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1. Introduction

The problem of concentrated actions on a spherical shell has already been
discussed by several authors. It appears, however, that most of the previous
investigations are on the shallow spherical shell problems. For example, E.
Reissner®? has developed the detailed solutions for the shallow spherical cap under
a concentrated radial force at its apex. A. Jahanshahi® has obtained the singular
solutions for the case of radial as well as tangential concentrated forces applied
to the shallow spherical shell.

A notable exception is Koiter’s recent investigation on the complete spherical
shell under normal point loads at its poles®. He showed that the Reissner's
results for the shallow spherical cap may be applied in the vicinity of the poles
of the complete spherical shell, and that the membrane theory? gives an appro-
priate solution at some distance from the poles. On the other hand, Leckie and
Penny® have obtained the asymptotic solutions for the concentrated radial and
tangential forces and for the concentrated moment, which are valid for all values
of colatitude of the spherical shell. Their solutions are suitable for numerical
calculations since they are expressed in terms of the modified Bessel functions
which have already been tabulated.

In this paper the rigorus solutions are obtained for the following four loadings
applied at the apex on the spherical shell;

(1) a concentrated radial force (Fig. 1a),

(2) a concentrated moment about the polar axis (Fig. 1 b), .

(3) a concentrated tangential force (Fig. 1¢),

(4) a concentrated moment about the axis given by ¢=0 and §=90° (Fig. 1 d).
The solutions are derived from the shell
theory based on the Kirchhoff-Love’s as- P
sumption and on the assumption of zero \L M
Poisson’s ratio®. The solutions are
obtained in explicit form in terms of the /_\ ﬁ\
Legendre functions and are applicable (a) ‘ (b
for all values of colatitude of the spherical
shell. Since Ni/=N7i is satisfied by the P M
Kirchhoff’s assumption in the case of the /‘i /Q\
spherical shells, the errors arising from

, . . (c) (d)
the Love’s approximation are expected
to be small. Hence we can safely neglect FIG. 1
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#/a* compared with unity (where ¢ is the shell thickness and a is the radius of the
middle surface), and let Poisson’s ratio be equal to zero, the solutions for the case
(1) are identical to those obtained by Koiter. The singularities of the resultant
stresses and the displacements at the apex are also investigated in this paper.

2. Fundermental Equations

(1) Equations of Equilibrium and Compatibility and Stress Functions

When Poisson’s ratio is equal to zero, the equations of equilibrium and com-
patibility for the spherical shell can be reduced to the following®

Equilibrium Equation in the Normal Direction and Gauss’s Compatibility Equa-
tion

(sin pAD' — A +2i%(sin® 945 — AD =0 (2.1a)

2 . 1ys 2
Al + (sin ¢ cos ¢A43)" + sing

Equilibrium Equations in the Tangential Directions and Mainardi-Codazzi’s Com-
patibility Equations

(1 =24 (sin’pAD)" —sin’pAs +24i°AY =0 (2.1b)
A +sin ¢ cos pA} — 2% (sin® p AD)" + cot p AT+ (1 =24 AV =0 (2.1¢)
where dot and prime denote the derivatives with respect to ¢ and 4, respectively,
and =+ 3a/t. A}, Al and A} are the mixed tensors composed of the resultant

moment tensors and the strain tensors of the middle surface, or the resultant
force tensors

Ef ta® N®
1 1, .4 L e A
A= Mati gy smgs M2+z\/12 sing
E 2 €1 2 12
A1—-M1+Z ‘\/12& Sll’lqﬁ M1+2J12 SIH¢N (22 a-c)
Ei‘2 £11 a°
2o Aft— g =M 11
Ai= M; 12 & sin P Mi— 12 —==sin’ ¢ N,

where E is Young’'s modulus.
i, Al and A} can be expressed by the stress functions and the displacement
components as follows,

1 1

A= Grsing (4 )

Al= — Al = TG (i + a} — 2 cot gay), (2.3a-c)
2 sing

A= o <s1n2¢ =+ cot oz — )

where
2 2

Et - Bt
U?+z\/12 Uj; (]—“1, 2), @—W+? «1224)

(Uj, W; Stress functions) (2.4
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The positive directions of the resultant
stress tensors and the displacement com-
ponents are shown in Fig. 2, and the rela-
tions between these tensorial and physical
quantities are in the following:

FIG. 2

N'=d"sin® gN", N®=a’sin gN®, N”=a’N?, Q"= asin ¢Q’,
Q*=aQ’, Mi=singM;, Mi=Mi= —Mi= — M}, M= M/sing, (2.5)
= w/asin g, = uja, W=uw,

where the corresponding physical quantities are indicated with the sign —.

