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Abstract

We have discussed a plasma-sheath transition as a function of the electric
current delivered to the sheath, using an one-dimensional, collisionless model and
a set of macroscopic equations.

When the conditions 7?= X m,v /“ kTs=1 and Eo=0, (where the subscript s

stands for e (electron) and 1 (wn), s 1s the mass of a particle, vs, the velocity at
the plasma-sheath boundary, 7s the temperature and Eo¢ the electric field at the
boundary, (i) for mi} /kTi>1 (or me‘l):a/kTu<1) the pure ion sheath is formed with-
out any local excess of electron space charge, (ii) for mw?o/kqul (or mev? o RTe=
any sheath is not established and (iii) for mw} [kTi<1 (or mw} /kT.>1) the pure
electron sheath is developed. When 721 and Eo=0 or =0, then the formation of
sheath is much complicated. Thus the condit'ons r=1and Ey=0 lead to the estab-
lishment of much simple sheathes among the various sheathes and are including
the familiar Bohm criterion when ve,—>0.

Furthermore, one may find that the ideal Langmuir probe curve, in which the
conditions 72=1 and E;=0 are imposed, deviates from the classical probe theory.

§ 1. Introduction

The problem of a plama-sheath transition has been discussed by D. Bohm?
and found that a stable ion sheath is formed when ions enter into the plasma-
sheath boundary with velocities of the order (kT./m:)V* or greater, where m;
is the mass of ion and 7. the electron temperature. He has also studied® that
the maximum ion current which we can draw out from the plasma is of the
order of the magnitude jis<em(kTe/mi)'?, where e is the charge of ion and
the number density of ions at the plasma sheath boundary.

These statements are based on the assumptions that the strength of electric
field at the boundary, E, is nearly equal to zero and the ion temperature is
also. These assumptions seem to be wrong?, especially when E, is finite then
a stable ion sheath is well established for the ions with velocities lower than
(BTe/m¥?. Without these assumptions, J. E. Allen et al.¥ have re-examined
and improved the above theory.

Recently, P. L. Auer® has done research on the role of ion current in the
formation of sheath in a low pressure positive column and found that the familiar
Bohm criterion is not essential but a minimum ion current is required to be
delivered to the sheath.

That statement suggests to have to study the formation of sheath as a
function of electric current. The reader will certainly know that the Langmuir
probe immersed in a plasma can drag out a positive or negative electric current
from the plasma by applying electric potential to the probe. Thus we must
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study the problem of a plasma-sheath transition as a function of electric
current, which is the purpose of this note and which has been suggested by
H. K. Wimmel®.

§ 2. Fundamental Equations and Integrations

Consider an one-dimensional steady state system composed with ions and
electrons. Their number densities, #; and 7., ars equal each other at the plane
(0, », z) of the rectangular coordinates and charges move towards a plane
collector electrode placed on the plane (d, y, z). We shall assume electron-ion
collisions infrequent in the system and, furthermore, assume that such asystem
is described by a set of macroscopic equations.

The set of equations is written as

aixn,vg=0, (s=e or i) (1)
n,msvs%» Vs = esns B — aax Ds, (2)
bs=nskTs, (3)

S()gf =D esns, (4)

E= -2V, (5)

where 7; in the number density, »s the velocity, ms the mass of a pareticle, es
the charge, E the strength of electric field, ps the partial pressure, % the Boltz-
mann constant, Ts the temperature, & the dielectric constant in a vacuum and
V the electric potential.

