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§ 1. Introduection

In this note we prove a generalization of the fundamental theorem in renewal
theory due to P. Erdss-W. Feller-H. Pollard.V Precisely speaking, suppose for
instance some eggs are put in a ice-box. To fix our idea, we consider the
total of them as “1”. Assume they are distributed as (wo(t); ~o0 <t <o),
where wi(¢) denotes the quantity of eggs that get unavailable by the first #th
day. The number / need not be an integer nor a positive number. Suppose we
take off unavailable eggs and use the first worst quantity “4” of remaining eggs
during each day. Suppose then we put the quantity “we(0)” of eggs distributed
as (v(f); —owo<f{<e) and the quantity “1” of eggs distributed as (u(l); —o
<t<e) into the ice-box, where u(t) (»(¢)) denotes the quantity of eggs that
get unavailbe by the first (¢4 1)-th day and %im u(t) =4 (}im v(t) =1) re-

spectively. Repeating this process, assume after = days we get the eggs in the
ice-box distributed as (( B%w;)(t); — o <#< o), where (Bm™a0) (t) denotes the quan-
tity of eggs that get unavailable by the first (n+t)-th day starting from the
day when we put eggs in the ice-box for the first time. We denote by 2% the
set of the starting distributions we, for which we can continue the process forever.
The set £ might be empty. We have the following two problems:

ProBLEM 1: Under what condition is 27 non-empty ?
ProBrEm 2: Under what condition does lim (B”w)(¢) exist for any ¢ and for

71~

any w287

It is just the case of P. Erdss-W. Feller-H. Pollard® when A=0 and we(0) = 1.
In §1, we define A-mappings (a kind of B-mappings without v) and determine

the set of fixed functions of A (Prop. 1.1). In §2, we define B-mappings and give

an answer for Problem 1 (Prop. 2.1). In §3, we state an answer for Problem 2

(Theorem 3.1) and related problems. We prove the main theorem (Theorem 3.1)

in §4.

§1. A-Mappings
We begin with the following
DesiniTion 1.1: A function o defined on the real line is called a (a, B)-type
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distribution function if it satisfies the following conditions:

(1.1) a)(fi)gw(tg) for "‘C°<t1§i'2<00,
(1.2) limoa)(t)r-w(tg) for —eo<t<, and
t>ip+
(1.3) lim w(f) = a, lim w(t) = 4.
1> 0 t->w

Denote by 2 the set of (0,1)-type distribution functions and by 2(a, 8) the
set of (a, B)-type distribution functions. We introduce into £ the weakest topo-
logy such that every projection: w—  (#) is continuous for all £; thus

(1.4) w. > o if and only if w.(¢) = w(#) for all £,

where {¢} is an arbitrary directed set.

Given 0=4<1 and u= 2 (0, 1), we construct the mapping A of 2 into 2 de-
fined by

(1.5) (A) B =0 G+1) +ult) =08, E+1) (we 92),
where

. _fe®) if w(d) =2,
(1.6) 8w (2) = {x if A< o (8).

We call A the A-mapping associated with (4, #). Set
(1.7) L=inf (3; A= A (+1)).

We call t, the critical number of v with respect to A. Then

tw= — if 1=0,
— o <f, <o if 0<21<],
t= if 2=1.

Lemma 1.1: A is continuous.

Proof: In view of (1.5), in order to prove Lemma 1.1, we need only to show
that §. is continuous. Suppose w.— w. It must be shown that, for a fixed %,

o () if o () £2,
p if 12w (2).

lim 6. () = {

If o (f) <2, there exists an index ¢ such that w, () <1 for o =<:. Hence 0. (t)
=w, (1) for ¢(x<¢ ‘This implies that lim 8..(?) = w(f). Similarly we can verify
that lim 8..(8) =1 if A< w(?). If w(t) =24, for e> 0, there exists an index ¢ such
that |w. () — 4| <e for «w<¢ This implies that |0..(f) — 4| <e for w=¢ Hence
Hm J.:(¢) =4. Thus the proof is completed.

Set

(1.8) w(t)=§ (A—u(t+n)).

n=0

Lemma 1.2: If w(¢) <o for some £, then w(#) << for all &
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Proof: Suppose w (1') < « for some . Given ¢, we can select a natural number
#n' such that # <t+»'. Then

w(t)=%(l—u(t+n))
n' -1 ®

=2 U-ultt+n) + 3G -ut+n)

n’—1 ©

=2 —u@+n)+>0—u+n)
n=0

n=0

< co,
This completes the proof.
Set
(1.9) AN =1-w(t).

