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Summary

The expansion of gas molecules into vacuum ejected in a finite period is in-
vestigated on the basis of the collisionless Boltzmann equation. It is shown that
the cloud of molecules diffuses into space advancing with mass velocity and that
the distribution of density is fairly deformed by individual mass velocity.

1. Introduction

The ejection of gas into space is one of the fundamental problems in astro-
nautical sciences. Some ambient properties in space can be measured by the
emission of sample gas molecules and momentum produced by jet is generally
used to propel space vehicles and to control their orientations. As a fundamental
aspect of this problem the expansion of finite amount of gas molecules ejected
into vacuum with a mass velocity in one direction is studied in the present
paper, being based on the collisionless Boltzmann equation.

There has been some investigations on free expansion of gas molecules.
Keller? has studied one dimensional expansion from the boundary of semi-
infinite mass of gas particles. Molmud?® has calculated the concentration of
molecules in free expansion of symmetric gas clouds. Narasimha?® has derived
a general formulation of collisionless expansion and has given results on expan-
sion of point cloud, symmetric and asymmetric clouds of gases and on con-
tinuous ejection through point sources.

In the present paper the general formulation introduced by Narasimha is
extended to apply to solve the expansion of gas ejected for a finite period,
which has much reality in space sciences comparing with continuous emission.
The initial molecular velocity distribution is assumed to be Maxwellian.

2. The general expression of collisionless free molecular flow

The basic formulation is to find the expression of molecular velocity dis-
tribution function, which gives the number density of molecules of velocity
V(u, v, w) at position X(x, v, z) and time ¢ per unit volume in physical and
velocity space. This function denoted by f=/(X, t; V) is governed by Boltzmann’s
equation. For a monoatomic gas with no external forces it is given

af of _ _ -
ar TVsx =[G(f)—/L(AH]+Q(X, t; V),
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where G(/)—fL(f) stands for the collision integrals and @ is the number of
molecules which emits at X, ¢ per unit volume of X, V space and per unit time.
When the effect of collision is neglected, Boltzmann's equation becomes simply

of 4vo _oix t:
o TVag =QX 5 V), (1)
where V takes all possible values.

This kind of problem should satisfies the initial condition which takes the
following form:

fX, 1 V)=£(X; V) at =0, (2)

where /s is an given arbitrary function of X and V. Eq. (1) is a linear first order
partial differential equation and can be solved by the method of characteristics.
Introducing a prameter s the characteristic differential equations are expressed
by

i _, @xX _y df _

as =t g =V gy =€ (3)
The integration of Eq. (3) gives
S

=5 Xs=Vs+X, f=\°QdS+fo (4)
| vt X where X, can be eliminated by the relation
: P VPp(x6) X=X at s=t, therefore, by Xe=X~-Vt. It
is seen that s represents the historical time
of particle with velocity V and that Xs=X
T/ —Vi+Vs is its position as shown in Fig. 1.
A S(Xa,t) The particle passed the point S at time s
with velocity # can reach point P at time £
Function f at time ¢ can, therefore, be

X4 X X written by

F1G. 1. Characteristic variables.
'y
(X, t; V) =f(X—Vi; V)+ LQ(X —Vi+ Vs, s; V)ds (5)

This is the general solution of distribution function derived by Narasimha and
the density, velocity and other quantities can be calculated by using Eq. (5).

3. Jet flow emitted for a finite period

The collisionless free molecular flow ejected from a point nozzle continuously
for a certain finite period is considered. The gas molecules are ejected with
a given mean velocity U at a certain number rate N(#) per unit time. To
express the jet from a point source Dirac delta function 8(X) is introduced,
which has value 1 when integrated including origin. Assuming Maxwellian
velocity distribution the number rate of gas flow ejected from the point source
can be expressed by
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3/2
Q=3x)N(s) (L) exp (- p(V-0 (6)
where 3 is the parameter of velocity distribution and is expressed by using
the most probable velocity Vi, mass of the molecule 2, gas constant for one
molecule %k gas constant for one mole R, Avogadro number A and absolute
temperature T as follows:

_ 1 _m _mA
B="yi =9kT = 2RT

(7

The whole space is assumed to be vacuum before ejection, therefore, the
initial condition
fo=0 (8)
is applied.
Substituting Egs. (6) and (8) into Eq. (5), function f can be expressed by

B 3/2 ¢ .
F(X, #; V) = (n) exp{ - B(V - U)Z}Soa(x ~ Vi+Vs)N(s)ds (9)

In order to see the velocity dependence of delta function by changing variable
from X—Vi+Vs to V—X/(i—s), the following transformation introduced by

Narasimha is used:
1 1
g= —— Or S§={f— —
t—s a

and therefore

(X = Vt+Vs) =L —(V-Xo)]

Then Eq. (9) is transformed to
f(X,t; V)= (—‘g-)m3 exp{ BV ~— U)?)S‘° S xa)]N(t— —1)oda (10)
rv 7 1/t a
Flow quantities can be calculated by this equation with proper functional
expression for N, which governs the source strength with time.

Density and velocity distribution of gas cloud can be derived by integrating
mf and mVf in whole velocity space respectively.

