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Abstract

We have dealt with an one-dimensional plasma flow across a confining magnetic
field. From the results, one may find that plasma can flow only up to a distance,
which is different from a conventional fluid. The conservation of mass must be hold,
so that an absorber is required to be present at this distance. The wall of vessel
enclosing plasma is nothing else but the absorber of plasma.

§ 1. Introduction

In connection with a confinement of high density plassma by a magnetic
field, it is important to study a steady flow of plasma across the confining
magnetic field. The steady plasma velocity across a magnetic field, due to the
collisions, is usually given by?

p=— -1 7P, (1)

where 7 is the velocity, » the resistivity, B the strength of magnetic field and
P the plasma pressure. The above equation is derived assuming

-

i xB=VP, (2)

where ; is the density of electric current. Such an assumption seems to be
wrong in a viewpoint of hydropynamics. Indded, the equation (1) and the
equation of continuity lead to that velocity of plasma becomes infinitely large,
as it will be shown in the later. For any steady flow, we can not neglect the
non-linear term (7-7)7 in the equation of motion®. In this reseanch, we want
to discuss the steady flow of plasma.

§2. The model of one-dimensional plasma flow

Suppose a fully ionized plasma, being in a steady steady state, moving normal
to a magnetic field directed along the z axis of rectangular coordinates, and
drifting in the x axis towards the material wall on which charges are recom-
bining. We can assume that such a system is uniform in the y direction, and
hence any veriable quantity present in the equations of plasma fluid is a func-
tion of x only.
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§ 3. The binary-collision theory
We shall start with the equation (1) offered by L. Spitzer Jr, namely

- _ .7 ar
VE TR ax

and the equation of continuity, which is
E(ZZE nv = 0.
The pressure P is equal to n(kTi+kT.), where T; and T. are the tempera-

tures of ions and electrons. We assume 7; and T, constant and B also. Then
we can solve n# or » as a function of x as follows,

12
nzm(1—%) : (3)
with
d= ﬂoﬂ(kTngTi)/z Z)QBZ, (4)

Here we have chosen a set of boundary conditions as #=mn, and v=v, at »=0.
The above equation (3) shows n=0 at x=d. Thus d is an upper limit of x
and therefore we can no more find any plasma in the range xd. We know from
Eq. (3) v->c as x—»d. Such a difficulty is also found in the Schottky ambipolar
diffusion theory on the well-known positive column of a gaseous discharge®. In
the theory, that difflculty is removed by the bact that generation of charges in
the positive column balances loss of charges on the wall®”, leaving a problem
whether the ion temperature near the wall should be set equal to the room tem-
perature or determined by Bohm’s criterion leading to the sheath formation®.
In the next paragraph we shall show that Bohm’s criterion is automatically
derived by taking the hydrodynamic non-linear term (9-7)7 into account.

§ 4. The hydrodynamic theory

A set of exact equations of plasma fluid are

d _ -
—d§n7)~0, (3)
dv _ . dP .
mny - = iB Fr (6)
7 = —vB, (7
1 dv dP;

-

where 7 is the flow velocity whose components are (v, 0, 0), m the mass of an
ion,}" the density of electric current (=(0, 7, 0)), B the strength of magnetic
field (=(0, 0, B)), E the strength of electric field (=£, 0, 0)), e the unit of ele-
ctric charge and P; the pressure of ions. Furthermore, the magnetic field B is
related to the following equation,
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4B =, ()

where uo is the permeability in vacuum.

We have assumed the x comdonent of j zero since the electric current can
not flow into the insulated wall. Such a situation require E=finite to make j.
be zero. That is, a space charge sheath is set up, and therefore we have to take
the electrostatic force p*E (where p* is the charge accumulation) and the space
charge current o7 into account. However we neglect these terms in the above
equations and shall discuss effects of these terms upon the results obtained by
the neglection of them in the later.

The equations (5) and (6) can be integrated as follows,

nv = const., (10)
mnov + ZBd + Y (RT: + kT.) = const., (11)
2o v

using Eq. (9). These equations are the conservations of mass and stress res-
pectively. With a set of boundary conditions n=m,, v=v,, B=B, at =0, and the
following notations

N = n/no, y=wv/{v,, z = B/B,,

=2 pmommvs/ By and B =2 pene(BTe + ET:)/ B:,

the equations (10) and (11) become

?=1—T(y—1>+3(1—%;)- (13)

The function (z(y))® has a maximum at

y=yp=10plv

where vp=(kTi+kTe)/m):. We are assuming the temperatures 77 and 7. con-
stant. The maximum value of z, denoting it by zm, is given by the following
equation,

Zn=1+ (G -8 =1.

