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A unified velocity distribution of turbulent incompressible boundary layer along
a flat plate is calculated by assuming polynomials of the third degree for shearing
stress and for mixing length. Introducing laminar sublayer it is found that the
velocity distributions are well coincident with those of wall law and of velocity
defect law in the region near wall and external boundary, respectively. In pure
laminar flow it coincides with K4rmdin-Pohlhausen’s profile. Solving the momentum
integral equation by these velocity profiles a resistance formula is derived. This
formula agrees well with Blasius’- and Prandtl-Schlichting’s law in respective ex-
tremities of Reynolds number, while it gives poor results at transition region.

1. Introduction

The logarithmic law in turbulent boundary layers given by Prandtl® can be
derived by the momentum transfer theory with assumed distributions of mixing
length. Taking account of both laminar and turbulent shear stress this idea
was extended to the turbulent flow with laminar sublayer. Refined formulae have
been presented by Rotta,” Reichardt®’ and van Driest.”

Since the derivation has no difference for other configurations, i.e. for channel
or pipe, these velocity distributions have been widely used as the universal law.
This “wall law”, however, does not satisfy the boundary conditions at the outer
edge and, thereofre, it can not be applied to the whole section.

In the outer region of turbulent boundary layer a similarity rule called the
“velocity defect law” was presented by von Karman® This is also a universal
law with wide applications excepting the inner region very close to the wall.

These formulae have been verified with many experimental data, for instance,
by Nikuradse,® Laufer” for a circular pipe, by Nikuradse,® Laufer® for a channel,
and by Schultz-Grunow'® and Klebanoff and Diehl! for a flat plate.

As it is shown by many experiments each curve of these formulae, which
belongs to two different families, can not cover the whole section of turbulent
boundary layer. The full profile has been presented by Reichardt® and Deissler®
by introducing the turbulent viscosity coefficient, and Clauser' and Coles' have
also presented a full profile by combining these two families.

In order to calculate the relation of shear stress or frictional drag to Reynolds
number it is necessary to know the velocity distribution through whole section
of boundary layer. In this connection Prandt!® assumed a shifted logarithmic
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distribution to satisfy the wall condition and calculated the resistance formula
for a flat plate, which was transformed later into a functional form by Schlichting
and has been verified its excellent result.

Basing on the very careful measurements on the flow along a flat plate
Schultz-Grunow ' found an empirical form of velocity distribution, which corrects
the original logarithmic distribution of the velocity defect law, and obtained a
resistance formula by using this distribution as the full profile.

Considering these situations it will be important to find a unified theory to
derive the full profile of turbulent boundary layer. In this connection the present
authors tried to have insight into the flow mechanism in the boundary layer and
intended to develope a new expression of full profile, which enables us to calculate
the resistance formula. The basic conception of Karméan-Pohlhausen’s method’™
in laminar boundary layer has been referred to the present work. In place of
the polynomial expression of velocity profile we introduce the distributions of
shearing stress and of mixing length both expressed by polynomials of the third
order. Since these expressions satisfy the boundary conditions at the wall and
at the outer edge, the derived full profile of velocity distribution satisfies the
boundary conditions at both ends.

The relation between shearing stress and momentum thickness calculated
from this profile is substituted into momentum integral equation to give the cor-
responding x-Reynolds number along a flat plate. The resistance formula is easily
calculated by the use of the relation between shearing stress and this x-Reynolds
number.

The major part of calculation can not be expressed into closed functional
forms and numerical process has often be employed. The results are quite
reasonable ones comparing with the existing informations.

2. Shearing Stress

The two-dimensional flow of incompressible fiuid along a plate is concerned.
Taking coordinate x along the plate and y normal to it, the flow is governed by
the equations of motion for boundary layer:

ou. - - 17 or
ou % +p oy = + ay (1
,g% =0, 2)

where #, v are x, y components of the velocity, respectively. Density p has a
constant value and pressure p is an only function of x.
Shearing stress ¢ has the following boundary vaues:

=7, at y=0 (3)
r=0 at y=3g, (4)

where ¢ denotes the thickness of boundary layer.
Two more boundary conditions are added by requesting Eq. (1) to be held
along the wall and on the outer edge. Substitution of #=v=0 in Eq. (1) gives
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(5)

The condition of smooth connection with the external flow of velocity u. is ex-
These conditions transform Eq. (1) into the

pressed by #=u. and ou/oy=0.

form:
or due dp
e =2 pue__._._ + —
oy ax ax at y=o, 6)
=0

where the condition of potential flow at the outer edge is applied.
The shearing stress is now assumed to be expressed by series expansion up

to the third degree in order to satisfy the four conditions. Introducing a parameter

of pressure gradient
- 0 d
o dx ’

a polynomial expression of t is given by using Egs. (3)-(6):

in=1+P7;—(3+2P)ﬂz+(2+P)773 (7)

where »=y/8. For a flat plate it is simplified by putting P=0:
Lo=1-37+27 (8)

70
This distribution of shearing stress is given in Fig. 1, where other curves
show the component of turbulent shear stress which is calculated in the following
chapters. Comparing with the measured distribution by Schultz-Grunow'” as

shown in Fig. 2, the present profile seems to be a reasonable one.
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FIG. 2. Shearing stress.

