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Abstract

In this paper, the collection of charged particles on a probe immersed in
plasma is investigated experimentally and theroetically. The depletion of charged
particle is characteristic in high pressure plasma in which the mean free path of
charged particles is small compared to the probe radius. The mechanism
responsible for the depletion is that the density in the vicinity of the probe is
decreased by virtue of scattering, according to a simple theory.

However, to obtain a reasonable explanation for the observed depletion, a
consideration of another process leading to an additional depletion is needed in
addition to the simple theory. The former process is the formation of a disturbed
region, which has been discussed extensively in an earlier paper. The existence
of a space charge sheath results in a reduction of the depletion.

I. Introduction

Collection of charged particles on a probe immersed into plasma is decreased
by a scattering taking place near the probe, even when a space charge sheath
is not formed or the probe potential is kept just at the plasma potential. This
depletion effect becomes pronounced as the pressure is increased, because of
enhancement of the scattering, according to the theories proposed by Kagan"
and Bohm.? Schultz and Brown® identified this effect by making comparison
between the observed plasma densities by the probe method and the microwave
cavity method. They explained the depletion in terms of a decrease of the
forward flux due to the scattering in the sheath.

Hereafter, this depletion effect will be investigated experimentally and
theoretically, for the purpose of improving reliability of the probe measurement.
And the present paper is an extension of the earlier paper which dealt with
various sources of error in the probe measurement.”

II. Experimental Evidence of the Scattering Kffect

In an attempt to verify the depletion, we plot the electron and ion random
current densities as a function of the pressure at a constant discharge current.
Here, the random electron current density is etimated from the electron current
measured at the plasma potential divided by the surface area, while that of ion
from the ion current measured at an appropriate negative bias divided by the
surface area of the ion sheath, which is computed by use of a corresponding
space charge equation.®
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FIG. 1. The random current density v.s. the pressure. (a) electron, (b) ion.

In Fig. 1, a typical example of the plot is shown for Ar. The experiment
was carried out using a discharge tube, 3.5 cm in diameter and 35 cm long.

From the figure, it is seen that both the electron and ion random current
densities reach at a maximum between 0.1 and 1.0 mmHg. Now, in viewing the
figure it should be noted that the plasma density is not kept constant in the
measurement, even though the discharge current is kept constant. It is easily
understood from a fact that the mobility or the velocity varies with the
pressure.

As a rule, the discharge current 7 is expressed in terms of the density at the
tube axis 2, the mobility at 1 mmHg, the electric £ and the pressure p as

icomeby(E/P) or myco (E/p)~L

On the other hand, the random current density j, is proportional to the plasma
density and the mean thermal velocity ¢ as

jo oo 7105,

where ¢ is proportional to (E/p)Y:. As
a consequence, it follows that

joco (E/p) 2. £ /"\
The above relation shows that the  (V/m) P \
e}

random current density which might be | /
evaluated if the depletion is not present

can be deduced by extrapolating the plot

in lower pressure side to the side of 0
higher pressure, providing that the 001 0.1
electric field E is known. In fact, E

varies slightly with the pressure as FIG. 2. The electric field v.s. the pressure.
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shown in Fig. 2.

Sight of Fig. 1 makes clear that there exists the depletion in the domain of
high pressure, and it becomes remarkable as the pressure is increased.

Next, we examine the effect of probe dimension on the depletion. For this
purpose, four probes with different diameters are mounted in a plane perpendicular
to the tube axis. Figs. 3 (a) and (b) illustrate the dependence of the random
current density on the probe diameter for the ion and electron collection,
respectively. From the result, we see that the random current density measured
by thick probe is less than that by thin probe, and the effect becomes pronounced
with increasing pressure.
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FI1G. 3. Dependence of the random current density on the probe diameter.