When »;=0 and 75 constant all over the system, then Egs. (2) and (3) lead

nsecexp( — esV/RTS), (6)

which is the density distribution in an electric potential being in the thermal
eqilibrium. When »; is finite, then 75 is no more constant, but it, perhaps,
changes adiabatically as it is usual in hydrodynamics. Thus whether the tem-
perature Ts is constant or adiabatic is depend on the velocity »;. We shall
here assume T constant, because this note is only a qualitative discussion and
most of experiments, regarding the Langmuir probe measurement, supports the
exponential form of Eq. (6).
The equations (1)~ (5) can be integrated as follows,

n;v; = constant, (7)
neve = constant, (8)
miniv: + menevi — E°2Ef + (nikTin.kTe) = constant, (9)
miv}
—'24 + eV + kT;ln+ n; = constant, (10)
MeV;

£2¢ — eV + kT.In*n, = constant. (11)
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The equation (9) expresses the conservation of stress and Egs. (10) and (11)
mean the conservation of energy.
We shall now impose the following boundary conditions, namely

N = Ne = Ny,
Ui = Viy, Ve = Ve,

E=F,and V=0,

at x=0.

§3. The N;-N, Diagram

For the simplification of calculations, we wish to use various dimensionless
quantities, namely

Cs = msvs/kTs, Ns=ns/ns, Us=vs/vs,

TV =elE"— E)/2nkT. and ¢ = eV/ET,.

With these notations and the boundary conditions given in § 2, Eq. (9) becomes

w=gfi+gfe, (12)
where %:%{03(71;,;—1) - (1=} (13)
and Qfe-_—cz(i-—l)—(l—zve). (14)

The equations (10) and (11) are rewritten as

_¢=%{;§(—;—73~1)+m-m}s (15)
¢ = {%7‘23(-]%2—1)+ ln-Ne}. (16)

In Fig. 1, the curve T.¢/T: was plotted as a function of N; for the various
values of C;. From the figure, one may see that Tew/T; has a maximum value
at Ni=C;. Furthermore, we can plot ¢ as a function of N. as shown in Fig. 2
from which we know that ¢ takes a minimum value at N,=C,.

From Egs. (15) and (16), we can easily find the relation between N; and N,
eliminating ¢ which is determined when C; and C. are given. Some examples
of the relation between N; and N, were shown in Figs. 3 and 4. The relation
N; vs. Ne will be called, “The N;-N, diagram”. In Figs. 3 and 4, the point
(Ni=1, Ne=1) means the plasma-sheath boundary and the broken straight line
expresses N;=0N.. In the region upper than the straight line N;=N,, the ion
density is larger than the electron density, whereas the lower region gives
N;i< Ne.

From Egs. (15) and (16) or Figs. 3 and 4, one may conclude the following
terms:

(1) For Ci=1 and C:=1, the solution is only the point (N;=1, No=1), which
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FIG. 1. The curves of T.9/Ti(=eV/kT:) vs. Ni(=ni[m). The straight
line A-A’ shows ni/ny=exp(—eV[kT:).
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FIG. 2. The curves of ¥ vs. Ne(=n:/m). The straight line
B-B'’ shows n:/n=exp(eV[kT.).

implies that any sheath does not develope and the electric potential of the
collector drawing out the electric current from plasma source is identical to
that of plasma source.

(2) The Ni-N. diagram generally is a closed curve or a loop. The loop
intersects with the straight line N;=N. at two points which are determined by
the following equation,

2
r (1 .
(qa= 1)+ Ine Ni=0, (17)
where

2 _ TiCi+ T.C,
Ti+Te.
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F1G. 3. The N.-N. diagram, which is obtained by eliminating ¢

in Figs. 1 and 2. We have assumed 75=7T.. The curve 1 is for

(C2=10, C2=1), 2 (C2=10, C2=10, C2=10"4), 2 (C2=2, C2=1),

4 (C2=2, C2=10"1), 5 (C?=1, C2=10"2), 6 (C?=1, C2=10-?), 7

(C2=1, C2=10"%), 8 (C2=10"1, C2=10-1), 9 (C2=10"1, C,2=10"?),
10 (C2=10"1L C.2=10"3).
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F1G. 4. The N*~N. diagram, where Te=7T: The curve 1 is for

