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1. Introduction

The inviscid flow structure of the free jets at high plenum-to-test-chamber
pressure ratios can be solved by the method of characteristics although the case
by case, net work integration is necessary. Owen and Thornhill® obtained a
solution of the flow expanding into vacuum for the ratio of the specific heats of
r=7/5, and Wolff® obtained solutions for several values of r. Love, Grigsby,
Lee, and Woodling® obtained solutions for several pressure ratios, and presented
the position of the jet boundary, the shape of the barrel shock, and the Mach
disc, including the effect of opening angle of the nozzle at the exit. However,
they did not present the variation of flow quantities between the barrel shock
and the free boundary. Adamson and Nicholls? presented an approximate formula
giving the first Mach disc shock position by assuming that the pressure just
behind this shock is equal to the test chamber pressure, and also calculated the
jet boundary curve applicable near the nozzle exit, and at relatively low pressure
ratios with low exit flow Mach numbers. These calculations have been confirmed
by several experiments¥®®, especially for the Mach disc position at the axial
Mach number distributions. Ashkenas and Sherman” summarized the approxi-
mating picture of free jet expanding from a sonic nozzle, useful especially for
inviscid and slightly viscous description of flow in the central core surrounded
by the barrel shock and the Mach disc, and gave some concise and easily-employed
approximate formulae applicable in high supersonic regions.

These studies show that at high pressure ratios, the flow property in the
isentropic core looks very similar to the source flow, and for example, the density
p is proportional to the inverse square of radial distance # from the imaginary
source, although there is some angular dependency. For the sonic nozzle flow,
Sherman and Ashkenas proposed that pyzooc()s?%% where @ is the polar angle
measured from the nozzle axis, and @ is a function of the ratio of the specific
heats, r. This angular dependency looks especially to be a result of the inter-
action between the expansion waves emanating from the edge of the nozzle exit,
and it will be possible to eliminate this effect by taking some care in designing
the exit nozzle, for a given pressure ratio. In the preceding paper'?, the author
treated the flow field in the barrel shock layer theoretically, and presented a set
of similarity equations under the assumption of hypersonic pure source flow. In
the present paper, the numerical results of the practical calculation will be pre-
sented.
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2. Source Flow and Barrel Shock

Consider an inviscid, uniform, steady source flow with total spreading angle
of 26, expanding cylindrically or spherically into vacuum. It is assumed that
the flow is uniformly expanded, and the every flow quantity is a function of
radial distance 7 from the source, alone. If each quantity is referred to the

(a) Cylindrical Case (b) Spherical Case
Fi1G. 1. Source Flow Expanding into Vacuum.

sonic condition, denoted by the subscript “*”, then for sufficiently high Mach
numbers:
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where M, T, p, o, and u denote the Mach number, the temperature, the pressure,
the density, and the radial velocity of the flow at », and 7 is the ratio of specific
heats, respectively. Also, § equals to unity in a cylindrical case, and two in a
spherical case. From these relations, it is easily seen that the pressure is a
decreasing function of . These relations are applicable for M=1.

To keep the spreading angle constant, it is necessary to put a wall outside
the flow region (or to apply a distributed pressure along the boundary stream
lines to balance with the ones on these lines, which is not practical).

Now remove the wall beyond =7, where the pressure p(r4) iS p=, and, instead
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of the wall, apply a constant pressure p= in the wall-removed vacant region.
Then, because the pressure of the source flow at », larger than 74 is smaller
than p., the flow boundary is pushed inward which results in the formation of
a higher pressure and higher density region outside the source flow, and thus
the shock wave is formed as the boundary of the two regions, as shown in Fig. 2.

FI1G. 2. Formation of Barrel Shock.

This gives a simplified picture of the barrel shock in the free jets at high plenum-
to-test-chamber pressuie ratios. In some cases, the gas pressure p. at the nozzle
exit is still higher than the test chamber pressure p., and there is further ex-
pansion accompanied by the expansion waves at the nozzle exit, and these waves
give deviations from the ideal source flow in the downstream.

The flow of this type continues down to a Mach disc shock behind which
the pressure is of the order of p». The present paper treats the flow between
the barrel shock and the free boundary, from the standpoint of the hypersonic
flow theory, and the pure source type flow is assumed in the isentropic core.
The effects of the deviation from the pure source flow is not discussed.

