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§ 0. Introduction

The second paper on the vibration of aerofoil treats the propagation of
disturbance in a linear elastic chain with coupled harmonic oscillators. In the
first paper? emphasis was laid on the study of the discrete elastic chain, instead
of a continuous aerofoil. Here we shall make clear the dynamical behavior of
the linear elastic chain.

As for the statistical dynamical properties of the discrete chain, it is a well-
known fact that if one assumes a canonical distribution at the initial instant of
time, the evolution of the ensemble constitutes a stationary GauBian process of
ergodic character. The analytical properties of correlation functions are also
investigated in various cases. Interesting problems concerning the localized
vibrationV? in such a system have been also studied, treating the cases of locally
reduced mass, of local hard springs, and also of applied external forces of high
frequency.

In the present paper the authors made a study of a chain of infinite length
under certain conditions, or rather, of a chain of finite length under certain
periodic conditions. At the initial instant of time, it is assumed that half the
system of the chain is perfectly at rest, while the other half has temperature 7
which measures the mean square of the momenta of particles. In other words,
half the system is distributed canonically with temperature 7" and the other half
is fixed at its dynamically equilibrium position.

Starting from this initial ensemble we shall pursue the timal behavior of the
ensemble, which evolves in course of time according to the law of classical
dynamics. By introducing the Schrédinger coordinates® and by means of the
solutions expanded in Bessel functions®*®, one can easily pursue the timal
behavior of the correlation functions of the ensemble. After a sufficiently long
time, we found that the whole system approaches a stationary state with temper-
ature 7/2. The result obtained in this paper is seen to be quite the same
as given recently by means of Fourier series. We also found that the aver-
age values of the potential energy of each particle approach the same station-
ary value after a sufficiently long time. Thus the equipartition of the kinetic
and the potential energies is proved to establish. However, the mathemat-
ical method we used here is easier to understand and simpler by far than that
by means of Fourier series; because one can take explicitly into account the
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initial conditions of the ensemble and also because the covariance matrix® in
the distribution function (or, to be more precise, probability density function) of
the canonical ensemble at the initial instant of time has been already diagonalized
by means of the dynamical solutions expanded in Bessel functions.

§ 1. Periodic Linear Elastic Chain

We shall consider a linear elastic chain consisting of an infinite number
of coupled harmonic oscillators. Let M be a mass of each particle and K the
force constant of interaction between the nearest particles. Then the equations
of motion of the system read in the Schrodinger coordinates®"? as follows:

2_(1_}’21;:1:)“ = Yna(7) = Yu-1(T), for — oo <n<+ = (1)
where
Non = ;Z*)“a
Yons1 = r"'”;' r s
T =2 wt,

with 7, »:1 = the distance between the z-th and the (n+ 1)-th particles, 7 = the
distance of particles at equilibrium, &,=the velocity of the n-th particles, ¢=
the root mean square of ¥ s+, and f=time. Equations (1) have a system of
solutions :

_'_\’n(T) = . E ayjy—n(f), for — oo Ldn 4 (2)

V=—-

with integration constants @, and Bessel function Jm(r) of order .

The solutions (2) of equations of motion of an infinite chain can be also used
in the case of a system of finite length under certain conditions. Now, let us
take a finite chain of 2 N particles with both ends free. The particles are
numbered from — N+1 to N. Then we have a system of equations

*d%y—z.wz= % V-zyz+a, de Yen= — %‘_}’2.\!—1,
and

%y,,: ; (3wr1—yua), form=—2N+3 —2N+4,..., =101 ...,2N=1

Inserting (2) into the above equations, we obtain, for the integration constants:

a-25:1=0, ay+1=0,
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@y-sxr=(—D""a ,axi1, Gayron=(—1)""Gyison. for any integers ».

