R% - 4{?1(1}1( pz) ~pomz(a)1 p?)} 2 AZ . _
R —-wx[ 33?1?2(0((01—1‘(02) + (0] :{ (2-34)

Eliminating R and R; from Egs. (2-27 b) and (2-31 a), we have
@, 05820 = @) + hlo+0))? = — ("4 + 4 Pwi0) (01 + @) 0" (2-35)
From Egs. (2-30 a) and (2-35),
Lol 0} (o + 0 (@ = 0){ pe(0} = pD) (0 = 02) + p1(w) — p) (0 + @)}
+ %Bp;pz o' (01 + ) {o1(0 = ) (0 + p1) + w20+ o1 (0 + £ T
= = pips o’ wiwel 01+ 0)* (0 + 0) (0 — ) [Pw’{0:(0 — wo) (0 + 1)

+ wy(w+ o) (w+ p) Y +4 2ol w (o + o) (0 — w:)"]. (2-36)

Determining w; and w; by Eq. (2-36) and o—w;=w, we can obtain R and R,. It
is, however, impossible to give w: and w. analytically by using Eq. (2-36), so we
shall determine them approximately. As the first approximation wi and wz
satisfying the relation wio—wz=w, experimental results lead to

=P, W= Dr . (2-37)

When we neglect higher powers of &, we can use wi and w in place of w: and
o, in Eq. (2-35), except w1 and w, in 4 and .. Then we get from Eq. (2-35),

~pro= PP -1 4 Faat s [ k@ At acppa))

= hro — %&{w— 1) + g BA® + /’55? (@A A pupao®) o | (2738)

4= —Apd-p)@+p) +p(1+p) (0 +p)}
D1pe(1+p1) (1—p2)

Clearly w: and o given by Eq. (2-38) satisfy the relation o1—w:=w. Equations
of response curves

Rl= — 4152 o' -1 —384% = \/-m( PA +4c° plpzm)}'

(2-39)

Ri= 41’)1{@) ~n-spate [ Sl gt acsmon)

are given by Egs. (2-34) and (2-38). The sign + in Eq. (2-38) corresponds to
+ in Eq. (2-39). The form of Eq. (2-39) is quite similar to the equation of
response curves of sub-harmonic oscillation of order 1/2.

1.5. Conclusions

The vibratory system treated in the present section is a nonlinear system
with multiple degree-of-freedom and gyroscopic terms. Obtained conclusions for
such a system may be summarized as follows:
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(1) Equation of response curves of sub-harmonic oscillation of order 1/2
having a mode of whirling motion is quite similar to that of rectilinear vibration
system with one degree-of-freedom system,

(2) Hard spring characteristics does not always result in response curves of
hard spring type. One spring characteristics can result in both response curves
of hard and soft spring types.

(3) When both the two vibrations in summed and differential harmonic
oscillation are forward precessional motions or backward, only the summed type
can occur. When one is forward and the other is backward, only the differential
type can take place.

(4) Equations of response curves of summed and differential harmonic
oscillations are similar to those of sub-harmonic oscillations of order 1/2.

Even for a simple system Eq. (2-1a), we cannot determine analytically w
and w; by using Eq. (2-36). Accordingly appropriateness for Egs. (2-38) and
(2-39) entirely depends on that of Eq. {2-37). For a more general case, it may
be rather easy and direct to obtain response curves from experiments*), as
shown in Section 2.

2. Experiments of summed and differential harmonic oscillations and sub-
harmonic oscillations in rotating shaft system

2.1. Introduction

Analytical results of summed and differential harmonic oscillations and sub-
harmonic oscillations in rotating shaft systems which are obtained in the previous
section are verified experimentally in this section.

As is concluded in the previous section, there are three kinds of critical speeds
of summed and differential harmonic oscillations [p2—ps], [p2—pi] and [ ps+ps]
which appear at the rotating speeds

05ps— Pr, wEpP — s, w=|pPs+ pal (2-40)

respectively. In Experiment A, occurrence of these three kinds of critical speeds
of summed and differential harmonic oscillations is verified experimentally, and
in Experiment B, shapes of response curves of summed and differential harmonic
oscillations and sub-harmonic oscillations are studied for various magnitudes of
eccentricity ¢ and various nonlinearity of spring characteristics.

2.2. Experimental apparatus

Experimental apparatus is shown in Fig. 15 where the shaft mounting one
disk is supported by deep-grooved sigle-row ball bearings with inner diameter of
10 mm. Distances ¢ and b from both shaft ends to disk are different from each
other, 7.e., a¥ b, and there is gyroscopic action in this system. The disk is driven
by a V-belt, power supplied by a 15 H.P.D.C. motor with speed variations of from
0 to 6000 r.p.m., shunt controled. In order to secure the safety and to remove
the disturbances from the belt, the spring coupling .S consisting of a helical spring
is inserted between the pulley V and the shaft. The guard ring G is equipped
to check the increase of deflections of the shaft. The whirling motion is obtained
by projections of motion of disk with relation to rectangular coordinates OA
(x-direction) and OB (y-direction), that is, the motions of the disk edge at points
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Fi1G. 15. Experimental
apparatus.

!
angular

FI1G. 16. Angular clea-
rance of deep-grooved single-
row ball bearing.

clearance

A and B (Fig. 15) are recorded on oscillographic
paper by the optical method. A small piece of paper
P is attached to one point on the disk edge, the light
is intercepted by this paper at each revolution of
the shaft and thus the angular speed of rotation of
the shaft is recorded.

As shown in Fig. 16, deep-grooved single-row
ball bearings have the so-called “angular clearance”
ZAOB, and when the inclination angle of the elastic
deflection curve of the shaft is smaller than angular
clearance at the shaft end, the shaft is supported
freely, and the shaft becomes a fixed shaft when the
inclination angle increases beyond the angular
clearance. It is impossible for both bearing pedestals
to be in exact alignment, and the equilibrium posi-
tion of the shaft is not located at the middle of the
angular clearance. Accordingly, the shaft has various
kinds of nonlinear, unsymmetrical spring character-
istics? which result in summed and differential
harmonic oscillations and sub-harmonic oscillations
of order 1/2.

In the present section the following expressions
are used to represent modes of vibrations. Notation
[-mw] means the motion having a frequency of m
times as large as that of angular velocity «, where
the positive sign -+ represents a whirling motion of
forward precession. On the other hand, negative
sign — means a backward precession, hence notation
[—nw] denotes a whirling motion of bhackward
precession with whirling speed no.

2.3. Experiment A

In experimental apparatus of Experiment A, a
vertical shaft (dia. = 11.72 ¢, length =506.3 mm)
mounting a disk (dia.=482.8 mm, thickness=5.22 mm,
weight W=7.804 kg, moment of inertia [=1.114 kg
cm sec?, and I,=2I) is supported by deep-grooved
single-row ball bearings with angular clearance 0.3°.
The location of the disk is ¢:b6=1:4.

2.3.1. Response curves of critical speeds and wvibratory waves of summed and
differential havmonic oscillations. Obtained response curves of Experiment A is
illustrated in Fig. 17, where summed and differential harmonic oscillations [ p.—ps1,
[ps+p.] and [ po—ps] take place at w=owu (Peak ), o=ws (Peak II) and o=
(Peak V), respectively, and sub-harmonic oscillation of forward precession [2 ]
appears at w=wiz (Peak II). Peak VI at o=w. is the major critical speed where
the forced vibration [+o7] caused by unbalance in rotating body occurs, and in
Peak IV, synchronous backward precession [ —w] which is induced by difference
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m (s &J[ @ W :
B ——fJ+{)) o) (—B) " 2]

M‘,{ ° ;?
800 5000 5200
(GRS ”/mn

Fi1G. 17. Response curves of summed and differential harmonic
oscillations of Experiment A (vertical shaft; shaft dia.=11.72 mm,
shaft length=506.3 mm; disk dia.=482.8 mm, weight of disk=7.804 kg,
thickness of disk=5.22 mm, I=1.114 kg cm sec?, [,=21).

of shaft rigidity in x and y directions.®™?®

Vibratory waves of summed and differential harmomc oscillations are shown
in Fig. 18, where vertical white lines are rotating marks recorded at each revolu-
tion by a small piece of paper P in Fig. 15, and fine white horizontal lines are
furnished by a scale of 1.0 mm put on the slit for measuring the amplitudes of
vibrations. Observing the vibratory waves in Fig. 18, it is seen that sum of
absolute values of two frequencies of summed and differential harmonic oscillations
is always equal to the rotating speed of the shaft w, and the relation of Eq.
(2-21 b), 7.e, the relation of wntws=w is satisfied.

2.3.2. Locations of critical speeds and wmodes of vibrations of summed and
differential harmonic oscillations. Using the quantities in Eq. (2-1) having dimen-
sions, frequency equation of the rotating shaft system becomes

(o= mpY) (Bo+Lyop —IP*Y —7i=(p P D—D)(Pp—0)(p—p3) =0 (2-42)

Dimensionless expression of Eq. (2-4 a) is Eq. (2-4). In Fig. 19, natural frequencies
D, D3, s of experimental apparatus of Experiment A are shown by full line
curves. Chain line curves are natural frequencies p1, P2, ps, £4 when the shaft is
supported freely by double-row self-aligning ball bearings.

