1 Antenatal Corticosteroids and Outcomes in Preterm Twins

 $\mathbf{2}$

3	Takafumi Ushida, MD, PhD ¹ , Tomomi Kotani, MD, PhD ^{1,2} , Ryo Sadachi, BS ³ , Akihiro
4	Hirakawa, PhD ³ , Masahiro Hayakawa, MD, PhD ⁴ , Yoshinori Moriyama, MD, PhD ¹ , Kenji Imai,
5	MD, PhD ¹ , Tomoko Nakano-Kobayashi, MD, PhD ¹ , Fumitaka Kikkawa, MD, PhD ¹ , for the
6	Neonatal Research Network of Japan
7	
8	¹ Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,
9	Nagoya, Japan
10	² Division of Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital,
11	Nagoya, Japan
12	³ Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University
13	of Tokyo, Tokyo, Japan
14	⁴ Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital,
15	Nagoya, Japan
16	
17	Corresponding author: Tomomi Kotani, MD, PhD
18	Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine,

19 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan,

	19-2052R1 Ushida 3-16-20v3 2	2
20	Tel: +81-52-744-2261	
21	E-mail: itoto@med.nagoya-u.ac.jp	
22		
23	Financial Disclosure	
24 25	The authors did not report any potential conflicts of interest.	
26	Each author has confirmed compliance with the journal's requirements for authorship.	
27		
28	Funding	
29	This study was supported by a grant from Japan Society for the Promotion of Science (JSF	۶
30	KAKENHI 19K18637 and 15H02660) awarded to TU and FK.	
31		
32	Short title	
33	Antenatal Corticosteroids in Preterm Twins	
34		
35	Acknowledgments	
36	The authors thank all of the participating units and patients for their generous contributions	to
37	this study, and Enago (<u>www.enago.jp</u>) for the English language review.	
38		
39	Précis	
40	Antenatal corticosteroids for preterm twins improve outcomes similar to those in singleton	ıs,

41 irrespective of chorionicity or birth order.

42

Abstract

46	OBJECTIVE: To estimate whether improvement in outcomes from antenatal corticosteroid
47	(ACS) treatment in extremely and very preterm twins is similar to that observed in singletons,
48	and to investigate whether ACS treatment has different effects according to chorionicity or
49	birth order.
50	METHODS: This population-based study was based on an analysis of data collected by the
51	Neonatal Research Network of Japan from 2003 to 2015 of neonates weighing 1,500 g or less
52	at birth, from gestational ages of 24 and 0/7 weeks to 31 and 6/7 weeks. After propensity score
53	matching, univariate logistic and interaction analyses were performed to compare short-term
54	(neonatal period) and medium-term (3 years of age) outcomes of the infants of mothers who
55	received ACS with those of infants of mothers who did not receive ACS. We focused on
56	differences between singletons and twins, between monochorionic and dichorionic twins and
57	between the first and second twin.
58	RESULTS: The study comprised 23,502 singletons and 6,546 twins. Antenatal corticosteroid
59	treatment was associated with a significant decreased short-term neurological outcomes in both
60	singletons and twins. However, ACS treatment was associated with significantly decreased

mortality (OR 0.61; 95% CI [0.53-0.70]), respiratory distress syndrome (0.71 [0.67-0.76]),

62	and cerebral palsy (0.85 [0.72-0.99]) in singletons but not in twins (0.89 [0.68-1.17], 0.99
63	[0.87-1.12], and 0.82 [0.61-1.11], respectively). No association was found between
64	chorionicity and the efficacy of ACS treatment on outcomes. Further, no association was found
65	between birth order and the efficacy of ACS treatment on outcomes, except for periventricular
66	leukomalacia and necrotizing enterocolitis (interaction: $p = 0.02$ and $p = 0.04$, respectively).
67	CONCLUSION: Antenatal corticosteroid treatment in twins was associated with a beneficial
68	effect on short-term neurological outcomes only, without improvement in other short- and
69	medium-term outcomes. There was no difference related to chorionicy.
70	

71

72 INTRODUCTION

The incidence of twin births has increased substantially in the past few decades throughout the 7374world, mainly as a result of older maternal age and widespread use of fertility treatments.(1) More than 60% of twin pregnancies are complicated by preterm birth, and approximately 10% 75of twins are delivered at less than 32 weeks' gestation, which is estimated to be approximately 768.6 times the incidence of preterm birth of singletons.(2) 77A single course of antenatal corticosteroid (ACS) has become the standard of care for 78women at risk of imminent preterm birth at less than 34 weeks of pregnancy for reducing rates 79of neonatal mortality and morbidity.(3, 4) However, the efficacy of ACS treatment among 80 certain subgroups of pregnant women, such as those with multiple pregnancy, fetal growth 81 82 restriction, and chorioamnionitis, has not been fully evaluated.(3, 5, 6) According to a recent Cochrane review in 2017, ACS treatment was associated with a 83 significant reduction in the incidences of perinatal death by 31%, respiratory distress syndrome 84 (RDS) by 32%, and intraventricular hemorrhage (IVH) by 44% in twins; these reductions were 85 similar in magnitude to those observed in singletons.(3) On the other hand, according to the 86

recommendations of the World Health Organization in 2015, ACS treatment is recommended
in cases of multiple pregnancy, but its effectiveness remains uncertain.(7) Furthermore, recent

90	associated with decreased risk of mortality; however, ACS treatment was unrelated to benefit
91	in rates of neurodevelopmental impairment or short-term morbidity.(8, 9) Current evidence on
92	the effectiveness of ACS treatment in twins regarding neonatal complications, except for
93	mortality, remains limited. In addition, little evidence is available regarding the effect of ACS
94	treatment on early childhood outcomes in preterm twins.
95	Our aim was to evaluate the association of ACS treatment on short-term (neonatal
96	period) and medium-term (3 years of age) outcomes in extremely and very preterm twins by
97	using propensity score matching. Propensity score matching analysis is a useful tool for
98	reducing risk of bias, which is often observed in retrospective observational studies. In addition,
99	we sought to investigate whether ACS treatment has different effects according to chorionicity
100	and birth order.
101	
102	METHODS
103	In this population-based study, we analyzed data from a registry on extremely and very preterm
104	neonates from the Neonatal Research Network of Japan (NRNJ) from January 2003 to
105	December 2015. Approximately 200 facilities with levels II and III NICUs, which are similar
106	to the level designations in the US, participate in the NRNJ. More than 4,000 infants born
107	before the age of 32 gestational weeks and weighing 1,500 g or less are registered in the
108	database each year. Exclusion criteria were gestational age of less than 24 weeks, higher-order

multiple birth infants (such as triplets and quadruplets), major congenital abnormality, transfer from other facilities, co-twin fetal death, and incomplete medical record. In this study, only women with complete data about maternal and neonatal characteristics were eligible to perform propensity score matching and for the improvement of data reliability. Appendix 1, available online at http://links.lww.com/xxx, lists the baseline characteristics of singletons and twins with and without complete data.

Information included maternal and neonatal characteristics and offspring 115complications during the neonatal period and at 3 years of age; information was anonymized 116 before analysis. Data administrators in the NRNJ data center checked the data quality of clinical 117information, and asked the data abstractors at each facility to verify the correction of these data 118 if necessary. Informed consent was obtained from all parents at each facility. The use of data 119 in this study was authorized by the Japan Neonatal Network Executive Committee, and this 120study protocol was approved by the Institutional Ethics Board of Nagoya University (approval 121number 2018-0026). 122

123

The guideline for obstetric practice in Japan recommends two intramuscular doses of 12 mg of betamethasone given 24 hours apart as ACS treatment.(10) Although information about the dose, type of corticosteroid, and administration-to-birth interval of ACS treatment was not available in the NRNJ database, we assumed that the majority of women in this study received a single course of betamethasone following the guidelines because Japanese health insurance
covered only a single course of betamethasone as ACS treatment.

130

131	Hypertensive disorders of pregnancy were defined as systolic blood pressure ≥140 mmHg,
132	diastolic blood pressure \geq 90 mmHg, or both after 20 weeks of gestation.(11) Clinical
133	chorioamnionitis was defined as the presence of maternal fever (body temperature, \geq 38.0°C)
134	accompanied by one or more of the following: (1) maternal tachycardia (heart rate, ≥ 100
135	beats/min); (2) uterine tenderness; (3) malodorous vaginal discharge or amniotic fluid leakage;
136	and (4) maternal leukocytosis (leukocyte count, \geq 15,000 cells/µL).(10, 12) Small for
137	gestational age was defined as birth weight and length below the 10th percentile for gestational
138	age according to a sex-specific Japanese neonatal anthropometric chart from 2000.(13) The
139	diagnosis of RDS was based on clinical manifestations and chest radiography. Chronic lung
140	disease was defined as the infant's need for supplemental oxygen at 36 weeks of corrected
141	gestational age. IVH was diagnosed according to the classification of Papile et al,(14) and
142	periventricular leukomalacia (PVL) was diagnosed with intracranial ultrasonography or
143	magnetic resonance imaging. Neonatal sepsis was defined as clinical symptoms of bacteremia
144	with the presence of a pathogenic bacterium from a blood culture. Necrotizing enterocolitis
145	was diagnosed as stage 2 or higher of Bell's criteria.(15) Treatments for retinopathy of
146	prematurity included laser photocoagulation, cryotherapy, or anti-vascular endothelial growth