(Cer=10, C2=10), 2 (CA=10, C?=1), 3 (CA=10, C*=10-4), 4

(Cr=2, C*=2), 5 (Cr=2, C*=10"1), 6 (Crl=1, C2=10"1), 7

(Ct=1, C2=10"7), 8 (C%=1, D:*=10"%, 9 (C2=10"1, C:2=10-1),
10 (CA=10-1, C;*=10-?) and 10 (C.2=10"1, C2=1073).
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One of two intersecting points is Ni=N,=1 and independent of 7*. The other
point, denoting it by (V;),, is depend on 7? as it was tabulated in Table 1. From
Table 1, one may see that (Ni)e>1 for r*>1 and (N:).<1 for r’<1. For 7*=1,
two intersecting points are identical each other and, only when 7*=1, the loop
is in contact with the straight line N;=N, at the point (N;=1, N.=1). Thus
if the condition 7?=1 is satisfied then the loop will be located in the region
either NV;= N, or N; < N, whereas if 1?41 then a part of loop will be in the
region N;< N, and the residual part in the region N;=N.. In the other words,
when 12=1 one may find either a pure ion excess sheath or a pure electron
excess sheath, whereas when 7231 a complicated sheath is formed just as space
charge is partly positive and partly negative.

TABLE 1. The values of (Ni)a and Tep(Ni)a)/(Te+Ti)
for the various values of 7?

72 (Ni)a E ?a‘g‘_iﬁgb((Ni)a)
10 Y 136

T | 1 0
10~ 0.165 x —0.2
10-2 0.0295 5 —0.7
107 0.00106 | —0.9

0 | 0 } —~1.0

(3) We can easily calculate (dN./dN;) at the boundary using Egs. (15) and
(16), namely

_ni-c

(dNe>x=0=a= Te<1~cé>' (18)

dNi

from which a=0 when C!=1, « infinite when C; =1 and a=1 when r*=1. Thus
only when r2=1, (dNi/dx) at the boundary is equal to (dN./dx) at the point.

(4) Excepting two intersecting points, there are four noticeable points on
the loop, i.e. Ni is maximum or minimum at Ne=C. and N. is also at N;=Ci;.
We shall denote these extreame values as (NVi)maxs (NVi)min, (Ne)maz and (Ne)min-

Thus far only we have discussed the relation of N; to N, which generally
is a loop in the Ni-N. diagram. However, we can not say that all of the points
on the loop is existent in a real physical system.

§4. The Electric Field

We shall now discuss the dimensionless electric field #. The functions ¥,
and ¥, are identical to each other in their algebraic forms, so that only ¥, was
plotted as a function of N, in Fig.5 which shows that ¥. has a minimum value
at No=C,. Although ¥ is a function of both N; and N,, we can rewrite ¥ as
a function of only N; using the N;-N. diagram, ie. ¥=7(N;).

The function ¥ (N;) takes various extreme values at the following values
of N;.

M=NG,
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Ni=Ne=1 (19a)
and N; =Ci;. (19b)

The function ¥ (XV;) is minimum or maximum at N;=C; depending on whether
Ni>N. or N;i<N, because dN¥/dN} is written as

&y _ T;
dNt T

Ne(1 4+ Tz/Te)(Nf - Cf)(Ng — 72)}’

2(N; — +
{2 - ) NN = CY)

(20)
For the values of N; given by Eq. (19a), the function ¥ (V:) is also maximum
and the value of ¥ (M) at Ni=Ne=(Ni)a, ¥((Ni)a), can be calculated by the
following equation,

T
Ti + Te

W(Ni)a) = Ta(T]%T)jz - 1> —(1- (M)a)’

and was tabulated in Table 1. From the table one may see ¥ (INV;),)<0 for 1*<1,
F((Ni)e)>0 for 12>1 and ¥ ((Ni)e) =0 for r*=1.

The function ¥ (NN;) was sketched in Figs. 6, 7 and 8 for 1?=1, 7’<1 and
7°>1 respectively. In these figures, the right-hand side gives the relation 7(N;)
vs. N; and the left-hand side is the N;-N, diagram. Furthermore, the notations
max. and min. mean ‘the maximum ‘and minimum values of ?(N;) and the
symboles (max) and (min) express the extreme values of ¥ (N,).

