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Intreduction

This paper is concerned with the complex transformation of the differential
equations of equilibrium and of compatibility of homogeneous isotropic shells
by the consistent theory? which is based on the first approximation of Love,
when Poisson’s ratio is equal to zero. The complex unknown functions can be
expressed by the two different terms, that is, the first term is of resultant
moments and of the strains of the middle surface of the shells, and the second
term is of the displacement components of the middle surface and the stress
functions. The complex transformation on the shells in curvilinear orthogonal
coordinate was first appeared in the Novozhilov’s book® in which the complex
auxiliary functions are of the resultant moments and forces.

The Love’s first approximation by which the consistent shell theory is
derived falls into the following two assumptions.

(a) Each element on the normal to the undeformed middle surface of the
shells remains on the same normal to the deformed middle surface after defor-
mation. And distance between each element on the normal does not change
after deformation. Thus, the normal stress in the normal direction is assumed
to be neglected.

(b) ¢/R is neglected because of the small quantities against unity where ¢
is the constant thickness of the shells and R is the minimum radius of the
middle surface of the shells.

Owing to the above assumptions the resultant forces become symmetry and
the strain vanishes in body motion.

Since the shells are treated in general coordinates, the tensor notation is
used. For example, any term in which the same index appears twice stands
for the sum of all such terms obtained by giving this index its complete range
of values.

The symbols used herein are as follows,

x7 : coordinates of any point on the middle surface of the shells
%8 : coordinates of the normal direction of the middle surface of the
shells

g’%, gr: the first fundamental contravariant and covariant tensor of the
middle surface of the shells, respectively

119



120 Research Reports

g=det (gjr)
Hje, H} : the second fundamental covariant and mixed tensors of the middle
surface of the shells, respectively

{ k]l} : Christoffel’s three index symbols

J* ¢ ¢ Eddington’s symbols, = —¢' = \(712;, M= =(, = —en
=\/E, €y =g =0

E : Young's modulus

v : Poisson’s ratio

t : constant thickness of the shells

uj, W . covariant tangential component and normal component of the
displacement of the middle surface of the shells, respectively

ek . covariant strain tensor at any point on the shells

ek . covariant strain tensor of the middle surface of the shells

Kjk . covariant curvature change tensor of the middle surface of the
shells

U,, W : stress functions of covariant and scalar, respectively

N7* : covariant resultant force

M . mixed resultant moment

Vi . covariant differential with respect to x7,

for example,
V;Bp= Bp,i— {;-;}Ba

P;B? = BY,;+ {1 |B*

o VB~ {1 B

ViBpg= Byqg,i— {]P

v;Bh= BL i+ {}.ZZ}BZ - {jbq}Bg

VJ.BZMJ — qu’]. + {Ji}Baq + {]{Ib}Bzﬁ&

P} = b, ;= | Gl
ij,ﬂz W, p,i— {]j)f

P eBas = FaBas)p = { 1 VPiBas ={ AP B = P ol

P aBs = B, o+ EAPaBh = | Iram = VroB
PaBaCh) = (Bich,+ | S BiC+ { oV Buct = A Bict ~ { ) Buct,

Lower index % following commer means the partial differential with respect to



Research Reports 121

A _ 94,
x® such as App= v

1. Fundamental Relations

~ Following fundamental relations are shown in the author’s paper.” u;, N7,
Mp, etc. appeared in this paper are not the physical quantities but the tensorial.
The positive directions of these and the relations between these tensorial and
physical quantities are shown in reference®.

Strain
ejk = ik = X'k (1-1)
&ir =V jury — Hipw (1-2)
rie =V (e Hly +w, j)) — 1 €p<;Hk>€ bV qus (1-3)

where ( , indicates the symmetric quantity, for example,
Ba6Cort = 5 (BarCea + BacCra)

Resultant moment and force-strain relations

gk Bt ja kb jb v, 2 i ab
N—Z(l_!_v)(é’g +g°g gg> -
Er 2
;= 24t1+ - (&g + &g+ 122" ras
2
Ekj = 2 Et (gkagjb+gkbg1a - Tf;gkfgab)Nab
(2-2)
6(1+ ) b ‘ o 2, v .
KRj = —-**E}'g‘“ ¢ LBra&ib + Erb 8ia S grigas ) M2

Equilibrium Equation

The third term of the equilibrium equation of the tangential direction of
the middle surface of the shells is the modified term due to the approximate
expression of the curvature change tensor (1-3), where the equilibrium equations
are obtained from the principle of the virtual work of the potential energy of
strain, excluding body force.