(2) Derivation of the Differential Equations

Substituting (2.3) into (2.1a), [(2.1¢) + (2.1b)'/sin ¢1/sing, and [(2.1 D)/
sin¢] —[(2.1¢)/sin ¢]" we obtain

eH(D) + (1 4+20)(X—=2a0) =90,

=20 H(X) + (14200 aH(8) + (14+2 i) (X —2 a®) =0, (2.6a-c)
H(Y) =0,
where
H(A) = A" +cot pA"+2 A + o, (2.7)
sin® ¢
and
=1 (singa)+ =%,  Y=—1 (xi-d). (2.8ab)
sin ¢ sin’ ¢ sin ¢

Subtracting (2.6 b) from (2.6 a) we find

H(X)—aH(®)=0. (2.6d)
From (2.6a)
aHH (D) + (1 + 2 [H(X) = 2aH(®)]1=0.

Using the relation of (2.6 d), the above equation becomes
HH(®) — (1+2:i)H(8) =0,

which can be solved into

H(®) =0, (2.6 e)
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and
H(D) = (1+2i*)0=0. (2.6 1)

(2.6 e), (2.61f) and (2.6 c) are our final equations.
If we define the unknown functions @, X and Y in the form

@ = D, cos nl, X = X, cos #0, Y = Y, sin 74, (2.9)

(2.6¢e), (2.61) and (2.6 c) can be rewritten by

L(®,) =0, L(@y) — (142420, =0,
} (2.10 a-c)
L( Yn) = 0.
where @,, X, and Y, are the functions of ¢ only, and
L(A)=A"+cotgA + (z - -@)A. (2.11)
sin® ¢
(2.10 a-c) are satisfied by the Legendre functions. Hence
Op= AP;"(cos ¢) + BQ(cos ¢) + CPJ(cos ¢) + DQV(cos ¢), (2.12)
Yu= KP7"(cos ¢) + LQ7(cos ¢), (2.13)
where » is one of the roots of the equation
vip+1)=1-24" (2.14)

Let denote the solutions of (2.10a) and (2.10 b) by @}’ and @), respectively,
then we have from (2.6 a)

Xn=2a0y + ad. (2.15)
From (2.8a, b), (2.13) and (2.15) «; and a- can be described as follows,
_ (1) 1 __S_iﬂ_gb < s
oq-—[mz(w,, + qg g O ) 3 Yanm nd, (2.16)
w=|-a(0 + o 0P) 4+ 52y Jeos s (2.17)
2 " 1-242 7" 2sing ~ 7" o )
where the solutions for the case X=Y=0 are omitted since they cannot satisfy

the equations of equilibrium and compatibility.

3. Solution for a Concentrated Radial Force P

Consider the spherical shell subject to a concentrated radial force P at its
apex (Fig. 1a). The solution in this case can be obtained from (2.10 a, b) as
n=0,

The general solutions of (2.10 a, b) for =0 are
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Oy = 05" + 07,

m{,“:ACOS¢+B(£(LS‘¢*l i'*’ccé):(f 1), (38.1a-c)

0¥ = CP,(cos ¢) + DQ.(cos ¢),

where P,(cos¢) and @.(cos ¢) are the Legendre functions of order v, and A, B,
C and D are the complex constants of integration which may be expressed in the
following form

A=Ci+iCi, B=iCs, C=C3+iCs, D=Ci+iCy, (3.2)

in which the real part of B is omitted since they do not satisfy the relations
between the resultant stresses and the displacement components.

The A term in (3.1Db) represents a rigid-body translation along the polar
axis, and the corresponding resultant stresses vanish, hence it may now be drop-
ped from our solutions. Since we are interested only in the stresses in the vicinity
of the apex, the C term in (3.1 ¢) which increases as ¢ increases may be drop-
ped, toc. We now have to determine the constants B and D. This would be
done from the conditions of equilibrium for the vertical forces and from the
continuity conditions of the shell:

Equilibrium for the Vertical Forces

= —2ra lim sin (N sin ¢ + Q" cos ¢). (3.3

B0

~ Continuity of the Deformation at the Apex
s = 0, U+ w =0 at ¢=0 (3.4a,b)

where (3.4 b) means that the rotation must be zero at the apex from the sym-
metry.