From these expressions, we can write all the integration constants a, in (2) in

terms of @-sy:2, @-ayss ..., aw, which are respectively the initial values of
Y-2y+2, Y-pxi3, ..., %xy. In a compact form, the integration constants can be
written as follows:
a,, for k: even integers )
Ay+rhoay = { N . 5 (3)
(=1)a.-,, for k: odd integers

with any integers p.
Inserting (3) into (2), we obtain

2N

yalr) = 2 a,* 12 <]»+2k-44\'—n+

ym=2N+2

+ ( "‘1)‘1]2-“-(2721.-1)-4.\*-71}- for —2N+2<n<2N

The equivalent expression was also obtained by Klein and Prigogine®.
If we replace the periodic condition (3) by another periodic condition for a
cyclic chain:

J’rx:»tx('f) =yn(‘f), for — o <9< + =
we obtain, for the integration constants,
n = Gp+asy, for — oo <n< 4 o (3)

with any integers s.
In this case, we have solutions of the system:

2N+1 E
ale) = 20 aye D) Jurakyen. for —2N+42<n<2 N+1
v==2N+2 k==

In both cases of:

(i) the chain with free ends (3),
and

(ii) the cyclic chain (3'),
we have similar solutions, if their length is sufficiently long. This can be ex-
plained as follows:
viz.,, if we take sufficiently short time as compared with the time needed for
disturbance to propagate to the end of the system (i.e. <2 N), the expression
of the solution of equation for the finite chain reduces to*:

2N+1

yau(7) = Ev asJo-n(1). for =2 N+2<n<2 N (4)
v 2

§ 2. Initial Ensemble

Now, let us introduce an initial statistical ensemble in which particles Nos.

* cf. Appendix III
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0, =1, =2, ...,and (—N+1) are fixed at their equilibrium positions, viz.,
yo(r=0)=y(r=0)=yu(r=0)= - =y-ayulc= 0) =y-on:2(r=0)=0. (5)
Then, from (4) and (3), we obtain at once
G =A-1=0-2= """ =q-zy+3= B-gx+2= 0. (6)

From (6), the solutions (4) under periodic conditions (8'), are expressed as
follows :

2N+1

(o) = S0 @, Ju-nlt). for — o <n< + = (7)
=1

Further we assume that the random variables yn, at =0, i.e. am (m=1,2,
,2 N+1) are distributed with canonical distribution at temperature T. Ac-
cordmgly, we take the distribution function (or, to be more precise, probability

density function) W(ai, a, . . ., G:x+1) for ay (»=1,2, 2 N+1) as follows:
_K N¥if2 - 2
Wiay, a, . . . ,[l:'..\'rl)’—:(za”k'T) -eXpL 2}2}; {uz:‘g(lzn‘l‘}_»a"nh }
B -[{ W NE1/2 . (7ZK 2.\_'_:1 ) ,
—(‘)-kT) expL SiT " %{ as‘l, (8)
where £ is the Boltzmann constant. Here, the expression,
o K 5{1'1 af 7K & 2
H - 9 8= l a;( - 2 ﬁ:%{\'&ﬁas)’
is the Hamiltonian of the system at r=0.
This ensemble with distribution function (8) has the averages
Ly n® Q) av = Iiz O, 1y ]l
{agnir @ an =0, |} (9)
and 1
Lty nsi* Qe ap = %5n,m. j

with Kronecker’'s delta 0y, m.

£ 3. Correlation Functions

Now, let us take the correlation functions of the #-th and (4 m)-th parti-
cles, which we shall define as follows:

@u,m(f) = gi{ <] Yo n( )y"n—r"m( |>_u;, for = N+1<n, n+m= N (10)

and
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I 1\

Un,mit) = for —N+1<n, n+m<N (11)

Now, we shall pursue the statistical behavior of the dynamical system (7) in
course of time. By means of (7), we find the functional form of 6, m(c) at any
instant of time =:

2N =1 2N+
oK

Gn,m(‘?) ""(l Ea\«j —'Hx( ) 2 (ly.]p.-"ﬂ 2mf )I>AU

.‘]{[ 2 <a"k a"l> w] k-"n( )]"r—"n-"m 7)

Ry 1=1

-

b

v

4+ ST Larperraric anJekri-2n(T) Jois1-o neam(7)
k,i=0

R

> E(aek’(lzi’—o.w]zk—z n(f)]zin—z n-2ml )

i=0

“

+
14

k

P

P

M

<a>k+1 @iy avfrtir—2n(t) Jaicomoam(c) ] (12)

B}

4=
13

I
Y

Inserting (9) into (12), we obtain
2N-In-m+1

(‘)n.m‘ o) =T- I Z ]k-l-m('f')jk—m(f){- (13?

k==2n-m#1

The similar calculation as in (12) and (13) leads to:

2XN=2p=m

l]n,m(f) =T'| 2 ]ks-m(l‘)]k—m('.’)]. (14)

=—2nu-Mm

For the special case® m=0 in (13) and (14), we have

e >_:r[ 2 l]im], (15)
and
Uno ) =TT S Jie)1. (16)

k=-2n

The expressions (15) and (16) correspond to the kinetic and the potential
energies™ of the #.-th particle, respectively. The expression (15) is somewhat
different from Teramoto’s”, who employed Fourier series. Moreover, we find
that the expression (16) is very similar to (15), but the details are somewhat
different.