In any real physical system, the square of the electric field E must be po-
sitive or zero, i.e. E*>0 or 2 mkT.¥/e+E;>0. Furthermore, for the problem of
a plasma-sheath transition being in a steady state, the electric field should be
continuous and both I; and N. have to change continuously starting N;=N,=1.
When 7?=1 and Ly=0, the above regirements lead, seeing Fig. 6, that the allow-
able range of Ni is (1, (Ni)mi), where (Ni)mm is the minimum value of N; or
the value of N; at No=C,. When 7*=1 and E,+0, the allowable ranges of N;
are (1, (Ni)ww) and (1, N;>1), where in the later range the upper limit of N;
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right-hand Iside is the function ¥ (=e(E?—E?)/2nkT.),

where ?=1. (a) C¥>1 (or Ci2«1), (b) C?=1 (or C2=1)

and (¢) C?<1 (or C#>1). The notations max and min are

the maximum and minimum values of ¥(N:) and (max)
and (min) are those of ¥ (Ne).

may be determined by E=0. It is not yet clear whether such two ranges of
N; is connected with an instability or not. When 7*+1 and E,=0, seeing Figs.
7 and 8, situations are much complicated. Only we can say that for Figs. 7
(a), 7 (e) and 8 (c) the solution is N;=N,=1.

§5. The Ideal Langmuir Probe Curve

Thus far, there has been appeared three parameters C;, C, and E,. The last
parameter would be determined by an inherent character of plasma source and
the electric current being delivered to the sheath. Let j be the density of
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FIG. 7. See the caption of Fig. 6, where 72<1.

electriccurrent and let ¢ be the conductivity of plasma. Then E, is given by
the following equation,

Eo = ]/0‘
The density of electric current j, which is measurable, can be written as
7 =eny(vi, — ve,),

so that either C; or C, is able to replace by the measurable quantity j. How-
ever, either C; or C. is left undetermined. That difficulty may be settled by a
measurement of momentum.

We shall now calculate the Langmuir probe curve” imposing the following
conditions,
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*=1 and E,=0.

These conditions seem to be of more general than the familiar Bohm criterion
leading to the formation of a stable ion sheath, because:

(i) When C:>1 or(Ci<1 since *=1), then the pure ion excess sheath is
formed, i.e. the number density of ions is equal or greater than that of electrons

all over the system. As v,,~0, the velocity of ions at the plasma-sheath bound-
ary becomes

vip= { (BT + BT | mi"?,

from which the density of electric current delivered to the sheath, jis, is written
as

jis = engd (KTi + RTo) /imiy ™.
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(ii) When Ci=1 (or Ci=1), then any sheath is not formed in the system
and therefore the electric potential of collector is equal to that of plasma source.
In this case, the electric current flowing into the collector, J», is calculated as
follows,

Jp=—em{(RTe/me)"* = (RTi/mi) "} = — eno( ETo/me)">.

(iii) When Ci <1 (or Ci>1), then the pure electron excess sheath is estab-
lished. As »;,—0, the velocity of electrons at the boundary and the electric
current dragged out from plasma are written as

Ve, = {(RT; + kTe)/me)”z»
Jes= — ena((kT; -+ kTe)/me}”zy

respectively.

We can clculate the Langmuir probe curve by the following procedure: (1)
For Ci>1, the range of N; is (1, (Ni)mm) and only the range is significant
physically. In the other words, the range of N. is (1, C.). With the definition

iz
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F1G. 9. The ideal Langmuir probe curve, in which the conditions
r?=1 and Ey=0 are imposed, for Cs assuming 7:=7.. In the figure,
the straigh tline A-A’ shows the relation j/jes=exp(eVe/kT.).
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of j, *=1 and Eq. (16) substituting N.=C., we can obtain the j—V, curve.
Here V. is the electric potential of collector relative to that of plasma source.
(2) For C} <1, the significant range of N. is (1, (Ne)mw) which corresponds to
the range (1, Ci). In the same way as for Ci>1, we can get the relation of j
to V.. Thoretical probe curve obtained by the above procedure will be called,
«“The ideal Langmuir probe curve”.

