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1. Introduction

As fluid flows through packed bed, it suffers the split of streams around
particles and the changes in velocity, and these behaviors cause the mixing of
fluid. The mixing phenomenon is important because of its effect on the per-
formance of packed-bed reactor and the efficiencies of mass transfer in packed
bed.

Recently, increased attention has been focussed on the problem of the mixing
in packed bed, and a number of investigations have been made to determine the
mixing characteristics of fluid in packed bed.

In the case of diffusion model, mixing process is described by familiar type
of differential equation analogous to Fick’s diffusion equation, and the character-
istic parameter of this model is a longitudinal dispersion coefficient. Many works
on the longitudinal mixing have been conducted on the basis of diffusion model
because of its simpleness in mathematical treatment. But it may be guessed that
this model does not fully describe the actual behavior of fluid flowing through
packed bed.

In the case of mixing-cell model, packed bed is imagined to consist of a series
of perfectly mixed tanks each on the scale of particle, but this model contains
the parameters difficult to estimate.

It must be remarked that diffusion model or mixing-cell model is applicable
for slight deviations from plug flow, but when the flow pattern of fluid deviates
considerably from piston flow, then combined model or statistical model is chosen
to represent fluid behavior.

The purpose of this investigation is to propose a mathematical model which
can be satisfactorily characterize the mixing mechanism in packed bed, and to
test the applicability of this model. In the work reported here, only singlephase
flow is considered, and it is assumed that there is the probability distribution of
fluid velocity over the cross-section of packed bed, and this distribution may be
approximated by the normal distribution as proposed TownsendV. Existence of
a distribution of fluid velocity gives rise to promote the longitudinal mixing in
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the same direction as the flow.

2. Mathematical model based on the probability-density funection

It is assumed that a probability-density function of fluid velocity exists across
any cross-section of packed bed and this function may be defined by following
equation:

" ranav=1 (1)

where f(U) is probability-density function of fluid velocity, and U= #/% is di-
mension-less velocity.

We now consider that packed bed consists of the bundles of such a tube of
flow that fluid having the time of passage 4§ flows through it in plug flow at
velocity #, and that the concentration of fluid at the outlet of each tube of flow
becomes identical with the average concentration over cross-section of the bed.

From material balance on tracer component of fluid over a tube of flow, we
can write the following equation:

T () u() =0 @

where Y=/, 6=0/0; and {=2z/L denote dimension-less concentration, time and
distance, respectively.
Now a following relation holds

dc/de = (#65/L) U (3)
From Egs. (2) and (3), we have

dY/d:=0 and dY/d6 =0
Consequently, we obtain
Y{(6+ 48, &) =Y (6, ¢ — 4. (4)

The significance of this equation is agreed to the assumptions mentioned
above.

Hence, the average concentration over cross-section ¥ at 6=0-+460 and ¢=¢
is obtained as follows:

TO+46, 0= ¥@+46,05@WaU={ Y6 -1 f (W)U
_ uly 40

v©+40, 0=\ v(oc b

T

U)fav (5)

o

Eq. (5) is the mathematical representation taken into account of the density-dis-
tribution of fluid velocity. Calculations have been carried out to illustrate this
model, we now consider the following example.

It is assumed that the probability-density function of fluid velocity conform
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to the Gaussian (normal) distribution as follows:

L
V2o
For simplicity, we suppose that the continuous function of normal distribution

may be to approximate with the stepwise function.
For instance, putting '

FU) = exp{ — (U -1)%2s"} (6)

p=F (U AUy, p2=f(U) dUsy . . ., pr=f(Ur) 4Us
And thereby Eq. (5) can be represented as follows:

Y =SHY (6, ¢— 40 « pi} (7)

As the first approximation, dividing the abscissa U of normal distribution curve
F(U) vs. U into six intervals, and we construct a stepwise curve approximating
a normal distribution curve. Setting the data for example as follows:

D1=ps=0.0668, p;=ps;=0.0919, p;=ps=0.3413

Thus calculated results when 40=1sec and #=10cm/sec are illustrated in
Fig. 1, and those when 46=2sec and #=10 cm/sec are shown in Fig. 2. These
figures indicate the variations of average concentration at each time-interval
40 as a function of the upward distance from the bottom.

In order to compare our model proposed here with other models, we now
reduce our model to the form of a partial differential equation.