Then ANe8(—w, 1) if w(t)< o for some t and AEQ(~o, —0) if w(t) =o
for all ¢

DermniTion 1.2: 1) An A-mapping associated with (1, #) is said to be finite
(infinite) if w{t) < w for some f or A(1 — 1) =0 (w(t) = o for all £ and 0 <A< 1).

2) An A-mapping associated with (4, %) is said to be regular if A is finite
and 0< 2 <1, semi-infinite if 1 =1, and singular if A =0, respectively.

Set

(1.10) HCA) =inf (¢; 2= AN (F+1)).

We call t(A) the critical number of A. Then we have

tHA)= — w if A is singular,
— o <}(A) <o if A is regular,
t(A) = o if A is semi-infinite or infinite.

If A is not singular, we construct the function o (A) such that

[u() if t <t(A),

(1.11) oD =1y i ) =1,

and call it the standard function of A. If A is singular, every function in £ is
called the standard function of A. Given w in £, we say that w(A) is the standard
Function of A at w if A is not singular and that o itself is the standard function
of A at w if A is singular. For regular case we have

(1.12) ult)= AN ()+21— AN({+1) for all &
Lemuma 1.3: If A is regular or infinite, then w(A)(¢) =Max(u(¢), A(t)) for all £

Proof: Since the others are obvious, we can assume that A is regular. Sup-
pose t<t(A). We have from (1.12) u(t) = A (t), for At+1) < 2. Hence w (A) ()
=u(t)=Max (u (£), A(F)). Similarly we get w(A)()=A)=Max(u (), A()) if
t(A)y=t. Thus the proof is completed.
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Lemma 1.4: w(A)e L if A is finite and 0w (A)=2(0,4) if A is infinite.

Proof: The assertion is obvious if A =0 or {(A) = . Hence we need only to
show Lemma 1.4 for regular case. Suppose A is regular. The condition (1.1)
for w(A) follows from Lemma 1.3. The conditions (1.2)-(1.3) for w(A) follow
from the definition of w(A). Hence we have w(4) € 2. This completes the proof.

We say that a function v in 2 is a fixed function of A in 2 if Aw=w. Denote
by 2(A) the set of fixed functions in 2.

Lemma 1.5: 0 (A)YE2(A) if A is finite.

Proof: Since the assertion is obvious for the other cases, we can assume that
A is regular. We write v for w(A). If t<t(A), then, by (1.11) and (1.10),
w(D) =u(t) and A (t+1)A.< Hence, by (1.5 and (1.6), (Ao)({) =u(t) if
o(t+D=A+1D. If t<t(A) and if w(t+1)=u(t+1), then w({+1)=<24 and
also (Aw)(#) = u(#). On the other hand, if #(A)<1? then w{t)= A1) and 1=
ANE+1)(=w(t+1)). Hence, by (1.5), (1.6), and (1.12), (Aw) () = A(E+ 1)+ u(t)
—2=A(t). Thus the proof is completed.

ProrosiTioNn 1.1: 1) 2(A)=20 if A is singular, 2) 2(A) is a singleton {w(A4)}
if A is regular or semi-infinite, and 3) 2(A4) is empty if A is infinite and not
semi-infinite.

Proof: The assertion 1) is obvious.

Proof of 2): The assertion is obvious for semi-infinite case. Suppose A is
regular and suppose o is a fixed function of A in 2. If t.<t, we have from
(1.5) and (1.6)

n—1

(1.12) m<t)=w(t+n)—§;(x—u(t+j)>.

By making n—>cc, we get w(#)= A(t). Hence we have from (1.5) and (1.12)
Ow(t+1) =0 (+D+u(t)—w () = NE+1D)+u (D) —=A(H) =41, or 2= A (t+1). This
implies that t(A) <t.,. If £,—1<{i<4,, we have from (1.5) and (1.6) o (H)=u(t)
and A(#+1)=w(#+1) <A, This implies that #,<t(A). Hence t,=1(A4). If
t<t,, we have from (1.5) w(#)=u(#). From these it follows that w=w(A). By
this combining with Lemma 1.5 we get 2).

