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Summary

unified velocity distribution of incompressible turbulent flow in a two-dimen-
channel is calculated by making use of linear expression for shearing stress
assumed polynomial expression for mixing length. Introducing laminar sublayer

it is fairly well coincident with the law of wall and velocity defect law both in the
region near wall and central region, respectively, Using these results of velocity
distribution, a resistance formula is obtained, which shows fair agreement with
existing measurements.
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Symbols

half-width of the channel

mixing length

value of the mixing length at the center-line of the channel
pressure

Reynolds number based on mean flow velocity and channel width:
R=2umd/v

sectional Reynolds number based on frictional velocity and channel
half-width: Rs=v.d/v

x, y components of velocity

x, ¥ components of velocity fluctuation

velocity at the center of channel

mean flow velocity over channel width

frictional velocity

cartesian coordinates, where x is taken parallel to the axis of channel
and y normal to it measured from the wall

thickness of laminar sublayer

=1—y

non-dimensional distance from the wall: »=y/d

non-dimensional thickness of laminar sublayer

slope of mixig length at 5=

resistance coefficient : ; = ap _2d

Cde 1,
~2~pum

viscosity of the fluid
kinemaitc viscosity
density of the fluid
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g non-dimensionalized value of mixing length at the center-line of the
channel: o=1/;/d

T shearing stress

) shearing stress at the wall

1. Introduction

The logarithmic velocity distribution for a channel can be derived by applying
Prandtl’s? hypothesis for the turbulent shearing stress. Since it is universal in
character which determined only by the wall condition and the distance from the
wall, this velocity distribution is widely used as the “wall law”. Though the
idea of laminar sublayer is introduced, this “wall law” does not satisfy the boundary
conditions at the center-line of the channel and, therefore, it can not be applied
to the whole section.

In the center-line region of a channel a similarity rule called “velocity-defect
law” was established by von Karman®. This is also universal in character but
can not apply to the wall region.

These formulae have been verified by many experiments, for example, by
Nikuradse®, Laufer® for a channel flow and by the same authors®® for a circular
pipe flow. As it is shown by experiments each curve of these formulae can not
cover the whole section of a turbulent channel. Full profile for channel or pipe
flow has been presented by Reichardt” and Deissler® by introducing the turbulent
viscosity coefficient and Szablewski® has also presented a full profile for pipe
flow by combining these formulae. Pai'” has tried another attempt by solving
the Reynolds equation and obtained a full profile.

In order to obtain a resistance formula for a channel, it is necessary to know
the velocity distribution through whole section of a channel. Under the assumption
that the laminar friction was negligible compared with the turbulent one, Prandtl'V
has derived the universal resistance law for pipe flow from the logarithmic
velocity distribution.

Considering these situations it will be necessary to derive the unified theory
to describe the full profile of a turbulent channel flow. In this connection present
authors intended to develope a new expression of full profile, which enables us
to calculate the resistance formula. The basic concept of previous work! on
turbulent boundary layer along a flat plate has been reffered to the present one.
Applying the linear distribution for shearing stress and assumed polynomial
expression for mixing length to Prandtl's? hypothesis, full profile of velocity
distribution has been derived, which satisfies the boundary conditions at both ends.
The resistance formula is easily calculated by the use of the relation between
the shearing stress and Reynolds number derived from velocity distributions.

The major part of calculation can not be expressed in closed form and
numerical process has often been employed. The result shows fair agreement
with the existing measurements® V1),

2. Shearing Stress

The two dimensional flow of incompressible fluid in a channel is concerned.
Taking coordinate x parallel to the axis of a channel and y normal to it, the
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fluid is governed by continuity equation and equations of motion with the boundary
layer approximation :

on ov
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U T o= o T oy (2)
b _
By =0 (3)

where u, v are x, y components of the velocity, respectively. Density p is constat
and pressure p is an only function of x.

Assuming that the flow has velocity component along x-axis only, the variations
of velocity with x have vanished from Eq. (1). This corresponds to the condition
of fully developed turbulent flow. In this situation, it is given from Eq. (2):

or _ dp_
oy i @
Integration of Eq. (4) with y gives:
e= =B gy )

where d denotes the half-width of a channel. Nondimensionalizing Eq. (5) with
the wall shearing stress 7o, we have

T
w=1= (6)
where 9=y/d.
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FIG. 1. Distribution of shearing FIG. 2. Distribution of shearing
stress for vyyi/v=6. stress for vyyi/v="9,
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This linear distribution of shearing stress is given in Fig. 1 and 2 where
other curves show the component of turbulent shear stress which is calculated
in the following sections. Comparing the caluculated turbulent stress with the
experimental data by Reichardt'® and Laufer?, the present profile seems to be a
reasonable one.