Fi1G. 1. Distribution of shearing stress.
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3. Mixing Length

The laminar sublayer of thickness v is considered, where y is assumed to
change following the empirical law:

vy yi/v = constant = A, (9)

where v. =Vt /p denotes the frictional velocity and » the kinematic viscosity.
In the following calculation A=5 is employed for the smooth flat plate.

According to Rotta’s idea we assume that the mixing length is vanished in
laminar sublayer and that it starts to grow up at the outer edge of sublayer.
In this connection we can put the following boundary condition to the distribution
of mixing length:

[=0, dildy=r at y=yz}

10)
I=1l, dl/dy=0 at y=94

where I denotes an empirical value of mixing length at the outer edge. Some
experiments’” seem to show that the mixing length tends to a finite value close
to the external region.

We assume now an expression in series expansion up to the third degree for
the mixing length, where coefficients are determined by four boundary conditions
of Eq. (10). Introducing a parameter A=1/3, it is given by

/6=214+C1=9)°+Co(1=7°
=(A+C+C) —(2C+3C)y (11)
+(C2+3Cy) 7' = Cal
where

wd =) =32

w(1—m) —22
(1—m)*

CZ= (1_‘771)3

E Ca:‘:“'

and y =y1/0 = A/ (08/).
A sectional Reynolds number is now introduced, defining

Rsz U*a . (12)

v

It will be easily seen that the mixing length is a function of parameters x, 1, A
and Rs. In the present calculation #=04, 1=0.06 and A=5 are employed.

Comparing with the measurement by Schultz-Grunow!® the present expres-
sion seems to be valid as shown in Fig. 3.

Assuming the law on laminar sublayer given by Eq. (9) to be formally
effective over whole region of Reynolds number, the distributions of mixing
length are calculated as shown in Fig. 4.

It is found that the flow becomes pure laminar for Rs<A(=5). The inter-
pretation of flow mechanism in intermediate region of 5< Rs<100 belongs to a
future problem. The coexistence of laminar and turbulent layer with same order
of thickness is a little doubtful phenomena, since it has not been confirmed in
experiments.
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4. Velocity Distributions

Within a laminar sublayer the turbulent shears tress is assumed to be decayed
off and, therefore, it is given

T = . (13)

The non-dimensionalized velocity gradient is obtained by Eq. (13). Putting
Eq. (8) we have

o(u/vy) _ vid T
ow/o) T v

=R(1-37+2%% (14)

Integration of Eq. (14) with the boundary condition, #=0 at =0, gives the velocity
distribution in laminar sublayer:

u 3y 14

In the major part of turbulent boundary layer the shearing stress should be
considered in more general form. The equation of motion for the mean velocity
in a turbulent flow is reduced from Navier-Stokes’ equation. With the boundary
layer approximation it is given

ou. ou _ _©op . O ou _ i
o3+ ov E T 5 [u o puv] (16)

where #' and o' are velocity fluctuations in x and y direction, respectively. Com-
paring this equation with Eq. (1) the general expression for shearing stress is
obtained as the sum of molecular shear and Reynolds stress.
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Y oW (17)

It must be noticed that this expression of shearing stress is not a hypothetical
one as that expressed by assuming the sum of laminar and turbulent shear
stresses.

According to the conception of momentum transfer theory Eq. (17) is deformed.

_ ou of ou \?
c=n o) (18)

Eq. (18) is solved to give the velocity gradient

ou / T A
o TVt

14

T

9
4

v
41
It is non-dimensionalized as follows:

a(%/?}*> _/ T/To,,, 1 _ 1
o) AN W) T ARNe) T TR0 (19)

Substituting Egs. (8) and (11) with fixed value of £=0.4 and 1=0.06 Eq. (19)
can be integrated numerically to give the velocity distribution beyond »=%:, the
initial value #; at = is supplied from Eq. (15):

ul/v:g'( = Ry — 7)? -+ 7??/2) (20)

At the edge of laminar sublayer the mixing length tends to zero and the
velocity gradient in Eq. (19) has an expression co—oco. ‘This is easily shown to
tend a finite value by the use of series expansion.

oln/v,) =RL ——RS(RS-%)z(%)Z 2 Rﬁ(iﬁs%>g(~g>4+ _ (1)

It can be integrated in the region close to the edge of sublayer:

W]V =1/ Vs + a1 — 1) + azly —p)°
+ (as — Rsaii*/3) (g — ) *® (22)
~+ (aq - Rsﬂilfk/z - delaz 52) (’ﬂ —Wl)4+ AR

where

=Rl ~37+29)), aa= —3Rs(1—73), aa= — Rs(1~2%)
Gi=Rs/2, k= —{2x(1 =) =32}/ (1 —)°

Eq. (22) was used as an auxiliary expression to check some part of integration.
As the velocity gradient approaches to the numerical value of RBs, which takes
a very large value at high Reynolds number, in the wall region, each division
for the numerical integration of Eq. (19) should be taken as small as the order
of R;' in the region close to the edge of sublayer.
The integration through full section;
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1 a(u/v*) Ue
f, awio) 91T (23)
gives an important factor #./v., which is directly connected with the local skin
friction as shown in the following paragraph.