Proof of 3): Suppose w is a fixed function of A in 2. If f,<c, we have
(1.13) for #,=<¢. This is impossible, for A is infinite. Hence f, =« and w(?)
=u(t) for all . Since we 2. we have 1=1. This is also impossible, for A is not
semi-infinite. Hence there is no fixed function of A in £ and 2(A) is empty.

This completes the proof.

The following lemma is merely a restatement of a fact stated in Proof of 2)
in the proof of Prop. 1.1.

Lemma 1.6: foa=t(A) if A is finite.

§ 2. B-Mappings

Let 2 and 2(«, 8) be sets defined in §1. Given 011, us 2(0,4), and v =
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2(0,1), we construct the mapping B defined by

(2.1) (Bw) (@) =o'+ 1) + u(t) + v(#)w(0) — do'(2+1),
where
(2.2) o'(#) = w(t) —w(0) for all £, and
o [0 @) if W' ()2,
. du'(t) = {x it 2<0'(2).

We say that B is definable at a function v in 2 if Bo=®2. Denote by 25 the set
of definable functions in 2, then 2z=(w; 0(0)=<1—1%, 0= g). We call the mapping
B of 25 into 2 the B-mapping associated with (4,#,v). It is easy to see that
£z is closed in 2. For we2r, set

(2.4) to = inf (#; A</ (F+1)).

We call t., the critical number of w with respect to B.
The proof of the following iemma is obtained similarly as in that of Lemma
1.1 and so it may be omitted.

LemMma 2.1: B is continuous.

DeriniTION 2.1: A function o in 2 is said to be stable with respect to B if
Broe 9 for all n.

Denote by 2% the set of stable functions in 2r with respect to B.
Levmma 2.2: 27 is closed in 2.

Proof: Suppose w.~w and w.e 2% for all ¢, where {¢} is a directed set. Since
w.E 25, we have we Q; and Bw.—Bw. Repeating this argument, we get B'we 2.
This implies that we2? Thus the proof is completed.

Set

(2.5) w’(t)=%(1—v(t+n)).

The proof of the following lemma is quite similar as in that of Lemma 1.2
and so it may be omitted.

Lemma 2.3: If w'(f)<co for some t, then w(t)<e for all ¢

DerFinITION 2.2: A B-mapping B associated with (2, %, ») is said to be 1) of
Type I if 0<2<1, n(0)*+ (1 —v(0))?=0, and if w(0)=1 in case that #(0)=0 and
w'(0)=co, 2) of Type II if 1=0,3) of type III if 0<2«1 and «(0)*+(1-v(0))*=0,
4) of Type IV if A=1, and 5) of Type V if 0<2<1, 2(0)*+(1—-2(0))2=0, w(0)<1,
2#(0)=0, and w'(0)= .

DeriniTION 2.3: A B-mapping B is said to be stable if 2% is non-empty.

ProrosiTiON 2.1: If 2 B-mapping B is of Type II or Type III, then B is stable.
If Bis of Type I or Type V, then it is stable when and only when #(0)/(1-2(0))
<1-A If Bis of Type IV, then it is stable when and only when #(0)=0.
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Proof: Proof for Types I, V: Suppose 27 is non-empty and o is in 2°. Then

(B*0)(0) = (B"0)(1) + %(0) + 2(0)(B" 0)(0) — 6zn — L., (1
=u(0) + v(0) (B 'w(0))

.........

(2.6) u(o>/(1—v(o>)§ Iim (B"0)(0) =1 - A

Hence the condition is necessary. Suppose next #(0)/(1—2(0))<1-1 We show
that, if «(0)/(1=9(0))Sw(0)<1~1, then #(0)/(1—-2(0))= (Bw)(0)=1-2. Since
0(0)=1~1, B is definable at w. If w/(1)=4, then (Bw)(0)=u(0)+2(0)w(0), and
80 #(0)/(1—2(0))Z(Bw)(0)<1—21 On the other hand, if 1<e’(1), then (Bw)(0)
=2(0)+2(0)w (0)+o'(1)=A=Z2(0) +2(0)w(0) =27 (0)/(1—2(0)), for «(0)/(1-v(0))
<w(0). And also (Bw)(0)=2(0)+2(0)w(0)+o' (1) =i =0 (1)=2—(w(0)— (2(0)
+2(DNoN=Zw(1)—A<1—1. Hence we get the above assertion. Repeating this
argument, we can conclude that » is stable with respect to B if #(0)/(1—-2(0))
=w(0)=1—1. Hence 2% is non-empty.

