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§ 1. Introduction

In Ref. (1), Crok and Rockey presented a solution to the shear buckling of
clamped and simply-supported infinitely long plates reinforced by transverse
stiffeners spaced equally. This paper presents a solution to the shear buckling
of simply-supported infinitely long plates reinforced by oblique stiffeners as
shown in Fig. 1.

All stiffeners are assumed to have the same flexural and extensional rigidity
and not to have t(he tortional one. The method used in this paper is the
strain-energy method used in Ref. (1).

i S Wavelength Pb
Fi1G, 1. Model considered.

§2. The deflection funection w(x, y)

We use the same type of deflection function with Cook and Rockey, namely,
the deflection function is assumed to be given by a double Fourier series as
follows;

w = 2 Amn Sin“"**—'z mnx . sin?ﬂ‘ty
m=1,2, ... n=1,2, ... Pb d
2m . 7
+ 2 bmn COS —anx- Slngy. (1)

m=0,1,2, ... n=1,2, ...

It satisfies term by term the boundary conditions for the present case, z.e.,

(a) w=0 when y=0, d,
~2

(b) %y%} =0 when y=0,d.

Note that it is only necessary to consider the case that the coefficient P of
the wavelength Pb along the plate is an integer, in the same reasons as in Ref.

(1.
110
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§3. Calculations of elements of the matrix

Performing the variation on the total energy of the system per wavelength,
we obtain the equations to get the buckling modes. The elements of the square
matrix of coefficients being multiplied to the column vector {2; } where X=

{amn} and Y={bmua}, in the equation in matrix form are now calculated.

3.1. The energy of the plate: V,

AN e Tl L | PR

Substituting the assumed deflection function w in (2) and performing the
integrations, we obtain

_ Dpprt (2md\" | LT, . 2 N
Ve = Y %} ; {(MPE‘) +n } (@mn+ brn) (1 + 8imy), (3)
the summations being taken over the obvious values of m and #, ie., n=1,2,3,
., m=1,2,3, ... for ams and #n=1,2,3,..., m=0,1,2,3, ... for bu, And
1if x=0,
8(x) = {

0 otherwise.

From (3), we obtain

*Ve _ DPba'[ (g ?pgf
Oamnoap,  4d° L\ Pb
O'Ve _ DPbr'( (2 md

abmnab‘bq = 4d3 L —wpb‘

_az Vfﬁ =0
OCmnObpq ’

+7 ] 8(m—p)8n—q),

) +n2]2. [o(m—p)o(n—q) +0(m+p)-6(n—q)], $(4

3.2. The work done, during buckling, by the shear force S acting in the
plane of the plate: T

d ~Pb
- ow ow
Ty = sjo o axdy

= —4mS3 3 G amabm, (5)
"o (n+g)0dd
From (5), we obtain
o'y _ FTe
OAmnOapa - ) ’ 0bmn0bpy ’ (6)
OTe  _ _y gmma o —
mb};— 4 S n_qu(n+q) 0(771 17),

where
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() {l/x if x = odd,
plx) =
0 otherwise.

The function u(x) is introduced in this paper for convenience’ sake.

3.3. The energy of the oblique stlffeners: Vs
EI P ad/cose P djcos a aw
VS_MZ“[ESQ (3:2) +2 (a ) dﬂ’] (7)
where £&,, 7 are axes along the r-th oblique stiffeners (see Fig. 1).
' Using the results of Appendix I, we obtain

'V, _ 2r7'Elsin’ar
aamnaa[)q (Pb) s

— (m = nP)% (p+qP)2{6(75) +8(re)} + (m—nP) (p— qP)* {3(r1) + 3(7:) }],

[+ nP)2(p+ qP)20(r) — (m + nPY(p—qPY+{8(ry) + 6(r) )

Vs _ 2x'Elsin’a 2, Sai Y 25 2,
Shdby = (Pb) I+ nP) (p+qP)’0(r) — (m+ nP)(p—qP)+{3(rs) — (7}

—{m = nPY (p+qP) {6(rs) — 6(rs)} + (m—nP)*+ (p — gP)*+ {3(r:) — 6(rs) 1],

Vs _
aamnabpq )
€))
where
rz=ﬂ§£+n*q,rz=m§£+n+q, 7y = Pﬁ+n+q, 7i= Pj’+n a
(9)
,,D_”J__,Pp_n g, 7 m;zb n+gq, 7= m—jg’:?"n—i-q, 75 = @;p n—d.