Where critical speeds of summed and differential harmonic oscillations occur,
whatever modes of vibrations may have, they must be determined by using p—w
diagram as Fig. 19. Writing curves |pn.®p.lim, n=1, 2, 3, 4) against w, and
obtaining intersecting point where curve |pm+p,| and straight line w=p cross,
we are given critical speed from abscissa of this intersecting point. Because at
the rotating speed w determined by this intersecting point we have |pm+pnl=w
In Fig. 19, for example, a point A, is the intersecting point of curve |pr—pi|—ow
with line w=p, and the abscissa of point A, takes the value of w;=5130 r.p.m.
The values of £,=2380 rp.m.=6.96/15.w and p;=-—2750 r.p.m.=—8.04/15.w are
given from ordinates of points ¢ and b respectively where a vertical line w;3=5130
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x direction

y direction

|

(2) [p2—pi] at o=wy (Peak 1) (@:wrmi=15:7: —8,
w=5113.0 r.p.m.)

x direction

y direction

(b) [pa-Fpi] at w=wy (Peak 1I) (w:w3iwy=10:—1:
-9, ©=3062.2 r.p.m.)

x direction

y direction

(c) [p2—ps] at w=wsz (Peak V) (w:iwy: w3=22:19:
—3, w=2624.1 r.p.m.)

Fi1G. 18. Vibratory waves of summed and differential
harmonic oscillations [p:—p4], [p3s-+p4] and [p2—ps] in
Experiment A. )

r.p.m. intersects curves p;—w and pi~w. Thus we can determine that at the
rotating speed wz (=5130 r.p.m.), two vibrations with frequencies 2380 r.p.m.
(£7/15-w) and —2750 r.p.m. (= —8/15.w) build up and form the critical speed
of Peak I shown in Fig. 17. Similarly, in Fig. 19, a point As is the intersecting
point of curve |ps+pi|—~o with line w=p, and the abscissa of point A determines
the critical speed wi (=3065 r.p.m.) of Peak III in Fig. 17; ordinates of points ¢
and d give p3=—305 r.p.m.= —1/10-w and p.=—2760 r.p.m.= —9/10-w respectively,
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which agree with experimental results.

. . . a:b=1: / 0-B A
For the summed and differential oscilla- s &7 M Armas BBl S
tion [p:—ps] at ws, the rotating speed y e
wss and modes of vibrations are de- L] RN

termined in the same manner.

2.4. Experiment BY
2.4.1. Experimental apparatus and

experimental results. In Experiment B,
the horizontal shaft system as shown in
Fig. 20 is used. A disk of diameter=
4816 mm, thickness=5.51 mm and weight
=7.868 kg is mounted on a horizontal
shaft of diameter =11.89 mm, length=
508.3 mm, and the location of the disk is
a:b=3:7.

Nonlinearity of spring characteristics ‘ ,
is changed according as the magmf.ude ! T 3059\ T
of angular clearance of ball bearings (0 M —
varies. Further reassembling of bearing
pedestals results in change of nonlinearity,
because degree of out of alignment of
bearing center lines of both pedestals is
changed?®. Experiments wusing ball
bearings with angular clearances 0.35° : o ?m*._,'
and 0.30° (ball bearings 7) or those having —Disk ‘ ‘ ‘ :
angular clearances 0.3° and 0.6° (ball |
bearings /1) are performed under different e -
conditions of ¢ or b, of assembling of ﬂ
bearing pedestals. Inthe present section,
a certain experiment is specified, for
instance, notation [I-¢-2. Notation II-¢-2 FIG. 20. Experimental apparatus of
means that ball bearings with angular rotating shaft system used in Experi-
clearances 0.3° and 0.6° are used in ment B.
bearing pedestals I and 2 (see Fig. 20)
respectively, i.e. ball bearings /7 are used, and the experiment is carried out under
the assembling condition . Since the last numeral (e.g. 2 in [I-a-2) denotes
magnitude of eccentricity, then the same numeral corresponds to the same
magnitude of unbalance.

The vibratory system as shown in Fig. 20 has two natural frequencies p: and
P2 (P10, p2>0, pi>ps) of forward precession and two natural frequencies p; and
Ps (ps<ps<0, |ps|>|ps]) of backward precession. In the present experimental
apparatus, the major critical speed » appears at w=1440 r.p.m. (for ball bearings
I) and ©=1360 r.p.m. (for ball bearings I7), where the rotating speed of shaft w
is equal to the natural frequency of forward precession p.; the critical speed wip
of sub-harmonic oscillation [2 p,] of order 1/2 having mode of forward precession
[+1/2-w] takes place at w=2870 r.p.m. (for ball bearings II), where 1/2.w=p;
the peaks of w_i, and w'-12 of backward precessions [—~1/2.0w] of sub-harmonic

FI1G. 19. Natural frequency p—ow
diagrams of the rotating shaft system
of Experiment A.

—Bearing
pedestal

SRR EEARREARLL RS RRURUUERRANRARNO Y
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oscillations [2 ps] and [2 p.] appear at w=1380 r.p.m. where —1/2.-w=p; and at »=3500
r.p.m. where —1/2.w=p; respectively when ball bearings [ are used, and they
take place at »w=1380 r.p.m. and »=3300 r.p.m. respectively for ball bearings II;
the critical speed wy of summed and differential harmonic oscillation [ p:—ps]
occurs at w=2020 r.p.m. (for I) and w=1960 r.p.m. (for II), where the relation
w=p,—ps; is held; the peak of w. takes place at »=3250 r.p.m. (for /) and at
0=3100 r.p.m. (for II), where w=p.—ps. Since large angular clearance of ball
bearings results in decrease of stiffness of shaft®, then the peaks when ball
bearings /I having larger angular clearances than ball bearings I are used, appear
at lower rotating speeds than when ball bearings I are used.

I. The critical speeds of sub-harmonic oscillations [2 ps] and [2 p(] of order
1/2 having mode of backward precession [ —1/2-w]. This kind of critical speeds
takes place at two rotating speeds w_i. and o'_i, because there are two values
of w at which the natural frequencies ps, p: are equal to —1/2.w.

I-1. The critical speed w_1 of sub-harmonic oscillation [2 ps]. In this section
the magnitude of unbalance of rotating body is represented by the maximum
amplitude A,; at the major critical speed wc. If the deflection of shaft increases
more than about 1.00 mm, there is a risk of breaking the apparatus and therefore
Ay, for fairly large unbalance cannot be obtained actually. Accordingly, when
the magnitude of unbalance is large, A, at the major critical speed w. is estimated
by measuring the amplitude near w. (see Fig. 26). The value A» with under
line means value thus estimated.

In the present experimental apparatus, the critical speed w.i» occurs near
the major critical speed w. as shown in Fig. 21 where experimental results using
ball bearings I (angular clearances 0.30° and 0.35°) are given. When the maximum
amplitude A, is 0.68 mm (/-¢-3), the peak w_i» can take place; on the other
hand, it does not appear when magnitude of unbalance decreases and A, is equal
to 0.37 mm (I-a-5). The appearance or non-appearance of the critical speed w1/
is shown in Tables 1 and 2 where the mark (O means appearance, x non-appearance.
As we see in Fig. 21 and Tables 1 and 2, the critical speed w._1» can only appear
when the magnitude of unbalance is somewhat large.

TABLE 1. Appearance of the peak w-i2 (I-a series) of
sub-harmonic oscillation [2 p3]

Experiment No. I-a-1  I-a-2 [I-a-3 I-g-4 I-a-5 I-a-6
Am (mm) 0.76 0.71 0.68 0.62 0.37 0.34

the peak w-1p O O O O x x

TABLE 2. Appearance of the peak w-1y2 (I-b series) of sub-harmonic oscillation [2 ps]

Experiment No.| I-p-56 I-b-6 I-p-9 [-p-10 [I-p-11 [-p-12 [-p-13 I-b-14 I-b-15
Am (mm) 1.43 1.30 0.83 0.80 0.71 0.48 0.40 0.28 0.21

the peak w-1 O O x O x x X x x
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of [—1/2+w] {I-a series). oscillation [2ps] with mode [—1/2.w]
(I-g series).

For experiments of II series when ball bearings II with angular clearnaces
0.3° and 0.6° are used, the circumstance is quite similar and the peak w_i; can
appear only when A, is large.

Analyzing the vibratory waves on oscillographic paper, and separating vibra-
tion[—1/2+w] from vibration [+ w], components of amplitude of vibration [ —1/2-w]
are plotted against w in Fig. 22, in which the scale of abscissa w is enlarged.
Fig. 22 shows that the shape of the response curves of the peak w_1; is of soft

spring type.

I-2. The critical speed w_1;; of sub-harmonic oscillation [2 p,]. Experimental
results of I[-a series are shown in Fig. 23, in which response curves of soft
spring type are obtained. In Fig. 24 (a), experiments of I-a¢ series are given.
Comparing Fig. 23 and Fig. 24 (a), it is clear that amplitude at the peak o' 1.
increases with A,; and the peak cannot appear when A, is small.

Incidentially, the peak o'_1;; does not appear in I-b series, even if A4,; is as
large as 2.56 mm, as shown in Fig. 24 (b).