Pyoof for Twpe II If it is the case, then 2=2 and so £¥=40.

Proof forType III: Suppose w=fr. Then w(0)=1—-21 If o'(1)<1, then we
have (Bw)(0)=w(0)<1—1. If i<w'(1), then we have also (Bw)(0)=0'(1)+ w(0)
~A=w(l)—3£1—1 Hence Bwes2:,. By repeating this argument, we get we 0%
Thus we have 2%=0; and £F is non-empty.

Proof fer Type IV: 'The condition is necessary, because 2= (w; w(0)=0, 0=2)
and (Bw)(0)=u(0) for w in 2s5. Suppose #(0)=0, then u= 25 and Bu=u. Hence
uwe 27 and QP is non-empty.

This completes the proof.

Let B be a B-mapping of Type III associated with (4, %, v) and » be a function
in 22, We have from (2.1) and (2.2)

0(0) = (Bo) () (Bw)(0)<- - - =1—2
Hence there exists the limit of {(B"»)(0)}. Denote it by Bi(w).
Let B be a stable B-mapping associated with (4, #%,»). Set

2.7 2 =1+w'(0),
(2.8) B'=n(0)/(1—2(0)) for Type I, II, IV, V cases,
(2.9) "= (1—w(0))/y (8 =0 if w(0)+pw(0)= ),
1—2if f=1-2

! Max (8, §) if B/=1—2 } for Type I, V cases,
(2.10) B=1 /e for Type II case,

| B (Min(Max (0, 8),1 = D =B=1~ 1)

[ for Type III case,

0 for Type IV case.
We call the standard function of the A-mapping associated with (A48, #+pv)
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the standard function of B (except for Type V case) and denote it by w(B). (We
set w(B) (1) =u(t)=0 for t<0 and «»(B)(H)=w(0)—w(t) for =0 if B is of Type
V). Given o in 2%, we call o(B) the standard function of B at w if B is not of
Type III, and we call the standard function of the A-mapping associated with
(A+Bo(w), u+pBo(w)v) the standard function of B at w.

Derinition 2.4: A B-mapping B associated with (4, %, ) is said to be finite
(resp. semi-infinite, infinite) if the A-mapping associated with (A48, #+Fv) is finite
(resp. semi-infinite, infinite) for all 8.

The following lemma is an immediate consequence of Lemma 1.4.

Lemma 2.5: o(B)e @ if B is finite and w(B)e2(0,1+4) if B is infinite.

Lemma 2.6: If B is infinite and of Type I or II, then one of the following
conditions occur: a) w(0)=oco, and b) w(0) <o, w'(0)=c, and B 0.

Proof: Suppose w(0) <. Since B is infinite, w(0)+ 5w’ (0)=0c, Hence w'(0)
=oco and B=x0. Since w'(0)=o0, f"=0. Hence f'=F=0. Thus the proof is com-
pleted.

We say that a function o in 27 is a fixed function of B if Bw=w. Denote
by 2(B) the set of fixed functions of B in 27,

Prorosition 2.2: Let B be a stable B-mapping associated with (4, #,v), then
we have 1) 2(B) is the set of standards functions of B in £ and 2) 2(B) is
empty if and only if one of the following conditions are satisfied: a) B is finite
and of Type I or III with 1—2<g", b) B is finite and of Type V, ¢) B is infinite
and of Type I with A+#=1, and d) B is infinite and of Type IL

Proof: We prove the assertions for Type I, II, V cases, because the others
are verified similarly. We first show that 2(B)=the singleton {(w(B)} if 2(B)
is non-empty. Suppose w€2(B). If o'(1)£1, then w(0)=u(0)+2(0)w(0) and so
w(0)=pf". Hence, o(f)=w(t+1)+n(t)+pv(f)—0(t+1) for all #, where 6()=w(t)
if o) =ZA+p" and 6(8)=4+8" if 24+B'Sw(t). This shows that o is a fixed func-
tion of the A-mapping associated with (A+8, u+8'v). If B'=1—21, then B is semi-
infinite and w=w(B). Hence we can assume that f'<1—2A. Since w(0)=2(0)
+B'v(0), we have from Lemma 1.3 f'= A (0) =1— (w(0) +8"w'(0)), or #'=R". Hence
o=w(B). On the other hand, if 1<¢'(1), then iZw'(n) for all #n. Hence w(0)

=w(n)—§(/l-- () + (1 —2())w(0)). By making n—w, we get »(0)=1—(w(0)

+w'{0)w(0)), or w(0)=pR". Hence, w(t)=w(t+ 1) +ult)+ B"v(t)—(t+ 1), where
i) =) if 0(@)=Z2+p" and o(t) =i1+p" if A+p"<w(t). This shows that o is
a fixed function of the A-mapping associated with (143", u+5"v). Since w(0)
= A(0), we have from Lemma 1.3 B"=u(0)+5"v(0), or §""=p'. Hence w=w(B).