Substituting (3.1) into (2.9 a) and (2.17), and dropping the A and the C terms
from these equations, we have

cos q) 1 +cos¢
0 = B( 5 81 cos ¢ )+DQ\,(cos @), )
. - D (38.5a, b)
sin cos ¢ .
alB( log T—cos ¢ +cot¢)——1—__2—z-}-,—Q»(cos¢)_ .
For ¢—0, @.(cos¢) and its derivative with respect to ¢ are”
Q.(cos ¢) = —log 34 + Const.,
(3.6)

@i (cos ¢) = — é~+ 1 22 i t,blongl—’ +0(9),

and also from (3.5a, b), (2.4) and (2.5), (3.4 a, b) become

0, Im(B+ D) =0,

D
Im(B+ =27
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hence
Cy= —2/1262, Ci= —Co. (3.7a, b)

We now have only one constant of integration to be determined from the
condition of equilibrium for the vertical forces. It is easily shown that the D
solutions (the bending disturbance solutions) are self-equilibrating since they
satisfy the equilibrium condition for the vertical forces

N*sin ¢+ @Q° cos ¢ = 0.

It follows that only the B solutions (the membrane solutions) must be considered
in order to satisfy the equilibrium condition (3.3). N™ arising from the mem-
brane solutions is

e _ V12 G
N#= - % sintg (3.8)

Applying (3.8) to (3.3) we have our last integral constant

-~ _ Pt
Co = NER (3.9)
Substituting (3.9) and (3.7 a, b) into (3.5 a, b) we obtain
_; Pt Tcosg, T14cos¢p . o .0
D=1 NP i log 1=cos ¢ 1-(1-2i%)Q.(cos ¢)J.
Pta [ sing X A (3.10a,b)
_ . Pta [sing +cos ¢ .
dz-—z»4‘/?ﬂ[ 9 log T—cos ¢ +cot(,f»+Q‘,(cos¢)J,

where the real and the imaginary parts represent the stress functions and the dis-
placement components, respectively, in view of (2.4),
Substituting (3.10 a, b) into (2.3 a-c) we obtain

1= ~ __})_t__ 1 . 1
Ar= —1 WN3ra [_sin’qs + cot p @5 (cos ¢)]Sin¢’
Pt 1 : (3.11ab)
o _ . Pt [ 1 - . |
ae &y 3ra | sintg + OO 0Q;(cos ¢) + (1 —22)Q,(cos ¢)Jsm 9,

where the real and the imaginary parts represent the resultant moments and the
resultant forces, respectively, in view of (2.2).

The solutions obtained in this section are identical to those obtained by
Koiter®, when Poisson’s ratio is equal to zero.

4. Solution for a Concentrated Moment 74 about the Polar Axis

Consider the spherical shell subject to a concentrated moment M about the
polar axis (Fig. 1 b). The solution in this case can be derived from (2.1b) by
dropping all the terms containing the derivatives with respect to #. That is, we
obtain

(sin® A1) =0 (4.1)
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with the solution
A= 5, (4.2)
where A is a complex constant of integration. The relation between the real
and the imaginary parts of A is determined in order to satisfy the relation e =ax.
Let denote the real and the imaginary parts of A by A, and A;, respectively,

then we have from (4.2) and (2.2 b)

W3 A

1 4r 2 _ &NO  Ai

Mi= gy ¢’ N™= g sin® ¢ (4.8, b)
Using the elastic law™, we have from (4.3 a, b)
124 A, _2W3d A

fr = gy sing e = T sing (4.4 a, b)

Substituting (4.4 a, b) into the relation e = arp we have

A

Ar= 5 (4.5)

The remaining condition to determine the constant of integration is the
equilibrium condition for the moment about the polar axis

M =2 za lim sin® ¢(aN" + 177}). (4.6)

B2}
Applying (4.3 a, b) to (4.6), and from (4.5) we have

Mt

A= g (4.7)
Substituting (4.5) and (4.7) into (4.3 a, b) we obtain
o M 1 v Mt 1
N = 2ra* sinf¢’ Mi= 5 = sin'g’ (4.8, b)

It can be noted that the contribution of M; to the moment equilibrium is of
negligible order since #/a' is small compared with unity.