Dividing the velocity distribution #/vs« by ue/v«, we have the full sectional
profile of velocity #/u. as the function of /8. Numerical values are given in
Table 1 (a), 1 (b) and in Fig. 5. It is easily seen that the profile for Rs<5 is
coincident with Karméan-Pohlhausen’s laminar profile.

Comparing with experiments® ' the present velocity profile shows to be
fairly good results as in Figs. 6 and 7, where Reichardt and others’ experiments'®

TABLE 1 (a). Velocity Profile-1

R

7 5 10 | 20 | %0 | 50 | 100 20 | 500

0 0 0 0 0 0 0 0 0
010 2286
015 3231
020 3793
025 2623
040 3862
050 | 0008 | .1003 | .1127 | .1339 | .I813 | .2995
060 3563 | 4728 | .5524
200 | 1981 | .1991 | 2230 | .2659 | .3600 & .4975 | .5672 | .6237

.200 .3856 3876 | .4358 5145 5970 6548 .6899 7246
.300 5541 5570 | .6232
400 6976 7013 7545 7785 7961 8117 .8248 8411
.500 8125 .8168

.600 .8976 9012 | 9099 9113 9114 9124 9153 9213
.700 9541
.800 .9856 9858 | 9851 9827 9814 | .9787 9776 | 9780
.900 .9981

1 1 1 1 1 1 1 1 1

TABLE 1 (b). Velocity Profile-2

Rs

7 1x10 i 2x10 | 5x10 E 1x10 E 2x10 s 5x10 | 1x10 | 2x10 ‘ 5x10

0 0 0 -0 0 0 0 0 0 0
.00001 1278
.00005 1415 2207 2785
.0001 .1489 2327
.0005 .1689 2625 .3343 4081 4378
001 1793 2777 .3384 3923 4275 4561 4828
002 .2948 .3581 4027 4471 4781 5053 5275
004 .2883
.005 .2108
.006 2511 .3517 4266 4653 4975 5323 5581 5789 5991
.010 .3497 4182 4780 5112 .5398 5712 .5949 6137 6322
020 4509 .4983 5451 5728 5972 6243 6453 6614 6776
.060 5899 6199 6527 6730 .6914 7119 7284 7403 7526
100 6529 6772 7046 7216 7373 7546 7691 7788 7893
.200 7443 7615 7813 7938 .8055 8181 8294 8360 8438
400 8515 8610 8722 8795 8864 .8936 .8989 9041 .9087
.600 9259 9303 9358 9394 | 9429 9465 9491 9518 9541
.800 .9789 .9800 9814 9824 9834 9845 9852 .9860 9867

1 1 1 1 1 1 1 1 1 1
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F1G. 7. Logarithmic expression of velocity distributions.

for a circular pipe are also added for the reference in order to show the velocity
profile close to the wall. If it is noticed that the range of Rs=10° is corresponding
to the range of R.=>10° we can see from Fig. 7 that the velocity distribution has
a close relation with logarithmic law in the intermediate y-region of the boundary
layer.

In order to examine the velocity distribution on the basis of the velocity
defect law the decrement of velocity from the external velocity is calculated and
is shown in Figs. 8 and 9 comparing with experiments. It is found that the
present theory produces almost single relation between (s.—u)/vs to /6 in the
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' range of Rs=10%, while the other curves
E”RP?f'me"f for 5<Rs<10° might not be valid. These
« T80 7 illustration seems to show the validity of
o 1281 Schultz- the present calculation.
s 20 Grunow | The behaviour of velocity distributions
. 3i82 close to the outer edge can be calculated
: %%ng}’ﬂem 1 in the followings. Putting
C=1-7
}82 E d h
into s. (8) and (11) we have
g‘@:’ *Prﬁsen‘t q ( ) ( )
N I
o3 1heary fra=3C -2 (24)
RSN o
NS Us=1+CC+Csl  (25)
0 02 04 06 08 10 Eq. (19) can be deformed by Taylor
FiG. 8. Distribution in the velocity expansion respecting ¢ as follows:
defect law.
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S(ulvy) 9 3 2133 p4 2953 45
e =3 RL 2R -9V RC+ 125 R+ - (26)
Integration of Eq. (26) with the boundary condition
u=u, at £=0 (27)
gives
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It is easy to calculate the thickness of boundary layer by the use of velocity
profile. The displacement thickness 6% and the momentum thickness ¢ are calcu-
lated by the numerical integration of

1- —ﬁ;)dvy, «g~ = SZ—Z;(JL - u%)dﬁ. (29)

Obtained values are shown in Table 2 with those of u./v,, #:6/v, #.6%/v and %.0/v.
The non-monotonic change of 6/6 may be caused by the formal extension of
the law of sublayer thickness, 7e. Eq. (9), into the intermediate region of small

Reynolds numbers. The value u.0/» derived from 6/8, however, shows a monotonic
variation, since the change of Rs is much predominant.