In the rest of the proof, we show that w(B)& @ (B) if and only if all the
conditions a)-d) are not satisfied. Assume first B is finite. It is obvious that
o(B) & w(B) if 1-2<p". Suppose f'<pB'<1-~2. Then w(0) <o and w'(0)<co.
Hence B is not of Type V. Since #(0)+ B"v(0) < 8" =1~ (w(0) + 5"w'(0)), we
have w(B)(0)=p". From this combining with Lemma 2.5 we have w(B)e2(B)
in this case. Suppose next B'"<f. If B is not of Type V, then u(0)+p8'v(0)=4'
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Z1—(w(0)+p'w'(0)). Hence, wiB)(0)=p5" and so, by Lemma 2.5, w(B)=2(B).
If Bis of Type V, then w- B)(0)=x8'=5"=0 and »(B) is not a fixed function of
B. Assume next B is infinite, then we have w(B)({)=u({)+pv(?) for all &. We
also have $"=0. In fact, if §”>0, then w(0)+pFw(0)< and hence w(0)<co,
w'(0)< o, or B would be finite. Hence f=p". Since w(B)(0)=u(0)+pv(0)=
A, o(B)e2(B) if and only if 2+p8=2+8'=1.

This completes the proof.

§ 8. Main Theorem

Tueorem 3.1: Let B be a stable B-mapping associated with (4, #,v), then
lim B*w, exists for all wo in 27 if and only if

(*) the greatest common divisor of (#; p(n)=0, n=1)=1
when B' is finite and of Type I or II and p'<p"=<1-1, where p(1)=v(0) and
pn)y=vin—1)—v(n—2) (n=2), and if it is the case, the limit is equal to the
standard function of B at w.,. Moreover the limit is in 2 if and only if B is finite
or semi-infinite.

CororLrary 3.1: Let A be an A-mapping associated with (4, %), then lim A%w,
exists for all wy in 2, and the limit is equal to the standard functin of A at w,.
Moreover the limit is in 2 if and only if A is finite or semi-infinite.

CoroLrLArY 3.2: (P. Erdss-W. Feller-H. Pollard?): Let {ym} be a sequence
of real numbers such that

(3.1) 7i=0 for all 4, and
(3.2) 2ini=1,

and let {i»} .2, be a sequence of real numbers determined by
(3.3) Ir1 =Thn+ = Fpede (#20)  and  A=1,

then lim 2, exists if and only if
(**) the greatest common divisor of (n; 7,%0, n=1) is equal to 1.
And, if it is the case,

(3.4) m Ar = (Chan) 7
iz

In this section we prove the above two corollaries by making use of Theorem
3.1. Theorem 3.1 will be proved in the next section.

Proof of Corollary 3.1: The assertion is obvious if A=0. Suppose A>0, then
there exists anatural number 7 such that 1<7k. We first assume that «(2) =w.(f)
=0 for <. Construct » in £ such that »(¢)=1if =0 and »{#)=0 if £<0. Denote
by B the B-mapping associated with (4,2,#). Since #(0)=1—2(0)=0, B is of
Type III. We show that

(3.5) (B"w)(s)=Max (0, 1— (r—3s)2) for all n (s<).

In fact, it is true for s=7. Suppose it is true for k<s<#. We then have from
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(2.1)

(B o) (k) = (B"wy) (B +1) — 8B wy(k+1)
<Max(0, (B"w)(E+1)—2)
<Max(0, 1— (r—E)2)  (#=0),

and (B'wy)(k)=0. Thus we get (3.5). Since 1<#2, we must have (B"w)(0)=0
for all n. Hence Bo(wo)=0 and w(A)=w(B), the standard function of B at ws.
This implies that A”%wy=B"w, for all # and lim A”wy=lim B"wi=w(B)=w(A). By
a suitable translation of ¢, thus, we get lim A%wo=w(A) if u(t)=w.(f)=0 for <7,
where 7 is an arbitrary number, Set

0 if <7,

u(t) if »<4,

l -—
w(t) {o if 1<y,

(1) = {
Denote by A' the A-mapping associated with (4, #'), then (A”w) ()= ((A")"&(¥)
for all # (<) and lim (A%w) (£) =lim (A")"5) (t) =w(A)(#) for =t Since 7 is
arbitrary, we get lim A”wo=w(A). This completes the proof.