II. The critical speeds wi» of sub-harmonic oscillation [2 p,] having mode
of forward precession [+1/2-w]. Since the value of w satisfying the relation
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of forward precession [-+1/2+w] (II-a series).

p=1/2.w is unique, then there is only one critical speed of [+ 1/2.0].
Experimental results of II-a¢ series are shown in Fig. 25, where response
curves of hard spring type are obtained. Here amplitude of [+1/2.0] increases

III. The critical speeds of summed and differential harmonic oscillations.
When the present experimental apparatus is used, there are only six values of
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the rotating speeds w of the shaft at which the relation |pm=pn|=w (ms£n) holds,
because the value p; is very large and there is no value of v at which |p1=pul=0
can be satisfied as mentioned previously. Consequently, there are six values of
« where relations w=|p:3-ps|, o=|p+ps| and w=|ps+ps| can hold respectively. It
is, however, theoretically proved as discussed before that the critical speed of
summed and differential harmonic oscillations can take place only at o where
relations w=|p2—ps|, o=|p—ps| and w=|ps+ps| hold, and it does not occur at v
where w=|p:+ps|, o=|p+ps] and w=|ps—pi| are satisfied. Accordingly, only
three critical speeds wss, wx and ws, where w=|p—ps|, o=|p—pi| and w=|ps+ps|
are satisfied respectively, can actually appear. Experimental results verify the
above fact? as is shown in Fig. 17, and only three peaks of summed and dif-
ferential harmonic oscillation are obtained experimentally at wz, w2 and wa.

Since the peak of the critical speed ws is very small for the present apparatus,
then two critical speeds wy; and w.s are treated in this section.

IIT-1. The critical speed w;: of summed and differential harmonic oscillation
[p2—ps]. The critical speed w,; takes place at w where the relation w=|p:—ps|
holds, and a whirling motion of forward precession having frequency p. and that
of backward precession with frequency |p:| build up and form the peak of the
critical speed wss.

Response curves of the critical speed wxs with those at the major critical
speed w. are shown in Fig. 26. Here the numerals in the left hand side figure
where peaks w. are given correspond to the numerals within the notation specifying
the experiment (e.g. [-0-5). For instance, numeral 6 of peak w. corresponds to
6 in I-b-6. As we see in Fig. 26 the peak w; decreases as A, increases, and
the shape of response curves is continuous without jump phenomena. In Fig. 27
the relation between the maximum amplitude B,; at w3 and the maximum amplitude
Am at the major critical speed is shown. The appearance or non-appearance of
the critical speed w;; is shown in Table 3 which is obtained by experiments of
I-b series. As we see in Fig. 26, Fig. 27 and Table 3, the critical speed w,; cannot
occur when An is somewhat large.
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II1-2. The critical speed w: of sum-

" med and differential harmonic oscillation

v M‘KO\ [p.—pi]. At the critical speed w, where

: AN the relation o =|p; —p:| is satisfied, a

g o6 \ forward precession with frequency p. and
8: a backward precession having frequency
9 ol O\ |p4] take place and result in the peak wai.
Experimental results of II-b-1 (An=0.58

‘ o mm) are shown in Fig. 28 in which the

:»20 07 04 06 08 10 2 i 18 response curve of the peak wsu is conti-
Am mm nuous. For Il-a-1 (Am=190 mm) and

FI1G. 27. Relation between Bm IT-a-2 (A,;,=068 mm) in which the as-

and Am (I-b series).

sembling condicions of pedestal and
(Am: maximum amplitude at the

L : nonlinearity are different from those of
major critical speed we, Bwm:maximum II-b-1. simil t
amplitude at the critical speed @z ~b-1, similar continuous response Curves

of summed and differential harmonic are obtained. For I-b-14 in which ball
oscillation [p2—pal). bearings are different from those in I7

TABLE 3. Appearance of the critical speed w2 of summed and differential
harmonic oscllation [p2—ps] (I-b series)

[-b-1 I-b-2 I-b-3 [-b-4 [-b-5 I-b-6 I-b-7 I-b-8 I-b-9 I-.-11 [-b-14

Experiment No. g
Awmm | 804 256 199 159 143 130 L4 LOL 08 071 028

Peak w3

X x % x O @) O O O O @]

series, the shape of response curve is soft spring type with jump phenomena as
shown in Fig. 29.
For response curves of soft spring type as well as continuous response curves,
the amplitudes of vibration at w. are not related with the magnitude of Asm.
Vibratory waves at the critical speed w; are shown in Fig. 30, which is
obtained in the experiment [I-b-1.

2.5. Conclusions

Obtained conclusions through experimental results of Experiment A and
Experiment B may be summarized as follows:

(1) There are three kinds of the critical speeds of summed and differential
harmonic oscillations [p2—ps1, [ps+pi]. [p2—p4] in the rotating shaft system.

(2) Sub-harmonic oscillations of order 1/2 i.e, [+1/2.0] take place with
summed and differential harmonic oscillations.

(3) The locations of the critical speeds and modes of vibrations of summed
and differential harmonic oscillations can be determined through natural frequency
p-rotating speed » diagram.

(4) The absolute values of sum of or difference in two frequencies of summed
and differential harmonic oscillations are always equal to the rotating speed of
the shaft w.
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(5) Amplitude of sub-harmonic oscillations of order 1/2 appearing at wiz, w-12
and w'_.1» increases with the maximum amplitude A4,; at the major critical speed

We.
(6) Shapes of response curves of sub-harmonic oscillation of forward preces-
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sion [+1/2.0] at wi» are of hard spring type, and response curves of soft spring
type are obtained for the critical speeds w_i;, and w'-12 of backward precession
[—1/2:0].

(7) All response curves of summed and differential harmonic oscillation at
the critical speed wy; are continuous response curves.

(8) Amplitude at wy; decreases as A, increases.

(9) At the critical speed w, response curves are continuous curves or those
of soft spring type, according as nonlinear spring characteristics change.

(10) Amplitudes at the critical speed w:« are not related to the magnitude of
Am.

Part B. Summed and Differential Harmonic Oscillations Induced
by Symmetrical Nonlinear Spring Characteristics

In Part A, summed and differential harmonic oscillations [ p; +p;] and [ pm+pn]
occurring in multiple degree-of-freedom systems with unsymmetrical nonlinearity
are treated. When the vibratory systems with multiple degree-of-freedom have
symmetrical nonlinearity in restoring forces, summed and differential harmonic
oscillations [2 p;+p;] and [ p;+p;+pr] take place. In Chapter III, the summed
and differential harmonic oscillation [2 pi=p;] is discussed and, in Chaper IV the
summed and differential harmonic oscillation [ p;+=p;+pe] is studied.

Chapter III. Summed and Differential Harmonie Oscillations
[2pi+p;] in Vibratory Systems with Symmetrical
Nonlinear Spring Characteristics

1. Introduction

When the frequency of » of the external periodic force satisfies the relation

w=2pi = pjl, (3-1)

in the vibratory systems with symmetrical nonlinear spring characteristics, two
vibrations of frequencies of w;, w; which are given by

w; = pi, wj = pj, (3-2)

build up simultaneously, and summed and differential harmonic oscillation [2p;-+p;]
takes place.

The summed and differential harmonic oscillation [2 pi*p;] reduces to sub-
harmonic oscillation of order 1/3, provided p;=p;. In the vibratory systems
with symmetrical nonlinearity, the summed and differential harmonic oscillation
[2 pi+p;] appears with sub-harmonic oscillation of order 1/3 or 1/5, as is shown
in experiments in later.

In the present chapter, conditions for the possibility of occurrence of summed
and differential harmonic oscillation [2 p;+p;] are analytically discussed, and the
modes of vibrations which can actually take place, equations of response curves



Summed and Differential Harmonic Oscillations 125

are determined, and graphical representations of response curves and discussion
of stability problem for summed and differential harmonic oscillation of [2 p; +p;]
are performed. Further the obtained analytical conclusions are verified by
experimental results.

2. Summed and differential harmonic oscillations [2 p;=+p,;19

In the summed and differential oscillation [2p;+p;], between frequencies w,
w; and w;, there is the relation

12 0 = wj| = o. ' (3-3)

All analytical treatments from Eq. (1-1) to Eq. (1-13) and Egs. (1-6 a), (1-16) and
(1-16 a) in Chapter I can be still applied to the summed and differential oscilla-
tion [2 pi+p,;]. For two frequencies w; and wj;, there are the following three
cases:

(I) case of summed harmonic oscillation [2 pi+p;]

(1) 20i+0i=o,
Wi =0~ 0~ wj, (a)

wi=0—2 wi, (b)
(IT) case of differential harmonic oscillation [2 p;—p,]

(i) 2wi—owi=o,

wi=w — wi t+ vj, (c)

wj=2 wi— o, (a)
(iil) wj—2wi=w,

wi= — w— w; + oj, (e)

wi=w+2 v ()

Inserting Egs. (1-16) and (1-16 a) into the right hand side of Eq. (1-6a) and
referring the above relations (a)~ (f), the following equations are attained through
the condition that resonant terms sinw?, coswt?, sinw;f and cos w;¢ should not
be contained in the right hand sides of the first and the second equations of Eq.
(1-6 a).