147	factor therapy. When children were 36 months of age, their neurodevelopmental status was
148	assessed at each facility with the Kyoto Scale of Psychological Development, which is widely
149	used in Japan and was reported to be comparable in scope with the Bayley Scales of Infant and
150	Toddler Development, Third Edition.(16, 17) The basic management for preterm neonates was
151	standardized across the NRNJ participating facilities, regardless of plurality of pregnancy.
152	
153	The short-term outcome measures included (1) in-hospital death; (2) respiratory morbidity,
154	including RDS and chronic lung disease; (3) neurological impairment, including IVH (grade
155	III or IV) and PVL; (4) neonatal sepsis; (5) necrotizing enterocolitis; (6) treated retinopathy of
156	prematurity; and (7) composite adverse outcomes (in-hospital death, severe IVH [grade III or
157	IV], or PVL). The medium-term outcome measures at 3 years of age included (1) death after
158	NICU discharge; (2) home oxygen therapy or home respiratory therapy; (3) visual impairment;
159	(4) hearing impairment; (5) cerebral palsy; (6) development quotient of less than 70; and (7)
160	composite adverse outcomes (death after NICU discharge, cerebral palsy, or development
161	quotient of less than 70).
162	

163 To generate the propensity score, maternal and neonatal characteristics were included in a 164 logistic model (ACS treatment, maternal age, parity, gestational age, mode of delivery, diabetes 165 mellitus or gestational diabetes mellitus, hypertensive disorders of pregnancy, clinical

chorioamnionitis, nonreassuring fetal status, gender, birth weight, small for gestational age, 166plurality of pregnancy, chorionicity, birth order, and year of delivery). Greedy nearest-neighbor 167matching without replacement and one-to-one pair matching were used in this study. A caliper 168169width of 0.2 of the standard deviation of the logit of the propensity score was used for the developed propensity score, as previously recommended.(18) To evaluate the success of 170171balancing the baseline characteristics between the matched groups (singletons and twins, monochorionic and dichorionic twins, and the first and second twin), standardized differences 172were estimated. In general, standardized differences with a value of less than 0.10 suggested 173that the variable was sufficiently balanced between the two matched groups.(19) After 174propensity score matching, univariate logistic regression analysis was performed to explore the 175association of ACS treatment and outcomes. Subgroup analysis was conducted to investigate 176whether the chorionicity and birth order altered the effect of ACS treatment on outcomes in 177twins. 178

Patients' categorical variables were compared in chi-squared tests, and continuous variables were compared in Student's t test. Univariate logistic regression analyses were performed for the binary outcomes to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for the prognostic variables. To investigate whether the efficacy of ACS treatment varied across different groups (singletons versus twins, monochorionic twins versus dichorionic twins, and the first twin versus second twin), we assessed the interaction between

the group and the treatment (i.e., ACS) among propensity score-matched pairs in the 185multivariate models (Fig. 1). The multivariate logistic model included maternal age, parity, 186gestational age, mode of delivery, diabetes mellitus or gestational diabetes mellitus, 187hypertensive disorders of pregnancy, clinical chorioamnionitis, nonreassuring fetal status, 188 gender, birth weight, small for gestational age, plurality of pregnancy, chorinonicity, birth order, 189190year of delivery and ACS treatment. A p-value of less than 0.05 for the interaction indicated a significant difference in the effect of ACS treatment between the two groups. All analyses 191performed in this study were exploratory; therefore, we did not adjust the multiplicity of testing. 192193Further, we performed additional analysis to evaluate the incidence of offspring short- and medium-term adverse outcomes stratified by gestational weeks without adjustment of 194covariates. In this study, a *p*-value of less than 0.05 indicated a significant difference. Statistical 195analyses were performed with SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). 196197

198 RESULTS

During the study period, 44,674 neonates were born before 32 weeks of gestational age and with birth weights of 1,500 g or less; of these infants, a total of 14,626 were excluded from the study on the basis of exclusion criteria (Fig. 1). The study included 23,502 singletons (with ACS, n = 13,073; without ACS, n = 10,429) and 6,546 twins (with ACS, n = 3,824; without ACS, n = 2,722). After propensity score matching (the ratio of the number of mothers who

204	received ACS [ACS group] to the number of those who did not [no-ACS group] = 1:1) among
205	singletons and among twins to adjust potential confounding variables, 18,700 singletons (in the
206	ACS group, $n = 9,350$; in the no-ACS group, $n = 9,350$) and 5,122 twins (in the ACS group, n
207	= 2,561; in the no-ACS group, $n = 2,561$) were selected for the first analysis. Of the total of
208	23,822 children, 10,262 children were assessed for medium-term outcomes at 3 years of age.
209	After propensity score matching (ratio of ACS group to no-ACS group = 1:1) 1,246
210	monochorionic first twin, 1,230 monochorionic second twin, 1,262 dichorionic first twin, and
211	1,320 dichorionic second twin were selected for the second analysis. Of the total of 5,058,
212	2,133 were assessed for medium-term outcomes (Fig. 1).
213	Table 1 lists the baseline characteristics in singletons and twins, stratified by ACS

214treatment, after propensity score matching. Before propensity score matching, maternal and neonatal characteristics in the ACS and no-ACS groups were considerably different for both 215216singletons and twins (Appendix 2, available online at http://links.lww.com/xxx). The 217propensity score matching algorithm largely reduced the initial imbalance of all variables, and no significant difference in any variables was observed between the ACS and no-ACS groups 218in singletons or twins. Standardized differences of all variables were between -0.024 and 0.013 219in the first analysis, which indicated that propensity score matching was successful. Appendix 2203, available online at http://links.lww.com/xxx, lists the characteristics of the matched and un-221matched cohorts. 222

223

224

225

226

227

228

229

230

231

Table 2 lists the short- and medium-term adverse outcomes in singletons and twins, stratified by ACS treatment. Both singletons and twins born to mothers who received ACS treatment had lower rates of IVH (grade III or IV), PVL, and short-term composite adverse outcomes than did the children born to mothers who did not receive ACS treatment (Table 2). ACS treatment in singletons significantly decreased the rates of in-hospital death, RDS, and sepsis in short-term and cerebral palsy and composite adverse outcomes in medium-term, whereas it did not do so in twins. However, the interaction analysis revealed no statistically significant difference between singletons and twins in the efficacy of ACS treatment on shortand medium-term outcomes except for in-hospital death, RDS and short-term composite

adverse outcomes. An additional analysis on neonatal respiratory morbidities showed that the effects of ACS treatment on intubation at birth, surfactant use, and chronic lung disease were also different between singletons and twins (, Appendix 4, available online at http://links.lww.com/xxx).

With regard to medium-term outcomes, ACS treatment was associated with a significant decrease in cerebral palsy, composite adverse outcomes, and increase in home oxygen therapy or home respiratory therapy at 3 years of age in singletons; no additional association was observed in twins (Table 2). However, the interaction analysis showed no significant difference between singletons and twins with regard to the efficacy of ACS treatment in medium-term infants. Appendixes 5 and 6, available online at http://links.lww.com/xxx, lists the baseline characteristics and outcomes of singletons and
twins with and without medium-term outcomes.

Appendixes 7 and 8, available online at http://links.lww.com/xxx, lists the baseline characteristics in monochorionic and dichorionic twins, stratified by birth order and ACS treatment after propensity score matching. No significant difference in any variables was observed between the ACS and no-ACS groups, and propensity score matching was successfully performed.

Table 3 lists the ORs of the short- and medium-term outcomes in monochorionic and 249dichorionic twins, stratified by birth order and ACS treatment (the details are shown in 250Appendixes 9 and 10, available online at http://links.lww.com/xxx). ACS treatment was not 251associated with decreased short- and medium-term outcomes in the first twin in both 252253monochorionic and dichorionic twins. However, the second twin in both monochorionic and dichorionic twins in the ACS group had lower rates of PVL and short-term composite adverse 254outcomes than that in the no-ACS group. Regarding birth order, interaction analysis revealed 255that there was no significant difference in the effect of ACS treatment on short- and medium-256term outcomes between the first and second twin, except for PVL and necrotizing enterocolitis. 257Regarding chorionicity, the interaction analysis revealed that there was no significant 258difference in the short- and medium-term effect of ACS treatment on outcomes between 259monochorionic and dichorionic twins. 260

261	Figure 2 shows the rates of short- and medium-term outcomes by gestational age at
262	birth in singletons and twins according to exposure to ACS. Short- and medium-term adverse
263	outcomes decreased with each additional week of gestation; however, efficacy of ACS was
264	decreased in relation to several short-term outcomes in twins in comparison with singletons.
265	
266	DISCUSSION
267	In this propensity score-matched cohort study, we demonstrated that ACS
268	treatment was associated with improvement of short-term neurological outcomes similarly in
269	singletons and twins. However, ACS treatment was associated with a significant decreased
270	morality, respiratory morbidities, and cerebral palsy in singletons but not in twins. In addition,
271	we demonstrated that the difference in chorionicity and birth order did not alter the efficacy of
272	ACS treatment on most of the short- and medium-term offspring outcomes.
273	Our study differs from previous studies because we could not demonstrate a sufficient
274	protective effect of ACS treatment against RDS in twins.(3, 20) Additional analysis also
275	showed that ACS treatment was not associated with improvement of the rates of intubation at
276	birth and surfactant use in twins, which is compatible with the lack of protective effect against
277	RDS. These discrepancies regarding the efficacy of ACS treatment on RDS between singletons
278	and twins might be associated with the following: (1) the rate of incomplete ACS treatment or

an administration-to-birth interval of more than 7 days (21); (2) the rate of mothers who

experienced labor before cesarean section, which can reduce approximately 20%–30% OR for
RDS (22); and (3) a dose-dependent effect of ACS treatment on protecting against or reducing
the rate of respiratory morbidities in twins. However, the NRNJ database did not include this
information.