Proof of Corollary 3.2: Set v(#) =izt 9is1 (—oo<i<eo) and construct the
B-mapping B associated with (0,0,v). Since 2=0, B is of Type II. Set

<
.0 2®={g tor 20,
and 7, = (B"0)(0) (#=0). We have from (2.1) and (2.2)
(3.7) tari=1—= (L =ndyn— - —(L=n— " =9us)70,
Set
(3.8) fi=317 (=21,

We have from (3.2) and (3.7)
(3.9 Eyn+ + ¢ 0 +Enirro=1 for all #=0.

Set ¢(2) = SNraz”, P(z) = S\ 1a2", and Q(2) = 21%,412". These functions are re-
n=0 n=0

n=1

gular in |z|<1. We have from (3.9) ¢(2)Q(z) = (1—2)"! and from (3.8) 1—-P(z)
=(1—2)Q(z). Hence we get ¢(z) (1—P(z))=1, or (3.3). On the other hand, we
have

(3.10) p=1+w(0) =1+ >8= 2.

Thus we get lim 7, =lim (B"w)(0) = 1/ = (le'm)"1 if (*) (and so (*¥)) holds

when u'<oo. Denote by m the greatest common diviror of (n; 7.%0, n=1). If
m>1, we have

(311) meﬂ) = Pmhmn+ * * * +77mn30 (7’5;0);
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and the greatest common divisor of (72; 7mn =0, 2=1) is equal ot 1 .Hence lim Au»

n>x
= (Xigmi) ' =m/y. But we can prove that lim In=1/4 if lim 1, exists.

i=]

Therefore, lim 1, does not exist if m>1 and g/ <. Thus the proof is completed.

§ 4. Proof of Theorem 3.1

Let B be a stable B-mapping associated with (4, #,v) and w, be a function
in £2. Set

(4.1) Bn= (B"w)(0) for #=0.

Lemma 4.1: For each n=0 there exists —oco <i,<c such that

(4.2) 1~ (B"™w) (@) =1~ w(n+i+1)+ 20 (A—=uli+7)+ (1 —vE+Dra-p)
=
for i,<4, and
(4.3) (B w0) (1) = 2(3) + v()Bs for i<y — 1.

Proof: If n=—1 we have (B'wo) (1) =wi(?) for all 7, and we can consider i
as —oo. Hence we may prove Lemma 4.1 by induction starting from n=-1
Suppose Lemma 4.1 is true for k=n—1. Note that i,-=ts",,'+ 1, where £,
denotes the critical number of B”w, with respect to B. Using this we can con-
clude that 7, exists and equals to [#m%, 1, where [-] denotes Gauss’ symbol.
Thus the proof is completed.

Lemma 4.2: If B is infinite and of Type I or Il and if B'<71,<1-2 (2=0),
then in")oo ('n~>00).

Proof: Suppose I=(n; i,<1) is an infinite set, then we have from (4.2)
1=1lim (1= (B"wo) (9)) Zw(d) + pw'(9).

This is impossible because of Lemma 2.6. Hence I is finite for all 7 This shows
that lim Z,=co, or lim éx=co. Thus the proof is completed.

LemMa 4.3: f Bisof TypelorHor V, if f/<y,<1-1 for all #, and if 4,=0
for some 7, then, by setting

n+k

(4.4) Tnikr = woln+k+1) — E(A —ul )+ Q= v(F)rner-7) + alk),
we have
(4.5) ]a(k)]éé(l-—u(n—%j)%—(1—~v(n+j))3').
Proof: Set ’
(4.6) (B0 (4) = woln+ E+i+1) = i)k(x —awli+j)

=
+ (1= v+ ) rner-i) +alk 7).