4+ mi Ry cos (26; = 6;) = p; R} + 0 R},

I Rj+mjRicos{(26;+6;) = (pjR}+a; RD Rj, ] )
Ciiwi—miR;sin(260; = 0;) =0,

T CjiwiRj+mjRisin (20, =6;) =0, J

in which the upper sign and the lower sign correspond to summed and differential
harmonic oscillations respectively and R;, R; are amplitudes of summed and
differential harmonic oscillations, and further :
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(a), Pz) 5 {Exﬁ(trS\PrPs‘f‘z Biirs) Pr Ps}

rsi (Jrs) r 7 (FrS)

i 5 Pty = 7 fy
mi= = %(i@(iii;Pi“f‘iﬁ(ijj)Pj“i' ‘%‘Zr}izg(ijr)Pr)* (3-5)
= %‘(iﬁlz‘ii)Pi_l" %‘;’B(iij}Pj%— —I—Zjﬁwm Pr>9
Pi=Fy (0} — o®) 7Y, Pj= Fje(wj = 0", Pr=Fy* (07— 0"
From the relation of Eq. (1-11), we have
mi =2 mj. (3-6)

Observing Eq. (3-4), it is seen that, when coefficients of symmetrical nonlinea’rity,
i.e., of nonlinearity of third powers ;Biis etc. vanish, pi, pj, oi, o; become zero and
Ps—d; 0 leads to Ri=Rj= And further unsymmetrical nonlinearity has no

connectlon with Eq. (3-4). Consequently, it can be concluded that the summed
and differential harmonic oscillation [2 p;+p;] is caused by symmetrical nonlinearity
and not by unsymmetrical nonlinearity, and if there is no symmetrical nonlinearity
in spring forces, the summed and differential harmonic oscillation [2 p;+p;] cannot
appear.

Referring the relation m;j=2n;, the third and fourth equations of Eq. (3-4)
lead to

R? Cjjojni _ o Cijwj (3-7)

- 7
Rj Ciiwir; Ciiwi

Since C;; and Cj; take positive values as shown in Eq. (1-13), R; and R; can be
real only for summed harmonic oscillation. Accordingly, only summed harmonic
oscillation can take place and differential harmonic oscillation does not occur.

3. Response curves of summed harmonic oscillation [2 p;+p;]1"

As the procedure to obtain five values R;, R;, w;, w; and 2 0;+0; through the
five relations 2 w;+w;=w and Eq. (3-4) is quite complicated, then a rather simple
case of two degree-of freedom system given by Eq. (1-22) is also treated here.
Eq. (1-22) can be transformed to Eq. (1-6 a) and we have, in place of Eq. (3-4),
the following rather simple equations.

{(w} = p}) — 2 BoP®} —2 By PR; cos (2 01+ 6,) = Bo( R} +2 R}),
{(wh—p3) — 2B P*} Ry — Bo PR cos (20,4 05) = Bo( R} +2 R} R,
Cwy+ 2 Bo PRy sin (2 6; + 6,) =0,

Cws Ry + By PRYsin (26, + 6,) = 0,

(3-8)

where C, 3, and P are given by Eq. (1-23).
of Eq. (3-8), we attain

From the third and fourth equations
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Rg w1 —
R*;) = 2(1)2' (3 9)

Eliminating term of cos from the first and second equations of Eq. (3-8) and
using the relation of Eq. (3-9), we get

2(02(111(1)2”"22(01) 9 an(hwr* /{20)})
» R = ] 3"10)
T B 20— 2 w0 — @) ¢

R?= A =
T B2 0~ 2 wiws — )

where
L= (0] = p) =280 P Je = (0) = p}) —2 B P°. (3-11)
From the first and third equations of Eq. (3-8), we have
{hi = Bo(RY + 2 RD)* + CP0f =4 B P*R¥{cos™(2 01+ 0,) + sin®(2 61+ 0.) } = 4 BiPR:.
Substitution of Eq. (3-10) into the above equation results in

oo+ 4 w) (0} = p1) = 2(w1 + 02) (0] — p3) +2(w; — 2 02) BP?)?
44 B P2 0} — 2wz — o) o1l s~ P3) — walw) — PL) ~ 2 BuP o~ wa) }
+ Cn(2wh— 2 ww:— ) =0. (3-12)

Since P is a function of only w: and w; as is seen from Eq. (1-23), then Eq.
(3-12) contains only w; and w:. Accordingly if the frequencies w: and w. can be
determined by the relation 2 wi+w,=w and Eq. (3-12), the amplitudes of R; and
R; of summed harmonic oscillation can be furnished as functions of only » by
Eq. (3-10). However, it is impossible that o; and o are given analytically through
Eq. (3-12). Therefore the frequencies w: and w. are given by the following ap-
proximate procedure. As a first approximate values of w; and w;, we put

— pl =3 - mpz = 1) "13
wie = 2]91*}‘}'72@ M@, Wy = 2?1—3—?20) N2 @, 3 )

where
D1 b (3-14)

=2t PT 2ptp

Adoption of Eq. (3-13) does not contradict the experimental results (see Fig. 42).
Putting

m=mote, w=70+ ¢, (3-15)

where e, & are small quantities as f.. Since the relation 2 v+ w:=w holds, we
have

cmam-La, (516

and

o= o Te =m0 —2¢6 ‘ (3-17)
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Substituting Eq. (3-17) into Eq. (3-12), and neglecting all smaller quantities than
the second powers, we attain

or=70+ *i—)'[fz(a)z - ) + BofsPZ:i: E%\/j ]

0 (3-18)
W2 =N — Z}“[fz(wz - .Q?) + Bofspz x= E%?Jﬁ]
2 .
R:= 5 ’? [numefi( @' — 8% = Bofe P* = 39 D ]
v (3-19)
Ry = " Dpnefi@® = 2°) = Bofs P* &= 37 D ]
Bofi
where
e=p1,2/ 2, =2p1+ o,
D=4nfiBo P’ — @) — fiBiP' — F1C%*
f1:77f+8‘-’117?2+4”0§
fo= 72—17; @i+ 29m— 49l — 7))
(3-20)

1 3 2 2 .3
= - + — 9y,
I3 f"(14772 67 — Qi — )
1

fi= %(167§+3n§n[+20%m+27ﬁ)
Fs=2795 ~ 292 — 7t
So= 1673+ 22 93ni + 20 2t + 2 9}

The frequencies and the amplitudes of summed harmonic oscillation [ pi+2 p.]
can be given by exchanging subscripts 1 and 2 in the above equations.

By the similar procedure, the amplitudes of sub-harmonic oscillations of order
1/3 are obtained as follows:

m= G (5] o) - F = Jar|(5) il - fair - (o]

where

P=fi = gor+=t)  Gi=Lz ix))

2 2
bi—w

(3-21)

In Eq. (3-20), fi, f1 and fs are positive, for »:>0 and 7.>>0 are always satisfied.
By comparing Eq. (3-19) with Eq. (3-21), it is easily seen that response curves
of sub-harmonic oscillations of order 1/3 are qualitatively analogous to those of
summed and differential harmonic oscillations [2 pi+p.].

Fig. 31 shows response curves numerically calculated from Egs. (3-19) and
(3-21) for various values of the damping coefficients C. For summed harmonic
oscillations, sum of amplitudes R:+ R, is plotted. Since #, is positive in Fig. 31,
response curves are of hard spring type. Full lines in Fig. 31 indicate stable
parts of the response curves, which correspond to stable vibration, broken lines
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F1G. 31. Response curves of summed harmonic oscillations [2 p1+p2] and [p1-+2 p;] and

sub-harmonic oscillations of order 1/3 with modes of [3 /] and [3 p:].
(F=0.432, p1=0.785, pa=1.177, Bo=0.1), (w: frequency of external force, F: magnitude

of external force, fo: coefficient of symmetrical nonlinearity, C: coeflicient of damping).

represent unstable parts and chain lines are the boundaries between stable and
unstable zones. As shown in Fig. 32 (a), response curves of summed harmonic
oscillation [2 p1+p.] are closed curves when a damping force exists, thus these
curves have the maximum and minimum amplitudes.

Response curves of [3 ], [3 2] and [p:1+2p.] have analogous characters
to the vibration of [2 p1+ p.] which is shown in Fig. 32 (a). In Fig. 32,
if C=0, the abscissa becomes a tangent to the response curve I at a point A

[0= 5+ p0 14 BIE Bzg’f;ﬂjf“ . Fi=1678+40 77 +20 727} + 271 | which locates in

an unstable range. The stable parts of response curves are always in the region

given by Eq. (3-22).

2
Ri> f-;—- (for sub-harmonic oscillation [3p:1)
Ri>( 277’72 )(3_;1”2 )P?
! (for summed harmonic oscillation [2 p, + p.1)
RI> ( %ﬁz) p*
1
(3-22)

Therefore these modes of vibrations can occur provided initial conditions lead
to the situations in which the restricted conditions Eq. (3-22) are satisfied.
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F1G. 32. Summed harmonic oscillation [2 p1+p2]
(a) Response curves

(b) Phase angles
(F=0.432, By=1.0, p1=0.785, pr=1.177, 2 p1-+ p2=2.746)

A 20 EX £
Frequency w

0.06 , For B:¢<0, as is shown in Fig. 34,
E apy response curves are of soft spring type
005 Lrep) and they have lower limits as in case of
| Bo>0, however, about the upper limits the
‘~ situation is different from case of #y>>0.
[prr2p] Since the approximate procedure adopting
0.03 here is the so-called resonant analysis,
/ ] (3R] obtained results are reliable only in the

; vicinity of the resonant point. For this

// ; ; reason, only the response curves near the
0.0/ V a resonant point are shown in Fig. 34 as

A=)
o
=~

Critical c[ampn’ng Ce

| ‘ ; ‘ well as in Fig. 4.
0 X5 010 o.]u; 020 When B,>0, an upper and a lower
BF* limit of the response curve of summed
harmonic oscillations [2 p;+p;] in Figs.
C. for summed harmonic oscillations 31 and 32 (a) approach each other with
[2 p1--p2] and [p1+2 2] and sub-harmonic increase of damping fqrce, and finally
oscillations of order 1/3 with modes of they converge to a point at a certain
[3#1] and [3p2]. (p1=0.785, p2=1.177, F damping coefficient C;, which is defined
= magnitude of disturbing force, Bi= as critical damping, because occurrences
coefficients of symmetrical nonlinearity). of summed harmonic oscillations [2 p;+p,]
and sub harmonic oscillations of order
1/3 are impossible for C=C;. The critical damping C; can be determined from

Eq. (3-23)

F1G. 33. Critical damping coeflicients
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Fi1G. 34. Response curves of summed harmonic oscillations [2p1+2] and [p1+2 p2]
and sub-harmonic oscillations of order 1/3 with modes of [3 ] and [3 p.].