In Fig. 9 we showed the ideal Langmuir probe curve for Cs plasmg as-
suming T.=Ti. The straight line A-A' in the figure gives the relation j=
Jesexp(eVe/kTe) proposed by I. Langmuir. We must note that dj/dV. is infinite
at the plasma potential. Furthermore, a linear part, that In+j is proportinal to
eV kT., is in a narrow range of eV./kTe.. The lighter the mass of ion, the
narrower the range of eVe/kTe.

§6. Conclusion

We have discussed the problem of a plasma-sheath transition as a function
of the electric current drawn out from plasma, using an one-dimensional colli-
sionless model and a set of macroscopic equations.

The equations give the relation between the ion density and the electron
density which is a loop in the #:/n®—ne/n diagram. The loop is determined
when two parameters C?= mvh/kT; and C; = mevt,/kTe. These loops are classi-
fied into two groups depending on whether 7*=1 or 722:1. When 72=1, then the
loop is in the region ni=mne or n:<n., whereas when 721 then the loop is partly
in the region n:=n. and partly 7;<n..

The 7i/na—n./ns diagram and the equation of stress lead to the following
conclusions: When 7?=1 and E;=0 are satisfied, then (i) for C:>1 (or Ci<1)
the pure ion excess sheath is formed, viz. the ion space charge is equal or
greater than the electron density all over the system. (ii) For Ci=1 (or Ci=
1), any sheath is not developed and the system is electrical neutral, viz. the
electric potential of the collector drawing out the electric current is identical
to the plasma potential. (iii) For C!<1 (or C;>1) the pure electron excess
sheath is established. When 7?1 and E,=0 or E,=0, then sheathes are much
complicated.

In §5 we have discussed the Langmuir probe curve, and calculated the ideal
Langmuir probe curve in which the conditions 7?=1 and £y=0 are imposed.
The ideal Langmuir probe curve deviats from the classical theory of probe pro-
posed by I. Langmuir and shows that resistance in the system is equal to zero
at the plasma potential.

(Note: A set of equations Egs. (1)-(5) are solved by making use of the
following integration,

_(aVian: ,
x—j E(ni) dni,

or - f dVldn,

= . VE(V‘)Ig) €Ne. )

I wish to add to this note the following sentence: when plasma source is
uniform and semi-infinite in the region x<0, then the conditions r?=1 and Ev=
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0 are necessary and sufficient for the establishment of sheath in the region x>0.
From Poisson’s equation, it follows

so(%)x=o =e(m =m0 =0,

and the second-order derivative of E is written as

(G )=l (G~ (%))

These two equations imply that when (#°E/dx")«=0 % 0 then the electric field
E is minimum or maximum. Since our plasma source is uniform and semi-
infinite, so the electric field can not take any extreme value at x=0 and inflect
at there; ie. (d"E/dx")z-, must be equal to zero. By making use of Egs. (15)
and (16), the condition (d°E/dx’)x-o=0 is rewritten as

=1,

which is independent of whether E;=0 or ==0.
Furthermore, it is required that

(ZL”EL:O =0, (n=3)

This requirement is satisfied only when E,=0, because when E,=0, in general,
(d"ni/dx")z=y=0 and (d"n./dx")x-0=0 from Egs. (15) and (16), where n>1.
When E,+0, however, they are different from zero Therefore, when Eo¢0
the electric field has an inflection point at x=0.

Thus the opening sentence has been proved. If plasma source. is finite . and
if a sheath is allowable to form in the region x<0, which means that plasma
is something like a plane, then conditions leading to the formatlon of sheath
in the region x>0 will no more be only those of r*=1 and E,= g
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