3. Newton-Busemann Approximation to the Barrel Shock.

First, it is useful to observe the Newtonian approximation in order to see
some fundamental features of the hypersonic barrel shocks. In the limiting case
of v—1 and M— «, the shock relation gives the pressure p; just behind the shock
as follows :

Ds = puti sin’ g, (6)

where the subscripts “1” and “s” denote quantities just ahead of and behind the
shock wave, and ¢ is the angle between the shock and the radial line. This is
known as the Newtonian relation when ps is identified to the pressure along the
flow boundary or a body surface. Busemann® made a correction to the above
relation due to the centrifugal force effect. This is followed in the present case
using the polar coordinates, In Fig. 3, actually the thickness of the shock layer
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F1G. 3. Newton-Busemann Description of Barrel Shock.

is infinitesimally small, because in the Newtonian limit, 7 tends to unity. Let
the shock position be denoted by fs=0s(r). At this position, the pressure dif-
ference dpc in the infinitesimal layer composed of particles which collided with
the surface near ¢, and which have the velocity U(g;) is¥:

0(03,@5) UZ(QS)
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where dl is the thickness of this layer, and R the radius of curvature of this
stream tube which is almost the same as the curvature of both the shock wave
and the free boundary. From the conservation of mass:
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and also from the relations:
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the total pressure difference between the shock wave and the free boundary is
integrated to give:

1/2 ‘ sin d(é%qs—‘f‘ 1)
pc‘—"" (MT—‘]-) Pl 7 73 Sin3—1(00+os)

95

j cos ¢ sin® (8o + 05)d s,
0

and thus, the pressure on the flow boundary is:
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. _}’dﬁs
where tang =~ (9)
Egs. (8) and (9) with the boundary conditions that:
fs=0 at 7 =74 (10)

will give the solution §,=6s(#) for a given free stream pressure pp=p-. It is
rather tedious to solve Eq. (8), and therefore, as a first approach, Eq. (6), neglecting
the centrifugal force, is solved as follows. By putting p;=p., Eq. (6) is re-written
as:

Pw (r—l)m: ( Ve )“ 7oL

EESTY

This is solved in closed forms, giving:
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As another approach, let the centrifugal force effect be retained, but it is assumed
that:

tan 6o > 0s, 1> 6. (13)

In this case, after terms of order #: is neglected compared to unity, Eq. (8) is
reduced to :
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In the above equation, if the last factor of the right-hand side is approximated
by unity for =2, then Eq. (14) can be integrated to give:

el () - ()= () - )
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Eq. (15) is indicative in understanding the barrel shock shape of the present
T 8/2
model. If r>7,, the leading term gives that s, = _2n ( L) , and this sug-
N BB+ 7+
gest that the similarity treatment for 7+ 1 will be possible in analysing the flow.
More accurate solution of Eq. (8) or (14) can be obtained by the sucessive approxi-
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mation starting from Egq. (15).

Two things must be noted in comparing the present calculations with experi-
ments. First, in usual hypersonic flows passing a convex body, the solution with
the centrifugal force effects may not give a better comparison with the accurate
solution than that without the centrifugal force effects, and inversely, for a concave
body, the solutions may give a better results. In the present problem, the flow
geometry is similar to the flow passing the concave body, and therefore the
centrifugal force correction is expected to give a better comparison with the
accurate solutions. Second, for the free jet expanding from a circular sonic
nozzle, Ashkenas and Sherman” proposed an approximate formula for the density
field in the isentropic core, such that pr* is a function of P, which means that
the isentropic core is not of a source-type flow but a source-like one, which is
not discussed in the present paper.

Figs. 4a and 4 b show barrel shock shapes calculated by Eq. (11) and Eq. (15)
for po/p-=100 and 36.7, respectively, where the value of r has been taken to be
7/5 in calculating the flow in the isentropic core.
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Fi1G. 4a. Barrel Shock of the Spherical Flow
(B=2) and the Cylindrical Flow (8=1).
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FIG. 4b. Barrel Shock of the Spherical Flow Compared with
the Free Boundary Calculated by the Characteristic Method.
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F1G. 5. Coordinates System Chosen for Shock Layer Calculation.