3. Mixing Length

The laminar sublayer of thickness y; is considered, where y; is assumed to
change by the following law :

vyyi/v = A = const (7N

where 4, = yr,/p denotes the frictional velocity and » the kinematic viscosity. In
the following calculation, A=6 and 9 are assumed for two different channel flows.
Assuming that the mixing length is vanished in laminar sublayer and refering
to the experimental results?®, which show that the mixing length tends to a finite
value close to the center-line of a channel, the following boundary conditions are
imposed:

Z—Oj dlldy=xr aty=uy } )

il=1cle, dljdy=0 aty=d

We assume now an expression in series expansion up to the third degree for
the mixing length in order to satisfy the boundary conditions. Applying Eq. (8)
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F1G. 3. Distribution of mixing FI1G. 4. Distribution of mixing
length for vyi/v=6. length for veyi/v="9,
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to this expression, coefficients are determined as follows:

1d=c+C(1 -5+ Cs(1—79)°
= (64 Cy+ Cs) — (2C + 3C) 7+ (Cs -+ 3Cs) 7> — Cay’ 9

where o=1I/d, n=y/d= A/(%é) and

szfc(l—‘m)—réﬁ’ C, = k(l—9)—20¢

(I—7) S g S

A sectional Reynolds number is introduced here, defining
(10)

It will be seen that the mixing length is a function of parameter x, ¢, A and Rs.
In the present calculation, k=04, ¢=0.14, A=6 and 9 are employed.

Comparing with the measurements by Nikuradse®, Dsnch' and Laufer”, the
present expression seems to be valid as shown in Fig. 3 and 4.

4. Velocity Distributions

The equation of motion for the mean velocity in a turbulent flow is derived
from Navier-Stokes equation. Applying the boundary layer approrimation, it is
given:

ow . ou op 9 [ ou ’,‘7] (1)

U Tﬂ?)“‘é;: 20 T By u'a;“puv
where »' and o' are the velocity fluctuations in x and y directions, respectively.
Comparing this Reynolds equation with Eq. (1), we can find that the general
expression for shearing stress is considered as the sum of molecular shear and
Reynolds stress as follows:

c= ;%‘_ — o'y (12)

Within a laminar sublayer, the turbulent fluctuations are assumed to be decayed
off and, therefore, it is given from Eq. (12):

T=p= (13)

Non-dimensionalized velocity gradient is obtained by Eq. (13). Putting Eq. (6) we
have

Q( %/7}*) _ 'll*d T

Integration of Eq.(14) with the boundary condition, #=0 at %=0, gives the
velocity distribution in laminar sublayer:
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u . ._1_ 2
75; = Rs(?? 5 7 ) (15)

In the major part of the flow outside a laminar sublayer, Eq. (12) must be
used for the expression of the shearing stress. Applying the momentum transfer
theory to Reynolds stress term, it is given:

ou
T= 40 oy

vor( 2y (16)

Eq. (16) is solved to give the following result:

5
14

ou_ o v
oy %W*W'w
Putting it in the non dimensional form:

o(u/vy) :l/ /7o 1 1

20/ TV War TRy T IR un

Substituting Egs. (6) and (9) with fixed value of x=04 and ¢=0.14 Eq. (17) can
be integrated numerically to give the velocity distribution at %=%;. The initial
value u; at yp= is introduced from Eg. (15):

B R Rs(m - %mz) (18)

Ve
At the edge of laminar sublayer the mixing length tends to be zero, while
the shearing stress is finite, and therefore the velocity gradient in Eq. (17) has
an expression co—oco. But it is easily shown that the gradient tends to the finite
value by the use of series expansion.

2 2 3
Auled -t - R(R (L) e BRI () - o

It can be integrated in the region very close to laminar sublayer:

% =%‘i‘+al(7f—7}1) +ax(n =) +as(yg— 90+ alp—p*+ - - - (20)
where
a=Rs(1 =), a= -——}235, = — R’?g(l —a)*
dim = BEQ )R- =5}, k= —2E=m) =30

2 (1"'01)2

It is seen from Eq.(20) that the velocity distribution at the outer edge of laminar
sublayer also tends to a finite value u//v..
The integration through full section:

olufvy) | uc
v ayid) T, (21)
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TABLE-1. Velocity Profile (vyyi/v=6)

FIG. 5. Velocity distribution.