In this study, increased ORs of chronic lung disease and home oxygen therapy or home respiratory therapy were observed in the ACS group in singletons, which is consistent with a previous report using the same database within a different period (2003–2007).(23) This can be attributed to the fact that improved survival rate by ACS treatment might increase the number of severe neonates requiring prolonged mechanical ventilation, oxygen administration, and artificial nutrition.

In addition, we could not demonstrate an association between reduction of mortality 290291and ACS treatment in twins, in disagreement with previous studies.(8, 20) Although the underlying reasons for this remain unclear, there is a possibility that a single course of ACS 292treatment may lead to a concentration of betamethasone that is subtherapeutic against 293preventing or reducing mortality and morbidities. So far, adjustment of ACS dose or course 294adjusted to maternal body weight or to the plurality of pregnancy have been discussed from the 295viewpoint of pharmacokinetics. A previous report demonstrated shortened half-life (7.2 \pm 2.4 296hours for twins versus 9.0 \pm 2.7 hours for singletons; p < 0.017) and increased clearance of 297betamethasone (8.6 \pm 6.4 L/h in twins versus 5.7 \pm 3.1 L/h in singletons; p = 0.06).(24) Taking 298

299	into consideration the reduced effect of a single course and dose of ACS treatment in twins on
300	neonatal mortality and morbidity compared to singletons in this study, larger or repeated doses
301	might be necessary to yield a therapeutic level in twins.(9) However, several studies have
302	demonstrated that the serum concentrations of betamethasone in maternal blood and umbilical
303	cord blood were not different between singletons and twins or between obese and nonobese
304	mothers(25) and that the efficacy of ACS treatment against adverse neonatal outcomes was
305	not altered by maternal body mass index.(26, 27)
306	Overall, the effect of ACS treatment on short-term neurological adverse outcomes in
307	twins was similar to those observed in singletons, which is in accordance with a recent
308	Cochrane review regarding IVH (relative risk, 0.56; 95% CI, 0.40 to 0.77).(7) However, to date,
309	findings regarding the neuroprotective effect of ACS treatment in twins have been
310	contradictory.(8, 9, 20, 28) Contrary to the retrospective studies showing insufficient
311	neuroprotective effect of ACS treatment,(8, 9) our study demonstrated approximately 30%
312	reduction of severe neurodevelopmental impairment (IVH grade [III or IV] or PVL) in twins.
313	Our findings were consistent with a recent well-designed retrospective cohort study.(20)
314	The first strength of this study is that we used propensity score matching analysis to
315	reduce risk of bias, which is often observed in retrospective observational studies. Second, we
316	evaluated the effect of ACS treatment on both short- and medium-term outcomes in extremely
317	and very preterm twins. In addition, the sample size of this study is larger than those in previous

studies.(20, 28) Furthermore, additional analyses evaluated the difference in ACS efficacy

between monochorionic and dichorionic twins and between the first and second twin.

Several limitations of this study should be acknowledged. First, the NRNJ database 320 did not include information on the type, dose, and course of ACS treatment or the interval 321between administration of ACS treatment and birth. However, only a single course of 322betamethasone was covered as ACS treatment by Japanese health insurance. A recent study of 323information from a national inpatient database showed that only 1.1% of mothers received a 324repeated course of ACS treatment and that the interval between the last injection of ACS 325treatment and preterm birth was 3 days (median) in Japan.(29) Moreover, the study also 326demonstrated that of the patients who received ACS treatment, 50.2% delivered within 7 days 327after the last injection of betamethasone; this percentage was similar to those in the United 328States and Canada.(20, 29, 30) Second, the reasons for omissions of ACS treatment (e.g. 329placental abruption, precipitate delivery, and eclampsia) were not documented in the NRNJ 330 database, which may affect subsequent offspring outcomes. Third, approximately 60% of the 331infants registered in the NRNJ were lost to follow-up at 3 years of age, indicating that we 332cannot exclude the possibility of selection bias. Finally, we could not appropriately adjust our 333results by suitable methods, considering the intra-twin correlation of events because each set 334of twins shares many risk characteristics. 335

336

337	ACS treatment in twins is associated with a beneficial effect on short-term outcomes
338	with a slightly decreased effect compared with those observed in singletons. In addition, the
339	effect of ACS treatment on offspring outcomes did not differ according to chorionicity or birth
340	order.
341	
342	REFERENCES
343	1. Kulkarni AD, Jamieson DJ, Jones HW, Jr., Kissin DM, Gallo MF, Macaluso M, et al. Fertility
344	treatments and multiple births in the United States. The New England journal of medicine 2013
345	Dec 5;369(23):2218-25.
346	2. Hamilton BE, Martin JA, Osterman MJ, Curtin SC, Matthews TJ. Births: Final Data for 2014.
347	National vital statistics reports : from the Centers for Disease Control and Prevention, National
348	Center for Health Statistics, National Vital Statistics System 2015 Dec;64(12):1-64.
349	3. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung
350	maturation for women at risk of preterm birth. The Cochrane database of systematic reviews 2017
351	Mar 21;3:Cd004454.
352	4. Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstetrics
353	and gynecology 2017 Aug;130(2):e102-e9.
354	5. Magann EF, Haram K, Ounpraseuth S, Mortensen JH, Spencer HJ, Morrison JC. Use of
355	antenatal corticosteroids in special circumstances: a comprehensive review. Acta Obstet Gynecol
356	Scand 2017 Apr;96(4):395-409.
357	6. Amiya RM, Mlunde LB, Ota E, Swa T, Oladapo OT, Mori R. Antenatal Corticosteroids for
358	Reducing Adverse Maternal and Child Outcomes in Special Populations of Women at Risk of
359	Imminent Preterm Birth: A Systematic Review and Meta-Analysis. PLOS ONE
360	2016;11(2):e0147604.
361	7. Organization WH. WHO recommendations on interventions to improve preterm birth outcomes.
362	2015.
363	8. Boghossian NS, McDonald SA, Bell EF, Carlo WA, Brumbaugh JE, Stoll BJ, et al. Association of
364	Antenatal Corticosteroids With Mortality, Morbidity, and Neurodevelopmental Outcomes in
365	Extremely Preterm Multiple Gestation Infants. JAMA pediatrics 2016 Jun 1;170(6):593-601.
366	9. Herrera TI, Vaz Ferreira MC, Toso A, Villarroel L, Silvera F, Ceriani-Cernadas JM, et al.
367	Neonatal outcomes of antenatal corticosteroids in preterm multiple pregnancies compared to

368 singletons. Early human development 2019 Mar;130:44-50.

- 369 10. Minakami H, Maeda T, Fujii T, Hamada H, Iitsuka Y, Itakura A, et al. Guidelines for obstetrical
 370 practice in Japan: Japan Society of Obstetrics and Gynecology (JSOG) and Japan Association of
- Obstetricians and Gynecologists (JAOG) 2014 edition. J Obstet Gynaecol Res 2014 Jun;40(6):146999.
- 373 11. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive
- 374 Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for
- 375 International Practice. Hypertension 2018 Jul;72(1):24-43.
- 376 12. Lencki SG, Maciulla MB, Eglinton GS. Maternal and umbilical cord serum interleukin levels
- in preterm labor with clinical chorioamnionitis. Am J Obstet Gynecol 1994 May;170(5 Pt 1):134551.
- 379 13. Itabashi K, Miura F, Uehara R, Nakamura Y. New Japanese neonatal anthropometric charts
- 380 for gestational age at birth. Pediatrics international : official journal of the Japan Pediatric Society
- 381 2014 Oct;56(5):702-8.
- 382 14. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and
- intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. The Journal
 of pediatrics 1978 Apr;92(4):529-34.
- 15. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing
 enterocolitis. Therapeutic decisions based upon clinical staging. Annals of surgery 1978
 Jan;187(1):1-7.
- 388 16. Kono Y, Yonemoto N, Kusuda S, Hirano S, Iwata O, Tanaka K, et al. Developmental assessment
- of VLBW infants at 18 months of age: A comparison study between KSPD and Bayley III. Brain &
 development 2016 Apr;38(4):377-85.
- 391 17. Koyama T, Osada H, Tsujii H, Kurita H. Utility of the Kyoto Scale of Psychological Development
- in cognitive assessment of children with pervasive developmental disorders. Psychiatry and
 clinical neurosciences 2009 Apr;63(2):241-3.
- 18. Austin PC. Optimal caliper widths for propensity-scorepropensity score matching when
 estimating differences in means and differences in proportions in observational studies.
 Pharmaceutical statistics 2011 Mar-Apr;10(2):150-61.
- 397 19. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between
- treatment groups in propensity-score propensity score matched samples. Statistics in medicine
 2009 Nov 10;28(25):3083-107.
- 400 20. Melamed N, Shah J, Yoon EW, Pelausa E, Lee SK, Shah PS, et al. The role of antenatal
- 401 corticosteroids in twin pregnancies complicated by preterm birth. Am J Obstet Gynecol 2016
 402 Oct;215(4):482.e1-9.
- 403 21. Lau HCQ, Tung JSZ, Wong TTC, Tan PL, Tagore S. Timing of antenatal steroids exposure and
- 404 its effects on neonates. Archives of gynecology and obstetrics 2017 Dec;296(6):1091-6.
- 405 22. Gerten KA, Coonrod DV, Bay RC, Chambliss LR. Cesarean delivery and respiratory distress
- 406 syndrome: does labor make a difference? Am J Obstet Gynecol 2005 Sep;193(3 Pt 2):1061-4.