(magnitude of disturbing force F=0.432, coefficient of symmetrical nonlinearity fo= —0.1,
p1=0.785, py=1.177, C=damping coefficient, w=frequency of disturbing force).

2
D(o®, C) =0, M =0 (3-23)
ow

where D represents the formula within radical of Fgs. (3-19) and (3-21). Fig.
33 shows results of numerical calculation of Eq. (3-23). It is concluded from Fig.
33 that nonlinearity Bo-F? increases with magnitude of C;, and that the vibration
having lower resonant frequency can occur more easily than the vibration with
higher resonant frequency.

Fig. 35 shows wi—w and w:—w curves, where @ and w. are frequencies of
summed harmonic oscillations of mode [2 p1+p.] and [ p1+2 p.] and w is the forcing
frequency. Fig. 35 (a) and (b) correspond to cases >0 and <0 and full and
broken line curves correspond to stable and unstable vibrations, respectively.
Neglecting terms smaller than the first order of ¢ in Eq. (3-18), we have

Wie =@ (1=1,2) (3-24)

which is shown by chain lines in Fig. 35. Stable and unstable branches of w1—w
curves are in pair and the upper branch corresponds to stable solutions and the
lower to unstable solutions in case B3,>>0, and vice versa for w;—w curves. When
B:<0, the situation is reversed. When >0 and C=0, w;—w curves become closed
curves.

If 8:>0. the relations wi<ww and w:>wz hold, and if B.<0, these relations
are reversed.
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F1G. 35. Frequencies of w1, w2 of summed harmonic
oscillations [2 p1-+p2] and [p1+2 pe].
(F=0.432, C=0, p1=0.785, p»=1.177)

Phase angle ¢=20:40; of summed harmonic oscillation [2 p;+p.] is indicated
in Fig. 32 (b). In the figure, full and broken lines represent phase angle for
stable and unstable solutions respectively. If $,>0 and C=0, these curves are
closed and point C in Fig. 32 (a) corresponds to point C' in Fig. 32 (b) and
phase angle is slightly smaller than »/2 at the point C'. The point D in Fig. 32
(a) where response curve intersects with the boundary line of stable and unstable
regions corresponds to the point D' in Fig. 32 (b) and phase angle is just »/2
at the point. The phase angle ¢s of stable solution for C=0 is always equal to
zero [B'B" line in Fig. 32 (b)]; and phase angle ¢, of unstable solution between
A and B in Fig. 32 (a) for C=0 is zero as shown by A’'B' in Fig. 32 (b); and
for the frequency region higher than the point A of curve II in Fig. 32 (a), phase
angle ¢, of unstable solution when C=0 is equal to = [A” A" line in Fig. 32 (b)].

For (;<0, phase angle is within < g— ~ 2)71' for stable solution; and for unstable

solution, it is partly in region 3/2.7<¢, and almost in the region 3/2+x>¢.>n.

The phase angle of summed harmonic oscillation [ 142 p.] and sub-harmonic
oscilations of order 1/3 are qualitatively analogous to that of summed harmonic
oscillation [2 p1+p2].

4. Stability of summed harmonic oscillation [2 p;+p;]

In order to discuss the stability problem, the prosedure to the solutions along
the method of Andronow and Witt is introduced here. In Eq. (1-16b), we assume
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that amplitudes Ry, R, and phase angles 6; and §; are slowly varying functions
of time 7. Thus substituting Eq. (1-16 b) into Eq. (1-6 b) and neglecting the terms
of higher order of small quantities, we attain

—2@5]5& = Coi Ry +2 R RaPo Psin (2 6, + 0
-2 w: d£2 = C(Oz]\?‘z + R?BQP sin (2 01+02)
o (3-25)
2 a}lR;?-iL :/2,1R1 - B\}R}(R? +2R§) - 2R1_R280PCOS(2 61‘!‘ 02)
2 woRs %ﬁf = 1R — BuR(2 R+ RY) — R 8o Pcos (20, + 62)

. dR, _ dR, _ db, _ db _ . .
Putting Tl Y =0, we obtain the steady state soultions of

Egs. (3-18) and (3-19) from the above equation. Let

Ri=Rp+% R=Run+< ¢=go+¢ (3-26)
be solutions which differ slightly from the steady state solutions R, K and ¢o

of vibration of mode [2 pi+p,]. Substituting Eg. (3-26) into Eq. (3-25) and
neglecting all but the linear terms in £, ¢ and ¢, we obtain

-

- 2(1)]R1Q—E;T = "'2 CU)2R20C+ ()\1 - BO(R?D“}‘ZR%O)}R?G(‘;
— 2 ws R Zi = — 2 Cwy Rep? + Caws Ry + {d — Bo(2 Ry + R%) ) Rig Reg @
(’JLRfO%%f“ = —{i+ QO(R?D“}‘ ‘ZR;(;)}RN, — {2+ @3.(2 R?n ’}‘Rgo)}RzoC -3 Ca)zl?(fo(,p
(3-27)
Substituting the assumed solutions
£=8e%, =0, 0 =0e™ (3-28)
into Eq. (3-27), we have
2 w1 RipS+£y— 2 Carg RapCo+ {1 — Bo( R, + 2 R3) } Ry ¢ = 0
— 2 Cuwg Ray* &0+ Riw:{ C+2.S) &y + {22 — Bo(2 Riv+ Ry} RigRa @ =0 (3-29)
3-

{h+ 80(R§0+2R§0)>R10'50+ {da+ Bol2 R+ Ry} Rty
F w2 RH3C+28)¢,=0

If ¢, & and ¢, have solutions which are not trivial, the following equation must
be satisfied.

-

ﬂ)iR;u
(20 -2 wiws— w})* X
[Cww:(2 w5 =2 w10z — 03)% — {h (8 i+ 4 w1 — &)

—2o20l + 10w +F20) @ wi+2w) ke ~ (w1 +4w:)A}]1S (3-30)
CahRfa EYWar) « 2 2,2
- 3 373 [OC a)ja)z(z (,02"2(1)1(02—601)
(2 ws — 2 wiwe — @1)
F {8 wi+dwiw— ) — w20+ 10 wiw:+2 w3}

x{2wi+2w) e — (o +4dw)}]1=0

4 a)fsz;s)Sa + 16 wlﬂ?gc}e?oRgoSz +




134 Toshio Yamamoto and Satoru Hayashi

Applying the Routh-Hurwitz theorem, the condition under which real parts of
all roots of Eq. (3-30) are negative is

—3C%w (2 0t~ 2 wiwr — 00+ {A 028 Wk + 4 w05 — @)

_, \ -, } (3-31)
so(2 0+ 10 wiws +2 0 }H{ (2 w1+ 2 02) ds— (w01 F 4w} >0

From Egs. (3-19) and (3-20), stability criterion Eq. (3-31) can be written as
follows:

2 2
{ =800 vD) >0 (3-32)

Referring Eq. (3-19), Eq. (3-32) can be further rewritten as follows:

RE> 20 Do’ = 200+ 507} = Bufi P (3-33)
0/ 1

The expression obtained by replacing inequality of Eq. (3-33) with equality gives
the boundary line between stability and unstable regions and on this line the
value D vanishes, so that the curve is locus of vertical tangent on response
curves. The upper part of the locus is stable region and the lower part unstable.
For example in Fig. 31 chain lines are boundaries of stable region and full and
broken lines correspond to stable and unstable parts of response curves respectively.
For summed harmonic oscillation [ p1+2p,], the similar results are obtained

by exchanging subscripts 1 and 2.

5. Experimental apparatus and experimental rsults?

As shown in Fig. 36, the boss F of diameter=26 ¢ is fixed on a free supported
horizontal shaft of diameter=8 ¢ and length a-+5=400 mm. A disk D of diameter
=360 mm and thickness=85 mm is mounted on the boss E at the location a: b=
3:7. Symmetrical nonlinearity in restoring force is furnished by backlash of
about 0.04 mm between disk D and boss E. In order to obtain symmetrical
nonlinearity, a long helical spring S shown in Fig. 10 is not used here. Since
one shaft end is fixed on a table oscillating vertically with frequency o and
amplitude 0.05 mm, an external periodic force is given in the vibratory system.
To check the axial displacement of disk D along the shaft, clearance tapes C of
thickness=0.02 mm and width=3 mm are inserted between disk D and boss E as
is shown in the left hand side figure of Fig. 36.