TABLE 2. Parameters of Profile

22 Vs
Rs 2 =%

Vg Ue

1 0.500 2 .3000 | 1175

2 1.000 1 .3000 |+ .1175 l
3 1.500 | .6667 3000 1175

4

5

& wd | wo¥ 2
69 |

» b4

2.000 | .5000 .3000 | 1175
i 2.500 | .4000 3000 | 1175 125010 | 3,750 1.468
10 4974 | 2011 2979 | L1167 | 4974 %10 1.482 %10 | 5.806
20 8.849 | .1130 2754 | 11834 | 1.770%10% | 4.873x10 2.008 x 10
30 1117 08949 | 25645 1129 3.352x10% | 8.531x10 3.784 <10
50 13.76 07269 | 2300 | 1136 | 6.879x10? | 1.582x10? | 7.813x10

1x10% | 16.65 06005 | .2042 & 1144 1.665 < 10% | 3.400 % 10% | 1.904 x 102
2x10% | 19,05 05249 . 1833 | .1130 3.810<10% | 6.984x10% | 4.304 <107
5x10% | 21.87 04573 1621 | .1088 1.093 %104 | 1.773%10% | 1.190 < 10°
1x10% | 23.72 .04216 | .1495 | .1051 2372104 | 3.547x10° = 2.492 103
2x10% | 2552 03919 1391 | .1013 5103 x10¢ | 7.097x10% | 5.171 %108
5x10% | 27.88 03587 1272 | 09572 | 1.8394x10° @ 1.774x10% | 1.334x10*
1x10* | 29.60 03379 | 1199 09203 | 2.960 <105 | 3.549 <104 = 2.724 x10¢
2x10% | 31.32 03193 | 1131 | .08834 @ 6.263x105 | 7.083x10* | 5.533x10% |; B*¥
5x10% | 33.58 02978 | 1054 | 08410 | 1.679x10° | 1.770x105 | 1.412 x 108
1%105 | 35.32 .02831 1001 | .08049 | 3.532x 108 | 3.536x10% | 2.843 108
2x105 | 37.24 02685 | .0951 | .07766 | 7.449x10% | 7.084x105 | 5,785 108
5x10%  39.11 02557 1 0906 | .07459 | 1.9556x107 | 1.771x<10% | 1.458 %108

”

* Region A: pure laminar, B: fully turbulent.

5. Solution of the Momentum Integral Eguation

The velocity profiles in individual section are obtained so far as functions of
R;=v*3/v. In order to know the corresponding situation along x and to calculate
the frictional drag coefficient as a function of Reynolds number, the momentum
equation should be solved.

The momentum integral equation is given by

dﬂA 3 _1-‘ dite _ '5'0/0
g TR0 = (30)
For the flow along a flat plate it is simplified:
s v\’
ax = <—ﬁe-) . (31)
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It is noticed that v,/u. is available as a function of #.0/». Considering this con-
dition Eq. (31) is deformed in the following expression:

(@)}(ﬁeﬁ) _ q(ex). (32)

Vs v 14

Integration of Eq. (32) gives the relation between ¢ and .

!

v Vi v

where the integral constant is determined by the condition:
=0 at x=0 (34)

In the region of small Reynolds number, where Rs<5, the whole field is
covered by laminar layer and, therefore, Eq. (15) can be applied to the whole
section. Putting »=1 into Eq. (15) we have

te/ vy = Rs/2 (35)
The corresponding velocity profile
wltte =27 —27%"+ 1", (36)

is found to be coincident with that given by Karman-Pohlhausen's theory. The
momentum thickness can easily be calculated.

8/6 =37/315 (37)

Combining Eqgs. (35) and (37) we have

2
e \* 1 wed _ 315 uef
(5;) - y 74 v (38)
By the use of this expression Eq. (32) can easily be integrated in an analytical
form. Determining the integral constant by Eq. (34) we have

2
e - a () @
or
1/2
ujﬁ = \/ ’.:.1’411? ( uzx ) ’ (40)