We have from (2.1), (2.2), and (4.6) alk, i) =alk—1 i+1) + (A —0), where 4
=0, (i+ 1) and w = B* *w,. Since a(0,7)=0, we have a(£,0)=a(0,k i) =0 for all &, 7
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=0. We prove
k
4.7 a(k,i)gzo(/l—u(n—}-j)%-(1—v(7z+j))B’).
=
Since B! =7, for all », we have

(B™*0) 6+ 1) = ool +k+i+1) —woln+ k) + _EO(K~u(j)) -SVA~uln+k+35)
Jj= J=||
n+k

+%(v(i+]’+ D = oG ratk-jor+alk—1,i+1) —a(k—1,0)
=
n+k

ZA—u(0) - Q—uln+k) + 2 (w(G+1) —v(i)F = (e(k-1,0) —alk—-1,i+ 1))
Jj=0
2A-U=un+k)+Q—v(n+ k) +alk—1,0)—alk—1,i+1)).

If (B***w,)'(i+1)=4, then a(k, i)=a(k—1,i+1). If (B***wg)'(i+1) <4, then a(k, 1)
—~a(k—1, i+ 1) 2h—u(n+k)+1—v(n+k))f +a(k—1,0)—a(k—1,i+1), or a(k,i) <4
—u(n+k)+(1—v(n+k))B'+a(k—1,0). Hence we can prove (4.7) by induction.
If 'we put {=0 in (4.7), we get (4.5). Thus the proof is completed.

LemMa 4.4: lim 71, exists under the assumption (*) of Theorem 3.1.
Proof: Type I, I, V Cases. It is easy to see that

(4.8) if ra=p' then ru=7n+;, and
(49) if B’éTn, then Blé’)‘n-ﬂ.

Moreover, if 1.<7i<---=p/, then lim7, exists. Hence we can assume without
loss of generality that

(4.10) B'<rasl-2 for all s.

If i,=1 for almost all %, then we have 7,+1=u(0)+2(0)7, for almost all », or
lim r»=p". Hence lim 7, exists for infinite case because of Lemma 4.2. Hence
we can assume without loss of generality that B is finite and that (%; 7,=0) is
an infinite set. Arrange (n; ¢,=0) as {m:}, m<m<.--.

In the rest of the proof of Type I, II, V case, we devide it into two cases.
We first assume that B"<p' and that B is not of Type V. By Lemma 4.3, given
>0, there exists a natural number #, such that

Il"“)'nﬂ—g)( —u(7) + (L —v(f)yn-j) | <Ze
for n = ny=m,, where we set r»=p' if #<0. Then,
I=ypr+1-n+1)
=f' +w0) +w'(0)p —«
=BR" +w(0) +w'(0)B" —¢
=Z1l—e

This implies that f'=p"=p and that | rpps1—F[=<2¢ for ne=n. For me<n<ng.:
(ne=n,), we have Tna=u(0)+v(0)1, and |7n+1—B]=<2e. This shows that lim 7,

exists.
We next assume that f'<p" or that B is of Type V. Set
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(4.11) Tn+1=1"W(O)_Eo(l""v(j)JTﬂ'J'}'bn.
7=

We have from (4.2)

(412) bn—0 (ﬂ"’ Oo)'

We have from (4.12) w(0)<1. If w(0)=1, then 07,4156, and so lim 7»+1=0.
Assume w(0)<1. Set 7,=7x/(1~w(0)) and b,=b,/(1—w(0)), then

=

(4.13) Ta = 1= 5 (1= 0())1h-5 + bn

5
Seté =1, &o=1~2(3) (=20), and 7 = & — &1 (i=1). Using ¢, Pin §3, and R(z)
=2(1+b§,)z"“, we have from (4.13) ¢(1—P)=(1—-2)R+Q, where @ is a

n=0

suitable polynomial of z, or

(4.14) Tosi =TTk + + * + +pne17e + ¢y for almost all #, where
(4.15) c,,:bir—b;-l—»() (- o0).

By a slight modification of W. Feller [2, Chap. 12, Sec. 7], from (4.12)-(4.15) it
follows that lim 7/, exists (and equals to 1/4'). Hence lim 7, exists (and equals
to p').

Type III Case: If it is the case, lim 7T,=Fo(zn) (cf. §2).

Type IV Case: It is obvious that lim 7,=0 for this case.

This completes the proof.

Levma 4.5: :‘](l—v(j))rﬂ—jAO or 1—w(0) if B is finite and of Type I or 1I

or V, /=0, and w'(()) = oo,
Proof: We have g/ =g"=0. If (n7; i,=0) is finite, then 7u+1=2(0)yn for

almost all # (0=<»(0)<1) and so 2(1“‘7)(]))fﬂ =0, If (n; zn~0) is infinite,
then we have from (4.11) w(0)<1 If w(0) =1, then r»—0 and 2 (1 =2 rn-i
—=0. If w(0)<1, then y,— " =0 and Z 1= 0())ra-i—=1-w(0). Thus the proof
is completed.