£-04 0-=014 2260

Rs=500 5= 103
_ : ) R
y/d u/vy uluc y/d l ulvy 5 ulue
0 0 0
0.006 5.982 0.2675
0.008 7.705 0.8446
0.012 5.964 0.2911 0.01 8.825 0.3947
0.016 7.677 0.3747 0.015 10.46 0.4680
0.02 8.791 0.4291 0.02 11.45 05121
0.03 10.43 0.5089 0.04 13.56 0.6065
0.04 11.41 0.5571 0.06 14.70 0.6574
0.06 12.68 0.6189 0.08 15.49 0.6928
0.08 13.53 0.6602 0.1 16,10 0.7199
0.14 15.11 0.7377 0.15 17.20 0.7693
0.2 16.11 0.7865 0.2 17.99 0.8046
0.4 18.09 0.8831 0.4 19.96 0.8925
0.6 19.28 0.9411 0.6 21.15 0.9457
0.8 20.09 0.9804 0.8 21.96 0.9819
1.0 20,49 1.0 1.0 22.36 1.0
Rs=2x103 Rs=5x108
T
yld %/ vy [ ule y/d ‘ u/vy u/the
0 0 0 0 0 0
0.0012 5.996 0.2248
0003 5.991 0.2479 0.0016 7.728 0.2897
0.005 8.842 0.3658 0002 8.852 0.3319
0.0135 12.42 0.5139 0.003 10.49 0.3935
0.02 13.58 0.56617 0.004 11.48 0.4305
0.04 15.49 0.6410 0.013 15.06 0.5647
0.06 16.58 0.6859 0.022 16.47 0.6174
0.08 17.34 0.7175 0.031 17.37 0.6511
0.1 17.94 0.7421 0.04 18.03 0.6760
0.15 19.02 0.7871 0.12 20.94 0.7850
0.2 19.81 0.8194 0.2 22,31 0.8365
0.4 21.76 0.9004 0.4 24.26 0.9096
0.6 2295 0.9496 0.6 25.45 0.9542
0.8 23.76 0.9831 0.8 26.26 0.9847
1.0 2417 1.0 1.0 26.67 1.0
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TABLE-1. Continued

Rs=104 Rs=2x104

i
y/d % %/, u]the yld w/vy 1 ufuc
s |
0 | 0 0 0 0 i 0
0.0003 5.999 0.1999
0.0006 5.998 0.2115 0.0005 8.819 0.2938
0.0008 7.731 0.2726 0.0007 | 1021 0.3401
0.001 8.855 0.3123 0.002 13.55 0.4515
0.002 11.51 0.4057 0.004 15.45 0.5148
0.003 12.76 0.4501 0.006 16.52 0.5504
0.005 14,22 0.5016 0.008 17.27 0.5753
0.007 15.14 0.5339 0.01 17.84 0.5945
0.0235 18.37 0.6478 0.02 19.62 0.6536
0.04 19.74 0.6961 0.04 21.39 0.7127
0.12 22.63 0.7979 0.1 23.76 0.7915
0.2 24,00 0.8462 0.2 25.60 0.8530
0.4 25,95 0.9150 0.4 27.58 0.9188
0.6 27.14 0.9569 0.6 28.79 0.9593
0.8 27.95 0.9856 0.8 29.60 0.9864
1.0 28.36 1.0 1.0 30.01 i 1.0
Rs=5x10% | s =105
yld U/ u/tts y]d %/ vy u]ue
0 0 0 0 0 0
000012 6.000 0.1851 0.00006 6.000 0.1755
0.00016 7.733 0-2386 0.00008 7.795 0.2279
0.0002 8.858 0.2733 0.0001 8.920 0.2608
0.0003 10.50 0.3240 0.0002 11.57 0,3383
0.0004 11.49 0.3545 0.0003 12.83 0.3751
00013 15.01 0.4632 0.0005 14.29 0.4178
0.0022 16.41 0.5063 0.0007 15.20 0.4446
0.0031 17.30 0.5337 0.00235 18.42 0.5386
0.004 17.95 0.5540 0.004 19.77 0.5782
0.012 20.78 0.6413 0.012 22.58 0.6603
0.02 22.08 0.6812 0.02 23.87 0.6980
0.04 23.84 0.7357 0.04 25.63 0.7495
0.06 24.88 0.7677 006 26.67 0.7799
0.08 25,62 0.7906 0.08 2741 0.8016
0.1 26.20 0 8085 0.1 27,99 0.8185
0.15 27.27 0.8416 0.15 29.06 0.8498
0.2 28.05 0.8655 0.2 29.84 0.8725
0.4 30.00 0.9256 0.4 31.78 0.9295
0.6 31.19 0.9623 0.6 32.97 0.9643
0.8 32.00 0.9874 0.8 33.79 0.9880
1.0 32,41 1.0 1.0 34.20 1.0