- 407 23. Miyazaki K, Furuhashi M, Ishikawa K, Tamakoshi K, Hayashi K, Kai A, et al. Long-term
 408 outcomes of antenatal corticosteroids treatment in very preterm infants after chorioamnionitis.
- 409 Archives of gynecology and obstetrics 2015 Dec;292(6):1239-46.
- 410 24. Ballabh P, Lo ES, Kumari J, Cooper TB, Zervoudakis I, Auld PA, et al. Pharmacokinetics of
 411 betamethasone in twin and singleton pregnancy. Clin Pharmacol Ther 2002 Jan;71(1):39-45.
- 412 25. Gyamfi C, Mele L, Wapner RJ, Spong CY, Peaceman A, Sorokin Y, et al. The effect of plurality
- 413 and obesity on betamethasone concentrations in women at risk for preterm delivery. Am J Obstet
- 414 Gynecol 2010 Sep;203(3):219.e1-5.
- 415 26. Faden M, McDonald SD, Shah PS, Mukerji A. Impact of antenatal corticosteroids in preterm
- 416 neonates based on maternal body mass index. Journal of Perinatology 2018 2018/07/01;38(7):813417 9.
- 418 27. Hashima JN, Lai Y, Wapner RJ, Sorokin Y, Dudley DJ, Peaceman A, et al. The effect of maternal
- 419 body mass index on neonatal outcome in women receiving a single course of antenatal
- 420 corticosteroids. Am J Obstet Gynecol 2010 Mar;202(3):263.e1-5.
- 28. Palas D, Ehlinger V, Alberge C, Truffert P, Kayem G, Goffinet F, et al. Efficacy of antenatal
 corticosteroids in preterm twins: the EPIPAGE-2 cohort study. Bjog 2018 Aug;125(9):1164-70.
- 423 29. Shigemi D, Yasunaga H. Antenatal corticosteroid administration in women undergoing
- 424 tocolytic treatment who delivered before 34 weeks of gestation: a retrospective cohort study using
- 425 a national inpatient database. BMC Pregnancy Childbirth 2019 Jan 9;19(1):17.
- 426 30. Melamed N, Shah J, Soraisham A, Yoon EW, Lee SK, Shah PS, et al. Association Between
- 427 Antenatal Corticosteroid Administration-to-Birth Interval and Outcomes of Preterm Neonates.
- 428 Obstetrics and gynecology 2015 Jun;125(6):1377-84.

429

430 Table 1. Demographic and obstetric characteristics of the study population

	Singletons				Twins			
	ACS	No-ACS		standardized	ACS	No-ACS		standardized
Variable	(n = 9,350)	(n = 9,350)	<i>p</i> -value	difference	(n = 2,561)	(n = 2,561)	<i>p</i> -value	difference
Maternal characteristics								
Maternal age (year)	31.6 ± 5.3	31.7 ± 5.5	0.44	-0.011	31.1 ± 5.0	31.1 ± 5.0	0.94	-0.002
Primiparous (%)	4,644 (49.7)	4,612 (49.3)	0.64	0.007	1,548 (60.4)	1,543 (60.2)	0.89	0.004
Gestational age (wks)	28.2 ± 2.1	28.1 ± 2.2	0.83	0.003	28.6 ± 2.0	28.6 ± 2.1	0.90	-0.003
Cesarean section (%)	7,175 (76.7)	7,220 (77.2)	0.43	0.011	2,367 (92.4)	2,358 (92.1)	0.64	-0.013
GDM or DM (%)	253 (2.7)	262 (2.8)	0.69	0.006	99 (3.9)	89 (3.5)	0.46	-0.021
HDP (%)	2,212 (23.7)	2,209 (23.6)	0.96	-0.001	198 (7.7)	201 (7.8)	0.88	0.004
Clinical CAM (%)	2,047 (21.9)	2,054 (22.0)	0.90	0.002	297 (11.6)	293 (11.4)	0.86	-0.005
NRFS (%)	2,668 (28.5)	2,693 (28.8)	0.69	0.006	485 (18.9)	491 (19.2)	0.83	0.006
Monochorionicity (%)	NA	NA	NA	NA	1,218 (47.6)	1,235 (48.2)	0.89	0.013
First twin (%)	NA	NA	NA	NA	1,300 (50.8)	1,269 (49.6)	0.39	-0.024
Year of delivery			0.69				0.92	
2003–2007 (%)	2,632 (28.1)	2,643 (28.3)			888 (34.7)	897 (35.0)		
2008–2011 (%)	3,653 (39.1)	3,598 (38.5)			915 (35.7)	919 (35.9)		
2012-2015 (%)	3,065 (32.8)	3,109 (33.3)			758 (29.6)	745 (29.1)		
Neonatal characteristics								
Male (%)	4,886 (52.3)	4,880 (52.2)	0.93	-0.001	1,284 (50.1)	1,301 (50.8)	0.63	0.013
Birth weight (g)	$1,004 \pm 280$	$1,005 \pm 283$	0.80	-0.004	$1{,}048 \pm 276$	$1,049 \pm 275$	0.92	-0.003
SGA (%)	2,086 (22.3)	2,059 (22.0)	0.63	-0.007	501 (19.6)	505 (19.7)	0.89	0.004

431 GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, NRFS; nonreassuring fetal status, SGA; small for gestational age,

	19-2052R1 Ushida
	3-16-20v3
	24
432	ACS; antenatal corticosteroids, NA; not applicable. Data are presented as mean ± standard deviation or n (%).

433

435 Table 2. Short- and medium-term outcomes in singletons and twins

		Singletons		Twins			
Variable	ACS	No-ACS	OR (95% CI)	ACS	No-ACS	OR (95% CI)	Interaction
Short-term outcomes	(n=9,350)	(n=9,350)		(n=2,561)	(n=2,561)		
In-hospital death (%)	304/9,340 (3.3)	489/9,334 (5.2)	0.61 (0.53-0.70)	104/2,559 (4.1)	116/2,555 (4.5)	0.89 (0.68-1.17)	0.02
Respiratory distress syndrome (%)	5,566/9,317 (59.7)	6,266/9,283 (67.5)	0.71 (0.67-0.76)	1,858/2,549 (72.9)	1,855/2,536 (73.1)	0.99 (0.87-1.12)	< 0.01
Chronic lung disease (%)	2,176/9,216 (23.6)	1,842/9,157 (20.1)	1.23 (1.14-1.32)	528/2,533 (20.8)	492/2,490 (19.8)	1.07 (0.93-1.23)	0.04
Intraventricular hemorrhage (III or IV) (%)	252/9,289 (2.7)	473/9,279 (5.1)	0.52 (0.44-0.61)	92/2,549 (3.6)	128/2,536 (5.0)	0.70 (0.54-0.93)	0.06
Periventricular leukomalacia (%)	283/9,309 (3.0)	394/9,300 (4.2)	0.71 (0.61-0.83)	95/2,548 (3.7)	143/2,546 (5.6)	0.65 (0.50-0.85)	0.57
Sepsis (%)	637/9,302 (6.8)	789/9,258 (8.5)	0.79 (0.71-0.98)	164/2,541 (6.5)	168/2,525 (6.7)	0.97 (0.78-1.21)	0.10
Necrotizing enterocolitis (%)	117/9,301 (1.3)	137/9,275 (1.5)	0.85 (0.66-1.09)	38/2,544 (1.5)	38/2,531 (1.5)	1.00 (0.63-1.57)	0.59
Treated retinopathy of prematurity (%)	1,379/9,025 (15.3)	1,431/8,858 (16.2)	0.94 (0.86-1.02)	394/2,487 (15.8)	409/2,414 (16.9)	0.92 (0.79-1.07)	0.93
Composite adverse outcomes (%)	730/9,346 (7.8)	1,149/9,350 (12.3)	0.61 (0.55-0.67)	249/2,561 (9.7)	332/2,561 (12.6)	0.75 (0.63-0.90)	0.04
Medium-term outcomes	(n=4,270)	(n=3,857)		(n=1,091)	(n=1,044)		
Death after NICU discharge (%)	35/4,270 (0.8)	37/3,857 (1.0)	0.85 (0.54-1.36)	7/1,091 (0.6)	11/1,044 (1.1)	0.61 (0.23-1.57)	0.46
Home oxygen therapy or home respiratory therapy (%)	88/3,428 (2.6)	56/3,099 (1.8)	1.43 (1.02-2.01)	20/817 (2.4)	11/802 (1.4)	1.80 (0.86-3.79)	0.42
Visual impairment (%)	243/3,908 (6.2)	189/3,547 (5.3)	1.18 (0.97-1.43)	60/998 (6.0)	54/950 (5.7)	1.06 (0.73-1.55)	0.46
Hearing impairment (%)	21/3,192 (0.7)	31/2,737 (1.1)	0.58 (0.23-1.01)	4/816 (0.5)	7/723 (1.0)	0.50 (0.15-1.73)	0.72
Cerebral palsy (%)	313/4,042 (7.7)	332/3,693 (9.0)	0.85 (0.72-0.99)	92/1,034 (8.9)	105/990 (10.6)	0.82 (0.61-1.11)	0.79
Developmental quotient <70 (%)	391/2,687 (14.6)	395/2,496 (15.8)	0.91 (0.78-1.05)	109/633 (17.2)	99/630 (15.7)	1.12 (0.83-1.50)	0.17
Composite adverse outcomes (%)	661/4,270 (15.5)	674/3,857 (17.5)	0.87 (0.77-0.97)	185/1,091 (17.0)	187/1,044 (17.9)	0.94 (0.75-1.17)	0.61