At the edge of pure laminar region of the present theory, where Rs=5, u.0/v
and #uex/v have values of

u30 _ _7185_‘ UeX - 23125
( v )RN = 126, ( v )Rs:s = 5040 (41)
In order to calculate Eq. (33) beyond the region of Rs=5 the relation between
(#e]vs)? and uqf/v is delivered from the previous result given in Table 2. It is
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1 10° 10* 10°
U6/
F1G. 10. Relation of (ue/v4)? to u.d/v.
TABLE 3. Relation of Re to #0/v shown in Fig. 10. Using the interpo-
lated values the integration in Eqg.
2 | q
el (”) Bex s (33) is calculated as shown in Table
v Vi v i 3
%-45825 ggg g-gg gég For the practical use it is more
4 17.0 3.41 310 118 convenient to express every quantity
g gig ?gg 10t 8;2% as a function of x-Reynolds number,
: e : ie. R.=ucx/v. Interpolating values
1x10 42.3 2.13 .0473 . . .
2 78.0 321 0256 in Table 3 such an expression is
4 129 2.93 5103 .0156 given in Table 4 and in Fig. 11. It
6 164 5.87 0122 : h 1 dto K4 .
8 190 0.41 0105 is seenthat all curvestendto arman-
15102 212 1345104 100946 Pohlhausen’s theory in pure laminar
2 282 3.85 00709 region, while that they approach
é zgg i.ggxlos 88%8% closely turbulent law in the high
8 432 2.62 .00463 Reynolds number region. In the
1310 457 3.51 00438 region of 10°<R,<10° we have ap-
2 536 851 .00373 i
4 619 201%105 | 00323 proximately
6 670 3.31 .00299 N
8 708 469 .00283 #ed v = 0.100( 22/ )™ (42)
Tl [ N S wed" [0 = 0.046 (sex/»)™*"  (43)
; 2% | 500 06207 ueh/y = 0010w/ )™ (4)
8 1037 7.13 .00193 .
150105 1072 9.94 00187 ueb¥/v is very close to the value
2" 1186 2.06x108 | .00170 obtained from the 1/7-th power ve-
‘é %gg? ?-% 88}22 locity distribution law, which is
8 1432 1.01x10° | .00140 written.
13108 1471 1.30 .00136

wed* v = 0.046 (sox/ v)*® (45)
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TABLE 4. Variation of Parameters with Re

R R o 9 40 20 sl

g ‘ J v v v
4.588 5.00 300 1175 1.25x10 3.75 1.468
6 5.37 .300 1175 1.44 4.32 1.69
8 5.74 .300 1174 1.65 4.95 1.94
1x10 6.10 .300 1174 1.85 5.55 217
2 7.27 .300 1174 2.61 7.82 3.06
4 8.63 299 1171 3.71 1.11x10 4.34
6 9.40 298 1169 4.38 1.31 5.12
8 1.30 %10 297 1166 5.26 1.56 6.14
1102 1.09 297 1164 5.90 1.75 6.87
2 1.32 .293 1155 8.42 2.46 9.72
4 1.60 286 1144 1.21 %102 3.45 1.38 x 10
6 1.81 .280 1138 1.49 417 1.70
8 1.98 276 1135 1.74 4.80 1.97
1103 2.13 273 1133 1.96 5.34 2.22
2 2.71 .260 1129 2.86 7.43 3.23
4 3.53 246 1129 4.23 1.04 % 102 4,78
6 4.15 .238 1132 5.35 1.28 6.06
8 4.71 233 1134 6.36 1.48 7.22
1x10¢ 5.23 228 L1136 7.30 1.67 8.30
2 7.36 215 1142 1,14 %108 2.45 1.30 % 102
4 1.07 % 10% 202 1143 1.79 3.62 2.05
6 1.35 195 1140 2.39 4.65 2.72
8 1.62 189 1136 2.95 5.58 3.35
1103 1.84 5102 187 1132 3.46 »% 103 6 46 % 10? 3.92 % 102
2 2.88 174 1115 5.84 1.20 % 108 6.51
4 4.71 164 1092 1.02 % 104 1.66 1.11 %< 10®
6 6.27 158 1077 141 2.23 1.52
8 7.79 154 .1065 1.78 2.74 1,90
1108 9.23 151 .1056 2.16 3.27 2.28
2 1.57 % 103 143 1024 3.89 5.56 3.98
4 2.69 135 0993 7.06 9.55 7.01
6 3.73 131 0974 1.01 <105 1.82 % 104 9.80
8 4,71 128 L0961 1.30 1.66 1.25 % 104
1107 5.60 126 .0952 1.58 1.99 1.50
2 9.87 120 .0921 2,93 3.52 2.70
4 1.77 %< 104 114 .0891 5.50 6.28 4,90
6 2.49 111 0874 7.93 8.81 6.93
8 3.16 109 .0862 1.03 x 108 1,12 % 105 8.84
1108 3.83 .108 0852 1.26 1.36 1.07 %< 105
2 6.88 103 .0823 2.38 2.45 1.96
4 1.25 %105 0983 .0795 4.50 4.42 3.58
6 1.78 .0959 0781 6.48 6,22 5.06
8 2.27 0944 0772 8.47 8.00 6.54
1x10° 2.74 .0934 .0766 1.03 %107 9.66 7.92
2 5.00 .0906 0726 2.01 1.82 x 108 1.46 < 108

6. Resistance Formula

The coefficient of local skin friction denoted by C% is easily calculated by

The formulae in pure laminar region is obtained from Eqs. (38) and (40).