32 e £
(X, ) = m(-f%) jmal\'/‘daj_wexp (= B(V=U)*[—6(V - Xa)IDV

=m( )7 (= L) exp (= p(xa~ U)o (11)
alx, ) =" (—g-)mS:tJNdaSin exp { — B(V = U)}[ = 3(V = Xo) 1DV
= 2 x(£ )3'23':‘021\'/@ ~ Dexp( - p(xs = UY}ds (12)

To integrate these equations it is more convenient to take x axis in the dire-
ction of vector U and to deform

—B(Xg = U= — L(Xs— U cos 6)°+ U* sinf]



Research Reports 83

where X=[X|=x/cos § is magnitude of
position vector and 6 is its direction

Few { cosine to x axis.
@ Now flow quantities of jet emitted
2 % with constant rate (N) from time 0
to time #. will be calculated. The
-Fe(s-t,) 9 oty 4 variations of source strength can be
o expressed by using Heaviside step
function .# (s) shown in Fig. 2.
HW g
—~F(A~Ts) @ ?
0 Ty A F1G. 2. Heaviside step function.

(e~ i) = (L) = (s =100 = )| o2 (¢ - %) - (t =t~ i)]

(13)

For this expression of N Eqgs. (11) and (12) can be explicitly integrated by
applying variable transformation o = VB (Xo — U cos 0). The solutions are given
in the following form:

o(X, ) =L(X, 1) - L(X, t—t.), w(X, ) = [L(X, 1) — L(X, t =) 1/0(X, £) (14)
where
3/2 ®
X, 0 =mG0 (L) exp (= Ut sint )| exp (= ottt = 1) aas

_ m(NIVB

= —m—exp{ — BU*sin®0}[exp ( — £*) + vz VB U cos 0 erfc (x)] ’ (15)

T

L(X,#) = Xm(N)( b )mexm — BU%sin zﬂ}fjteXp (- wg)az/(t - % )o‘zda

= ol exp{ - U sinzﬁ}[\/ﬁ(—‘;g— +Ucos0)exp (— &%) + j-zi
(1+2BU%cos’0) erfc (m)J (16)
and
(X o) o (Egd ven))

Non-dimensional exprssion will be preferable to show general form and
numerical result. As the unit of quantities the most probable velocity Vi,
ejection time £, length L, density o, and the number rate of ejection of
molecules (V) are introduced by defining:

t

1 _ _mN e

Vin = N L= Vnty, p5= (Vd)? (V) =

where N is the whole number of molecules. Non-dimensional quantities are
denoted by
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X _, & _, ¥+ _ ot
vat* =4 th* - E’ thf =" t* =T
and non-dimensionalized « is denoted by
AU g
At - T— _Vm 7 (18)
Introducing similar parameter
_A L U £
Q=T+ o (19)
and other parametric expressions
G.=exp (— 4) + \/;—T//IEL% (1—erf 4:)
n
_ (20)
_ 2 vz U* ¢ _
H.=0-exp (— 42) +“2'<1+2??;T?)(1 erf A:)
The final form of density and velocity distribution is given by
1 1 U\ 2
T A e o~ (y,,) (F)lt6-—6--a (21)
u X He=Het ‘
Vi = X Ga=Guoa (22)
The magnitude of velocity is
‘!u‘ . H:— H-y :
Vm - Gt"‘G-_—l (23)
Eq. (22) shows that velocity vectors are all radial.
4. Jet flow with continuous emission
When the jet is started to emit at time 0 and continues ejection with
constant rate (V), the function of source strength should be put
Nt - L) =anats) = dnoz (e - L) (24)
o ¢
This case is already calculated by Narasimha® and the results are shown by
the present simbols as follows
b _ 1 1 INRAYAAR
L el = (5,) () 16 (25)
u _ X Ht
Vm X G- 26)

where unit of time #. is used for only a reference of time.

5. Numerical examples of free molecular jet
Several examples of numerical calculation on time variations of equi-density
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FIG. 3. Variations of equi-density contours,
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(a) ?]/szl

(C) U/szg

(d) U)Vm=4
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Fi1G. 4 (a), (b). Deformation of concentration by different mean velocity.

lines in the meridian plane are shown in Fig. 3.

The aspects of expansion of gas clouds translating with mean motion can
be seen in clear form. The peak point of maximum density is moving by a
lower velocity than the mean velocity itself, which may be caused by the fact
that the gas molecules are more concentrated close to the origin.

The pattern of equi-density lines is highly affected by the mean velocity
U/V'm as shown in Fig. 4. When there is no mean motion the concentration
should be co-spherical. The higher the velocity of the gas ejection, the flatter
becomes the pattern and the more it is elongated in the direction of £ axis.
This nature suggests the fundamental concept of an idea to measure the velocity
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F1G. 5. Density distribution along- axis.
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F1G. 6. An example of velocity distribution.

of body in vacuum. Density distributions along £ axis are shown in Fig. 5.
It is found that particles are relatively accumulated in the front part of density

pattern with increasing mean velocity.
In Fig. 6 an example of equi-velocity lines is presented.
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