RESEARCH REPORTS

ON A RENEWAL PROBLEM

TAMIO ONO

Department of Engineering Mathematics

and Ikuma ISHII*

(Received Febrary 12, 1962)

§ 1. Introduction

In this note we prove a generalization of the fundamental theorem in renewal theory due to P. Erdös-W. Feller-H. Pollard.1) Precisely speaking, suppose for instance some eggs are put in a ice-box. To fix our idea, we consider the total of them as "1". Assume they are distributed as $(\omega_0(t); -\infty < t < \infty)$, where $\omega_0(t)$ denotes the quantity of eggs that get unavailable by the first t-th day. The number t need not be an integer nor a positive number. Suppose we take off unavailable eggs and use the first worst quantity " λ " of remaining eggs during each day. Suppose then we put the quantity " $\omega_0(0)$ " of eggs distributed as $(v(t); -\infty < t < \infty)$ and the quantity "\lambda" of eggs distributed as $(u(t); -\infty)$ < t < ∞) into the ice-box, where u(t) (v(t)) denotes the quantity of eggs that get unavailbe by the first (t+1)-th day and $\lim u(t) = \lambda$ ($\lim v(t) = 1$) respectively. Repeating this process, assume after n days we get the eggs in the ice-box distributed as $((B^n\omega_0)(t); -\infty < t < \infty)$, where $(B^n\omega_0)(t)$ denotes the quantity of eggs that get unavailable by the first (n+t)-th day starting from the day when we put eggs in the ice-box for the first time. We denote by Q^R the set of the starting distributions ω_0 , for which we can continue the process forever. The set Q^B might be empty. We have the following two problems:

PROBLEM 1: Under what condition is Ω^B non-empty?

PROBLEM 2: Under what condition does $\lim_{n\to\infty} (B^n\omega_0)(t)$ exist for any t and for any $\omega_0 \in \mathcal{Q}^B$?

It is just the case of P. Erdös-W. Feller-H. Pollard¹⁾ when $\lambda=0$ and $\omega_0(0)=1$. In § 1, we define A-mappings (a kind of B-mappings without v) and determine the set of fixed functions of A (Prop. 1.1). In § 2, we define B-mappings and give an answer for Problem 1 (Prop. 2.1). In § 3, we state an answer for Problem 2 (Theorem 3.1) and related problems. We prove the main theorem (Theorem 3.1) in § 4.

§ 1. A-Mappings

We begin with the following

Definition 1.1: A function ω defined on the real line is called a (α, β) -type

^{*} Nagoya Technical College.

distribution function if it satisfies the following conditions:

$$(1.1) \qquad \omega(t_1) \leq \omega(t_2) \text{ for } -\infty < t_1 \leq t_2 < \infty,$$

(1.2)
$$\lim_{t \to t_0 + 0} \omega(t) = \omega(t_0) \text{ for } -\infty < t < \infty, \text{ and}$$
(1.3)
$$\lim_{t \to -\infty} \omega(t) = \alpha, \lim_{t \to \infty} \omega(t) = \beta.$$

(1.3)
$$\lim_{t \to -\infty} \omega(t) = \alpha, \lim_{t \to \infty} \omega(t) = \beta$$

Denote by Ω the set of (0,1)-type distribution functions and by $\Omega(\alpha,\beta)$ the set of (α, β) -type distribution functions. We introduce into Ω the weakest topology such that every projection: $\omega \to \omega$ (t) is continuous for all t; thus

(1.4)
$$\omega_t \to \omega$$
 if and only if $\omega_t(t) \to \omega(t)$ for all t ,

where \(\epsilon\) is an arbitrary directed set.

Given $0 \le \lambda \le 1$ and $u \in \Omega(0, \lambda)$, we construct the mapping A of Ω into Ω defined by

$$(1.5) (A\omega)(t) = \omega(t+1) + u(t) - \delta_{\omega}(t+1) (\omega \in \Omega),$$

where

(1.6)
$$\delta_{\omega}(t) = \begin{cases} \omega(t) & \text{if } \omega(t) \leq \lambda, \\ \lambda & \text{if } \lambda \leq \omega(t). \end{cases}$$

We call A the A-mapping associated with (λ, u) . Set

$$(1.7) t_{\omega} = \inf(t; \lambda \leq \wedge (t+1)).$$

We call t_{ω} the *critical number* of ω with respect to A.

$$\begin{cases} t_{\omega} = -\infty & \text{if } \lambda = 0, \\ -\infty < t_{\omega} < \infty & \text{if } 0 < \lambda < 1, \\ t = & \text{if } \lambda = 1. \end{cases}$$

Lemma 1.1: A is continuous.