4. Similarity Calculation

Under the assumption of pure source flow with spreading angle of 26, the
hypersonic small disturbance theory can be applied to the present barrel shock
flow, which is given in ref. (12) by the present author, and it was found that
there are similarity solutions within the hypersonic small disturbance theory.
The numerical solutions of Egs. (9) of ref. (12) are obtained for n=p8/2 where =1
or 2, y=7/5 or 5/3, respectively. Integrations are made by starting from z=1
toward =75 where 7=V, which is smaller than unity. At the free boundary,
the solutions have singularity, that is, the density goes up to infinity, and therefore
near this boundary, power reprentations of solution are matched with the numerical
solution at some value of 7 close to 7. Some of the calculated values are tabu-
lated as follows:

8 7 U Voo Pop
1 5/3 0.940 0.940 291
7/5 0.962 0.962 3.08
) 5/3 0.936 0.936 2.43
7/5 0.959 0.959 2.30

where the quantities at the free boundary, denoted by the subscript “5” are
expressed as follows:

1/2 B
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U Y -
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where : 2 T(T, 1>1/4.
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Also numerical solutions are plotted in Fig.6. The figures show that the pressure

and the angular velocity do not change appreciably from the shock to the free
boundary, whereas the density goes up to infinity at the free boundary, which
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FI1G. 6a. Shock Layer Solution for Cylindrical Case (8=1).
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FI1G. 6b. Shock Layer Solution for Spherical Case (8=2).
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means that the gas temperature goes down to zero at the free boundary in the
equilibrium, perfect gas flows.

It must be added some arguments about the shock position. Eq. (16) shows
that ;=0 at »=0, and 65 is a monotonically increasing function of ». However,
the pure source flow can not exist for the value of » smaller than 7., corresponding
to the sonic point, and also in the present theory it is assumed that, in the source
flow region, the Mach number M is much larger than unity. This is not correct
near the sonic point 7y, and therefore in the theory, 7/7+ must be much larger
than unity. Also, as shown in Fig. 2, the shock starts from 74, where actually
the shock is a Mach line, and therefore the initial condition on the shock shape
must be §;=0 at »=r4, which is not satisfied by Eq. (16) except when quantities
of order (r./7) is neglected. Thus, similarity solution should be accepted under
the condition; 7./r<1.

The similarity solutions give the same leading terms as the Newton-Buseman
approximation Eq. (15), except the proportionality constants. To obtain higher
order approximations, three kinds of terms should be taken into account, that
is; O(ra/7), 0(1/M’s*), and 0(0/6,), which can be accomplished by the similar
method as Kubota's'! series expansion.

The range of applicability of the similarity solution is given in ref. (12), or
more precisely, by:

f=1:
(T-I- 1)_(«“.13/2(7—1)(7/ _ 1)*1/2, <%z~)~1/T<2;71—%)1/2<<y/r*<<<%)—I(%%>1/2’
gz (17)
(T + l)—(r+1>/4(r-1)(r _ 1)-1/4’ (’%3> —1/2?(%]»1/4«1’/7’* «(%)—lmtan 00(%??1];)1/47
B=1, 2:
7’.4/7’<<1.

In addition to the above limitation, the effect of expansion waves or compres-
sion waves at the nozzle exit, if any, or real gas effects such as viscosity, heat
conductivity and further rarefied gas effects should be accounted for.

Conclusion

The cylindrical or spherical source flow with a finite initial spreading angle
and with a constant free boundary pressure, is analysed from the standpoint of
the inviscid, hyperonic flow theory. First, Newton-Busemann approximation is used
to see the fundamental behaviour of the barrel shock shape, and it is found that
the angular shock position 6s(r) measured from the initial free boundary, is
proportional to ##% for a large value of 7(>74), where =1 for cylindrical case
and B=2 for spherical case. Second, the numerical calculations of the hypersonic
small disturbance equations, derived in ref. (12), are made and plotted in Figs. 6 to
see the change of flow quantities in the shock layer. Last, the angular dependency
of flow quantities in the isentropic core, caused by the expansion waves at the
nozzle exit, is not discussed.
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