436 ACS, antenatal corticosteroids; OR, odds ratio; short-term composite adverse outcomes: in-hospital death, intraventricular hemorrhage (grade III or IV) and periventricular leukomalacia, medium-

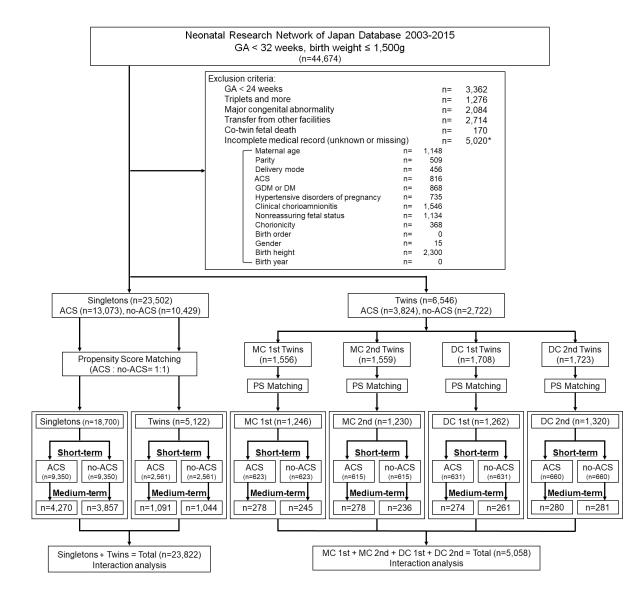
437 term composite adverse outcomes: death after NICU discharge, cerebral palsy or developmental quotient <70. Bold indicates a significant association. A *p*-value for interaction < 0.05 indicates a

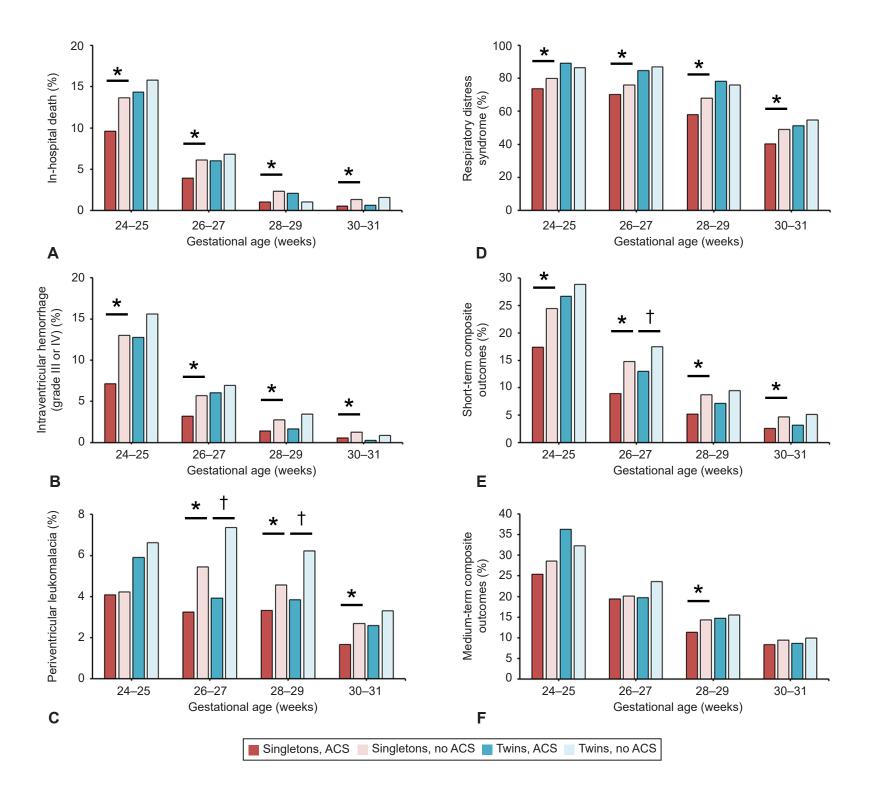
19-2052R1 Ushida
3-16-20v3
26
significant difference in the effect of ACS treatment between singletons and twins.

 440

441 Table 3. Short- and medium-term outcomes of twins stratified by the chorionicity and birth order

	Monochorionic 1st twins	Monochorionic 2nd twins	Dichorionic 1st twins	Dichorionic 2nd twins	Interaction	Interaction
	ACS vs No-ACS	ACS vs No-ACS	ACS vs No-ACS	ACS vs No-ACS	Chorionicity*ACS	Birth order*ACS
Variable	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)	<i>p</i> -value	<i>p</i> -value
Short-term outcomes						
In-hospital death (%)	0.82 (0.49-1.36)	0.57 (0.34-0.97)	0.82 (0.44-1.52)	1.10 (0.60-2.00)	0.24	0.71
Respiratory distress syndrome (%)	1.11 (0.86-1.44)	0.93 (0.72-1.19)	1.00 (0.79-1.28)	1.13 (0.88-1.45)	0.73	0.70
Chronic lung disease (%)	1.06 (0.80-1.40)	1.09 (0.83-1.42)	1.19 (0.89-1.60)	1.00 (0.76-1.31)	0.81	0.57
Intraventricular hemorrhage (III or IV) (%)	0.64 (0.39-1.04)	0.61 (0.35-1.09)	0.75 (0.41-1.37)	0.53 (0.29-0.95)	0.92	0.57
Periventricular leukomalacia (%)	1.02 (0.65-1.58)	0.47 (0.27-0.83)	0.69 (0.38-1.26)	0.45 (0.24-0.85)	0.31	0.02
Sepsis (%)	1.09 (0.71-1.68)	0.90 (0.57-1.41)	1.12 (0.72-1.73)	0.99 (0.64-1.52)	0.89	0.44
Necrotizing enterocolitis (%)	1.60 (0.72-3.55)	0.39 (0.15-1.02)	1.57 (0.61-4.08)	1.12 (0.43-2.92)	0.39	0.04
Treated retinopathy of prematurity (%)	0.90 (0.67-1.22)	1.04 (0.76-1.41)	0.89 (0.65-1.21)	0.83 (0.61-1.12)	0.30	0.89
Composite adverse outcomes (%)	0.86 (0.63-1.17)	0.56 (0.39-0.80)	0.77 (0.52-1.13)	0.61 (0.42-0.90)	0.78	0.05
Medium-term outcomes						
Death after NICU discharge (%)	0.44 (0.08-2.41)	4.30 (0.50-37.1)	0.47 (0.04-5.26)	0.75 (0.17-3.38)	0.50	0.16
Home oxygen therapy or home respiratory therapy (%)	1.38 (0.38-4.95)	1.08 (0.29-4.09)	12.7 (0.71-229)	2.06 (0.37-11.4)	0.34	0.51
Visual impairment (%)	1.32 (0.66-2.67)	0.73 (0.34-1.53)	0.66 (0.25-1.76)	1.73 (0.81-3.72)	0.85	0.83
Hearing impairment (%)	NA	0.58 (0.10-3.49)	0.43 (0.04-4.75)	0.18 (0.01-3.76)	0.34	0.78
Cerebral palsy (%)	1.04 (0.62-1.75)	0.53 (0.28-1.01)	0.91 (0.49-1.68)	0.68 (0.36-1.29)	0.61	0.10
Developmental quotient <70 (%)	1.04 (0.59-1.85)	1.16 (0.66-2.05)	1.68 (0.90-3.15)	1.04 (0.58-1.88)	0.78	0.59
Composite adverse outcomes (%)	1.18 (0.77-1.81)	0.90 (0.58-1.40)	1.12 (0.70-1.77)	0.82 (0.52-1.28)	0.30	0.20


442 ACS, antenatal corticosteroids; OR, odds ratio; NA, not available; short-term composite adverse outcomes: in-hospital death, intraventricular hemorrhage (grade III or IV) and periventricular


- 443 leukomalacia, medium-term composite adverse outcomes: death after NICU discharge, cerebral palsy or developmental quotient <70. Bold indicates a significant association. A p-value for
- 444 interaction < 0.05 indicates a significant difference in the effect of ACS treatment between monochorionic and dichorionic twins and between the first and second twin.

- 445 Figure legends
- 446 **Fig. 1.** Flow diagram of the propensity score–matched study population.

Data on 44,674 neonates were collected from the Neonatal Research Network of Japan database. Propensity score matching (ratio of ACS group to no-ACS group = 1:1) was performed. Interaction analyses were performed to evaluate whether ACS treatment produced significantly different effects between singletons and twins, between monochorionic and dichorionic twins and between the first and second twin. GA, gestational age; ACS, antenatal corticosteroids; GDM, gestational diabetes mellitus; DM, diabetes mellitus; DC, dichorionic; MC, monochorionic; PS, propensity score.