'3.4. The work done, during buckling, by the direct forces (#R) acting in
the oblique stiffeners: Ts

o R O PSS R O P (10)

Using the results of Appendix II, we obtain

T _ _OTs
oamnoa ba - abnmabpq ’
T

Samnobpg RS a[(m +nP)+(p+gP){u(r) + p(r)}

— (m+aP)(p—qP){u(rs) + pu(r)y — (m—nP)(p+ qP){ulrs) + ulrs))

+ (m—=nP)(p—qP){ulr) + ulrs)}]
(11)

§4. The division of the applied shear force

The shear force (Sr) applied along the edges is divided into the shear force
(S) in the plate and the direct forces (£R) in the oblique stiffeners.
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Sr =S+ Sg, (12)

where
Sk =2 Rsin a/b. (13)

The ratio of division is determined by their stiffnesses. It is as follows.
Consider the deformation due to S. The strain energy due to the deformation
is
_ Std
Ui=Y6t

The amount of deformation is thus

- 20 _Sd_ _ Sh
- o0 _Sd _

Next, consider the deformation due to R. The strain energy due to the
deformation is

o R b S
T 2EA2sina S8EAsinfa

U,

The amount of deformation is thus

_ 20U, S R
T 5(5kb) T4EAsina” 2EAsin'a’

G2

Equalization of 6; and 6. leads to the result

R FEAsina-cosa
56 Gib (14)

§5. Computation of the buckling shear force

5.1. The buckling equation
Performing the variation on the total energy (V,+ Vi— Ty— T5), we obtain

the equation
L3220} -0, i
using the above results.
In (15),
X =Aamnt, X = {bmn}, (16)
any element of A = (m’+ 7’ P'tan’a)® 6(m—p)+6(n—q)
+ _T,,%i;lf,,g LOn+nP)*+(p+ aP)’o(n) = (m+nP) (p— gP)**{5(r:) + 8(7,)}

= (m = nP)(p+gP)"{8(rs) + 3(rs)} + (m = nP)*+(p — qP){3(r2) + 8(r3)},
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any element of B = (m’+#'P tan’a)*>[0(m —p)8(n—q) +3(m+p)o(n— q)]
-4
+ 1512@3[("1 + mP)Yp + gP)o(r) — (m+ nP) (D — gP)+{8(rs) — 3(r)}
— (m = nP)% (p+qP)2{3(r) — 8(rs) ) + (m— nP)=(p — gP){3(rr) = 8(rs) 1],

3 3
any element of C= 8P t:n «. Z{?_/lg‘#(n+q)'5(m—z‘3}

2 22 I 3
+ BP sin « Cfs artan C(m+nP)(p+aP){ulr) + ()}

—(m+nP)(p—qP){u(r) + ulz)} = (m — nP)+ (D + gP)-{ulrs) + pu(7e)}
+ (m—=nP)(p—qP){ulr) + pnlrs)} 1

(17)

C is the transpose of the matrix C, and 0 a zero-matrix. Furthermore in
(15), (17)

2 =Sd’/=*D (non-dimensional buckling shear force parameter)

r=El/Ddsina | ) ) ) ) (18)
) (non-dimensional stiffness parameter).
B =EA/Gtdsina |

From (15), we obtain

AX+ACY =0, ICX+BY =0.
[A—2CB7'CIX =6.

The condition for the above equation to have a non-zero solution for X
gives the equation

detT A — 2CB7ICT] =0. (19}

The buckling equation (19) gives 1%,s. But we need only to have the posi-
tive minimum values of 4 for the present. The calculation is done by the
iteration method.

5.2. Buckling modes

When {%}} in (15), is split into some sets of {%} the submatrices being

multiplied to them may be independent with each other. As a natural course
of the event the buckling equation (19) is split into some distinct sets. Each
set corresponds to a particular buckling mode. This procedure is necessary in
view of capacity of the computer available to us.

(i) P=1. In @mn and by

(i-a) m+n=even, p+g=odd,
(i-b) m+n=o0dd, pt+g=even
b,
2

Set (i-a) has the property that w(x, v} = w( ~ %, d-y> being symmetric
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b b

4° ) Set (i-b) has the property that w(x, y) = —w(g - x,

about the point (
df—y) being antisymmetric about the point (Z , g)
(i) P=2. In a@nn and by,
(ii-a) m, p=even,
(ii-h) m, p=odd.
Set (ii~a) is clealy included in the case that P=1. We need only to con-

sider Set (ii-b).
(iii) P=3. In amnn and b

(ili-a) m, p=37,
m=67=x1 m=067+2 p=67+1 =67+2

Gii-b) A G Gl
7 = odd 7 = even g = even g = odd

(iii-¢)

’

m=67x1 m=67j+2 ,p=6jx1 ,;p=65=2
( ' ( ' (q=odd <q=even‘

# = even 7 = odd

where 7=0,1, 2, ....
Set (iili-a) is clealy included in the case that P=1. Set (iii-b) has the pro-
perty that w(x, y) = w( - 32b -, d—y). Set (iii-c¢) has the property that w(x, »)

= "w<'32b"' % d‘y)'

(iv) P=4,5,6,.... In each of these cases, too, it is split into some sets
in the same manner.