FIG. 36. Experimental apparatus.
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Experimental results are illustrated in Figs. 37 and 38. After the experiment,
results of which are shown in Fig. 37, the experimental apparatus is disassembled
and reassembled again, and the experimental results in Fig. 38 are given again
by the succesive experiment. Accordingly between two experiments of Figs. 37
and 38, there is difference in symmetrical nonlinearity of spring characteristics.

The vibratory system shown in Fig. 36 is two degree-of-freedom system because
of a+#b, and it has two natural frequencies of p; and p, ( pr<p:). Therefore summed
harmonic oscillations [2 pi+p:], [p1+2 p.] and two sub-harmonic oscillations [3 p1],
[3 2] can take place at w=2 pi+ps =pi+2p:, =3 and =3 p, separately. In Fig.
37, summed harmonic oscillations [2 p1+p.] and [ p1+2 p.] having response curves
of hard spring type appear in the neighborhoods of w=46 c¢/sec and w=49 c/sec re-
spectively.  And sub-harmonic oscillation of order 1/3 of [3 p:] occurring in
the neighborhood of w=40 c/sec has respomse curve of hard spring type, while
sub-harmonic oscillation [3 p.] appearing in the neighborhood of w=50 c/sec

a6
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a4 /Q
T
{
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F1G. 37. Response curves of summed harmonic oscillations
[2 p1+p2] and [p1+2 p2] and sub-harmonic oscillations of order
1/3 with modes of [3/] and [3 p].

(the location of disk @ :06=3:7)

0.6 T 2
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F1G. 38. Response curves of summed bharmonic oscillations [2pn-+p2] and [p1-+2 pe]
and sub-harmonic oscillations of order 1/3 with mode of [3 /] and order 1/5 having mode
of [5p1] (the location of disk @ :b6=3:7).
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FIG. 39. Response curves of summed bharmonic oscillations [2pi-p2] and [p1-+2p2] and sub-harmonic oscillations of order 1/3

with modes of [3 1], [3p2] (angular clearance in ball bearing

1:3).

0.24°, the location of disk a : b=

has response curve of soft spring
type. In Fig. 37, it is noticeable that
response curves of summed harmonic
oscillation [p1+2 p.] and sub-harmonic
oscillation [3p,] cross each other and
further there is a range of w where both
summed harmonic oscillations [2 p:1+p.]
and [pi+2 p.] exist. Which oscillation
appears, it is entirely depends on how
to give initial conditions. Once one
oscillation takes place, it lasts until the
frequency o of external force changes
beyond the range of its oscillation. In
Fig. 37, over the range of o from 36
c/sec to 50 c/sec, there are harmonic
oscillations of frequency w with small
amplitudes shown by symbol O. When
any disturbance is not given to the
vibratory system, only these harmonic
oscillations appear along response curve
of small amplitudes. Accordingly, oc-
currences of summed harmonic and sub-
harmonic oscillations need some impulse.
This fact is caused by backlash between
disk and boss which furnishes non-
linearity.

Similar experimental results with
Fig. 37 are shown in Fig. 38 where sub-
harmonic oscillation [5 1] of order 1/5
with rather small amplitudes appears.

In experiment shown in Fig. 39,
angular clearance in ball bearing is
adopted in place of backlash between
diskand boss. Inexperimental apparatus
furnishing results in Fig. 39, the location
of disk is 1 : 3, and a deep-grooved single-
row ball bearing with angular clearance
of 0.24° is inserted tightly between disk
and boss, and symmetrical nonlinearity
is given by the angular clearance. In
order to check the revolution of disk, a
weight of 0.355 kg is attached at one
point on the disk edge. Thus the angular
position in which the weight rests below
is kept during experiment. In Fig. 39,
all response curves of summed harmonic
oscillations and sub-harmonic oscillations
as well as those of harmonic oscillations
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. 0=46.11 c/sec w1/w=10/39 w2/w=19/39
FIG. 40. Vibratory waves of summed harmonic oscillation [2 p1-+p2] (0’ w1t

@=39:10:19, 2m1twm=w).

o1fw=14/64
oscillation [ 12 p2] (wiwitwez=
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Fi1G. 41. Vibratory waves of summed harmonic
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FI1G. 42. Frequencies w1, w2 of summed harmonic oscillation

[Z2 pr+p2] (experiment shown in Fig. 39).
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[p:] and [ p.] take the shape of hard spring type.

Vibratory waves in the experiment of Fig. 39 are shown in Figs. 40 and 41,
where vertical fine black lines are the frequency marks recorded at each vibration
of oscillating table on which the shaft
end is fixed, and one interval between
frequency marks gives one period 2
m/w of the external force. Between
marks A and A in Fig. 40, summed
harmonic oscillation [2 p:+p.] does
the same vibratory waves over again,
and at intervals of marks A, number
of black line intervals is 39 and the
vibration with the lower frequency
w; oscillates 10 times and the vibration
of the higher frequency . 19 times,
‘ thus it is seen that the relation 2
18— 1 wi+w=w holds. In the vibratory
; waves of summed harmonic oscilla-
tion [pi+2 p.] in Fig. 41, 0 : w1 : w2=
64 : 14 : 25 at intervals of marks A4
and the relation wi+2 w.=w is still
satisfied.

The frequencies w: and w: of

@ Yee summed harmonic oscillations [2

FIG. 43. Frequencies w;, a2 of summed + 2] and f[h-i-?[h] shown in Flg. 39
harmonic oscillation [ p1-+2 p:] (experiment are plotted against the frequency o
shown in Fig. 39). of the external force in Figs. 42 and

43, where full line curves represent

the curves of ww=7mw and ww=70. It is seen that adoption of Eq. (3-13) is
reasonable.

30—

R =120 Yoo B=22.5 Cfsec

c,
/sec

w2z

20—t

e

6. Conclusions

Obtained conclusions in Chaper III may be summarized as follows:

(1) When the vibratory system with multiple degree-of-freedom has sym-
metrical nonlinearity in spring force, there is possibility of occurrence of “summed
and differential harmonic oscillations” [2 p;=p;].

(2) Theoretical analysis verifies that only summed harmonic oscillations
[2 pi+p;i] actually occur and differential harmonic oscillations [2 p;~p;] cannot
take place.

(3) Summed harmonic oscillation [2 p;+ p;] appears with sub-harmonic
oscillation of order 1/3.

(4) Occurrence of summed harmonic oscillation [2 p;+p,] needs symmetrical
nonlinearity, but not unsymmetricial nonlinearity.

(5) Response curves and frequencies w:, w. of summed harmonic oscillation
of [2p1+p.] are given by Egs. (3-19) and (3-18), severally.

(6) Response curves of summed harmonic oscillations [2 p1+p.] and [ p1+2 p.]
are qualitatively analogous to those of sub-harmonic oscillation of order 1/3.

(7) According as rositive or negative symmetrical nonlinearity 3., response
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curves of summed harmonic oscillations [2 pi+p.] and [ pi+2p.] are of hard or
soft spring type.

(8) The stability of summed harmonic oscillations [2 pi+p.] and [p+2p.] is
studied, and the loci of vertical tangent of response curves furnish the boundary
between stable and unstable regions.

(9) Between frequencies w1, w: of summed harmonic oscillations [2 p1-+p:1,
[p1+2 p.] and frequency o of disturbing force, the relations 2 o+ w:=w, w142 =0
always hold.

(10) Occurrence of summed harmonic oscillations of both [2 pi+p.] and
[p:i+2 p.] are verified experimentally, and further obtained theoretical results are
proved through experiments.

Chapter IV. Summed and Differential Harmonic Oscillations
[pi+pj+pi] in Vibratory Systems with Symmetrical
Nonlinear Spring Characteristics

1. Introduction

The response curves and the stability of summed and differential harmonic
oscillations [ pi+p;] and [2 p;+p;] occurring in the nonlinear vibratory systems
with multiple degree-of-freedom have been investigated in the previous chapters.
In this chapter, the authors study summed and differential harmonic oscillations
[pi+p;+pr] which can occur in the vibratory system with three or more degree-
of-freedom. The vibrations of [p;=p,=pr] have possibility of its appearance
when the following relations between the frequency w of a periodic external force
and the frequencies wi, wj, wp of summed and differential harmonic oscillation

[pi+pi+pr] hold:

o=|pi+ pj= pil (4-1)
and
=|w;x wjx (14, 7, k=n)
o= |wi = 0j £ o] ‘ 7 ¥ (4-2)
wispi, wi=pi, wr=pDk J
where p1, po, ..., pn are the natural frequencies of the vibratory system with n

degree-of-freedom. In the present chapter, it is verified analytically and experi-
mentally that only summed harmonic oscillation [ pi+p;+pr] can take place and
all differential types [ pi+p;—prl, [pi—p;j—pr] etc. cannot occur; and further the
response curves and frequencies of summed harmonic oscillation [ pi+pj+pr] are
calculated and expressed graphically.