- 454 Fig. 2. Rates of short- and medium-term outcomes by gestational week at birth in singletons
 455 and twins according to exposure to antenatal corticosteroids (ACS).
- 456The outcomes shown include in-hospital death, IVH (grade III or IV), PVL, RDS, and shortand medium-term composite outcomes by gestational age at birth in singletons and twins 457according to exposure to ACS. Short-term composite adverse outcomes: in-hospital death, 458severe IVH (grade III or IV), and PVL. Medium-term composite adverse outcomes: death after 459discharge from NICUs, cerebral palsy, and developmental quotient of less than 70. *p < 0.05460 for ACS treatment versus no ACS treatment in singletons. $\dagger p < 0.05$ for ACS treatment versus 461no ACS treatment in twins. IVH, intraventricular hemorrhage; PVL, periventricular 462leukomalacia; RDS, respiratory distress syndrome. 463
- 464

		Singletons			Twins	Twins	
	Complete data	Incomplete data		Complete data	Incomplete data		
Variable	(n=23,502)	(n=3,898) <i>p</i> -value		(n=6,546)	(n=1,122)	<i>p</i> -value	
Maternal characteristics							
Maternal age (year)	31.7 ± 5.4	31.8 ± 5.7	0.51	31.3 ± 5.0	31.5 ± 5.3	0.18	
Primiparous (%)	11,714 (49.8)	1,837/3,433 (53.5)	< 0.01	4,015 (61.3)	682/1,083 (63.0)	0.31	
Gestational age (wks)	28.1 ± 2.2	28.1 ± 2.2	0.61	28.6 ± 2.0	28.5 ± 2.1	0.24	
Cesarean section (%)	18,045 (76.8)	2,451/3,472 (70.6)	< 0.01	6,046 (92.4)	963/1,092 (88.2)	< 0.01	
GDM or DM (%)	691 (2.9)	82/3,114 (2.8)	0.32	232 (3.5)	19/1,038 (1.8)	< 0.01	
HDP (%)	5,381 (22.9)	595/3,253 (18.3)	< 0.01	549 (8.4)	78/1,032 (7.6)	0.37	
Clinical CAM (%)	5,325 (22.7)	483/2,607 (18.5)	< 0.01	717 (11.0)	80/867 (9.2)	0.12	
ACS (%)	13,073 (55.6)	1,387/3,188 (43.5)	< 0.01	3,824 (58.4)	519/1,016 (51.1)	< 0.01	
NRFS (%)	6,583 (28.0)	694/2,933 (23.7)	< 0.01	1,207 (18.4)	128/953 (13.4)	< 0.01	
Monochorionicity (%)	NA	NA	NA	3,115 (47.6)	347/754 (46.0)	0.42	
First twin (%)	NA	NA	NA	3,264 (49.9)	595/1,122 (53.0)	0.05	
Year of delivery			< 0.01			< 0.01	
2003-2007 (%)	6,266 (26.7)	1,117 (28.7)		2,012 (30.7)	433 (38.6)		
2008-2011 (%)	8,383 (35.7)	1,258 (32.3)		2,200 (33.6)	368 (32.8)		
2012-2015 (%)	8,853 (37.7)	1,523 (39.1)		2,334 (35.7)	321 (28.6)		
Neonatal characteristics							
Male (%)	12,253 (52.1)	2,064/3,884 (53.1)	0.25	3,326 (50.8)	582/1,121 (51.9)	0.49	
Birth weight (g)	997 ± 282	991 ± 287	0.27	$1,045 \pm 277$	$1,028 \pm 280$	0.06	
SGA (%)	5,217 (22.2)	522/1,998 (26.1)	< 0.01	1,328 (20.3)	158/695 (22.7)	0.13	

Supplementary Table 1. Baseline characteristics of singletons and twins with and without complete data

GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, ACS; antenatal corticosteroids, NRFS; nonreassuring fetal status,

SGA; small for gestational age, NA; not applicable. Data are presented as mean \pm standard deviation or n (%).

		Singletons			Twins		
	ACS	No-ACS		ACS	No-ACS		
Variable	(n=13,073)	(n=10,429) <i>p</i> -value		(n=3,824)	(n=2,722)	<i>p</i> -value	
Maternal characteristics							
Maternal age (year)	31.8 ± 5.4	31.6 ± 5.5	< 0.01	31.3 ± 5.1	31.1 ± 5.0	0.10	
Primiparous (%)	6,570 (50.3)	5,144 (49.3)	0.16	2,408 (63.0)	1,607 (59.0)	< 0.01	
Gestational age (wks)	28.0 ± 2.1	28.2 ± 2.2	< 0.01	28.6 ± 2.0	28.6 ± 2.1	0.82	
Cesarean section (%)	9,969 (76.3)	8,076 (77.4)	0.03	3,543 (92.7)	2,503 (92.0)	0.29	
GDM or DM (%)	398 (3.0)	293 (2.8)	0.29	136 (3.6)	96 (3.5)	0.95	
HDP (%)	2,793 (21.4)	2,588 (24.8)	< 0.01	336 (8.8)	213 (7.8)	0.17	
Clinical CAM (%)	3,106 (23.8)	2,219 (21.3)	< 0.01	396 (10.4)	321 (11.8)	0.07	
NRFS (%)	3,514 (26.9)	3,069 (29.4)	< 0.01	675 (17.7)	532 (19.5)	0.05	
Monochorionicity (%)	NA	NA	NA	1,816 (47.5)	1,299 (47.7)	0.86	
First twin (%)	NA	NA	NA	1,920 (50.2)	1,344 (49.4)	0.51	
Year of delivery			< 0.01			< 0.01	
2003-2007 (%)	2,665 (20.4)	3,601 (34.5)		964 (25.2)	1,048 (38.5)		
2008-2011 (%)	4,666 (35.7)	3,717 (35.6)		1,271 (33.2)	929 (34.1)		
2012-2015 (%)	5,742 (43.9)	3,111 (29.8)		1,589 (41.6)	745 (27.4)		
Neonatal characteristics							
Male (%)	6,853 (52.4)	5,400 (51.8)	0.33	1,953 (51.1)	1,373 (50.4)	0.62	
Birth weight (g)	984 ± 281	$1,012 \pm 283$	< 0.01	$1,\!040\pm\!279$	$1,053\pm275$	0.06	
SGA (%)	2,943 (22.5)	2,274 (21.8)	0.19	802 (21.0)	526 (19.3)	0.10	

Supplementary Table 2. Demographic and obstetric characteristics of the study population before propensity score matching

GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, NRFS; nonreassuring fetal status, SGA; small for gestational age, ACS; antenatal corticosteroids, NA; not applicable. Data are presented as mean ± standard deviation or n (%).

		Singletons			Twins	
	PS-matched	PS-un-mached		PS-matched	PS-un-mached	
Variable	(n=18,700)	(n=4,802)	<i>p</i> -value	(n=5,122)	(n=1,424)	<i>p</i> -value
Maternal characteristics						
Maternal age (year)	31.7 ± 5.4	32.0 ± 5.4	< 0.01	31.3 ± 5.0	31.7 ± 5.2	< 0.01
Primiparous (%)	9,256 (49.5)	2,458(51.2)	0.04	3,091 (60.3)	924 (64.9)	< 0.01
Gestational age (wks)	28.1 ± 2.1	27.9 ± 2.1	< 0.01	28.6 ± 2.1	28.7 ± 2.0	0.13
Cesarean section (%)	1,4395 (77.0)	3,650 (76.0)	0.16	4,725 (92.2)	1,321 (92.8)	0.52
GDM or DM (%)	515 (2.8)	176 (3.7)	< 0.01	188 (3.7)	44 (3.1)	0.29
HDP (%)	4,421 (23.6)	960 (20.0)	< 0.01	399 (7.8)	150 (10.5)	< 0.01
Clinical CAM (%)	4,101 (21.9)	1,224 (25.5)	< 0.01	590 (11.5)	127 (8.9)	< 0.01
ACS (%)	9,350 (50.0)	3,723 (77.5)	< 0.01	2,561 (50.0)	1,263 (88.7)	< 0.01
NRFS (%)	5,361 (28.7)	1,222 (25.4)	< 0.01	976 (19.1)	231 (16.2)	0.01
Monochorionicity (%)	NA	NA	NA	2,453 (47.9)	662 (46.5)	0.35
First twin (%)	NA	NA	NA	2,569 (50.2)	695 (48.8)	0.37
Year of delivery			< 0.01			< 0.01
2003-2007 (%)	5,275 (28.2)	991 (20.6)		1,785 (34.8)	227 (15.9)	
2008-2011 (%)	7,251 (38.8)	1,132 (23.6)		1,834 (35.8)	366 (25.7)	
2012-2015 (%)	6,174 (33.0)	2,679 (55.8)		1,503 (29.3)	831 (58.4)	
Neonatal characteristics						
Male (%)	9,766 (52.2)	2,487 (51.8)	0.59	2,585 (50.5)	741 (52.0)	0.29
Birth weight (g)	$1,004 \pm 281$	965 ± 282	< 0.01	$1{,}048 \pm 275$	$1,034 \pm 284$	0.09
SGA (%)	4,145 (22.2)	1,072 (22.3)	0.81	1,006 (19.6)	322 (22.6)	0.01

Supplementary Table 3. Baseline characteristics of singletons and twins in the PS-matched and un-matched cohorts

GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, ACS; antenatal corticosteroids, NRFS; nonreassuring fetal status,

SGA; small for gestational age, NA; not applicable, PS; propensity score. Data are presented as mean ± standard deviation or n (%).

