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ABSTRACT

The application limit of the inviscid small-perturbation theory, which was de-
veloped by Sgire, Winter) and Hawthorne?), to the secondary flow in cascades is
discussed by comparing the strength of trailing vortex obtained from the experi-
ments with the one calculated by the theory.

The coincidence of the both is found to be possible at the regions in the exit
main flow and at the portion adjoining main flow in the exit boundary layer. It was
observed to be indispensable for getting coincidence to employ the value of vorticity
(perpendicular to the flow) in the exit flow, and this fact suggests us that the
boundary layer growth in cascade is a very important factor when we consider the
secondary flow in cascades.

1. Introduction

When we want to solve the secondary flow in cascades by the method which
was developed by Squire, Winter? and Hawthorne® and in which we regard the
boundary layer as an inviscid rotational flow, we employ the small perturbation
method and recognize that the results are not necessarily satisfactory for the
estimation of cascade performances.

Considering the facts that we neglect the viscosity and presuppose the small
velocity difference in boundary layers we can easily understand the discrepancies
of results, but we have not yet arrived at the understanding how far this method
will explain the phenomena of secondary flows.

The authors tried to examine the point mentioned above by comparing the
semi-experimental value of the strength of trailing vortex with the theoretical
one in this report.

2. Symbols

: blade pitch

: pitch of blade wake perpendicular to the flow a'=a cosT
: a half of cascade span

length [see Fig. 5]

. integer

time difference [see equaticn (6)7]

: [see equation (B-1)]

: velocity
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Vi @ mean velocity of inflow and outflow
w  : component of velocity

4wy : [see equation (B-1)]

%,v,2: coordinates [see Fig. 1]

-4 @ actual vane (blade) circulation

T : flow angle [see Fig. 1]

0 : boundary layer thickness

0* : boundary layer displacement thickness

: turning angle

: inclination angle of stream line
o p=0/a

: [see equation (11)]

: coordinates [see Fig. 1]

. stream function
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: vorticity
w1, wy: vorticity perpendicular to the inflow and exit flow respectively
wp : passage vorticity in exit flow

2.1. Subscripls

1 : upstream of cascade

2 : downstream of cascade
CL: center line of span
EX: experiment

TH: theory

T : trailing vortex

W : side wall

3. Theoretical Calculations

We use the small perturbation method in the following treatment.

Let us consider a plane perpendicular to the flow at the exit of cascade as
illustrated in Fig. 1. Expressing the
stream velocities which are induced
in this plane by streamwise vortex
(passage vorticity) as ws and w-, we
get the following equation?.

X"

aZ
'5%2“"‘8’;{;:&)‘9 (1)

where w, is the passage vorticity,
and ¢ is a stream function which is
defined such as

.cl I

W = a_/]’ Wn = as (2)
Equation (1) is a Poisson’s equation,
and for convenience let us make use
of the following simplification. In FIG. 1
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the first place we assume the span of cascade to be semi-infinite. This assumption
will be acceptable in the following treatment if 2 B/a' and 2 B/d (which will be
referred later) are large to some extent. In the next place we assume the uni-
form distribution of passage vortex in

the region of thickness § adjoining the ?
wall of cascade exit. (The calculation ,
for the non-uniform distribution of wy d % g B A
will be treated later). —w J
Solving equation (1) we get the in- wl /
duced velocities at the side wall and — W —t
the blade wake as follows [from Ap- 0
pendix (A), (A-9)]; FIG. 2
Ww - 4: al < 1 . - —nn_é.l
Y R mnmr&,« (1—-¢""2) (3)
odd
w4 & 51wy 3
% Il g; pr’ (coshnra 1) §<g
odd (4)
wWr _ 4 a 1 _ mnmki —na:f, : _5_ <
- TR n2(1 e g —e "a mnhnn«a,) 0s¢=94

odd

The calculation result of wy which is not indispensable to this study is
illustrated in the Fig. 3, and the result of w, is shown in the Fig. 4.
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4. Calculations from Experimental Values

