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Summary

A free jet boundary which includes laminar, and turbulent flow region in tandem
is analysed, based on the extension of Gortler’s method for the free turbulent flow. A
similar solution is obtained for the velocity distribution. The variations of the width
of the mixing zone are plotted for various parameters.

1. Introduction

A free jet boundary is formed between two uniform streams which move at
different velocities in the same direction. The flow of the mixing zone is laminar
only when the Reynolds number of it is small. It is generally expected that the
flow will be laminar in the upstream region, then, through the transition region,
it will become turbulent far downstream. The x-direction is taken to be parallel
to, and » be normal to that of two uniform streams, which meet at ¥=0 with
the velocities of U; and U, respectively, where Ui> U is assumed.

The analysis of the free jet boundary has been performed by many research
workers in both laminar and turbulent case. W. Tollmien® first analysed the
problem of the turbulent mixing of a half-jet, as well as that of a two-dimensional
and a circular jet, by making use of Prandtl's mixing length theory which gives
the following expression for a turbulent shearing stress
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where [ denotes the mixing length, p the density, 2 the mean velocity component

in the x-direction.

Later on, H. Gortler® took up these problems again, being based on Reichardt’s
constant exchange coefficient hypothesis with some suggestions from Prandtl
which is only applicable to the case of free turbulent flow. It assumes that the

turbulent shearing stress r; may be expressed as

ftzpe% (2)

introducing the turbulent exchange coefficient, or the virtual kinematic viscosity
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where b denotes the width of the mixing zone, x a dimensionless number to be
determined experimentally. #max and #,, are the maximum and the minimum
mean velocity in the section respectively. It follows from Eq. (3) that ¢ remains
constant over the whole width of every cross-section. Following Prandtl, it is
further assumed that the width of the mixing zone associated with a free jet

boundary is proportional to the distance from the point where two streams meet;
that is

b= const. X x = cx. (4)
Putting Eq. (4) into Eq. (8), we get
Ezf:(umax_umin)x (5)

where x=ric is also an empirical constant.

Started from their different hypotheses, Tollmien and Gértler obtained the
results which were similar to each other, though the latter was improved in
some respects. Their theories are, of course. valid only to the fully developed
turbulent flow where the upstream laminar region is negligibly small.

A theory which takes account of the upstream laminar flow together with
the downstream turbulent flow is not yet developed. The present paper offers
some approach in this direction, which will be discussed in the following sections.

2. Assumptions for the Shearing Stress

Since no theoretical treatment is yet available for the turbulent flow, and
especially for the flow in the transition region, we simply put an assumption that
the shearing stress is composed of two different parts, the laminar shearing stress
and the turbulent shearing stress; that is

=11+ 14 (6)
77 is given as
ou
T = ppr '8‘3) (7)

using the kinematic viscosity, », which remains constant over the whole region.
7+ is understood to be zero in the upstream laminar region, extending from x=0
to ¥=a, the point where the turbulent mixing is assumed to begin. Beyond this
region, we adopt the assumption of Eq. (2) for the turbulent shearing stress, con-
sidering that Eq. (2) is more amenable to mathematical treatment than Eq. (1),
because of the resemblance in the expressions of ¢; and t:.

In the present case, however, some difficulties arise, when we want to apply
Eq. (3) or Eq. (5} to €. It was previously assumed that the shearing stress in
the turbulent region is composed of w and r;, instead of v; alone as in the preced-
ing case, so that the expression of ¢ must be necessarily different from that of
Eq. (3). Moreover, the width b cannot be considered to be proportional to the
distance x any longer, for the turbulent region is preceded by the upstream
laminar region.

But it is remarked that v; is much smaller than r; in the fully developed
turbulent flow. As a result, we can approximately put r is equal to r; far down-
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stream, and consequently, the width will be increasing almost linearly with x there.

According to the above considerations, we make further assumption that we
are allowed to use Eq. (3) for ¢, with a modification of the quantity & into the
width between two asymptotic lines which the boundaries of the mixing zone
will approach as x increases as shown in Fig. 1. We define the peint of inter-
section of the asymptotic lines with the x-axis as the point at which turbulent
mixing originates, and it was already designated by a. Now = is taken as zero
when x<a, and can be expressed by Eq. (5) when x>« only replacing x by z—a,
it is possible to write
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F1G. 1. Flow pattern of a free jet boundary, and variation
of the kinematic viscosity

& = i Umax = Umin) (X — @)~ & (x— a) (8)

using the unit function #'(x — a) defined by

Z/(x~—a)={0 if x<a N
1 if z>a.