Supplementary Table 4. Short- and medium-term respiratory outcomes of singletons and twins

	Singletons			Twins			
Variable	ACS	No-ACS	OR (95% CI)	ACS	No-ACS	OR (95% CI)	Interaction
Short-term outcomes	(n=9,350)	(n=9,350)		(n=2,561)	(n=2,561)		
Intubation at birth (%)	5,461/9,330 (58.5)	6,158/9,334 (66.0)	0.73 (0.69-0.77)	1,516/2,556 (59.3)	1,619/2,553 (63.4)	0.84 (0.75-0.94)	0.02
Surfactant use (%)	5,614/9,295 (60.4)	6,253/9,270 (67.5)	0.74 (0.69-0.78)	1,814/2,548 (71.1)	1,830/2,528 (72.4)	0.94 (0.83–1.07)	< 0.01
Respiratory distress syndrome (%)	5,566/9,317 (59.7)	6,266/9,283 (67.5)	0.71 (0.67-0.76)	1,858/2,549 (72.9)	1,855/2,536 (73.1)	0.99 (0.87–1.12)	< 0.01
Chronic lung disease (%)	2,176/9,216 (23.6)	1,842/9,157 (20.1)	1.23 (1.14–1.32)	528/2,533 (20.8)	492/2,490 (19.8)	1.07 (0.93–1.23)	0.04
Medium-term outcome	(n=4,270)	(n=3,857)		(n=1,091)	(n=1,044)		
Home oxygen therapy or home respiratory therapy (%)	88/3,428 (2.6)	56/3,099 (1.8)	1.43 (1.02-2.01)	20/817 (2.4)	11/802 (1.4)	1.80 (0.86–3.79)	0.42

ACS, antenatal corticosteroids; OR, odds ratio; CI, confidence interval. Bold indicates a significant association. A p-value for interaction <0.05 indicates a significant difference in the effect of

ACS treatment between singletons and twins.

		Singletons			Twins			
	With medium-term data	Without medium-term data		With medium-term data	Without medium-term data			
Variable	(n=8,054)	(n=9,781)	<i>p</i> -value	(n=2,117)	(n=2,767)	<i>p</i> -value		
Maternal characteristics								
Maternal age (year)	31.7 ± 5.3	31.6 ± 5.6	0.06	31.1 ± 5.0	31.2 ± 5.0	0.64		
Primiparous (%)	4,125 (51.2)	4,712 (48.2)	< 0.01	1,331 (62.9)	1,617 (58.4)	< 0.01		
Gestational age (wks)	28.1 ± 2.1	28.3 ± 2.1	< 0.01	28.5 ± 2.0	28.8 ± 2.0	< 0.01		
Cesarean section (%)	6,231 (77.4)	7,487 (76.5)	0.20	1,968 (93.0)	2,552 (92.2)	0.33		
GDM or DM (%)	214 (2.7)	283 (2.9)	0.34	73 (3.4)	109 (3.9)	0.37		
HDP (%)	1,949 (24.2)	2,308 (23.6)	0.35	163 (7.7)	222 (8.0)	0.68		
Clinical CAM (%)	1,816 (22.5)	2,095 (21.4)	0.07	230 (10.9)	331 (12.0)	0.23		
ACS (%)	4,234 (52.6)	4,777 (48.8)	< 0.01	1,084 (51.2)	1,366 (49.4)	0.20		
NRFS (%)	2,269 (28.2)	2,737 (28.0)	0.78	411 (19.4)	483 (17.5)	0.08		
Monochorionicity (%)	NA	NA	NA	992 (46.9)	1,323 (47.8)	0.51		
First twin (%)	NA	NA	NA	1,060 (50.1)	1,395 (50.4)	0.81		
Year of delivery			< 0.01			< 0.01		
2003-2007 (%)	2,567 (31.9)	2,366 (24.2)		856 (40.4)	830 (30.0)			
2008-2011 (%)	3,518 (43.7)	3,407 (34.8)		856 (40.4)	896 (32.4)			
2012-2015 (%)	1,969 (24.4)	4,008 (41.0)		405 (19.2)	1,041 (37.6)			
Neonatal characteristics								
Male (%)	4,204 (52.2)	5,065 (51.8)	0.58	1,053 (49.7)	1,391 (50.3)	0.71		
Birth weight (g)	995 ± 274	$1,036 \pm 276$	< 0.01	$1,043 \pm 268$	$1,080 \pm 267$	< 0.01		
SGA (%)	1,855 (23.0)	2,001 (20.5)	< 0.01	397 (18.8)	523 (18.9)	0.89		

Supplementary Table 5. Baseline characteristics of singletons and twins with and without medium-term outcomes

GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, ACS; antenatal corticosteroids, NRFS; nonreassuring fetal status,

SGA; small for gestational age, NA; not applicable. Data are presented as mean \pm standard deviation or n (%).

		Singletons		Twins		
	With medium-term data	Without medium-term data		With medium-term data	Without medium-term data	
Variable	(n=8,054)	(n=9,781)	<i>p</i> -value	(n=2,117)	(n=2,767)	<i>p</i> -value
Short-term outcomes						
Respiratory distress syndrome (%)	5,020/7,995 (62.8)	6,189/9,754 (63.5)	0.36	1,511/2,094 (72.2)	2,009/2,760 (72.8)	0.62
Chronic lung disease (%)	1,795/8,010 (22.4)	2,111/9,660 (21.9)	0.37	418/2,097 (19.9)	572/2,732 (20.9)	0.39
Intraventricular hemorrhage (III or IV) (%)	207/8,007 (2.6)	317/9,714 (3.3)	< 0.01	64/2,105 (3.0)	90/2,751 (3.3)	0.65
Periventricular leukomalacia (%)	248/8,032 (3.1)	388/9,734 (4.0)	< 0.01	94/2,115 (4.4)	126/2,753 (4.6)	0.82
Sepsis (%)	530/7,985 (6.6)	616/9,723 (6.3)	0.42	116/2,092 (5.5)	145/2,745 (5.3)	0.69
Necrotizing enterocolitis (%)	71/7,993 (0.9)	87/9,733 (0.9)	0.97	17/2,094 (0.8)	27/2,751 (1.0)	0.54
Treated retinopathy of prematurity (%)	1,335/7,854 (17.0)	1,424/9,344 (15.2)	< 0.01	345/2,058 (16.8)	435/2,658 (16.4)	0.72
Composite adverse outcomes (%)	423/8,052 (5.3)	650/9,779 (6.6)	< 0.01	150/2,117 (7.1)	196/2,767 (7.1)	1

Supplementary Table 6. Short-term outcomes in singletons and twins with and without medium-term outcomes

Short-term composite adverse outcomes: in-hospital death, intraventricular hemorrhage (grade III or IV) and periventricular leukomalacia.

		Monochorion	ic first twins			Monochorionic	second twins	
	ACS	No-ACS		standardized	ACS	No-ACS		standardized
Variable	(n=623)	(n=623)	<i>p</i> -value	difference	(n=615)	(n=615)	<i>p</i> -value	difference
Maternal characteristics								
Maternal age (year)	30.8 ± 5.0	30.8 ± 5.0	0.96	0.003	30.5 ± 5.0	30.7 ± 5.2	0.56	-0.032
Primiparous (%)	349 (56.0)	357 (57.3)	0.65	-0.026	361 (58.7)	359 (58.4)	0.91	0.007
Gestational age (wks)	28.6 ± 2.0	28.5 ± 2.0	0.81	0.013	28.7 ± 1.9	28.7 ± 2.0	0.95	-0.004
Cesarean section (%)	578 (92.8)	581 (93.3)	0.74	0.019	582 (94.6)	580 (94.3)	0.80	-0.014
GDM or DM (%)	22 (3.5)	22 (3.5)	1	0	18 (2.9)	19 (3.1)	0.87	0.009
HDP (%)	44 (7.1)	45 (7.2)	0.91	0.006	46 (7.5)	41 (6.7)	0.58	-0.031
Clinical CAM (%)	43 (6.9)	44 (7.1)	0.91	0.006	43 (7.0)	44 (7.2)	0.91	0.007
NRFS (%)	145 (23.3)	147 (23.6)	0.89	0.008	156 (25.4)	148 (24.1)	0.60	-0.03
Year of delivery			0.75				0.95	
2003-2007 (%)	181 (29.1)	191 (30.7)			200 (32.5)	201 (32.7)		
2008-2011 (%)	245 (39.3)	246 (39.5)			221 (35.9)	225 (36.6)		
2012-2015 (%)	197 (31.6)	186 (29.9)			194 (31.5)	189 (30.7)		
Neonatal characteristics								
Male (%)	316 (50.7)	309 (49.6)	0.69	-0.022	310 (50.4)	311 (50.6)	0.95	0.003
Birth weight (g)	$1,066 \pm 271$	$1,053 \pm 265$	0.40	0.048	1,009 ± 281	1,013 ± 282	0.79	-0.015
SGA (%)	108 (17.3)	113 (18.1)	0.71	0.021	184 (29.9)	176 (28.6)	0.62	-0.029

Supplementary Table 7. Baseline characteristics of monochorionic first and second twin

GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, NRFS; nonreassuring fetal status, SGA; small for gestational age,

ACS; antenatal corticosteroids. Data are presented as mean \pm standard deviation or n (%).