The Fig. 5 is taken from Smith’s report®, and following this report we have

wr= 3 (wnfu+ ) (5)

where
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and 4t is the difference of times required for particles to pass lower and upper
surfaces of blade, and it becomes approximately®

at = Lra (6)

- 2
Vi

where Vi is a geometrical mean of inflow and outflow velocities. Substituting
this into (5), we get

_ 1 Va4 dlv4
wr= —2“( Viws 3;+ dxA> (7)
wy is known as the velocity at the trailing edge which forms the trailing vortex
sheet, and we can find from this equation that the trailing vortex consists of two
parts, one of which corresponds to the variation of blade circulation and another
to the function of vortices in the inflow of cascade. And, since

_dV, (8)

wr = dx
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we get

1

wr = (e Tra ) (9)

dx Vi, o dx

Because the right side of thise quation consists of values which are obtained
from actual measurements, we can get experimental value of w: from this
equation.

5. Comparison of Theoretical and Experimental Values

Let us compare values of w; which are obtained from equations (4) and (9).

5.1. Experimental Values

Because the second term of the right side of equation (9) is the derivative
of I'y4 and the derivative of experimental value has much error in ordinary cases,
we integrate both sides of equation (9) from oo (in practice, from the center of
span) to x referring to the method of Hawthome and Armstrong®. (The inte-
gration from x to o« was performed in actual case to make the sign to be plus).

® _ 1, dVilva 1 _ -
waldx = '2 Sx Vrag I—/%dx*}- ~2‘£E’A(X) TVA( )] (10}

After a few calculations including approximation and the non-dimensionalization
[see Appendix (B)] we get

=3

Sx w;dx

1 f(Vl'AWy

T4(:VicosTeil NV, )CL<V16L“‘ Vi(x)}

a’Siwpdx
+ {AZUyCL“AWy(x)}’) (1)

5. 2. Theoretical Values

wr which is given by equation (4) must be reformed into the type as
equation :11). We can get it by the numerical integration of the Fig. 4,

@

g wﬂdf @ w
CLENE Y 17
a’wpﬁ Jyar LO[)B a ( )

-~ —_—
g =

The results are shown in Fig. 6.

5.3. Comparison

The choice of the value of u (=4§/a’) in the Fig. 6 is important for the com-
parison of the experimental value and the theoretical one. In our theory we got
the solution under the assumption that w, is constant in the boundary layer,
This has the same meaning as that o is constant in the boundary layer and the
distribution of ¥; must be such as the solid line in the Fig. 7. (Let us tempo
rarily call this the theoretical distribution). But the actual distribution of Vi is
as illustrated by broken line in the figure. It is a problem, therefore, how to select
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the slope of solid line for the actual distribution. In other words this is the
selection of the value of p.

Figures 8~15 are the comparisons of values of
Z calculated from the results of experiments, which
were performed at the Department of Aeronautical v [
Engineering in Nagoya University®, and the theo- /
retial values. Solid lines in figures are experimental /
values and other lines are the theoretical ones.
Since there exists a problem about the selection of
# in the theoretical values as above mentioned, let X
us explaine it as follows; FIG. 7

a) A method in which the displacement area
of boundary layer is approximated by a triangle in the theoretical distribution.
Expressing the displacement thickness as 6% we have

We can easily find from each figure that the theoretical values of 5 are to osmall.

b) A method in which we use the distribution of V, instead of Vi. Because
the boundary layer is much thicker in exit flow than inflow, we get pretty large
value of u by this method. The results are better than a) as illustrated in each
figure.

¢) A method in which we divide the actual velocity distribution into small
straight line (constant w: or w,) distributions. We call this method a precise
treatment. There are also two ways correspond to the above cases a) and b)
in which we use V; and V, respectively. In figures 8, 9, 14 and 15 we have the

finely divided values of w, = %% and the results obtained from this w, by precise
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treatment, and we can recoginze pretty good agreement except in the region of
boundary layer.