5. Solutions for a Concentrated Tangential Force £ and for a Concentrated
Moment # about the Axis Given by ¢=0 and 6§=90°

Consider the spherical shell subject to a concentrated tangential force P and
a concentrated moment M about the axis given by ¢=0 and §=90° at its apex
(Fig. 1¢,d). The solutions in these cases can be obtained from (2.10 a-c) as
n=1.

The general solutions of (2.10 a-c) for n=1 are
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m] m(l)-*_m(?)
oV = Asing+ B( sing g, llt—cc‘gss——ga + cot ¢).
(5.1a-d)
0" = CP,(cos ¢) + DQ.(cos ¢),
Ksu1¢+L( sin ¢ log lltggzg +cot¢>).

where A, B, C, D, K and L are the complex constants of integration which may
be expressed in the form

A=C1+’l.61, B=i62, C=Ca+l.53, D=C.;—i-i54,

3 - (5.2)
K=Ci+il;, L=Ci(g5 +1i)-

The real part of B is omitted as the same reason for the case #»=0 (Section 3).
On the other hand, the real part of L is related to its imaginary part such that
the relations among the resultant forces, the rerultant moments, the stress func-
tions and the displacement components are consistently satisfied.

The A and the K terms in (5.1) represent a rigid-body translation and rotation,
respectively, and the corresponding resultant stresses vanish, hence they may be
dropped from our solutions. Since we are interested only in the stresses in the
vicinity of the apex, the C terms in (5.1 ¢) which increases as ¢ increases may
be dropped, too. We now have to determine the constants B, D and Z. This
would be done from the conditions of equilibrium for the horizontal forces and
for the moments, and from the continuity conditions of the shell:

Equilibrium for the Horizontal Forces

~2

_11m§ [(N* cos p — @*sin ¢) cos # — N sin ] a sin ¢df (5.3a)

B0 »

Equilibrium for the Moments

M= hms [(N*sin ¢ + @* cos ¢)asin ¢ cos O + A} cos 0 — A7 cos ¢ sin ] a sin pdé

g0 &

(5.3Db)
Continuity of the Horizontal Deflection
w/sinf = —w/cos § at ¢ =0 (5.4 a)
Continuity of the Vertical Deflection
W COS ¢ + Hasin ¢ =0 at ¢ =0. (5.4b)

Substituting (5.1) into (2.9 a), (2.16) and (2.17), and dropping the A, the C
and the X terms from these equations, we have
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0= [B(E—i—lzl—?— log l1+cosg + cot q)) + D@ (cos ¢) }cos 0,

l1—-cos¢
ay = a[B( sirzx ¢ log lli'g::;’ + cot ¢) + ?%7; Q:(cos ¢)
- [ (cosrp log %f_ccc?:?? -1- sir}’¢) Dfl 1C0;TP
+Q.(cos ¢)} - %(—%log }ffg:; =+ :lonszg; )_]cos 6.

From (5.5a-c¢), (2.4), (2.5) and (3.6), (5.4a, b) become

D L _
Im (B'— T—22 + ﬁ) =0, Im(B—D) =0,
hence
aa sl G cy_
G=C, Gty 2x=(c‘+ 212)“0'

(5.5a-c)

(5.6 a, b)

As in the case of Section 4, the D solutions (the bending disturbance solu-
tions) are self-equilibrating since they satisfy the equilibrium coditions for the

tangential forces

{; [(N* cos ¢ — @ sin ¢)cos 8 — N*sin #1d0 =0,

and for the moments

So [(N*sin ¢ + @ cos ¢)a sin ¢ cos fl + 31 cos 6 — M1 cos ¢ sin §1dd = 0.

It follows that only the B and the L solutions (the membrane solutions) must be

considered to satisfy the equilibrium conditions (5.3 a, b).
from the membrane solutions are

w722 _ i\/i 1 o ,
N ta Sin3 q) <C2 COSs ¢ + 2 )COS
AT 2 - 4\/—3— -_1 & )
M= ta sin’¢ (C?« + 54 cos ¢) sin 0.