When § =0, then 2z, =(1+7), and when =1, then 2l =1+ (1 —7)"*)2

Since 2°=0 is required, we can find a permissible range of y which is of
course depend on B and 7. Let y and y, be the lower limit and the upper limit
of the range. Then y<1 and y,)y, are valid.

With Egs. (5)-(7), it follows

(%.%_ _1)65_-: =2, (14)

where £=2 px/ry. The function 2* is never negative for 1<y<y, so that dy/de
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is positive when 1<y<y, and negative when y,<y<y,. When y=y,, then dz/dy
=0 and d*/dy’<0. That is, £ takes a maximum at y=y,. Now the difficulty
v—oco appeared in the preceding paraph has been removed.

The plasma flux #v must be constant at every point of x. However the above
result shows that the upper limit of x is present, and therefore it is quite natural
to conclude that wall of vessel will be existent at x=2x,, where x, is the upper
limit of x  Furthermore, it is interest that the velocity of plasma at x=x, is
equal to the thermal velocity of plasma ((RTi-+kT.)/m)V% It is noted that xm
is of the order of the magnitude of (3/2 uy)ys =d, as it is easily seen from Eq.
(14).

Now we shall regard in Eq. (8), which is rewritten as follows,

Be=(Z)(&)6- ) )

where y}=&T;/mv;. From the equation, E is positive for »m<y<y;, (where
y<yi is identical to v<(kTi/m)¥*), E<0 for y;<y<y;, E=infinite for y=v, and
E>0 for ypy<y<y..

The electric potential is, using the relation E= ~dV/dx, given by the follo-
wing equation,

V= ( mﬁ)( lgyz +y In y).

where the integral constant was determined by V=0 at y=1 (or at x=0). Let
Vs be the value of V at y=y, (or at x=x,). Then it follows

2eVi= —(BTi+ kTe) + (BT In (BT + kT [ mvb),

provided that y5> 1.

§ 5. Discussions and Conclusion

In §4, we have found that x has a maximum, ,%» The Plasma is accelarared
up to the thermal velocity independent of megnetic field, at which just x=xn
This result seerns to be expressing Bohm’s criterion.

The magnetic field B as a function of velocity takes a maximum at the
thermal velocity, which means that the magnetic field a satunction of x also has
a maximum value at x=x,.

In thehydrodynamic theory, one may find a difficulty that E-c at x=2xn,
arising from the assumption that n.=#;. If, however, the electrostatic force p*E
(or e(n;—mn.)E) is taken into account, then the difficulty will certainly be removed.
It has been shown by Tonks and Langmuir® that the plane at which E infinite
marks the formation of a space charge sheath. If the sheath thickness is much
smaller than the plasma dimension, then x gives the plane at which plasma
absorber of wall is present to hold the continuity of plasma flux. However, the
velocity of plasma at x=x, may be different from the thermal velocity due to
n.#n;, and depend on the strength of magnetic field.

We can temporarily determined the position of the sheathplasma boundary,
although the boundary is not sharply defined. That is, E*=P. This temporal
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condition can be calculated as a function of » or y using the results in §4, from
which we ma be able to find the velocity at the boundary (Note that the plasma
assumption #.=n; is no more valid when eF£?/2>=P.). But more exact solution
will be obtained by making use of a two-fluid model of plasma than a fluid model
treated here.

We shall now summarize our results:

(1) Any plasma can flow across a confining magnetic field up to a distance
roughly given by Eq. (4), which requires an absorber or a wall to maintain the
consevation of mass.

{2) The binary-collsion theory in which Eq. (1) is valid has a difficulty that
the velocity of plasma is infinite at the distance x=d (see Eq. (4)), and the
electric field is also.

(3) The hydrodynamic theory in which the non-linear term (v+7)% is taken
into account shows that at x=xn,, at which the absorber is present, the velocity
is equal to the thermal velocity of plasma. The theory as same as the binary
collision theory has a difficulty that the electric field is infinite at x=xm, which
is arising from the assumption of electrical neutrality.

This research was first and partly lettered to Proc. Phys. Soc. London, 78, 618, 1961, by
the author, S. Ito and P. C. Thonemann.
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