Cr=

To

{ U

(1/2) pud = 2\7(;

y

(46)



An Analysis of Turbulent Boundary Layer Along a Flat Plate 47

10° ; : :
1.8
v, —-—  Kérman ¢ Pohthausen
s L Present Theory
.Q é
Yo 6
7 1ot 2 1
us |Lus* S s 5*
UBS _‘) ‘) T 13 =RS ——6-—-
i K
Z~ \i 1)
10* - — o
/ _ = \ 9 \\\\:
//é//:/’ T 5
7/
i - " 107
i 10 i 10° 10® 10"
P\zE UQ X/'\)
Fi1G. 11. Distributions of doundary layer thicknesses.
1 T T ]
C 1 i 1 i
R Theory i
—-—- Blasius
C, ] — - Karman-Pohlhausen 4
7 —— Prandtl=Schlichting
0'1 - Sehultz~ Grunow
1 L ———— Present T“neomj -
i Experiment :
| % Schultz~ Grunow
X oo Dhawan |
. \\\ i
7
107 \\ ‘ -
i \ \%@\ ‘
- Q%% \R-- |
| T
g |
10°
1 10? to* 10° 10°
Rz
FiG. 12. The coefficient of local skin friction.
C' = +148/315 R;"? (47)
f

Numerical values of C beyond Rs=5 is given in Tables 3 and 5 and is shown
in Fig. 12. Comparing with theories by Prandtl-Schlichting” and Schultz-Grunow'”
and with experiments by Schultz-Grunow'® and Dhawan,” C; of the present
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TABLE 5. Coeflicients of Skin Friction
R 1 c'y l ¢r E R ’ c'y } [
4,588 .320 640 1105 | .00568 | .00785
6 .280 .560 2 .00492 | .00654
8 242 485 4 00426 | .00554
6 00396 | .00506
1x10 | .217 434 y '
5 154 ‘307 8 .00376 | .00476
4 .109 217 1x108 | .00362 | .00454
6 .0886 177 2 .00324 | .00398
8 0767 154 4 .00289 | .00351
6 .00272 | .00327
1x10% .0684 137
3 0484 | 0971 8 .00261 | .00312
4 .0351 .0688 1x107 | .00252 | .00301
6 .0293 0565 2 .00229 | .00270
8 .0258 0492 1 4 .00208 | .00244
6 00197 | .00230
1x10% .0235 .0443 y N
5 0178 0322 8 .00190 | .00221
4 .0139 .0239 1x10%8 | .00185 | .00214
6 0121 0202 | 2 .00169 | .00195
8 0111 0181 | 4 00155 | .00178
6 .00148 | .00169
1x10¢ .0103 0166
5 00844 | 0129 8 .00144 | .00163
4 .00703 | .0103 1%10% | .00141 | 00159
6 .00640 | .00908 || 2 00131 | .00147
8 .00598 | .00835

theory is found to be a reasonable
one. In the high Reynolds number
region it is almost identical with
Prandtl-Schlichting’s theory.

The coefficient of total skin fric-
tion which is denoted by ¢y is calcu-
lated by the integration of ¢} along
x.

1t 1 (",
cr = }—Socfdx =R, jo ¢ ydRx (48)
In pure laminar region we have

148 12 ~1z
cr=2 /315 = 1371 R;", (49)

which is identical with Karméan-
Pohlhausen’s theory,!*’ while the exact
formula by Blasius is given by

cr=1.3282 R;'* (50)

The integration of Eq. (48) beyond

this region is performed again by the numerical method and we have the results

as shown in Table 5 and in Figs. 13 and 14.

As shown in Fig. 13 the present theory gives a reasonable resistance formula
in fully turbulent region.
in 10°<£R,<10" and is almost identical with Prandtl-Schlichting’s theory® in
10'< R, <108

10

It is a little higher than Schultz-Grunow’s theory'®

N

N

T T
Theor
—-— Blasius
——— K&rmédn- Pohlhausen
—— Prandt!- Sch/:chtm?
~--— Schultz-Grunow
—— Present Theory

N\

X |

10°

10*

Setl

10°

Rx

Fi1G. 13, The coefficient of total skin friction.
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F1G. 14. The resistance formulae compared with experiments.

Starting from the pure laminar flow, which is identical with Karman-
Pohlhausen’s theory,” c¢s of the present calculation deviates gradually from the
laminar law and connects smoothly with ¢s in the fully turbulent region. The
range of validity of the present theory may depend on the range of validity of
the sublayer thickness law, which might not be effective in the intermediate
range of R.. It is well known that pure laminar flow can be maintained up to
the order of R.=5x10°% and the gradual shift from laminar to turbulent flow has
not been observed. Whether it can be real under the special conditions or not,
is not clear now and, therefore, precise investigations of flow mechanism in the
intermediate range of R should be performed, as well as in the range of transi-
tion.