There are further shown in figures 8~15 the theoretial curves with constant w:
which are considered to indicate the best agreement with experimental curves.
We can find from these results that the assumption of wi=constant has very
little bad effect on the agreement provided the selection of . is adequate.

6. Comnsideratons

We recognize in the above paragraph that the theoretical and experimental
values can coincide in the region relatively far from the wall, Ze. in the main
flow and in the part of boundary layer comparatively close to the main flow.
But there remaines some discrepancy between the both near the wall, and this
discrepancy becomes severer as the inflow angle 71 becomes larger. It is note-
worthy that the use of V, curve rather than ¥, gives us better results, and this
fact lead us to the idea that the boundary layer growth in cascade is a very
important factor for the understanding of secondary flow phenomena. Because
we took a risk to disregard this point in the derivation of equation (9), let us
try to adopt another method described in the following.

In the Fig. 5 we considered a closed circut ABCDEFA which would just wrap
itself around the blade, but now let us condider a closed circuit on which BC
and FE overlap in the inflow such as shown in the Fig. 16. Then we have the
following equation in place of equation (5).

(12)

wr =g wnfa+ T2

A a8
\\ "“T
\ : § ox
D cC
Fic. 16

Where w, is vorticity perpendicular to the exit flow. Abridging the detailed
treatment, one result is illustrated in Fig. 10. We recognize that far better coin-
cidence to the theoretical value can be expected if we use the value of the exit
flow.

7. Conelusion

A comparison of the strength of trailing vortices was performed to compare
the theory and experiment of secondary flows in which the assumption of inviscid
rotational flow and the small perturbation method were employed. A part of the
theory was used to calculate the trailing vortex from the experimental results.

It was observed that the pretty good coincidence of the both is possible at
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least in the main flow and in the part of boundary layer near the main flow.

We noticed that the employment of the value of the exit flow rather than
inflow for the vorticity perpendicular to the flow was indispensable to the coin-
cidence of the both, and this fact lead us to the idea that the growth of the
boundary layer is a very important factor for the understanding of secondary
flow phenomena in cascade.
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APPENDIX (A)

A1. SOLUTION OF S:ﬁ’ + 2{’ = wp (1)

Determining the coordinate as illustrated in the Fig. 2, let us express ¢ by
the Fourier series and Fourier integral to satisfy boundary condition, i.e. ¢ to be
0 on the boundary, such as

PlE, ) = —-Esmnr g Cpu) sin utdu (A-1)

n=1

Substituting this into equation (1) we get
2
wp = Z sin nnm—j Cn(zc)( ) sin ztdu (A-2)
From the characters of the Fourier series and integal, we have

Calw) = —— 4 5:{ i:'w,, sinnm Zody' |sinugtder (A-3)
72@/(;"7 + %2 ) .

Since wp is constant in regard to y, we get the integration in [ J easily as

Calu) = 25.“;‘_,,; SO wysinud!ds’  n:t odd

nt (L u?) 1 (A-4)

|

Cule) =0 n: even
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Substituting this result in (A-1) and after readjustment we have

. AT

sin—

G 1) = _ 84 _a’vg sin %%
’ i on Jous
am

10
{ 30 wp Sinus'd?’ }du
2

cdd

From the assumptions,

wp=constant 0=¢&=<¢
wp=10 0<¢

Therefore, we have

S
S wp sinus'ds’ = ;;‘3(1—(:05248)
0

and

-~ oo
S, i e i
O v
+ 2
aﬂ

@ : -~ @ S
sinns sin %% * COS %0
= ij O du — ij . du
0 T 2 ] nm 2
u ‘Zifﬁ“ -+ u 12'2 +u

Now, let us consider I, and [, separately.

