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Summary

Laminar and turbulent flow solutions in the wake with axial pressure gradient
are treated for a two-dimensional, imcompressible flow. A similar solution is
obtained within the wake approximation, which is applicable to the flow far down-
stream from the body with any pressure gradient. In the laminar wake if the
volocity U(x) outside the wake is proportional to x™, then the width of the wake
is proportional to x'17")/2 and the velocity defect on the wake axis to xi73mT1/2 and
in the turbulent wake the width to x(=3"+1)/2 and the velocity defect to xi—m+1i

Introduction

In the wake behind a flat plate at zero incidence, as shown in Fig. 1, or at
some distances behind a body, as shown in Fig. 2, the boundary layer equation
can be applied. As is well known, at a large distance from the body, the
velocity defect #: in the wake becomes small compared with the velocity U(x)
outside the wake, and the solutions were already given in the case without
axial pressure gradient.V? In the present paper we extend these solutions to
cases with axial pressure gradient.

In the case without axial pressure gradient, it is known that the flow in the
wake at a large distance from the body becomes similar and the crosswise
velocity can be assumed to be negligible. In the wake with axial pressure
gradient, however, as will be shown in the following sections, the crosswise
velocity » can not be neglected.
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F1G. 1. Schematic pressure and FiG. 2. Schematic pressure and
velocity distribution in the wake velocity distribution in the wake behind
behind a flat plate. a blunt based body.
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§ 1. Laminar Wake

We first consider a laminar wake with axial pressure gradient. The boundary
layer equations for a two-dimensional, imcompressible, steady flow are given by:
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where U(x) is the x-wise velocity component just outside the wake. Now we
introduce the velocity defect «:(x, y) as follows:

u(z, y) = Ux) —wlx, v), (3)

and apply the appoximation that U(x)>u(x, y), which is applicable in the wake
far behind from the body.

Then, the boundary layer equations (1), (2) combined with Eq. (3) give:
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where quadratic terms in u; are neglected. The continity equation (5) can be
integrated immediately to give:

v = _Ad:f'" (6)

because (v)y-¢=10. Although in the wake without axial pressure gradient the
velocity » can be neglected, vet in the present case as shown in Eq. (6) » must
be taken into acount. Introducing Eq. (6) into Eq. (4) the differential equation
for the velocity defect becomes:
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We introduce a new valiable », and assume the similar solution for the
velocity defect #; as follows:

V
= ) N v = - »

ui(x, v) = h(x)f(y), 7 2(x) (8)

where gix) can be considered as a measure of the wake width, and h(x) gives

the velocity defect along the wake axis. Introducing Eq. (8) into Eq. (7), we have:
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As we assume that the velocity defect #: has a similar solution, so that /
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may depend on 7 alone, coefficients of the second and third terms of the
left-hand side of Eq. (9) must be constants. Without loss of generality, these
coefficients can be taken to be constants, separately, since there are two free
factors g(x) and Z(x) to be chosen suitably. Therefore we can set as follows:
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These are the differential equations determining g(x) and k(x). From Egs. (10)
g(x) and Rh(x) can be integrated to give:
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with the conditions that:
Ulx) =Ulxy), glx) =g, hx)=h at x= x.

When g =0, Egs. (11) become:
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h(x) = U(;’S exp{ 2 j T dx ],
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where C{ = hU(x,)} is a constant to be determined physically. Such a method
of derivation is very similar to Gortler’'s one.”
With g(x) and h{x) given by Egs. (11) or (12), Eq. (9) is reduced to:

ST+ =0, (13)

which is the same as that for the case without axial pressure gradient. The
boundary conditions are as follows:

%z; =0, f=1at y=0, and =0 as y- . (14)
Integrating Eq. (13) with these boundary conditions, we have:
Flg) =727 (15)

The above derivation shows that the profile of the velocity defect in the
wake at a large distance from the body becomes similar, even in the case with
axial pressure gradient. It is important to note that the profile of the velocity



84 Research Reports

defect f(x) is independent of U(x).
As a particular example, we consider the case when U(x) is of the form:

m
U(:\H: Uo(‘zx‘) R JCD"—"O, g0=05 (16)

were L is a characteristic length, and U, is a constant. Introducing Eq. (16)
into Egs. (12), we obtain:

g(x) = { _“—2%1’,5*“}1/2< x\(l-m)/g, 1
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and the velocity defect #,(x, ») in the wake is:
—(3m+t+1y/2 - 2
= x _ 1. ¥y
w(x, ) =C'0(F-) exp| = 5 ,,,jgllv,,,,(i)l_m I (18)
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where C' is a nondimensional constant. This means that the width of the wake
develops proportionally to £ and the velocity defect to x™ ™V when the
velocity U(x) outside the wake is proportional to x™.