J
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FiG. 1. Sequence of average concentration change across the
cross-section of bed for each 40=1sec.
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F1G. 2. Sequence of average concentration change across the
cross-section of bed for each 40=2 sec.

Expansion of the both sides of Eq. (5) in the neighbourhood of (@, ¢) by
means of Taylor’s theorem gives

Y (0, C)+d@(az>+ 462(82?> + e =Y(0, ¢) — (@%‘1@)7}1/@2)

o)+ 45 (2T )7\ 5e
(YT - ?

where 7 and o are dimension-less average velocity and variance from average
velocity, respectively. And these parameters are defined as follows:

m={ Urwav

d=[ w-mrirnau
Now, from assumption above-mentioned, dimension-less concentration for fluid
flowing out of a tube of flow can be written as follows:

Y0, 0 =Y, O

In Eq. (8), letting 49 be small sufficiently, then all the terms of higher order
than third order on 49 may become negligible. Thus, replacing & which is in-
volved in the third term of the left-hand side of Eq. (8) by ¢ in terms of Eq.
(3) and after re-arranging the expression we obtain a following equation:

aY__<ﬁ£;,> oY az(ﬁzai,4@>azY (9)

00 ~ o¢ T2\ Lr o
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3. Comparison with other models

Diffusion model represented with the dimension-less form can be given as
follows:

oY oY | E: Y
59 =~ o Tar e (10)

Comparing Egs. (9) and (10), w obtain

Since #0n=L and 0,40 =40, therefore

E, = @40 (5%/2) (11)

In Eq. (11), letting ¢- o, then E;—cc, and as ¢—0, E,~0.
When the height of packed bed is sufficiently high, the relation between P
in diffusion model and 7 in mixing-cell model can be represented as follows” ®.

where 7= 1/D,, and 1 is a height of packed bed equivalent to a perfectly mixed
tank. From Egs. (11) and (12), we have

v = @40/ Dy’ (13)

and

A= 740/ s (14)

In the case of packed bed, when Re.= Dyip/n becomes large, then v approaches
to 1.0, and so E,—»#D,/2, P,—2 and A~ Dp. Thus o* > #d0/Dp as v 1.0.

Now, putting ¢ =1 in Eq. (14), then we have A= #40. This implies that a
height of packed bed equivalent to a perfectly mixed tank in mixing-cell model
becomes equal to a mean transfer distance of fluid in a time interval 46 in our
model.

Thus the correspondences of parameters between our model and diffusion and
mixing-cell models have been given here clearly.

In order to compare the calculated results in terms of our model with those
in diffusion model, F-diagram is illustrated in Fig. 3. In this figure, curves based
on our model were obtained by using of the data of ¥ at ¢=2z/L =10 in Figs. 1
and 2. From these curves, it is seen that the effect of mixing of fluid decreases
with decrease in the value of 46, and F-diagram approaches to the case of piston
flow.

Among various mathematical models proposed in the past, Kunugita and
Otake’s model which is the extention of mixing-cell model resembles our model
proposed here. They consider that a liquid flowing through packed bed consists
of a number of minute portions of liquid, and that a portion of liquid stays at
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FiG. 3. Comparison of F-diagrams obtained by our model and
those by diffusion model.

the same position and the remainders move in the positive or negative direction.

Letting p. and ¢- be the probability that liquid portion moves over the dis-
tance of r-tanks in the positive and negative directions, respectively, and 7 be the
probability that liquid portion stays at the same position, then the following re-
lation holds.

2?7‘5‘;{?7-%7’:1 (15)
Then, their model may be written as follows:

VG, j+1) = Y =, )+ DY G+ 7, §) + 7Y, §) (16)

7

Now, expanding the both sides of Eq. (16) in Taylor-series, taking into account
up to the third term in each side, and re-arranging the expression, then we obtain

Y . wm'aY  ()PY (17)

26 = T 400 T 24900
where
m' =2 {r (pr + g0) } 4,
(") = Z{Tz(pr + g} (40P~ (m!)?
Hence, from comparison between Eq. (10) of diffusion model and Eq. (17),
we obtain the following expressions:
E, = (4/)?/2 46
P, = 240D,/ (o)
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Thus, expression for P, reported by Kunugita and Otake has been modified
as indicated above. In the case of Taylor-series expansion, they took only up to
the second term into account and concluded that staying portion of liquid has
no effect upon P..

Their model and our model are identical from the point of view setting the
constant-time interval, but the distribution of fluid velocity is discrete in the
former and it is continuous in the latter.