2 oo : -~ . -
wpa’ sin#f  wusinug
n=221( - )du

T onint u o
ra
12 _nn
S
Wi\ 2 2
“’ﬁ“ —(1- A

Calculation of I, starts from

sinué « cosud = %—[sin u(&+08) +sinulé~45)]

And using this result

“( +8) I g-5)

L= “’f*“ —[2- —e @] s<e

o

2 7 . 71
L= wpa’ [ ~Zre-n ¢ )
= WY

Therefore

75

{A-5)
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a” -7 ”
A—[z:%’fﬁe @ (cosh” 7o~ 1) o<e
e SRR
[2“‘271271{1 e e smha,b_] 0659
Substituting these results into (A-5) we get
o(&, 9) = — 4“"’a ~1—szn—— e @ (cosh—@8~—1) §<E
’ = 7 a
odd
. dowpa” 1 . nm -I5s -
$l&, ) = — ;’3 gﬁﬂn?w-@—e @’ —¢ @ sinh ,5) 0<&<34
odd
(A-6)
Now we have got ¢, and from equation (2) we have
!
aagz 4—%‘2’“ 21 iﬁ cos ”TW e 7 (cosh wa -1) 0<E
odd
7 " (A~7)
dwpa' S+ 1 L
w:=—-—%{ >‘in’ cos 7,rvy (1—@“ —e s1nh7;f$> EE)
odd
) dopa' S 1 . S R
W = —%: —»—%’;Ag—;zsm%n-e “ (cosh%,E6~1> 6<¢
odd
® A-8)
dowpa' 1 =% ~%%s nr . (
wq=—7rf-n21nzsn i (e a’—g a coshzrg) 0=6=9¢
odd
Y } (A-9)
wr = w:(yp=0)
APPENDIX (B)
B 1. DERIVATION OF EQUATION (11)
Let us put as
FV,4=¢Z(V1Sin7’1— VzSinTa)=d'A?/Uy (B"])
We divide both sides of equation (10) for the non-dimensionalization by
a’j wpdx (B-2)
0

Because we assumed wp = constant in the case of equation (4), we have

j‘:wpdx= wp0 (B-3)
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But we consider w, to be a function of x in this case. Generally speaking the
value of w, cannot be easily obtained which depends on the shape of cascade,
but assuming ¢ to be small we can write such as [see Appendix (C)]

dVi

wp=2ew0;=2¢ ax (B-4)
Substituting this into (B-2)
5 Vi
a'sz%%dx:Za’ESo [LdV1=2a’EVmL (B-5)

where ¥ is a mean value of e.
Using these results, let us reform equation (10),

@

S M 1 l j“ AV a - dw,

= = — 1 [
a’Sou)pd’r 4az VICL x dx V}"
0

dx+a {AWer - 5wy(95) }}

Because the authors recognized that Vi dw,/V}, can be considered to be practi-
cally constant we put this out of the integral, and further we regard # to be
approximately equal to e, then we get the following equation from the above.

jwwm’x .
x . 1 l Vi Aw_y _ _

o = feVicos Tz)cd( 7 )CL{ Vicr ~ V(%) } + {dwycz Awy(x)}J
a Bowpdx

(B-6)

APPENDIX (C)

C1. DERIVATION OF EQUATION (B-4)

Following the first approximation theory of secondary flows"V?%, we can write
the passage vorticity w, such as the following form,

Ve do

wp = “‘2(01‘77—15?1‘(‘177“[7*172 (C“l)

where 0 is the inclination angle of streamline. Therefore, we cannot get w, if
we don’t know about the flow in cascade passage. But if we assume ¢ to be
small, we have

wp= —2w1V1Vs ~ ‘é’;

= =2:1ViVe *%‘5(’1‘2'“71)
m

ViVe

12
m

=2w; e
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where Vi, is a mean value between Vi and V,, and we may be able to put as
Vi = VVieV; under the asumption cited above. We have, therefore,

wp =2 wie (C-2)