For the convenience of practical use a formula fit to the present calculation
is derived in the same manner as Schlichting did.

¢r = 0.554(log R.) ~*% (51)
It is effective in the range of
5x 10°< Rx<5x 10°

The corresponding expression of Prandtl-Schlichting’s formula is given as a
reference.

cr =0.455(log Ry) % (52)

7. Conclusion

A unified method to calculate the turbulent flow along a flat plate is investi-
gated. Assuming polynomial expressions for shearing stress and mixing length
a reasonable form of velocity profile and corresponding coefficients of skin friction
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are obtained as functions of x-Reynolds number. Whole things seem to be reduced
and explained by a few parameter contained in the mixing length, ie. ¢ and 2,
and by the law on the thickness of laminar sublayer, ie. v,v/v=constant. In
the present paper the latter is assumed to be extensible into a non fully developed
turbulent flow. The results in this intermediate R, region may oniy be a formal
one.

In fully developed turbulent region, however, the present velocity profile and

the calculated resistance formula are found to be quite reasonable ones.
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APPENDIX. Velocity Distributions

Rs=5 Rs=10
¥ 1 o u v 1 u U
] d ‘ Ve e 0 0 Uy e
0 Lo 0 0 0o | 0
Nt 495 .1981 A 991 .1991
2 .964 .3856 2 1.928 3876
3 1.385 55641 3 2.771 5570
A4 1.744 .6976 A4 3.488 7013
.5 2.031 8125
6 2.244 .8976 5 0 4,063 8168
7 2.385 9541 55 .01788 4,293 8631
8 2,464 .9856 6 03184 4,432 5012
9 2.495 .9981 3 .05808 4.903 9858
1 0 2.500 1 1 06000 4,974 1
Rs=20 Rs=30
y ! i @ 2 < “
14 17 Vi Ue 0 0 vy Ue
0 0 0 0, 0 0
Jd 1.931 .2239 .16 0 4,87 4361
2 3.856 4358 2 01257 5.75 5145
.25 0 4,727 5341
3 .01819 5.514 6232
4 .04464 6.677 7545 A4 .05986 8.70 7785
.6 .06683 8.052 9099 .6 07173 10.18 9113
8 06512 8.717 9851 .8 .06588 10.99 9837
1 .06000 8.849 1 1 .06000 11.17 1
Rs=50 R;=100
¥ 1 u u y 1 U u
) 17 vy 4o d g Vi e
0 0 0 0 0 0
.05 0 4,99 2995
Nt 0 4,95 .3600 | .06 003936 5.93 .3563
15 .01837 6.96 .5059 A 01843 8.24 4975
2 03366 8.21 b5970 | .2 04656 10.91 .6548
A 06389 10.95 7961 4 07428 13.62 8117
.6 07449 12.54 9114 | 6 07605 15.19 9124
8 06626 13.50 9814 |+ .8 06644 16.30 9787
1 06000 13.76 1 | 1 06000 16.65 1
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Rs=2x10? Rs=5x10?
y A “ |2 Lo w |
a % Vs e d I 1 Uy Ue
0 0 0 0 0 0
01 0 500 | .2286
025 0 _ 5.00 2623 | .0125 .0009961 6.17 2820
.0325 .002965 6.36 3340 015 001984 7.07 .3231
.04 .005859 7.36 3862 | .02 .003938 8.29 3793
.06 01324 9.01 4728 .06 .01847 12.08 .5b24
1 02657 10.81 5672 11 03115 13.64 6237
2 05223 13.14 6899 | 2 .05541 15.85 7246
4 .07660 15.71 8248 | 4 07790 18.39 8411
.6 07670 17.44 9153 | .6 07706 20.15 9213
.8 .06651 18.62 9776 8 06654 21.39 9780
1 .06000 19.05 1 1 06000 21.87 1
Rs=1x103 Rs=2x103
y 1 U K2 Y 1 “ “
0 d Uy Ue 0 J Vg Ue
0 0 0 0 0 0
.0025 0 5.00 .1960
00325 .0002997 6.37 .2496
005 0 5.00 2108 | .004 .0C05986 7.36 2883
.006 .0003994 5.95 2511 | .006 .001392 8.97 3517
.01 001984 8.29 3497 | .01 002965 10.67 4182
.02 .005861 10.69 4509 | .02 006811 1271 4983
.06 02016 13.99 5899 1 .06 02100 15.82 6199
1 03263 15.48 6529 || .1 03336 17.28 6772
2 05643 17.65 7443 1.2 05694 19.43 7615
A 07831 20.19 8515 || 4 07852 21.97 8610