2. Summed and differential harmonic oscillations [ p;+p;+p.] in rectilinear

vibratory systems®

Eq. (1-6) can be rewritten as follows:

Xi+ 0l Xi= (0} — p}) Xi + Fi cos ot — ¢i — SNCi Xy, (i=1,2,3)

Xs ‘i"p;Xs: Fs cos ot — ¢s— chrjfr, (s=4,5...,n) (4—3)
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Along the purterbation methods, the solutions of Eq. (4-3) are developed in power
series with respect to a small parameter ¢ as shown in Eq. (1-16). Substituting
Eq. (1-16) into Eq. (4-3) and comparing the terms having the same power of e,
we obtain

Xio+ o} Xio=Ficoswt  (i=1,2,3)

j\%so—i-ngso:FsCOSO)lL (s =4, 5 «..,n)

Xir+ wiXir = (0} — b)) Xio — gpio— 2Cir Xro (4-4)

X5 FPiXs1= — ¢so — 20Cor Xo

.........

where ¢io= (X0, Xoo, - .., Xno).
The first approximate solution of Eq. (4-4) may be as follows:

Xio= R;cos {(wit — 0;) + P; cos wt
} (4-5)

Xso= Rscos (pst — 0s) + Ps cos ot

Substituting Eq. (4-5) into Eq. (4-4), and refferring Eq. (4-2), and rejecting the
resonant term, we have

(0 = pDRi — Qi Ri — (3/4):Buiiiy R? — (1/2) R iBuisiy RE + iBuiniy RL}

=P}RjRrcos ¢ (4-6)
- ( ﬂ:a)z‘)Ci,‘Rz:P}RjRIe sing (=jxk 4,5,k=1,2,3)
Rs=0 (s=4,5,...,n)
where

P; = 1/4 _1{1‘[’?(_7"/37?2)})771) (i= 1, 2» 3)

Q; = 1/2<Ziﬁ(ir5)PrPs + Z_iﬁ(irr)PiPr> (7’, s=1, 2, 3) (4‘7)

P = ~~TFL~§‘ Prs= "fzr“i—? ¢ =010, = 03

w;— Prs— o

In Eq. (4-6) and Eq. (4-7), the positive and negative signs correspond to the
summed and differential harmonic oscillations [ p;+p;+pr] and [p;—p;—pr] etc.
respectively. When the nonlinear coefficients of the third order vanish, the
summed and differential harmonic oscillations [ p1+p.+ps] cannot occur because
of Ri=R,=R:=0. Consequently it is seen that existence of the nonlinear restoring
force of the third order results in appearance of these vibrations. From Eq.

(4-6) we have the ratios of R}, R} and R! as follows:

oL = R? . =Cnwm _ R} = Csws 0 __R§ Cu o
= g B e y = = — - = = S = R
TR Cow: ~ ° R} +Cnw: = T ORI +Cuws

(4-8)

Since the damping coefficients C;; is positive, it is found that there are the
following four cases:
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summed type [prtpe+ps]  0>0, p2>0, 02>0
Lpi+ p2 — psl 0.0, 02<0, p3<0
differential type Lp1— D2+ pal 01<0, p2<0, p3>0
[~ pa—psl 01<0, p2>0, p3<0

(4-9)

Even if only one of pi, p: and p; is negative, the amplitudes of summed and
differential harmonic oscillations [pi=p.+p;] do not become real number. Ac-
cordingly it is concluded that only the summed type in Eq. (4-9), i.e, the summed
harmonic oscillation [ pi+p.+p:] can occur and all differential types cannot take
place.

3. Response curves of summed harmonic oscillation [p;+pj+pr] in a
simplified system

In this section, the response curves of summed harmonic oscillation [ pi-+ps+ psl

are analytically obtained. For brevity, the rather simple system shown in Fig.

44 je., a simplified three degree-of-freedom system whose equations of motion
are represented by

3mx, + 3 Koxy —~ Kxz = — Bxt — ciy + g cos ot
2mks — Koy +2 Koy~ Kxz =0 (4-10)
6 7%56'3 - Kxe +6 ffng =

is studied here. In Eq. (4-10), K, and K are the spring constant, s the mass,

x, % and x; the displacements of vibratory bodies and ¢ cos wf the periodic external
force. The natural frequencies of the vibratory system are

= ZKO Ko 2Ko+ K | (4-11)
T 2m 2m
/ Ll LU

S

2 s 7

= N ®

x Lo X

s X «°
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e e A
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F1G. 44. The simplified vibratory system with three

degree-of-freedom (p=0.7071, p,=1.000, p3=1.2247, Q=
pr+pa-tp3=2.9318).
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For Eq. (4-10), the transformation from generalized coordinates x,2,s to normal
coordinates Xi,.,3 is performed by the following equations:

x = Xe( X+ Xo + Xs)/g;
%= X:(X1— X3)/2, (4-12)
X3=X3(X1"‘2X2+X3)/6, J

in which X, is the static deflection by force g, as shown in Eq. (4-13). The
dimensionless quantities

pl=pi/po, Pr=p/bo=1, pi = pa/po, De=VEi/m, o' =w/ps,

Ja— (4-13)
I —_—pot, Co=C/(9‘/Kom ), BO=BX§/(1O8K0), Xs= Q/(?)Ko), Fo=1 }

are used here. Substituting Egs. (4-12) and (4-13) into Eq. (4-10) and omitting
primes on the dimensionless quantities, we attain

Xl +P%Xl = - Co(XrI‘ X2+ Xa) - (4/3) Bo(X1+ Xo+ X3)%+ F, cos wt
Xz +p§Xz = = Co(XL + jfz + Xs) - (4/3) Bo(Xl—f- Xo + Xg)g—q\— Fy cos wt (4‘14)
Xs'l"PgXa = — Col X1+ Xo+ X3) — (4/3) Bo( Xy + X2 + XY+ F, cos wt

The first approximate solutions of Eq. (4-14) become

X; = Ri cos (w;t — 6;) + P; cos ot

pi=—t0  (i=1,23) (4-15)

o= o
The amplitudes R;, the phase angles §; and the frequencies w; are determined
by the following equations:
(0} =) Ry~ Bo R} — 2 By Ri(R}+ RY) — 2 8o P’Ri =2 o PRy Ry cos ¢ )
(0d =P Ry~ Bo Ry — 2 BoRe( R+ RY) — 2 B P*Ry = 2 By PRy Ry cos ¢
(02— P Ry~ Bo RS — 2 BoRy(R}+ R}) — 2 o P*Ry =2 By PRI R> cos ¢

. (4-16)
- Coor R1 =2 ByPR:Rs sin ¢
—Cowr Ro=2ByPR: Ry sin ¢
- Coa):,Rg =2 BoPRIRz Sil’l ¢
where
1 1 1
P:P1+P2+P3:Fo(a)f—a)2+ w%—-a)2+ wg__(gg) (4-16 a)
And the ratios of R} are
RI/R% = w/w;, RY/RS=ws/we, RY/RI=wi/ws (4-17)

From Eq. (4-16) and Eq. (4-17), we have
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Bio wjor(diw; — wi ki) }
where P Blwi—wi) (2 wi o+ wjortorwi) (4-18)
limawi—pi-2/ P (4,,k=1,2,3 ixjxk) f
and
{liwjor— BoRU2 wiwj+ wjor+2 wiwr) )’ + (Cowi w; wg)*
= vlwjos 2 BPYR} (4,5, k=1,23 ixjxk) } (419
Putting

wi=ni0+ i+ v+ 00 (1=1,2,3)
Win+ wen+ 0.7372:0 (n= 1) 2’ .- ‘) (4-‘20)
77,':?,‘/!2, Q=p1+D+Ds

and inserting Eq. (4-20) into Eq. (4-18) and Eq. (4-19), the frequencies w; (1=
1,2,3) and the amplitudes R; are given as follows:

o=mo+ —2 Lffd film 47— 210) + fifiod (0 — 2°)
3 (D_fsf4

+ (fi(z N2 3 — N2 71 — n7a) *fsfm}(?« B P?) = 3fwf3\/ﬁ]
w2 =70 + L [ﬁfa(ﬂ(ﬂs—i‘m“2772)+f]f20}(€02—522)

3 ofs fi - (4-21)
+ 432 e — 132 — 12m) — faSw) (2 BeP?) £ 3 faofo D]
ws =N+ ‘—’li*{[f?,ﬂ(fa(?h’f"??% - 273) +f1f:=.o}(a72— 2
3(0f3f4 .
+ U2 e = mam2 = 11ms) =~ fofau} (2 8o P%) £ 3 funfoV D ]
2 _ NiNk 2 _ ) — £ 2 - Y
(1,7,k=1,2,3 ixjixk)
where
D=2fffi(2 BP0’ — 2°) — f5(2 B P — fi(Cow)?
Q=D+ + D2
fizmA+ptp=1, h=mpnptpntnmn f=nnnn
fi=fi+2fife fi=fofi=9F% fi=2/fi—9f; (4-23)

Sro=2{p — )17+ ey T 2 M72)ns + (s — 72) (172 + s + 27272) M
oo = 2058 — 12) (o + Baom + 29207+ (91— 78) (92705 + 12700 + 2 9a71) 72
Sao = 201 — 93) (a2 + 1172 + 29372 + (92— ) (pamn + Bam2 + 2m72) 0a

Summed harmonic oscillations [pi-+p.+ps] have the characters similar to
sub-harmonic oscillations of order 1/3 and summed harmonic oscillations [2 pi+2p;1
Fig. 45 shows the response curves of the summed harmonic oscillation [ p1-+p2+ps]
given by Eq. (4-22). In Fig. 45, one third of sum of amplitudes [ Ri+ K.+ Rs1/3
are plotted against w. In the figure, full lines represent the response curves for
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FI1G. 45. Response curves of summed harmonic oscillation
[p1-tpa-tpsT (pr=0.7071, po=1, p3=1.2247, Q= p1+ p2+p3=2.9318, Bo=0.1)
(p1, P2, p2=natural frequency, £=resonant frequency, w=frequency
of external force, Bo=coefficient of symmetrical nonlinearity, Co=
damping coefficient).

stable vibration and broken lines the response curves for unstable vibration. The
natural frequencies of this system are p:=0.7071, p,=1.0000, ps=1.2247, then the
resonant frequency of the summed harmonic oscillation is 2=p+pr+p;=2.9318.
The coefficient 8y of symmetrical nonlinearity is 0.1 and the response curves are
of hard spring type. At the points A4, B, jump phenomena take place. Accordingly,
only when some appropriate initial conditions are given, this mode of vibration
i.e. summed harmonic oscillation [ pi+pa+ps] can occur.
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FI1G. 46. Critical damping coefficient Co (p1=0.7071, pa=1, p3=1,2247),
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The region of frequency in which the summed harmonic oscillation [ pi1+ ps-+ ps]
can occur is reduced with increase of magnitude of damping coefficient and shrinks
to a point at a certain value of damping coefficient which is defined as critical

damping coefficient C..