5.3. Numerical results

Numerical results have been obtained using NEAC-2203, the electric digital
computer in the University of Nagoya. The values of the parameteres used in
the computation were as follows;

() a=Z. I A
(iiy P=1,2, 3 -
e L ZG
(i) B=0, 0, 1. o |
. ' -
(iv) 7=0~50. %
, /""’,—/._
Both the number of am, and that w 7 2
of bm, were about twenty. The 0 pad
data obtained are plotted in Figs. / () P=l—
2 and 3. But some unnecessary / Of P=14 ﬁ:maPﬂ—}ﬁzO
numerical results are not plotted. 2y P=2 7o p=2
Note; P=1+ corresponds to 3 P=3”’3+>
(i-2) in §5.2, P=1— to (i-b), P= . - . S
2 to (ii-b), and P=3+, 3— to (iii- .
b), (iii-¢) respectively. F16. 2. a=7g
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§ 6. Conclutions

(i) When a = —gw the critical buckling shear force parameter 1 is determined
only by the curve P=2, ie., the system buckles with the wavelength 2 &.

(ii) When «a = g, the curve P=3 comes into play at the range where 7 is
small.

(iii) The modes P=3+, P=3— lead to the same buckling shear force para-
meter A.

(iv) The buckling shear force parameter of the plate, 4, when B=0.1 is
slightly less than that when B=0. But the buckling shear force parameter of
the system, Ay, when B=0.1 must be more than that when 8=0. i, is determined
by the following equation;—

Srd® _

Ar = Dt = X(l + B 'Singza).

L
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[Appendix I]

In (7), using the following relations

dw\ _ > . 2mm . 2 mr nr |
<a§£> = Zp ié}?lamsm “pp %esin dy+bm,,cos~ﬁ;x sin’ dy,]

i 2 7 1
x[ 9 jlalaqsm Ifb % Sm‘](;y-l«bmcos Jfb xesin gy} 1

) =2 <+>] {%4%}

82 smcza -+ cos” aaz+2smoz *COS @ =—=— o
o2l ox* o oxoy’
Cil cH ) ’
apﬁ“sm oc,ﬁ—kcos aay 2sina-cosa %y

x=(r—1)b+4&sina = (?’—%)b—}-msina,

Y =£,C08 @ =a~—7rCOSq,

b
2~& =tana
and putting
¢ = /b,

we obtain

o'Vs  16n'sin’a-E
aﬂnmadj,g bt

[{S {(m -+ nzP”)s‘nwgr“ sin2nnt ~2mnPcosgP = cosanv}

X {(152—}- qZP?)sinngé-sinzc], ~2pqPcos P«'-coqumf} de

o'Vs _16x'sin’aEI
abmnabpq b Pt

3 {(m +nP‘)cosﬁﬁ~$ sm2n~c$+2mnPsm—Pf—~ cos?nmf}

x { (8" + ¢*P*) cos“ BT+ cos2 gt + 2 Psin 28z cos2qnt | s |

oV, _16x'sin’a-E
aamnabpq b3P4

g {(m +n2Pz)sm—-P—»$ sin2nnf — 2 mnPcos?’ P Te. cos2n7r$}

X {(j)g + quz)cosw%ré-coquf + 2qusin—%[$-0052qa$} d»;-‘]-

(A.1)

In (A.1), using the trigonometric formulae and performing the integations,
we obtain (8) in the main issue.
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[Appendix II]

In the same mauner as in Appendix I, we obtain

2'Ts 4r'Rsina<~( (" (" 2m 2mn
= — - crer Ce
SammOa e b {r 1(87*1 L m)(mcos P "¢esin2nnt + nPsin” P COSZ%TC)
(p coswgﬂc *sin2 gn¢ + qum-z—fﬁ» C‘cos2¢1nc) dCJ
Ty __4712Rsin0£ Lo . 2m . - . 2mm .
Srndbre P [ 1(& - gr m)(msm»?—c sin2nnl nPcosmP < cosZnnC)
(psm~1?~6 s1n2q;zC gPcos P”C coqunC)dC}
OTs _ _4xRsina[ S (" 2mn 2mn .,
Samnbra b 2 1 j Sr L (mcos B ¢esin2nnl + nPsin B ¢ cosZnnC)
( ﬁ G stqrrC—i—chos—z-bw—C coquzC)dC}-
‘ (A.2)

In (A.2), using the following trigonometric formulae

SR Jeothriac=o

2,,13_4 if k = odd,

P r—-1/2 i X an _ 77}3 P
E(Sr 1 grwl/z) st P fdt= .
] otherwise,
where
k_m=p
p= p TNEQ

we obtain (11) in the main issue.