III. Survey of Theoretical Investigation

Several authors have made a suggestion that the depletion of collection
mentioned in the foregoing paragragh is connected with the scattering. The
scattering occuring in the proximity of the probe may give rise to a diminishing
distribution of density toward the probe. According to a simple theory proposed
by Schultz and Brown,® the current density reaching the plane probe is

J=Ji+Jr—TJb (1)

where J; is the unscattered particles from the plasma, Jr those particles that
have been scattered elastically in the forward direction, and J, those that have
been scattered elastically in the backward direction. Considering that net loss
due to the scattering is determined by the collision frequency w»., and those
current densities are related to each other, they finally obtained the following
relation:

J=dey @
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where Jz is the current density of particles entering the sheath from the plasma
and f the time spent in the sheath. Egq. (2) was transformed into the following
expression to show the depletion factor:

where C is considered to be constant by them and p donotes the pressure. This
expression was employed to discuss the depletion of collection when a positive
ion sheath was present. However, from the point of view that the time spent
in the ion sheath is not considered to be constant when the pressure is changed
as in their experiment, and that the scattering may take place even in plasma,
their treatment seems to be not rigorous. However, it is noted that the first
persons who identified the depletion were Schultz and Brown.

Kagan treated theoretically the same problem for spherical probe kept at
the plasma potential, considering the screening effect, which is not encountered
in the plane probe case.”” He made the assumptions that the elastic scattering
was isotropic, the velocity distribution was not changed after scattering and
there was no recombination in the space considered.

The current density reaching the probe may be diminished by both the
scattering and the screening effect, which is caused by a fact that the particle
scattered from the opposite side of the probe has no contribution to the particle
density on the side considered.

He started with the following equation determining the particle flux:

1 af
wp = - {gﬂzl_ _0}' (4)
where v is the particle velocity, ¢ the life time or the reciprocal of the collision
frequency, # the angle between the radial vector and the direction of the velocity
and p the particle flux per unit angle.

The resultant expression for the particle density at a radius r was given by

n(r) = _C_Oggr_ + (1 — %P_>]1_n§7/) R (3)
4 )

where 7, is the probe radius, 0, =sin"'(7,/7), 4 the mean free path of the particle
and #z. the particle density at infinite radial distance. Also, the depletion factor
was thus obtained as

1

a = (6)

V 3 p
a7

Bohm analysed the same problem for spherical probe held at the plasma
potential ¥ using an approach that the current entering the probe was determined
by the diffusive current just at the surface one mean free path apart from the
probe surface. With this approach, the current density j is
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= %-c: grad », (7)

where ¢ is the root mean square velocity of the particle.
Using the treatment analogous to electrostatics he found the following
expression for the depletion factor:

A iy / A P
=" (142} /(1+ -2 ).
« rp(+rp)/(+rp+?'}) (8)

When the limiting values of « for infinitesimal 4 in both cases, egs. (6) and
(8), are calculated, we find 4/3(4/7y) and 1/r;, respectively. Fig. 4 shows that
both plots are numerically not different from others.
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FI1G. 4. The depletion factor for spherical probe
as a function of K=2/rp. The solid line shows Kagan's
and the dotted line Bohm's result.

1V. Depletion Factor for Cylindrical Probe

We shall evaluate the depletion factor for cylindrical probe with Kagan’s
and Bohm'’s approaches. The analysis for cylindrical configuration is not simple
because of its finite dimension, that is to say, the existence of end effect. For
simplicity, we ignore the end effect in the analysis. We also assume a two
dimensional model in order to remove mathematical complexity. In this model,
contribution of scattering from the axial direction is negleted in computing the
particle flux. In this sense, the following formulation of the problem is only an
approximation. Further assumtions are made; (1) no electric field exists, (2)
distribution of ionization is invariant near the probe, (3) no recombination oc-
curs and (4) elastic scattering is isotropic.