gives an important factor uc/v,, which is directly connected with the resistance
coefficient as shown in the next paragraph. Dividing the velocity distribution
#/vs bY ue/v,, we have the full profile of velocity #/uc as the function of y/d.
The results are shown in Fig. 5 and are tabulated in Table 1 and 2.

Comparing the present velocity profile with experiments®9*%, it shows fairly
good agreement as shown in Fig. 6 and 7. The logarithmic representation of
velocity profile is shown in Fig. 8. We can see from Fig. 8 that the velocity
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TABLE-2. Velocity Profile (v*yi/v=9)

Rs=500 Rs=108
y/d u/vy E %/ the y/d u/vy u/uc
0 0 0 0 0 0
0.009 8.960 0.3540
0.011 10.68 0.4219
0.018 8.919 0.3815 0.013 11.80 0.4661
0.022 10.62 0.4544 0.023 14.44 0.5705
0.026 11.73 0.5018 0.033 15.70 0.6203
0.046 14.36 0.6144 0.053 17.17 0.6784
0.066 15.63 0.6684 0.073 18.10 0.7151
0.086 16.47 0.7044 0.093 18.78 0.7422
0.106 17.10 0.7316 0.113 1933 0.7638
0.153 18.19 07779 0.1565 20.23 0.7996
0.2 18.96 0.8110 0.2 20.92 0.8266
0.4 20.97 0.8972 0.4 22.90 0.9048
0.6 22,17 0.9484 0.6 24.09 0.9520
0.8 22.98 0.9828 0.8 24,90 0.9840
1.0 23.38 1.0 1.0 25.31 1.0
Rs=2x103 Ry=5x103
y/d ulvy E “/uc y/d ufvy u/tie
0 0 0 0 0 0
0.0045 8.980 0.3310 0.0018 8.992 0.3036
0.0055 1C.71 0.3946 0.0022 10.84 0.3659
0.0065 11.83 0.4360 0.0026 11.96 0.4038
0.0075 12.61 0.4649 0.0046 14.61 0.4932
0.0085 13.21 0.4870 0.0066 15.87 0.5358
0.0095 13.70 0.5049 0.0086 16.70 0.5639
0.0105 14.10 0.5198 0.0106 17.33 0.5850
0.01525 15,45 0.5696 0.0153 18.38 0.6205
0.02 16.32 0.6018 0.02 19.12 0.6454
0.04 18.36 0.6769 0.04 20.98 0.7082
0.06 19.48 0.7182 0.06 22.04 0.7443
0.08 20.26 0.7470 0.08 22.80 0.7699
0.1 20.87 0.7692 0.1 23.39 0.7898
0.15 21.97 ‘ 0.8097 0.15 24,47 0.8263
0.2 22.75 | 0.8388 0.2 2525 0.8526
0.4 24.72 0.9112 0.4 27.21 0.9186
0.6 25.91 0.9551 0.6 28.40 0.9588
0.8 26.72 0.9850 0.8 29.21 0.9862
1.0 2713 1.0 1.0 29.62 1.0
Rs=101 Rs=104
y/d u/vy { u/tte y/d /vy /o
0 0 0 0.02 20.85 0.6671
0.0009 8.996 0.2878 0.04 22.66 0.7250
0.0011 10.73 0.3432 0.06 23.71 0.7586
0.0013 11.85 0.3792 0.08 24,46 0.7826
0.0023 14.50 0.4640 0.1 25.04 0.8013
0.0033 15.76 0.5043 0.15 26,12 0.8356
0.0053 17.22 0.5510 0.2 26.89 0.8604
0.0073 18.14 0.5803 0.4 28.84 0.9228
0.0093 18.81 0.6017 0.6 30.03 0.9609
0.0113 19.34 0.6187 0.8 30.84 0.9869
0.01565 20.20 0.6465 1.0 31.25 1.0
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FI1G. 6. Velocity distribution compared FI1G. 7. Velocity distribution compared
with experiments for vyyi/»=6. with experiments for vyyi/v=9.
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F1G. 8. Logarithmic representation of velocity distributions.

distribution has a close relation with logarithmic law in the intermediate region
of v.y/v.