§ 2. Turbulent Wake

In the case of turbulent wake, the boundary layer equations are:
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where-denotes averaged value. The shearing stress T includes the viscous and
the Reynolds stress. In the wake the viscous stress can be assumed small com-
pared with the Reynolds stress. If we assume that the Prandtl’s mixing length
theory can be applicable also in the case with axial pressure gradient for the
Reynolds stress, then:

7= plz(%%y, (21)

where 7 is the mixing length, assumed to be proportional to the wake depth and
independent of y.
As in the laminar case, we introduce the velocity defect (% ») and apply
the wake approximation on Egs. (19), (20), then we have:
o(Uu) _ dU _ o 2 Ol D'

ox ¥y - Ty (22)
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Introducing a new variable 5, and assuming that the similar solution exists in
the next form:
Wz, ») =H(x) (), 7= =2, (23
’ b G(x)
where G(x) and H(x) are functions of # to be determined later, we get the next
equation :

' 3 !

All coefficients in Eq. (24) must be independent of %, and we can choose G(x)
and H(x) so as to satisfy:

GGy _,
21H @

(23)
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These determine G(x) and H(x) as functions of U(x). If we assume that

the mixing length /(%) is proportional to the mixing depth G(x), then :

I(x) =xG(x), (26)

where x is a propertionarity constant to be determined experimentaly. From
Egs. (25) and (26), we have:

_ U(x()) ) 2 2 1
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a(x) = CREE [secu| Lo ara]”
with the conditions that:
Ulz) = Ulx), G(x) =Gy, H(x)=H, at x = x,.
When G, =0, Eqgs. (27) become :
_2mCip(t 1 e
Gl = 255 H 75 du| "
VG o] R
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where C;{ = GeH,U?*(x0)} is a constant to be determined later.
If we choose G(x) and H(x) so as to satisfy Egs. (27), Eq. (24) is reduced
to:

S =) = =0, (29)

and the boundary conditions are:
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% _gaty=0, #H=0aty=GCl. (30

From Egs. (29) and (30), we have:
2 31212 2
fa) =g A=7" (31)
and the velocity defect #:{x, y) in the wake becomes,
o WG et 1 =112 B y 3/2 42 .
M= 18k U(x) [ x U(%) d"J [1 {é(i'x"} ] (32)

As well as the laminar case, we can conclude that even in the wake with axial
pressure gradient the profile of the velocity defect in the turbulent wake also
becomes similar at a large distance behind from the body, and further, the
similarity profile () is independent of U(x).

When U(x) is of the form:

Ulx) = Uo('%)m, 2 =0, Go=0: (33)

then from Egs. (28) and (32), we have:
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where
Ci= ) ClUiL,

From the above, we can conclude that, in the turbulent case, if the axial velocity
UJ(x) outside the wake is proportional to x”, the width of the wake develops
proportionally to x"7*"™, and the velocity defect to M2 These results
become the same as the usual wake solution when m = 0.

$3. Determination of C(C') and Ci(C1)

The previous similar solutions include unknown constants C(C') or Ci(C1)
to be determined physically, which will be considered in this section. The
momentum integral equation can be applied not only to the boundary layer, but
also to the wake, and we have:

To d_

(e + U2
8 X dx

(36)
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where 7o is the shearing stress on the wall, and on the wake axis =0 =0, 4" the
displacement thickness, and § the momentum thickness.

Integrating Eq. (36) from the leading edge of the flat plate to the wake at
a large distance from the plate, we have:

D= fOUzzvﬁw = Dw azt + gn". j)d@vy, (37
L]
where 2 D is the friction drag on both sides of the plate, and the subscript w

. 7
denotes gquantities in the wake. When U{(x) = Uo<%) , Bw and &5 follow for lami-

nar and turbulent wake respectively :

v o5t~ (1= ) =0 g2l 17050
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The first term of the right hand-side of Eq. (37) is the momentum defect, the
second term the pressure force acting on the flow from y =0 to vy =4; from the
back, and the third term the axial component of the total pressure force acting
on the imaginary surface of the outer edge of the effectively displaced region
from the leading edge of the body to the wake.

Without axial pressure gradient, the second and third ‘terms are canceled
out, and only the first term remains finite. So that unknown constant can be
combined immediately with the drag. However if the flow has the axial pressure
gradient they can not be combined immediately, and the displacement thickness
distribution §*(x), and the pressure distribuion p(x) have influence upon flow
quantities. Thus, if the distribution 0*(x) is known, unkown constants C(C') or
Ci(C1) can be determined by employing Eq. (37), or from Egs. (38) they can be
determined by measuring experimentally &, at a given station in the wake.

Conclusions

(1) It is concluded that the velocity distribution in the wake at a large
distance from the body and the growth of the wake width are influenced by axial
pressure gradient.

(2) Within the wake approximation, the flow is represented by similar solu-
tions in both laminar and tubulent wakes, even in the case with axial pressure
gradient, so that the velocity defect in the wake (at a large distance from the
body) is always kept similar.

(3) When the velocity outside the wake is proportional to %™, in the laminar
case the wake width develops proportionally to x*~"/* and the velocity defect to
g~ h2and in the turbulent case the width to x*~#"2/* and the velocity defect
to x—-(?ﬂﬁ*l),"l.
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