For the sake of reference, we shall take the correlation function of the n-th
and the (7 +)-th particles, which we shall define as follows:

kinetic energy = ; ke@a,0(7),
and
potential energy= 1 ke (Ui, ol)+Uazs0l0)].
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Vn'm(f) = “g:jel_(“ <1y2 n(T)yzn-‘-znnl(T)D,w. for —N4+1<n, n+m<N (17)

From (9) we obtain

IN=-2n+1

Vn.m(f) = T‘[ 2 jk(f)]k-em—l(‘f)],

km—=2n+1

AN=-2n=m+1/2

=T ) Jermer2(2) Jemm-12(0) . (18)

k=—2n—m+1/2

For the case: m =0, the expression (18) reduces to:
2N-2n+1/2

Vn.')(f) = T I 2 J}a+1/o('l')]k 1/0( )I (19)

k==2n+
which represents the correlation of velocities and positions of the n-th particle.
The summation of % in (18) and (19) covers half odd integers.

§4. Approach to the Stationary State

If we consider the case: N- + «, we have the following results™® for the
correlation functions (13) and (14):

@n, m(T) =T | % Jk+m(f)]k—m('l')l

k==2n-m+1

ro| i~

[1671! ot (- l)mﬁjm( )+2 Ea ]k+m(?)]k—m(f)]_‘ for 2 n> —m (20)

k=-=2n-m+l

—2n—m

[16,,, o+ ( - 1)"‘”] ( ) -2 E j} rm(T)]k—m(T)l:l for 2 n< —m (21)

[Iam,o+ (- 1)"”1]311('{'”], for2m= —m (22)

[
|
=1
|
(

S S

and

o

Un m(‘l‘) =T | 2 ]k-nn(f)]k—m(f)l

(T dmo+ (= 1) i) +2 =§3_ Jeem(t) Je=m(2)|], for 2n>-—m—1 (23)
—=1=2n-m

{a g [!5111.0+ ( - 1)””1]?71(1') -2 kz_}l ]k+m(7)]k—m(1’)ll for 2n<—m—1 (24)

U5 omo+ (= D™ (0] for 2n= —m~1 (25)

In the case of m=0, the correlation functions (20)~ (25) mentioned above
take the same value zero at r=0, and they finally vanish at r= 4 «. This
means that the correlation between velocities of different particles and the cor-
relation between positions of different particles vanish asymptotically.

“t cf. Appendix L
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For 2 =0, however, the expressions (20) ~(22) and (23)~(24) reduce re-
spectively to:

[g‘ [14Ji(e)+2 i Jie)d, for n=>=1 (26)
O, o(7) ={l g [1-Jiz)—2 Z];( )1, for n< —1 (27
{g [1-J%o)],  for 2=0 (28)
and
Up,olz) = %: L1+ +2 Zn‘]é(r)l for n=>1 (29)
12n+1]

= _:2[;.[1—-]3(7) - 2 Ji()], for n< —1 (30)

T 2 5
=5 [1+7i0)] for n=0 (3D

The expressions (20) ~(28) are very much the same as those obtained by means
of Fourier series.”
The kinetic temperatures (26) ~ (28) have initial values, respectively, of
Onolc) =T, for n>1
Qn,e(f) =0, for n< -1
and
BOn,olt) =0, for n=0
while, when ¢ goes to infinity, they approach®® the same stationary value 772,
ie.

hm Bn, () = T (32)

for n>0, n =0, and #<0.

At any instant of time t, which lies in the interval: 0<t< + oo, it is easily
seen that

(i) if 2=1>=1, we obtain

T 0 <Omp0) =T, (33)

and
(i1) if 22 <1<0, we obtain

o

0< Ol ) Onale)< L - (34)

The expressions for the potential energies (29) ~ (31), have initial values of :
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T, for n=0

Un,o(?) =
0. for n< —1

We found also that, for 0<7< + o,
(i) if n=>=1=0, we obtain:

3 <UL SUno) < T, (35)

and

(ii) if <1< — 1, we obtain:

0<Unole) < Uio() < 1 (36)

while, the expressions (29)~ (31) approach the same stationary value 7/2, when
T goes to infinity,
ie.

lim Upo(e) = L.