Applying (5.7 a, b) to (5.3 a, b) we obtain

N arising

(5.72a,b)

(5.8a,b)
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(1) Solution for a Concenirated Tangential Force P
When M=0, we have from (5.6 a, b), (5.8 a, b) and (5.2)
. Pt _ Pt 1 . _ _FPta ;1 N s e
B'—'—‘-14¢§n‘r D= 4\13TE( 2—A2'+Z)r L=~ 2{3 ('27{+Z)-(0.93 C)
Substituting (5.9 a-¢) into (5.5 a-c) we obtain
D=1 '21: lsm'pl 1At995~2+c0t¢+(1+i)@']c050
4y 37 2 € 1 _cos ¢ 2 )% ’
Pta 1+cos¢ _ i
[ (1+cos o — , cos q))log 1-cos ¢ + 5

@ =iy e

1 7
s1n'¢(1_cos¢ ~2~z-)+ o qu)Q-Ismq)smﬁ
14 cos ¢ _1- ‘1 (1—cos¢

. Pta 11
RV P _2"(1 +cosg- 2/12 )1og 1—cos ¢ sin’ ¢
)Qchos 0.

;55 cot ch ( *2‘117

=+ 73—2— cos rp)
(5.10 a-c)

Substituting (5.10 a-c) into (2.3 a-c) we obtain

A%=iﬂ%~%;[gi—r§,$(l—cos¢— 2;) 2,{2 (142 cot® )@
~ (14 5 Joot 0. | 551 ol

sing’
( - CoS ¢ + b cosq)) ;2 ;OI?ZQ . )
5.11 a-c

1 - '
! Py 3 ra sm3

+(1+ 21/1, sm¢ ]smﬂ.
cot’ 9 )g;

Al=i 4\/?;55[ 5111234, (1-cosp = 55) +(1-%

- (1 + #)cot q‘)Q»Jsin ¢ cos f.

(2) Solution for a Concentrated Moment M
(5.8a,b) and (5.2)

When P=0, we have from (5.6 a, b),

M Mt (1 .
B=0, D=~ 2%, 1=-55-(55 +i) (5.12 a-c)

Substituting (5.12 a-c) into (5.5 a-c) we obtain



226 Research Reports

0= - —2]‘—?1- [Q:(cos ¢)]cos 6,

Mt (L 1 +i)[mlo l+cosg _, 1

REPNE RS S 2 I—cos ¢ sin’ ¢
Qo . .
— sinvcp ]sm ¢ sin 0, (5.13a-c)
B Mt 1 1+ cos ¢ cos ¢ .
@= = 337 (27 +’)[—l°gm * sinrg OO

+(1- 21'/12)Q\,Jcos 9.

Substituting (5.13 a-c) into (2.3 a-c) we obtain

v Mt 1 2 cosﬁ
A= e (27 + ) Grg + (1200 )@+ (-2t cot 9. | 27,

Al

+

4\/]?:“; ( )[2cos¢ + 2cos¢Qv 1-24

sin ¢ sin? ¢ sin¢

QvJsin a,

A
2 AL 1 2 N R
4i= 4V 3 nd* ('27f + z)[ sin®¢ + (24" +2cot’¢)Q)

+ (1 =2"cot (/)Qu]sin @ cos 0.
(5.14 a-c)

6. Some Properties of the Legendre Functions

In the preceding sections we have obtained the solutions for the spherical
shell subject to the concentrated forces and moments as indicated in Fig. 1. The
solutions are expressed in terms of the Legendre function of the second kind.
In this section some properties of this function are described?® 9.

The Legendre function of the second kind is expanded into the hypergeometric
series as follows,

Qu(cos 9) = [ cotvr+ LUFDEH = HC 15, 4 gy 1=¢osg )

sin vz 2
-~ COS ¢ .1—cos¢ 1, _ .1—cosg
——lo( ~=5B2 N p(y+ 1, —5 1 258 - SR (41, -, 15 FF52). (6.1)
where
_ .1—cos¢
F(v-!-l. v.l,—z—-)
2(v+1)(u+2) c+R (=) (1 ~-2)- (k—-l—u)(l—cos¢)k_
k=0 (k')2 2
Fiv+1, —2,1;175%9)
_i(1»+1)(v+2)"'(u+k)(—v)(l—u)'"(k—l—v)
T (B!)?
= 1 1 1V /1—cos¢
X{E(_y+u‘+1+ﬁ‘u)"§§7l( z_)

(6.2a,b)
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and
o(z) = é{ {log I'(2) }; Gauss’s ¢ function
C=0577215 - Euler’s constant.