Summed harmonic oscillation [ p;+p:-+ps] cannot appear

when damping coefficient is larger than the critical damping C., which is deter-
mined by solving the following equations:

aD(wzl _
olwh)
D=2fffilo"— 02 B8P
= f3(2 BuP*)* ~ fi( Cow)?
(4-24)

D) =0,

The calculated results are shown in
Fig. 46. It is easily seen from Fig.
46 that the critical damping C.
increases with the coefficient B, of
symmetrical nonlinearity.

The frequency region in which
summed harmonic oscillation [ 1+
pe+ps] can take place varies with
the value of damping ratio C/Ce,
as shown in Fig. 47. The figure
shows that the region becomes more
narrow with increase of C,/C. and
when Cy=C, the region vanishes.

The effect of the nonlinear re-
storing force is shown in Fig. 48 in
which only stable parts of the
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F1G. 47. The region in which summed
harmonic oscillation [pi1-+p2-+ p:] appears
(2=p1-+Fp2+P3=2.9318, Be=0.001, C,=1.293 x

10-4).
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FiG. 48. Response curves of summed harmonic oscillation

[p1+p2-+p3] for various magnitudes of coefficient 8y of symmetrical
nonlinearity (p1=0.7071, p2=1, p3=1.2247, Co=0).
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response curves for Cy=0 are indi-

1.6
T cated. The amplitude of vibration
3 ' /m’”" becomes larger for the smaller non-
Ny + linear coefficient {o.
s — s —— In Fig. 49, frequencies w1, w; and
: ;ﬁ;/ s . w; of summed harmonic oscillations
" = i of [pi+pe+ps] are plotted to the
2 s frequency of the external force o.
g L= | The full lines are wis =wio-+ cwiss which
L =] W give the frequencies of stable oscil-
S o= == o lations, and the dotted lines are curves
/ - of win = wis-+ ewiiu which represent
/,// _/&O/"/ frequencies .of gnstable oscillationg,
0.8 / ; - and the chain lines are wir=7iw 10
P e Eq. (4-20). In the figure, the change
30 3.2 54 36 of w; to w is almost linear.

Frequency @

FIG. 49. Frequencies w1, w; and w3 of 4. Experimental apparatus and
summed harmonic osciilation [pi+pa-+pal experimental results
(p1=0.7071, pa=1, py=12247, fo=0.1, Co=0). Fig. 50 shows the experimental

apparatus consisting of the steel
strips Kui, Ku and Ki (1 mm thickness and 10 mm width), the mass m, 72 and
ma attached to an end of each steel strips, and the coil springs K and K» con-
necting the mass. The nonlinearity of restoring force is given by the two steel
strips Ni, N slightly curved as shown in Fig. 50. The periodic external force is
furnished by horizontal oscillations of the frame. The values of several coeflicients
of the vibratory system are as follow: weights of the vibratory bodies are
mig=3214 g, meg=2182 g and ma/=105.8 g, spring constants Ki=40.3 g/mm,
Kp=192 g/mm, Ku=212 g/mm, Kn=K;=1105 g/mm and Ku=0, damping coef-
ficients cu=4.14x10"% g sec/mm, ¢;=125x10"* g sec/mm (or €2=3.36x10"% g
sec/mm), ¢i:=0.409 x 107% g sec/mm, ciz=¢3=0.321 107 g sec/mm and ¢ =0 and the
natural frequencies p:1=6.11 c/sec, p.=7.56 c/sec and ps=9.08 c/sec. The nonlinear
characteristics of restoring force are shown in Fig. 51, where (a) and (b) curves
correspond to force-displacement relation of x and x. respectively. The spring
characteristics, precisely speaking, not (kx-+pBx®) type but rather piecewise linear
and symmetrical to the origin. )

In Figs. 52 and 53 the amplitudes obtained by the experiment are plotted
against the frequency o of the external force. The symbols O, @ and @& in the
figures represent amplitude of x:, #; and x; separately. The left hand side figure
of Fig. 52 shows the response curves of the harmonic oscillations near the resonant
frequencies p1, p» and ps. The response curves are of hard spring type and the
jump phenomena occur. The right hand side figure of Fig. 52 and Fig. 53 show
the response curves of summed harmonic oscillation [pi+p+psl. where the
latter corresponds to case of the larger damping coefficent ¢;;=3.36 x107* g sec/mm.

When the initial condition is appropriately set up, the summed oscillation
[ p1+ps+ps] can occur in the region of slightly higher frequency than sum of the
natural frequencies pi+p.+p:=22.75 c/sec.
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F1G. 50. Experimental apparatus Fi1G. 51. Spring characteristics.

( p1==6.10 c/sec, pr=7.57 c/sec, p3=
9.08¢c/sec, Q=p1+pr-+p3=22.75 c/sec)
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Fi1G. 52. Response curves of harmonic oscillations [p1], [p2], [p3] and
summed harmonic oscillation [pi+p+p3] (m1=6.11 c/sec, p2=7.56 c/sec,
$3=9.08 c/sec, c2=1.25x10"% kg sec/mm, Q=p1-+ps-+p3=22.75 c/sec).

All response curves are discontinuous because of jump phenomena, and
damping coefficient becomes larger, the region in which the summed harmonic
oscillation of [pi+p+ps] can take place becomes smaller.

Fig. 54 is an example of the oscillatory wave obtained by experiment and
each wave includes three components of frequencies wi, w, and ws. The upper,
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§ Oo‘/(o L&° FiG. 53. Response curves of summed harmonic
"’/‘4 oscillation [p1-+p2+ps] (p1=6.11 c/sec, p»=7.56 c/sec,
$3=9.08 c/sec, Q=pi+p1+p3=22.75 c/sec, c2=3.36 x
2.0 10-% kg sec/mm).
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FIG. 54. Vibratory waves of summed harmonic oscillation [ pi-+p2-+-ps]
(w1t wy:ws:w=17:20:23:60).
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FIG. 55. Frequencies of w1, w; and ws of summed harmonic
oscillation [p1+pa-+ps] (71=0.2681, 7,=0.3327, 73=0.3992).
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middle and lower oscillatory waves in Fig. 54 correspond to xi, x» and x; res-
pectively. The vertical black lines in Fig. 54 indicate one period of the external
force and the vibratory wave changes periodically at each marks A. Between
a mark A and the next A the summed harmonic oscillation [ p1+p.+ps] vibrates
17, 20 and 23 times separately, while 60 periods of the external force are recorded.
Thus it is seen that the relations

w1+ o+ o= %-ga)—i- %%—w%- %}a) = =24.172 c/sec (4-25)

are satisfied. The relations of the frequencies wi, w: and ws; to « are shown in
Fig. 55, where dimensionless quantities w{ = wi/p:, wi=w:/pr and w} = ws/p2 (P2=
756 c/sec is one of the natural frequencies) are employed as wi, w, and ws
severally. In Fig. 55, the full lines represent frequencies w:, w; and w; theoreti-
cally calculated by Eq. (4-21), the chain lines are wi =70 and the experimental
results are represented by the symbol O.

5. Conclusions

In the present chapter, the following conclusions are obtained:

(1) When the vibratory systems with three or more degree-of-freedom have
symmetrical nonlinearity in spring forces, there is possibility of occurrence of
“summed and differential harmonic oscillations” [p;=p,i+prl.

(2) Through theoretical analysis, it is cleared up that only summed harmonic
oscillation [pi+p;+pr] can appear and all kinds of differential harmonic oscil-
lations do not take place.

(3) Characters of summed harmonic oscillation [p;+p,;+pr] are quite similar
to those of summed harmonic oscillation [2p;+p;] and sub-harmonic oscillation
of order 1/3.

(4) Occurrence of summed harmonic oscillation [p;+ p;+ pr] needs sym-
metrical nonlinearity.

(5) Between frequencies wi, wj, we and the frequency  of disturbing force,
the relation of wi+w;+wr=w always holds.

(6) Occurrence of summed harmonic oscillation [p;+p;+pr] are secured ex-
perimentally, and obtained theoretical results are verified through experiments.
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