Following Kagan’s treatment, the flux density of the particl p having velocity
v is expressed by the following equation;

o= i j'{pl-’-? — o (9)

where the scattering occuring within angle @9 is considered. Also, let us assume



Research Reports 127

that the velocity » is single-valued in the following analysis. When the relation
i=wvr is used, and the gradient of the particle flux per unit angle along the
direction of motion is taken, we find

Expressed in cylindrical coordinate and provided 9p/9z=0, we obtain

90 _ Posing 1 5
5y oS/ 07 =2 (B-p) (11)
where
B(r) = |olr, 6)d8/2 =. (12)
As a boundary condition, we take
olrp, 0) =0,  6<=/2. (13)
Now we use three variables as follows;
n(7) =Sp(r, 6)de, (14)
H(y) = jp(r, 0)v cos 0dd, (15)
K ={o(r, 0 cos® oas. (16)

Multiplying eq. (11) by df and integrating it over all angles, we find

dd |, H _
— + , =0. (17)

Also, in a similar way we obtain the following equation by multiplying eq.
(11) by cos #di and integrating it over all angles;

AK | 1 o) o

The solution of eq. (17) is
H= —F/2 7, (19)

where F is the total flow to the probe.
The existence of the screening necessitates to consider p inside and outside

6, individually, Where 6, = sin”™" (#3/7). These are

olr, 0) = p(r), 0 <0y, (20)
olr, 0)=p(7), =~ 0>0,, (21)

For the same reason, the density # is composed of two parts as

n(r) = nl7) + n(7), (22)
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where
gr
ni=2 p.jo d0 =2 pibr, (23)
m:zpzso d9 =2 po(z—B,). (24)

Also we obtain for H

8y kS
H= jp(rr, f)v cos 0df = ZL pr cos 0df + Zj 020 cos 0df
Or

=2 vsin 0y (o1 — p2). (25)

Since
orp) =0, 0r,=7/2 and n(rp) = m(7p) = 2 pa(rp) /2 = p2(7p) 7, (26)

H at 7, is given by
2y
H(rp) = —2vpa= — - -nl7p)- (27)

Similarly, using egs. (20) to (25), we find for K
E(r) =mp+2{(1/4) sin 2 6, + 6,/2} (p. — ps). (28)
Turning back to eqgs. (23) and (24), the sum leads to
n(r) =2 2oy +2 0, o1~ pa). (29)

Combination of eqs. (25) and (29} yields

2 wps = n(r) — 0,H(r)/v sin ;. (30)
As a result, K is
Kin) =n(r)/2+ 57 cos . (31)
Substituting eq. (31) into eq. (19), we get
(10/2) L2+ (3/2) d/dr(H cos 0,) + (3/7) cos 0, H= = H. 32)

After introducing eq. (19) into eq. (32), we have

dn _ FT (P 1 1 (f:..fé?_‘,’f_}]

=
dr v 707 ard | 2z Lp(t =) T 7

When eq. (83) is integrated with respect to 7, the expression for # is finally
obtained. Thus, we have
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po PR PG P 1)
= 2t ) 2 730" 275

B k=]
+ Py Inr+C. (34)
Let us assume that 2 at a radial distance / which is arbitrary (I>7,), as an

approximation is m». With such assumption, the integral constant C is found
to be

F F 1 Fi1 _
C=7zm—m+ rrv< 7~ 4”’)— Inl. (33)

Consequently, eq. (34) results in

nlr) = 5 (__(_f,'f':;;?»_f -3y £ s ;{:ﬁﬁ _ ;_:})»_)’
+*§l;p' cos“% — 4—7;-; + 21'1 } — "_:%“ln(l/'r) + Nwe (36)
Hence, the density at » =7 is
1(7p) = — 2% 75 (_le— - 4;,,) - ﬂ_‘f‘;ln U/ 7p) + Mo - (37)
On the other hand, eq. (27) leads to
H(rp) = — —2}-:)— nirp) (38)

Combination of egs. (19) and (38) enables us to find n(7) an

_ F

Equating egs. (37) and (39) allows us to obtain the total flow F and the depletion
factor « as