4. Application of model to moving-bed eatalytic reactor

In order evaluate the practical value of our model, we now search for the
distributions of concentration and temperatures in moving-bed catalytic reactor.

It is assumed here that:

(1) fluid flows through the bed according to the behavior which is given in
our model, and solid particles flow down in plug flow;

(2) concentration and temperatures across any given cross-section of flow are
even;

(3) reaction occurs on the surface of solid particle and is the n-th order
irreversible reaction, and rate constant can be expressed by Arrhenius equation;

(4) physical properties of fluid and solid particle are constant.

If the above conditions are fulfilled, the process of longitudinal mixing and
heat transfer in moving-bed catalytic reactor may be described by the following
differential equations:

%= it () (18)
g%:.zé(](%;;’%}%) (%ﬁ)(?ﬁ“) (19)

= v ey + i (G (R (- 2e) 2

where £€=T/T, and r=1/#, denote dimensionless temperatures of fluid and solid
particle, respectively. Egs. (18), (19) and (20) are derived from material balance
on reactant and heat balances on fluid and on solid particle, respectively.

The boundary conditions are

Y=Y(0, C—4L), £=£6(0, £ —48) at {=C— 4,
=10, C+ 4L) at { =+ 4
These equations cannot be solved analytically. Hence, in order to obtain ap-
proximate solutions, setting k=constant in Eq. (18), v—( T/t £=constant in Egs.
(19) and (20) and kY”=constant in Eq. (20) for the range of sufficiently small

4¢ or 46.
Thus the solution of Eq. (18) for n=1:

Y@+ 40, O)=[{{n—1)Lkyi " (1= ¢)/(25U:)} 4+ {Y (0, ¢~ 45)}* QU0 (97)

For n=1:
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Y(6+46, €)= Y(0, ¢~ 40) exp | — L elde

ST (22)

The solution of Eq. (19):

2 0 = L (L \6hp(l=e\(t . £ -

204460, O = g ) ST (FE) (Be—g) k20, <) (23)
The solution of Eq. (20):

_ — LesQhy ny Sl (L TorYye 1

FUO+40, ) =56, C o 4 = TS Y e (- 0 )ae

(24)

Now, average concentration and average temperatures of fluid and solid parti-
cles across the cross-section of moving-bed can be written as follows:

V(6 + 40, c>=§f Y(0+ 46, ¢) F (U)dU (25)
F(O+ 46, C) = jf £+ 46, ©) F(U)dU (26)
76+ 46, ¢) =jj O+ 46, O) F (U dU (27)

Therefore, ¥, # and 7 may be obtained by means of Egs. (21)-(27). Namely, we
now substitute Egs. (21) or 122), (23) and (24) into the right-hand sides of Egs.
(25), (26) and (27), respectively. And, repeating the calculations based on these
equations at the beginning and end of the time interval, then longitudinal distri-
butions of concentration and temperatures may be obtained.

Improved results may be effected by decreasing the size of the interval. In
particular, when |¢~T]| 40 has a large value, it is necessary to take sufficiently
small size of the interval.

5. Conclusion

In order to determine the mixing characteristics of fluid in packed bed, math-
ematical model basing on the probability-density distribution of fluid velocity has
been proposed, and it has been compared with other models.

From the comparison with diffusion model at the condition of limitation 40
-0, the relations between our model and diffusion or mixing-cell models have
been indicated.

When we inquire into the transient response, a troublesome trial and error
calculus is needed in diffusion model, but in our model there is no need to lean
on such a calculus.

Nomenclature

Cr : specific heat of fluid [kcal/kgmol « °C]
Cs : specific heat of solid particle [kecal/kg - °C]
D, : particle diameter [m]
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: longitudinal dispersion coefficient

Uo Of
Vps

: particle-to-fluid heat transfer coefficient
. reaction rate constant

: reaction rate constant

: bed height

WRIN
6 hp(1—e)L/¢pDpGrCy
Peclet number

: heat generated by reaction

k(1 —¢)psl/u

: temperature of fluid

. temperature of solid particle

: linear velocity of fluid in bed
: mean velocity of fluid in bed

: superficial velocity of fluid

. mean velocity of solid particle

GSCS/ Gij

: molar fraction

tyat z=0

: axial distance from bottom of bed
. average fractional void in bed

: time

: mean holding time

: density of fluid

: pellet density of solid particle

: shape factor of solid particle
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