Proof of Theorem 3.1: Finite Case: We first assume that lim 7,=1-1. Given
—oo <t<co and a subsequence {#'} of {n} such that lim (B”*'w)(f) exists, there
exists a subsequence {n"} of {#'} such that lim (B*'*!w)(t-+4) and lim (B™w.)
(t+47) exist for all integers i=0. Since lim 7,=1-4, we have from (2.1)
Hm (B " 1we) (t+1) = u(t+2) +v(t+i)7, where r=1lim 7,. This shows that lim(B"w,)
(#) exists for all ¢, and equals to u(t)—}-v(t)?‘

We next assume that lim 7,<1—2 and 2(1 v(]))rn_1—>0 If B is of Type
1V, then >3(1 —v(5))yn-; =0 for all n. Notxce that Z(I—v(t-{— N rn-j—0 for all
3=0
t. There exists s, and 1, such that
(4.16) 1— (B w) (1) £1 —wo(n+t+1\+20(/1-u(t+j)+ (1=t +7))7rn-5)
=

<1 =2 —71n+1 for m=n and H=t,
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or (B"'wy)!(#)=1. Hence we have from (2.1)
(B™" o) (1) = wolse+t+1—my) — EU(X —ult+j)+(1— ’U(f+j))7’n—j) for
=
my<n and L=t
By making n—>oo, we get im(B* 1) (£) = A(£) =1~ (w () +1w' (1)) for ty<t, where
r=lim7,. In view of (2.1), if lim(B"w.)(t+1) exists, then lim(B%w,)(t) exists.
Hence lim(B7w,)(t) exists for all £. Denote it by w. We show that wsf. It

is easy to verify that o satisfies the condition (1.1). The condition (1.2) for w
is an immediate consequence of the fact that w(#)= A(¥) for £#L =t and

(4.17) o(t) ="+ 1) +ul®) +o@)r— oL+ 1).

The first part of (1.3) follows from the fact that w(#) =u(#)+ov(#)r for £<0. The
second part of (1.3) follows from the fact that w(t)= A(#) for £ <f. Thus we
get we 2. From (4.17) it follows that w is a fixed function of B in 2. Hence
o=w(B), the standard function of B at w,. If B is of Type V, then it is finite

and has no fixed function in 2. Hence we also saw that >)(1 - v(/))7a-j—1—
j=0
w(0) if B is of Type V.
We have the same result when w'(0) < c. By the proof of Lemma 4.5,

2(1—2)(]))7,@-,%0 if B is finite, of Type I or II, =0, and w'(0) = . Hence,

20(1~ (i) ypu-j—1—w(0) =0 if and only if Bis of Type V.
1= 13

We finally assume that y<1- 2 and that 2(1—0(7 Ven-j=>1—w(0) %0 (or
equivalently, B is of Type V). We have 7 =0 and Z(1~v(t+] Ve = L= 120(0)

for all £=0. Moreover, by the proof of Lemma 4 5 (n; ix,=0) is an infinite
set. Set

n

(4.18)  (B"™0)(#) =wo(n+t+1) = 20 —ult+ )+ (1= 0t 4+ ) rn-j+ sn, ).
=0

By a similar argument as in the proof of Lemma 4.3, we can conclude that

(4.19) s(n, t)—0 (n—>c0).

By making #n—>o in (4.18), we thus get lim(B"*'ws)=w(0) ~w(¢) for t=0. On
the other hand, we have (B*%w)(t)=u(f)+v(H)71, for £<0 and lim (B"+w) (1)
=u(t)=0 for £<0.

InFiniTE CaseE: We have from Lemma 4. 2 that i, . Hence,-given ¢, (B?lw,) ()
=u(t)+v(H)71s for almost all n, and Hm(B" 'w) () =u(t)+0v(t)y, where v=1im 7.
It is easy to see that 7 is the B described in § 2.

This completes the proof.

References

1) P, Erdds, W. Feller, and H. Pollard, A Theorem on Power series, Bulletin of the American
Mathematical Society. Vol. 55, pp. 201-204 (1949).
2) W. Feller, An introduction to Probability Theory and its Applications, Volume I (1950).