F= 2 n7pUNw 1 ) (40)
4 _'-:,: _7’;§< ln_i
8 24 77
and
“= “
e IR P
g tarny,

The above expression are not rigorous, because of the ambiguity in the boundary
condition, 7 =n. at =1, When another boundary condition, 2 = #(7p) = F/4 7pv
at r =7, as eq. (39), is taken instead of the former, the integral constant C is
replaced by
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F F
_ = .. 2
4ary Ay In 75 (42)

However, in this case, the depletion factor can not be obtained. Instead, the
rigorous form of the ratio of n(s) to n(s) is drawn from egs. (34) and (42) as

n(r) 2 yp(#* — rH)? drpr (FP=rp) 1 L=
n(rp) 7’ = [ 27" T 27 (7" =7) " —7p tan 75 ]
+ %&m (7/rp) + 1. (43)

In Fig. 5, the variation of # as a function of x=7/r, is shown, taking A=
75/10 and 1 = r; as examples.
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FI1G. 5. The density distribution in the vicinity of
probe evaluated by eq. (43).

Next, we proceed to find the expression for the depletion factor in accordance
with Bohm’s analysis. According to his theory, the current density flowing into
a probe held at the plasma potential is described by

Az

j == —g—gradn. (44)
Since div =0, eq. (44) turns out to be the Laplace equation F’» =0, The current
i 1s

= f%E-Vnds, (45)

where the integral is taken over the surface located one mean free path apart
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from the probe surface. ~As mentioned above, » satisfies the Laplace equation,
so that the density n on the probe surface can be found in a way analogous to
electrostatics.

Denoting the capacity of electrode as C and the potential as V, we obtain
the following equation according to the Gauss theorem;

~

\VVds:-'erC( Vo— V), (46)

where the subscripts 0 and 1 refer to the value at infinite and on the electrode,
respectively.
Eq. (43) is written on the analogy of eq. (46) as

j'Vnds=u iJ0E = 4 2C (10— my). (47)

Here, C is the capacity of an imaginary electrede with radius of 7p+ 2. Also,
7. — 7 denotes density difference between the undiSturbed plasma and on the
probe surface.

On the other hand, the probe current is given by

_ome

i= A, (48)

where A is the surface area of the probe.
Combination of egs. (47) and (48) yields

n=47rZCno/(2 A+4m0). (49)

Consequently, the current { is described by

o M 4 A 4mC
i= Ty A= T G ATTC (50)
Here, for a cylindrical probe having radius 7, and length L, setting A =2 =75L,
C=1/2 In {L/(r + 1)}, we obtain the expression for the probe current as
i=(Ang/d) — A — . (51)
A+ i 7p In (L/(?'p-f—])}

Hence, the depletion factor a is

1 -

— . (52)
Ty, L

47 7p+A

V. Examination of Experimental Results

As mentioned in Sec. II, the measured random current density as a function
of the pressure has a maximum at a certain value of pressure between 0.1 and
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1 mmHg for Ar. This may be an apparent evidence for the depletion. Rigorous
determination of the depletion factor is made in such a way that the nearly
straight plot in low pressure region is extrapolated, the variation of the electric
field being taken into account. Thus, the deplation factor is estimated taking
the ratio of the actually measured value to the expected one from the extrapola-
tion. In Fig. 6, the depletion factor thus obtained is plotted by the dotted line
for Ar, while the thoretical curve basing on eq. (52) by the solid line. Two
theoretical curves are drawn for two different values of the mean free path at
1 mmHg, to demomstrate that the discrepancy between the measured and
theoretical values may not arise from inappropriate adoption of the value of the
mean free path but from other sources. Concerning Ramsauer effect which
may influence the mean free path, it is rejective for the discrepancy, in the
view that the usual decreasing tendency of electron energy with increasing
pressure would lead to an increase of the mean free path and then of the deple-
tion factor, which is not the case.

b =0015¢em
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h ——  [theoretiaal eq(52)
\ measured
ST
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FI1G. 6. Comparison between the measured and theoretical
values of the depletion factor for electron.