The coefficient of the first term of (6.1) are rather complicated. However,
it can easily be evaluated by the asymptotic expansion of Gauss’s ¢ functions?,
which results

1

¢(p4+ 1) +¢(—») =log(22") — i(Arctan 2~ Yy

> )+0G™, (6.3)

and the relations

sin p = sin v, cosh piw -+ 7 cos vy sinh viw, } (6.4)

COS pr = COS pyr COSh pim — 1 sin vrr Sinh viw,

where » and »; denote the real and the imaginary parts of », respectively, being
obtained from (2.14) as follows,

1 -2 o
—2_ _6:{ +0(27%), vi= — A+ = g

vr=4=

6) +0(27%). (6.5 a, b)

On the other hand, the power series (6.2 a, b) converge for 0<¢<180°. Their
convergence is rapid for smaller ¢ and for smaller » (smaller 2), and is slow for
larger ¢ and for larger » (larger 1).

7. Singularities of the Resultant Stresses and the Displacements

In this section the singularities of the resultant stresses and the displacements
at the apex are investigated.

(1) Singularities for the Case of a Concenirated Radial Force P

sFI_ }_3__ b o2n. N oxree P ¢ o2

N'= 4Tm<log-—2— a-228-2), N*= 4M(log~— a—203+2)s

T = _ N, = % _ B _1

M= (10g—2 o+ 2 )2 2) M= -4?(10g7+a W —2—), (71)
- Py 3\ o

=~ 4 Et(logz tatelft 3) W= Et (+233+1).

(2) Singularities for the Case of a Concentrated Moment M about the Polar
Axis

A2
N"= 2 na’

= (7.2)

(3) Singularities for the Case of a Concenirated Tangential Force P
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N — Z% % N Z%& '}p_' N2 = _3__'1,;_%,,
i __Pt'z J._ TF_ _Pte 1 TF P 1
4 2= 4877'.'“2 ¢' A]ljl— 48? ¢n MI_T6—T[?_¢_

= — - f ¢ - B TN o _ P -
U= 4n-Et'(3 Iog—2-+«x 9 T 2) Uy = 47rE—<3 log—2-~+a 52t o)

_ P .
W= — 72«7-1—%11 (a+ 2B +1). .
(7.3)

(4) Singularities for the Case of a Concenirated Moment M about the Axis
Given by ¢=0 and 0§=90°

_u‘"‘z‘jf‘:[?%’ N* 4%;271’ N*= 43327}5 ‘
me- il we- gt metl |
U= rfl{:ta (log § - rp+1) @= 'ZTAJIEta log § = #%). |
w= (g —at o - 3)
where
a+ig=3[cotur+ 'gé(yi"llé?n(pif,-é:y) *C. (7.5)

(Description of cos ¢ and sin # is omitted in (7.3) and (7.4).)

8. Concluding Remarks

The present solutions are rigorous ones in the sense that they are derived
without making any other approximations than neglecting f/a compared with
unity and letting Poisson’s ratio be equal to zero. After somewhat troublesome
computation of @.(cos ¢) according to Section 6, we can calculate the resultant
stresses and the displacements for all values of colatitude of the spherical shell.
On the other hand, the shallow solutions? or the asymptotic solutions® are
suitable for the numerical use since they are expressed in terms of the modified
Bessel functions which have already been tabulated. Our solutions will serve to
examine the accuracy and the validity of these practical solutions.

The singularities of the resultant stresses and the displacements at the apex
are investigated in the latter part of the present paper. It is observed that, in
all cases, the resultant stresses have singularities at the apex. The displacements
for a concentrated radial force remain finite, and on the other hand the displa-
cements for a concentrated tangential force and concentrated moments become
infinite at ¢=0. These results are slightly different from those obtained by Reis-
sner” or Leckie and Penny®. For example, N** for the case of a radial force
is negative (compressive) finite value by Reissner or Leckie and Penny, while
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positive (tensile) infinite in the present solutions. But this discrepancy is limit-
ted to only an extreme vicinity of the apex, and at a slight distance from the
apex the latter approaches to the former.

Finally, it should be noticed that the singular solutions derived from the shell

theory are applicable to at a distance from the load point not less than several
times 7, since in the shell theory the transverse shear stresses are assumed to
be small which is important in the vicinity of the load point.

1)

2)

3

—

4)
5)

6)

7

~
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9)
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