Ty
Torm 2

(37)

for #>0, n=0, and n <0.

Therefore, we can say that the expressions (32) and (37) establish the
equipartition of the kinetic and the potential energies. The kinetic and the
potential energies of each particle approach the same stationary value k74,
when 7 goes to infinity.

On the other hand, the correlation functions Vj, m.(7) behave somewhat dif-
ferently. From (18) we obtain for the case: N— 4 oo,

+0+1/2
Vn,m(f) = T'El kz—l}ﬂ jk'rmHl‘-‘(T)]k—m—l,f:’.(T) +

-1/2

+ 2 mj/h‘-m‘rl/‘-!(T)]k—m—llz(f)ll for 2n> — m (38)

fm—2u—mi

to 12

= T’[i k.__z”q ]IcHni1/2(7)]1.'—":—1;'2(7) -

—In=m=1/2

- PN Jevmirpe(t) Jemme2(<) ], for 2 n< — m. (39)

k=12
+w41/2
=T-| k_zm Jeeme12(2) Jommerp( ), for 2n= —m (40)

where the summation with regard to £ covers half odd integers.
From the above expressions and by means of the formula™*:

+@+1/2 .
Hm 3 Jera(e) Jemu(s) = %‘@L, 1)
Tt k=1/2 o

we find :

e of, Appendix 1L
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(-»"

Jim Vol ©) = T gty

for —N4+1<n n+m<N (42)
The expression (42) means that the correlation between velocities and positions
of particles never vanish asymptotically. We also find that the correlation function
Vamic) between distant particles is smaller than that between near particles, vzz.
if 0< |Il<|7|, then we have, in the case: 7 + o,

0< Vﬂ,r(f)ﬁ Vn,l_é T . (43)

w

For m=0 in the above expressions, we obtain:

~

llm lim Vn,o(T\) = 9 (44\)

T+ N> oo

a5l

which is the same result obtained directly from (19) in the case: N- 4 o and
- 4 . The expressions (42) and (44) represent the existence of the instan-
taneous flow of energy at every point in the system.

It is worth while remarking” that our results (26) ~(28) and (29) ~(31) have
similar properties to the solution:

T 1 “ 2 2 -
Oz, )= 5 {1+ "a"{/}éi"go explL—2'/(4a zf)]dx}, (45)

of the classical equation of heat flow in an infinite rod:

of T oxr’
with the initial condition :
T, for x>0
Blx, t=0)= {
0. for x <0

The expressions (26)~(28), (29)~(31) and (45), represent the process of
thermal conduction to establish the uniform temperature in the system. The
energies (26)~(28) and (29)~1(31) oscillate with increasing time; while the
solution (45) for x<0 increases monotonously and the solution (45) for x>0
decreases monotonously, with increasing time. In brief, all the expressions above
mentioned approach the same stationary value 772 after a sufficiently long time.
It should be added, however, that the timal behavior of (26)~(28) and (29)~(31)
is essentially different from the process of thermal diffusion in a rod given by
(45).

This study was financially supported by grants from the Tc¢kai Gakuzyutu Syérei Kai
and the Ministry of Education.

Appendix I

If we consider the case: N- + o0 in (13), we shall have:
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+ o
@—’1’%(1—)— = xk__g ]k+m(r)]k—m(r)l
0
J( !z.],e+m(T>]k m(7) + 22 ]k+m(r)]k_m(z')ﬂ, for 2 n> —m}]
: 4w —2n—m l
=<[12]k+m(r)]k m(t) — Z Teem(T) Jrem(o)1], for 2n< —m } (I-1)
| * - |
{2} Jeem(2) Jo-m(7)] for 2n= —m j
The expression involved in the above is easily calculated as follows:
4w +»
23 Jeem D) Jomm(z) = ! { 2 Jeim{T) Jiem(2) + (= D)™ () }
k=,1 2 e =
= % {5771 —m+ ( - 1)m+1]m(f)}
= 5 o+ (= D™ (), (12)
for m and k integers.
From (I-1) and (I-2), we obtain the results (20), (21), and (22).
Appendix II
We shall demonstrate the following formulae :
o (v A1)/2 1 72 22 o080
o Jeeal2) Jroolz) = =\ df cos (2 afl) S J(E)de, (II-1)
F=(v+1l)2 0 0
ke {(L}L + non-negative integers)}
and
o (V1)/2 .
lim }_J ]Ie+a(2)jk o(2) = —S%g;a—), (11-2)