From the point of view that the discrepancy becomes appreciable as the
pressure is increased and the discharge current is decreased, it could be inter-
preted in terms of the formation of a disturbed region extending into the
undisturbed plasma, which has been discussed in the earlier paper.

With regard to the effect of probe radius on the depletion factor, an
examination of the theory is also made by use of four probes with different
radius. The plot shown in fig. 7 is obtained for Ar. In the figure, the experi-
mental results are plotted by the dotted line, whereas the theoretical curves are
plotted by the solid line for two different values of the mean free path.

In the case of ion, we obtain a similar plot of the depletion factor, as also
shown in Fig. 7. The values of the depletion factor for electron and ion are not
apart from each other. However, a striking discrepancy between the experimental
and theoretical curves is observed in the case of ion.

A problem arise as to why the depletion for ion is numerically not different
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| from that for electron in spite of great
P=1 mmHg difference in the mean free path between

theovetical e9(52) them. A clue to the understanding of the
electron’

~ reason for this fact is to notice that the

i Mg s, depletion for electron is measured in the

03 [ R o glecivon absence of the space charge sheath around
measured 2025 N the probe, while that for ion in the presence

)

\i\gﬂ of it. Owing to higher velocity in the space
charge sheath, the scattering effect would
be less than in plasma. This is equivalent

0.1 Tresetical 9.6D E— to say that the effective collecting surface
iw/\oﬁooagcm moves to. a surface far from the probe.
e Thus, existence of sapce charge sheath
l results in a reduction of depletion. This is
0'040,, 03 1 also responsible for the fact that the plot
Fadius (mm) of the depletion factor ceases to decrease
FIG. 7. The depletion factor as 4t @ pressure above several mmHg, as
a function of the probe radius. shown in Fig. 8.

This makes a contrast with the case of the
electron. Unfortunately, it is not easy to extend the range of the pressure because
of constricting tendency of the discharge column.
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FiG. 8 Comparison between the measured and theoretical values
of the depletion factor for ion,
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VI. Discussion and Conclusion

The above mentioned scattering effect leading to depletion of the collection
on probe is important in estimating plasma density. When this effect is not
taken into account, the resulting numerical value of the plasma density would
be underestimated by the depletion factor. From the point of view that this
effect becomes appreciable as the pressure is raised, the measurement of plasma
density by means of the probe method, especially at high pressure, needs for the
knowledge of the scattering effect.

The scattering effect in the absence of the space charge sheath was formulated
subject to Kagan’s and Bohm’s treatments and the authors found a similarity
between the resultant formulas basing on both the treatments.

However, it was pointed out that there existed an essential distinction between
the depletion for ion from that for electron. This is caused by existence of
space charge sheath around the probe. which makes the depletion less pronounced
by virtue of diminution of scattering in the sheath.

For this reason, the depletion must be computed. searately for the regions
outside and inside the sheath. As an approximate measure representing the
reduction of the depletion due to the existence of space charge, we take

nla) Y
B = PICAR (33)
where n(7,) is given by eq. (37).

Concerning the numerical value of B, it would be greater as the plasma
density is lowered or the thickness of sheath is increased. When the scattering
effect in sheath must be considered, the situation becomes complicated because
the scattering from both outside and inside the sheath may contribute to the
density distribution simultaneously. In this case, the knowledge of elastic
scattering in higher energy range is needed for the evaluation.

In addition to the scattering, the formation of a disturbed region enhances
the depletion, in other words, it gives rise to decrease of density in the vicinity
of probe.® Such disturbed region develops with decreasing the plasma density
and increasing the pressure, so that the discrepancy between the measured value
of the depletion factor and that estimated from the theory basing on the
scattering becomes large correspondingly.

In our analysis leading to eq. (41), we made the assumption that [ is arbitrary.
Such penetrating depth can be estimated from the experimental data shown in
Fig. 6 and eq. (41). The result shows the value of the penetrating depth is of
the order of 10 cm.

Lastly the author is most indebted to Professor K. Yamamoto for many illuminating
discussions on the present work.
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