In order to examine the velocity distribution on the basis of the velocity
defect law, (uc—u)/vs is calculated and shown in Fig. 9 and 10. Its logarithmic
representation is given in Fig. 11 and 12. It is found that in Rs=10° the present
theory produces neary single relation between (uc—u)/v4 and y/d in the central
region. This fact seems to illustrate the validity of velocity defect law in the
present calculation.

The velocity distribution near the center-line region can be examined in the
following. Putting
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Fi1G. 9. Expression of velocity Fi1G. 10. Expression of velocity
defect law for v*yi/v=6. defect law for vyyi/v=9.

C=1-7
into Egs. (6) and (9) we have
t/to=¢ (22)
I/d =0+ Gl +Cst® (23)
Eq. (17) can be deformed by Taylor expansion respecting ¢ as follows:
- 9%/ C”*) = R = R+ 2 RS+« - - (24)

Integration of Eq. (24) with the boundary condition, u=wu. at ¢=0, gives

_ 3 2 5 4
temt Bp Rop, Booy... (25)
*

Comparing this result with that of boundary layer along a flat plate, it is seen
that (uc—u)vs is varied as ¢* in a channel flow, while it changes as ¢ in a
boundary layer flow. This difference seems to be mostly due to a sensitivity to
conditions at the outer edge y=d.
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5. Resistance Formula

The dimensionless coefficient of resistance in a channel is defined by:

i _dp 2d
- d

% (26)

Lt
2 p m
where um denotes the mean flow velocity over the channel width and d the half

width of the channel. Putting y=0 in Eq. (5) and substituting this value of =,
into Eq. (26) we have

. 41’0 _ ]ii 2
A= _4(um) (27)

The important factor wm/vs is easily calculated from the known velocity distri-
bution

1
Um _\" % 4 (28)
U 0 Uk

Thus we can calculate the resistance coefficient 42 for each value of Rs. The
Reynolds number R based on mean flow velocity #» and channel width 24 is given
by:

R=2tmd _ovsd um _, Rs( iy (29)

o
10 T T T T T T T I
i —  PRESENT THEORY Vedr/r=6.0
R - Wyl = 9.0
3
10
- Y ]
4
L y i
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7
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- Y |
//
s W
101 - -
7,
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7
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7
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FIG. 13. Relation between Rs and R.
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F1G. 14. The resistance formula compared with experiments.
TABLE-3. Resistance Coefficient TABLE-4. Resistance Coefficient
(vyy1/v="6) (v:31/v=9)
R | R 1002 R R 1002
100 2.549 x 108 2,463 500 2.055 %< 10* 0.9473 .
200 6.032 x 103 1.759 103 4.520 % 104 0.7833
500 1.780 % 104 1.262 2x103 9.786 x 10* 0.6683
103 3.942 % 104 1.030 5x103 2.698 x 107 0.5494
2x103 8.615 x 104 0.8623 104 5.728 % 108 0.4877
5103 2,405 % 108 06917
104 5,148 x 105 0.6037
2 %104 1.096 x 108 0.5333
5x 104 2.981 % 108 0.4502
108 6.319 %108 0.4008

The relation between resistance coefficient 2 and Reynolds number R is shown
in Fig.14 and is tabulated in Table 3 and 4. Comparing the present result with
experiments® Y191 jt shows fair agreement.
use formulae fit to present calculation are derived from Fig. 15 for vey/»=6 and
9, respectively:

1
v
1
Vi

=2.97 logRV 4 —0.83

—=—=3.06 logRY 1 + 0.27

For the convenience of practical

at R=3.9x% 10"

at R=4.5x 10*

(30)
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FIG. 15. The approximation of resistance formula.

6. Conclusion

A new method to calculate a turbulent flow in a two-dimensional channel is
investigated. Making use of a linear expression for shearing stress and assuming
polynomial expressions for mixing length, a reasonable form of velocity profile
and corresponding resistance coefficient are obtained as functions of Reynolds
number.

The present results seem to be explained by a few parameter, é. e &, ¢ and
vsyt/v. In the present paper v.y:/»=6 and 9 are employed for the thickness of
laminar sublayer. The experiments by Nikuradse ef al. seem to be well re-
presented by vyyi/v=6, while the experiment by Laufer is represented by v.y://v=9.
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