Substituting Egs. (7), (2) and (8) into Eq. (6), we obtain

r:p{v—}-/c(um,—umi,,)(x—a)'Z/(x—a)}%%. (10)

3. Basic Equations and Their Solution

The basic equations of free jet boundary flow in incompressible fluid are as
follows:

ou L ov g (11

eqn. of continuity; ox T oy

egn. of motion; Ui + Ve = (12)

with the boundary conditions

| (1)
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The pressure term has been dropped in the eqn. of motion, because it is per-
missible to assume that the pressure remains constant over the whole field.
Substituting Eq. (10) into Eq. (12), we get
a‘Z

a”%“—{—i)au —<D‘+‘K(U1 U2)(x~a).%(x—a)} yZ

(14)

where #m.x ar.d #.:, are replaced by U; and U, respectively.
In order to obtain a similar solution, we introduce a new variable » and a
stream function ¥ as

=2 — . -
=V 7 =G(x)/(3) (15)

where Y(x) and G(x) are some functions of x, and f(3) is that of ». The velocity
components are given by

)
=2 G = U
__aw Gl ¥!(x) (16)
V=T ooy Gl (x)f(q) + Yo 72/ (n)
= DY (af' = )

so that ¥ satisfies the eqn. of continuity (11) naturally, where the prime denotes
the differentiation with respect to each argument, and the relation

f’(x,):]_, or u—:U]_ (17)

is assumed.
Substituting Eq. (16) into Eq. (14), we obtain the following differential equation
for =,

U Y ()Y (x)
v+ (U~ U x—a) & (x—

J ) + a)finlf”(nv = 0. (18)

Eq. (18) becomes independent of x, provided the coefficient of the second term is
a constant. As we can take any constant, we put

Yix)Y'{x) =9 (19)
v+ (U - (x—a) (% —a)

for the sake of computational convenience.
Putting Eq. (19) into Egq. (18), we have

Sy + 25 " (5) =0 (20)
with the boundary conditions

p=w;  fl=1,  f=0
! (21
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Eq. (20) has been solved by use of a digital computer and the results are
shown in Fig. 2. Fig. 3 shows that the smaller the difference in the velocities of
two uniform streams, the closer the velocity distribution approaches to Gortler’s

approximate solution.
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F1G. 2. Distribution of velocity components in the mixing zone of
a free jet boundary: {a) x-component; (b) y-component
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F1G. 3. Effect of the velocity ratio of two uniform streams on the free
jet boundary flow, compared with Gortler’s approximate solution

Eq. (19) can be integrated into

Y:ZU{”z{uxwLw;}(Ul-—Uz)(x—a)g-Z/(x—a)}m. (22)

Hence we get from Eq. (17)



104 Research Reports

G=20i”<px+—§-(m~U2>(x—a>2-2/(x»a>>“2. (23)
Substituting Eqs. (22) and (23) into Egs. (15) and (16), we have the final
forms of the solution.

UI/Zy
2{vx+ 5 (U= Uz ~a) Z (x —a) }

7=

?!'”:2U§“<vx+%(Ul— U)ix—a)# (x—a)}? 1 (),

v , (24)
u=gy= U/,

v = _‘ggz Vot e(Ui~ UM x—a) & (x—a)}

X (pa+ 5 (U= U (= @)+ % (= @)y P! = ).

4. The Width of the Mixing Zone

Y(x) is regarded as a measure of the width of the mixing zone. Eq. (22) is
made dimensionless by using a kind of Reynolds number with respect to a, as

L jUaY _yx  kUae(; DYz |V, (5 )"
2V v oa T &"+4’2"""J'<1 Ul)(_(; - 1) ZZ(’Z ”1,>}' (25)
This equation is shown in Fig. 4 for various values o %%(1—%) against

x/a, which shows that the relative width Y/e multiplied by the root of Reynolds
number increases with the strength of turbulence x, Reynolds number and the
relative velocity difference between two uniform streams (Ui— U;)/UL.

In particular, if =0, and the specified value of £k=0.001372 from the measure-
ments by H. Reichardt® is used, then the variation of the relative width Y/a is
dependent on only one parameter Uia/v, and it approaches asymptotically to the
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FIC. 4. Variation of the width of the mixing zone in a free jet
boundary along the main stream direction. Eq. (25)
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FIG. 5. Variation of the width of the mixing zone in a free jet boundary
along the main stream direction; U:=0, £=0.001372

straight lines which are all parallel to the limiting line for Uwa/v— o, as shown
in Fig. 5.
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