Normal direction

NYHjp,+ 7 37 oMb =0 (3-1)
Tangential direction (j=1, 2)
— PN + FaHIP oM + %el’pr(Hba 5) =0 (3-2)
Compatibility Equation
The quantity with the sign-means the quantity after deformation, and the

first and second fundamental tensors of the middle surface of the shells after
deformation can then be written as follows,
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it =gk +2 ¢
Hjr = Hjr+ rjp+ HYjepn)

The compatibility equations obtained from Gauss’s and Mainardi-Codazzi’s equa-
tions become as follows,

e Eijhﬂckz + il EjthVj e =0 (4-1)
— I gy o+ H 5 e BV epe + *;‘€pj64pr(H28fc) =0 (4-2)

Stress Functions

Owing to the similarity of the forms of Egs. (3-1) and (4-1), and (3-2) and
{4-2), the stress function Uy and W which satisfies Eqs. (3-1) and (3-2) iden-
tically can be introduced as follows,

N¥ = m i 7 m(UpHY, + W,1) — é‘ caaH e Uy} (5-1)
M = b2 (7 ;U ~ Hyg W) (5-2)

The boundary conditions corresponding to these relations are shown in the
previous paper?.

2. Complex Transformation

~ There exist two methods for solving shell problems. In the first method,
three components of the displacement of the middle surface of the shells, or
three stress functions may be chosen as unknown functions. In the second
method, since there exist six equations, three in equilibrium and the other three
in compat1b1hty in which six quantities, ejx and kje, or e and M}, or N'* and
xje, or N’F and M}, are contained, one of above four couples can be expressed
by the unknown six functions.

Considering the similarity of the forms between Egs. (3-1) and (4-1), and
Egs. (3-2) and (4-2), the complex auxiliary functions can be introduced, when
Poisson’s ratio is equal to zero.

Resultant moment and force-strain relations can be written as follows in
the case of »=0.

N% = Etgkigbe

ME= Et’ N
) €pi8 & Kab

1 o (6)
= oy Zragiv N

Kkj = “‘*EFG boraginMb

N Setfcing the mixed tensor A% as follows,

2

. I Et*. ' . .
AZ=M2+iEEbf?af, i=v—1 (7%
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and making and calculating the following equations with the use of Eq. (6},

above equations can be shown by Mﬁ" and eg;, as follows,

€707, VyAb -+ Z\/lz fjmgkpgmaHkiAg =0

(8)

/ .
—i 1t g gl AS + MEW AL+ L P (HEAD) =0

where A’ =0
A denoted in Eq. (7) can be rewritten with »;, w and U;, W by using Eqgs.
{1-2) and (4-2),
N Aly= S oy~ Has®)
where
. E? Et: (9)
ag=U;+ 17 Yo D= W+z\/12

a4 and @ play as covariant and scalar, respectively.

From Egs. (7) and (8) the resultant moments and the strains of the shells
are expressed as the unknown functions, and from Egs. (8) and (9) stress
functions and displacement components are expressed as the unknown quantities.

It is convenient to use the contravariant tensor A??= g A% for the special
coordinate. Equations (8) become as follows,

\/2

(jbgprkV]Akp B Sl ‘mgmaijAak =0

3/,,2_ M Gnal WA + R g AP + % PIP ,( HapAP) = 0

(10)

where A is not symmetry, and g;zA% =0

Conclusions

In the previous study the author derived the approximate bending theory
of shells in which a complex auxiliary function made of the stress function of
Airry’s type and the normal displacement is taken as unknown quantities.
However, this theory is not applicable to solve the all shell problems. For
example it can not be used to the torque problem of shells of revolution. In
this present work, the author extended his theory to solve the general shell
problems.

Equations (7), (8) and (9) are introduced from the consistent shell theory
based on the Kirichhoff-Love assumption, in the case of Poisson’s ratio being
equal to zero. These equations are in the simple forms, and it is obvious to
reduce the difficulties lying in solving general static shell problems.

As to which is convenient (7) or (9) to solve shell problems will be dicided
from the conditions of the shape and the boundary of shells.
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