Z-yd0 k= {yp

for any real «, not necessarily an integer.
To prove these formulae, we take formula (¢f. Watson: Bessel Functions®,

p. 150) :

/2
Joia(2) Jomalz) = % jo Jv(2 2 cos 0) cos (2 al)dd, (I-3)

for a complex number » with R.(2)> —1.
For any real p, we obtain:

/2

21 Juralz) Ju-olz) = ,i i , J2u(2 z cos 8) cos (2 af)db

w>—1/2 w>—1/2

=/2 fod
= ~j dd cos (2 ab)+ >3 Jou(2 2z cos 8)
Yo w>—1/2



Research Reports 67

w~/2 »
= ajo df cos (2 al) » >) Jerevii{2zcos ). (11-4)

w pErd(ve1)/2>-1/2

with real »> —2, and non-negative integers 7.
Accordingly, from (II-4), we obtain:

+2+ (y+1)/2

nf2 ®
Juval2) Ju-a(2) = _2: S df cos (2 af)) - 2()]27+»4~1(2 2 cos )
T Ve o=

w=(v+1)/2

ne {( ”::;1 + non-negative integers)}

1 /2 2Zcos B . .
= rﬁ dhcos (zad)|  TU&), (I15)
for > —2.
For the special cases: »=0 and » =1 in (II-5), we have:
+oo+1/2 1 /2 2Zcos 0
S Jusl@ etz =~ dscos @and[ T oz, (IL6)
w=1/2 T 0 0
u € {positive half odd integers}
and
] 1 /2 (vzzmas()
S} wrel2) o) = L [0 cos 2an)| T (o)a (I117)
w=1 )

< {positive integers}
We take the limit: z— + < in (II-5) and obtain:
24 (vr1)/2

/2 A
lim S ]},:—d(z)]u-a(z):ijo db cos (2 a0)| J.(2)d:

oo p=(y+1)/2

ne { (7{52"1 -+ non-negative integers)}

/2
lj cos {(2al)dd x 1
T Ve

I

_ sin (za).
- 2 ra

(11-8)

for any finite » with »> —1, and any real a.
For the special case: « =integers=0 in (II-8), we obtain :

e+ (v+1)/2

lim >0 Jurel2) Ju-alz) = 0. (11-9)

>+ p=(virl)/2

= {( ’{f;}, + non-negative integers)}

In the case: a0, however, we obtain from (II-8):

TR (v+1)/2

lim 3 i) = - (11-10)

Z+w u={v+1)/2
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= {( —D—;—L -+ non-negative integers)}
For the special case of » =1 in (II-9) and (II-10), we have:

lim S Jksa(2) Jiou(2) =0,

z->+ o k=1

and

lim Vi) = 5

>+ w k=1

which coincide completely with the results obtained from (I-2) for the case:
T—> + oo,

The expression (II-8) with » =0 proves (41) for any real «.
Appendix III
We take the identities:

+ N-1 o
SY Japrany(z) = ‘21_N >3 cos %——%y -cos<r sin m2§\f>

Je= - o re -8

for p: integers (III-1)
and

= 1 W @+ Dar (o ar
k:z—ao fzp;—u—,m;g(l') = ZN;::.?_—JN s ’“ZN“‘* Sin <a sm—zwﬁ),

for p: integers (111-2)

and consider the case: N- + .
The summations in the right-hand sides of (III-1) and (III-2) are replaced by the
integrations in the limit: N- + o, and we obtain, respectively,

< (w;:/"

i) cos (2px)ecos (¢ sin x)de= Jap(c), for p: integers (111-3)
0
and

/2
2~5 sin {(2 4+ Dx}esin (rsin x)dx = Jop1(c). for p: integers (III-4)
T
From (I1I-3) and (III-4), we have:

o
lHm % Jwrasn(z) = Jmle). for any integers # (II1-5)

Not+w g=—w©

The expression (III-5) proves the approximation (4).
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