.6 07717 21.96 9259 | .6 07723 23.74 9303
.8 06655 23.22 9789 | .8 06656 25.00 | 9800
1 .06000 23.72 1 1 06000 25.52 % 1
Rs=4%x10° Rs=5%108
y l % u 3 i K2 K
d 0 Vg e [} ) Vg Ue
0 0 0 0 0 0
.00125 0 5.00 .1825 || .001 0 5.00 1793
002 .0002997 7.34 2679 002 .0003994 8.22 2948
.006 .001836 11.33 4134 | .006 001985 11.90 4266
.01 003453 12,79 4670 || .01 003550 13.33 4780
.02 .007284 14.69 5364 || .02 .007378 15.20 5451
.06 02142 17.71 6464 .06 02150 18.20 6527
1 03372 19.16 .6993 g 03379 19.64 7046
2 05719 21.30 775 2 05724 21.78 7813
4 07862 23.84 8701 4 07864 24.32 8722
.6 07725 25.61 9348 6 07726 26.09 9358
8 06656 26.88 9811 8 06656 27.36 9814
1 .06000 27.40 1 1 06000 27.88 1
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Ry=1x104 Re=2 104
y i u u ¥ ! u u
8 d vy %o a 1) vy u.
]
0 o o o | 00
‘ ; |.00025 0 500 | .1597
0005 0 . 500 | .1689 | .0005 | .00009996 & 822 & .2625
001 | .0001998 822 2777 | 001 10002997 10.60 = .3384
002 | .0005986 | 10.60 | .3581 | .002 .0006981 12.61 | .4027
006 | 002181 | 1377 & 4653 | .006 002280 1558 | .4975
01 | 003744 | 1513 | 5112 | 01 1003841 1690 | .5398
02 007566 | 16.95 | 5728 | .02 007660 1870 | .5972
06 02166 | 19.92 | 6730 | .06 02175 2165 6914
1 03394 | 2136 | 7216 | 1 03401 2309 7373
2 05734 | 2349 | 7938 | 2 05739 2522 8055
A 07868 26,03 | .8795 | 4 07870 2776 8864
6 07727 2780 | 9394 | 6 07927 2953 9429
.3 06656 2908 | .9324 | .8 06656 30.80 | .9834
1 .06000 2960 1 1 3132 | 1
Rs=5x10¢ | y =1 5 108
y l | w |y ' 1z . u
8 8 I w. |8 | 5 Vs e
0 0 o 0 0 0
| 00005 0 500 | .1415
0001 0 500 | .1489 | .0001 | .00002000 & 8.22 | .2327
.0003| .00007998 | 9.64 | .2870 & .0002 | .00005999 & 10.60 | .3000
.0005| .0001599 11.22 | .3343 | .0006 | .0002198 13.75 | .3894
001 | 0003595 | 13.17 | .3923 | .001 .0003794 15.10 | .4275
002 | .0007578 1501 | .4471 | .002 0007776 16,89 | .4781
006 | .002338 17.87 | 5323 | .006 1002358 1971 | .5581
01 2003900 19.18 | 5712 || 01 1003919 21.01 | 5949
02 | 007717 20.06 | 6243 | .02 007735 2279 | 6453
06 | 02180 23.90 | 7119 | .06 02181 25.73 | 7284
1 .03405 2534 | 7546 | .1 03407 2717 | 7691
2 05742 2747 | 8181 | .2 05743 29.30 | .8294
4 07871 30.01 | .8936 || .4 07872 3175 | .8989
6 07728 3178 | .9465 | 6 07728 3353 | .9491
38 06656 33.06 | 9845 || 8 06656 34.80 | .9852
1 06000 3358 1 1 .06000 3532 | 1
Re=2x108 i Rs=5x105
¥ 1 { u© % y X lu %
a a ; Uy Ue a i Vg Ue
0 ] 0 0 0 0
| | 1.00001 © 500 | .1278
000025 0 500  .1343 | .00003/ .00000800 9.31 | .2380
00005 | .00001000 | 822  .2207 | .00005 .00001600 @ 10.89 & .2785
00015 | .00004999 | 11.88 | .3190 | .00015 .00005599 | 13.97 & 3571
0005 | 0001899 | 15.20 | .4081 | .0005 | .0001959 | 1712 | 4378
001 0003894 | 1699 | .4561 |.001 | .0003954 | 18.88 | .4828
002 0007876 | 1875 | 5035 .002 | .0007935 | 20.63 | 5275
006 002368 21.56 | 5789 | .006 & .002374 23.43 | 5991
01 1003929 22.86 = .6137 | .01 | .003934 2472 | 6322
02 007745 24.63 | 6614 | .02 007750 2650 | 6776
06 02182 2757 | 7403 | .06 02183 2943 | 7526
1 03407 20.00 | 7788 | 1 .03408 30.87 | .7893
2 05744 31.14 | 8360 |.2 05744 33.00 | .8438
4 07872 33.67 | .9041 | .4 07872 3554 | .9087
6 07728 35.45 | .9518 | .6 07728 3731 | .9541
.8 06656 36.72 9860 | .8 06656 38.59 9867
1 .06000 37.24 | 1 1 06000 3911 | 1
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