		Dichorionic fi	rst twins			Dichorionic see	cond twins	
	ACS	No-ACS		standardized	ACS	No-ACS		standardized
Variable	(n=631)	(n=631)	<i>p</i> -value	difference	(n=660)	(n=660)	<i>p</i> -value	difference
Maternal characteristics								
Maternal age (year)	31.3 ± 4.9	31.5 ± 4.7	0.46	-0.042	31.6 ± 5.0	31.7 ± 4.9	0.66	-0.024
Primiparous (%)	397 (62.9)	392 (62.1)	0.77	0.016	422 (63.9)	419 (63.5)	0.86	0.009
Gestational age (wks)	28.5 ± 2.1	28.5 ± 2.1	0.63	0.027	28.5 ± 2.1	28.6 ± 2.1	0.59	-0.029
Cesarean section (%)	568 (90.0)	573 (90.8)	0.74	0.019	609 (92.3)	603 (91.4)	0.55	-0.032
GDM or DM (%)	27 (4.3)	26 (4.1)	0.89	-0.008	21 (3.2)	23 (3.5)	0.76	0.016
HDP (%)	53 (8.4)	53 (8.4)	1	0	58 (8.8)	63 (9.5)	0.63	-0.026
Clinical CAM (%)	100 (15.8)	101 (16.0)	0.94	0.004	102 (15.5)	100 (15.2)	0.88	-0.009
NRFS (%)	82 (13.0)	86 (13.6)	0.74	0.019	102 (15.5)	104 (15.8)	0.88	0.008
Year of delivery			0.70				0.72	
2003-2007 (%)	241 (38.2)	231 (36.6)			245 (37.1)	246 (37.3)		
2008-2011 (%)	205 (32.5)	219 (34.7)			214 (32.4)	225 (34.1)		
2012-2015 (%)	185 (29.3)	181 (28.7)			201 (30.5)	189 (28.6)		
Neonatal characteristics								
Male (%)	326 (51.7)	322 (51.0)	0.82	-0.013	332 (50.3)	340 (51.5)	0.66	0.024
Birth weight (g)	$1,\!072\pm268$	$1,\!075\pm269$	0.84	-0.011	$1,\!052\pm\!280$	$1,\!053\pm277$	0.94	-0.004
SGA (%)	87 (13.8)	92 (14.6)	0.69	0.022	112 (17.0)	118 (17.9)	0.66	0.023

Supplementary Table 8. Baseline characteristics of dichorionic first and second twin

GDM; gestational diabetes mellitus, DM; diabetes mellitus, HDP; hypertensive disorders of pregnancy, CAM; chorioamnionitis, NRFS; nonreassuring fetal status, SGA; small for gestational age,

ACS; antenatal corticosteroids. Data are presented as mean \pm standard deviation or n (%).

	Monochorionic first twins			Monochorionic second twins		
Variable	ACS	No-ACS	OR (95% CI)	ACS	No-ACS	OR (95% CI)
Short-term outcomes	(n=623)	(n=623)		(n=615)	(n=615)	
In-hospital death (%)	29/622 (4.7)	35/622 (5.6)	0.82 (0.49–1.36)	23/615 (3.7)	39/613 (6.4)	0.57 (0.34-0.97)
Respiratory distress syndrome (%)	475/620 (76.6)	461/617 (74.7)	1.11 (0.86–1.44)	439/609 (72.1)	449/610 (73.6)	0.93 (0.72–1.19)
Chronic lung disease (%)	129/617 (20.9)	119/597 (19.9)	1.06 (0.80–1.40)	144/608 (23.7)	133/598 (22.2)	1.09 (0.83–1.42)
Intraventricular hemorrhage (III or IV) (%)	29/620 (4.7)	44/617 (7.1)	0.64 (0.39–1.04)	20/610 (3.3)	32/612 (5.2)	0.61 (0.35–1.09)
Periventricular leukomalacia (%)	43/621 (6.9)	42/616 (6.8)	1.02 (0.65–1.58)	19/612 (3.1)	39/614 (6.4)	0.47 (0.27-0.83)
Sepsis (%)	47/620 (7.6)	43/615 (7.0)	1.09 (0.71–1.68)	39/609 (6.4)	43/607 (7.1)	0.90 (0.57–1.41)
Necrotizing enterocolitis (%)	16/622 (2.6)	10/615 (1.6)	1.60 (0.72–3.55)	6/609 (1.0)	15/608 (2.5)	0.39 (0.15–1.02)
Treated retinopathy of prematurity (%)	101/609 (16.6)	106/587 (18.1)	0.90 (0.67-1.22)	100/597 (16.8)	94/578 (16.3)	1.04 (0.76–1.41)
Composite adverse outcomes (%)	85/623 (13.6)	97/623 (15.6)	0.86 (0.63–1.17)	54/615 (8.8)	90/615 (14.6)	0.56 (0.39-0.80)
Medium-term outcomes	(n=278)	(n=245)		(n=278)	(n=236)	
Death after NICU discharge (%)	2/278 (0.7)	4/245 (1.6)	0.44 (0.08–2.41)	5/278 (1.8)	1/236 (0.4)	4.30 (0.50–37.1)
Home oxygen therapy or home respiratory therapy (%)	6/210 (2.9)	4/191 (2.1)	1.38 (0.38-4.95)	5/213 (2.3)	4/184 (2.2)	1.08 (0.29-4.09)
Visual impairment (%)	21/251 (8.4)	14/217 (6.5)	1.32 (0.66–2.67)	14/252 (5.6)	16/214 (7.5)	0.73 (0.34–1.53)
Hearing impairment (%)	0/200 (0)	0/163 (0)	NA	2/192 (1.0)	3/167 (1.8)	0.58 (0.10-3.49)
Cerebral palsy (%)	36/258 (14.0)	31/230 (13.5)	1.04 (0.62–1.75)	17/260 (6.5)	26/223 (11.7)	0.53 (0.28–1.01)
Developmental quotient <70 (%)	30/161 (18.6)	27/150 (18.0)	1.04 (0.59–1.85)	35/175 (20.0)	25/141 (17.7)	1.16 (0.66–2.05)
Composite adverse outcomes (%)	61/278 (21.9)	47/245 (19.2)	1.18 (0.77–1.81)	51/278 (18.3)	47/236 (19.9)	0.90 (0.58–1.40)

Supplementary Table 9. Short- and medium-term outcomes of monochorionic first and second twin

ACS, antenatal corticosteroids; OR, odds ratio; CI, confidence interval; NA, not available; short-term composite adverse outcomes: in-hospital death, intraventricular hemorrhage (grade III or IV) and periventricular leukomalacia, medium-term composite adverse outcomes: death after NICU discharge, cerebral palsy or developmental quotient <70. Bold indicates a significant association.

	Dichorionic first twins			Dichorionic second twins		
Variable	ACS	No-ACS	OR (95% CI)	ACS	No-ACS	OR (95% CI)
Short-term outcomes	(n=631)	(n=631)		(n=660)	(n=660)	
In-hospital death (%)	19/630 (3.0)	23/629 (3.7)	0.82 (0.44–1.52)	23/659 (3.5)	21/658 (3.2)	1.10 (0.60–2.00)
Respiratory distress syndrome (%)	441/628 (70.2)	438/624 (70.2)	1.00 (0.79–1.28)	503/659 (76.3)	484/653 (74.1)	1.13 (0.88–1.45)
Chronic lung disease (%)	121/621 (19.5)	104/617 (16.9)	1.19 (0.89–1.60)	129/658 (19.6)	127/645 (19.7)	1.00 (0.76–1.31)
Intraventricular hemorrhage (III or IV) (%)	19/629 (3.0)	25/624 (4.0)	0.75 (0.41–1.37)	18/659 (2.7)	33/654 (5.0)	0.53 (0.29-0.95)
Periventricular leukomalacia (%)	19/628 (3.0)	27/628 (4.3)	0.69 (0.38–1.26)	15/660 (2.3)	32/656 (4.9)	0.45 (0.24–0.85)
Sepsis (%)	46/628 (7.3)	41/620 (6.6)	1.12 (0.72–1.73)	45/658 (6.8)	45/651 (6.9)	0.99 (0.64–1.52)
Necrotizing enterocolitis (%)	11/628 (1.8)	7/624 (1.1)	1.57 (0.61-4.08)	9/656 (1.4)	8/652 (1.2)	1.12 (0.43–2.92)
Treated retinopathy of prematurity (%)	91/610 (14.9)	98/595 (16.5)	0.89 (0.65–1.21)	95/646 (14.7)	107/621 (17.2)	0.83 (0.61–1.12)
Composite adverse outcomes (%)	51/631 (8.1)	65/631 (10.3)	0.77 (0.52–1.13)	46/660 (7.0)	73/660 (11.1)	0.61 (0.42-0.90)
Medium-term outcomes	(n=274)	(n=261)		(n=280)	(n=281)	
Death after NICU discharge (%)	1/274 (0.4)	2/261 (0.8)	0.47 (0.04–5.26)	3/280 (1.1)	4/281 (1.4)	0.75 (0.17–3.38)
Home oxygen therapy or home respiratory therapy (%)	6/207 (2.9)	0/197 (0)	12.7 (0.71–229)	4/209 (1.9)	2/213 (0.9)	2.06 (0.37-11.4)
Visual impairment (%)	7/254 (2.8)	10/242 (4.1)	0.66 (0.25–1.76)	19/261 (7.3)	11/254 (4.3)	1.73 (0.81–3.72)
Hearing impairment (%)	1/214 (0.5)	2/184 (1.1)	0.43 (0.04–4.75)	0/211 (0)	2/190 (1.1)	0.18 (0.01–3.76)
Cerebral palsy (%)	22/258 (8.5)	23/248 (9.3)	0.91 (0.49–1.68)	17/271 (6.3)	24/267 (9.0)	0.68 (0.36–1.29)
Developmental quotient <70 (%)	29/156 (18.6)	19/159 (12.0)	1.68 (0.90–3.15)	26/160 (16.3)	27/172 (15.7)	1.04 (0.58–1.88)
Composite adverse outcomes (%)	46/274 (16.8)	40/261 (15.3)	1.12 (0.70–1.77)	42/280 (15.0)	50/281 (17.8)	0.82 (0.52–1.28)

Supplementary Table 10. Short- and medium-term outcomes of dichorionic first and second twin

ACS, antenatal corticosteroids; OR, odds ratio; CI, confidence interval; short-term composite adverse outcomes: in-hospital death, intraventricular hemorrhage (grade III or IV) and periventricular leukomalacia, medium-term composite adverse outcomes: death after NICU discharge, cerebral palsy or developmental quotient <70. Bold indicates a significant association.