Proof: In view of (1.5), in order to prove Lemma 1.1, we need only to show that δ_{ω} is continuous. Suppose $\omega_{\ell} \to \omega$. It must be shown that, for a fixed t,

$$\lim \ \delta_{\omega \ell} (t) = \begin{cases} \omega (t) & \text{if } \omega (t) \leq \lambda, \\ \lambda & \text{if } \lambda \leq \omega (t). \end{cases}$$

If $\omega(t) < \lambda$, there exists an index ι_0 such that $\omega_{\iota}(t) < \lambda$ for $\iota_0 \le \iota$. Hence $\delta_{\iota_0 \iota}(t)$ $=\omega_{\epsilon}(t)$ for $\iota_0 \leq \epsilon$. This implies that $\lim \delta_{\omega \epsilon}(t) = \omega(t)$. Similarly we can verify that $\lim \delta_{\omega t}(t) = \lambda$ if $\lambda < \omega(t)$. If $\omega(t) = \lambda$, for $\varepsilon > 0$, there exists an index ι_0 such that $|\omega_{\iota}(t) - \lambda| < \varepsilon$ for $\iota_{0} \leq \iota$. This implies that $|\delta_{\omega_{\iota}}(t) - \lambda| < \varepsilon$ for $\iota_{0} \leq \iota$. Hence $\lim \delta_{\omega t}(t) = \lambda$. Thus the proof is completed.

Set

(1.8)
$$w(t) = \sum_{n=0}^{\infty} (\lambda - u(t+n)).$$

LEMMA 1.2: If $w(t) < \infty$ for some t, then $w(t) < \infty$ for all t.

Proof: Suppose $w(t') < \infty$ for some t'. Given t, we can select a natural number n' such that $t' \le t + n'$. Then

$$w(t) = \sum_{n=0}^{\infty} (\lambda - u(t+n))$$

$$= \sum_{n=0}^{n'-1} (\lambda - u(t+n)) + \sum_{n=n'}^{\infty} (\lambda - u(t+n))$$

$$= \sum_{n=0}^{n'-1} (\lambda - u(t+n)) + \sum_{n=0}^{\infty} (\lambda - u(t'+n))$$

$$< \infty$$

This completes the proof.

Set

$$(1.9) \qquad \qquad \wedge (t) = 1 - w(t).$$

Then $\wedge \in \mathcal{Q}(-\infty, 1)$ if $w(t) < \infty$ for some t and $\wedge \in \mathcal{Q}(-\infty, -\infty)$ if $w(t) = \infty$ for all t.

Definition 1.2: 1) An A-mapping associated with (λ, u) is said to be finite (infinite) if $w(t) < \infty$ for some t or $\lambda(1-\lambda) = 0$ ($w(t) = \infty$ for all t and $0 < \lambda < 1$).

2) An A-mapping associated with (λ, u) is said to be regular if A is finite and $0 < \lambda < 1$, semi-infinite if $\lambda = 1$, and singular if $\lambda = 0$, respectively.

Set

$$(1.10) t(A) = \inf(t; \lambda \leq \wedge (t+1)).$$

We call t(A) the *critical number* of A. Then we have

$$\left\{ \begin{array}{ll} t(A) = -\infty & \text{if A is singular,} \\ -\infty < t(A) < \infty & \text{if A is regular,} \\ t(A) = \infty & \text{if A is semi-infinite or infinite.} \end{array} \right.$$

If A is not singular, we construct the function $\omega(A)$ such that

(1.11)
$$\omega(A)(t) = \begin{cases} u(t) & \text{if } t < t(A), \\ \wedge(t) & \text{if } t(A) \leq t, \end{cases}$$

and call it the *standard function* of A. If A is singular, every function in \mathcal{Q} is called the standard function of A. Given ω in \mathcal{Q} , we say that $\omega(A)$ is the *standard function* of A at ω if A is not singular and that ω itself is the *standard function* of A at ω if A is singular. For regular case we have

(1.12)
$$u(t) = \bigwedge_{\lambda} (t) + \lambda - \bigwedge_{\lambda} (t+1) \text{ for all } t.$$

LEMMA 1.3: If A is regular or infinite, then $\omega(A)(t) = \operatorname{Max}(u(t), \wedge(t))$ for all t.

Proof: Since the others are obvious, we can assume that A is regular. Suppose t < t(A). We have from (1.12) $u(t) \ge \wedge(t)$, for $\wedge(t+1) \le \lambda$. Hence $\omega(A)(t) = u(t) = \operatorname{Max}(u(t), \wedge(t))$. Similarly we get $\omega(A)(t) = \wedge(t) = \operatorname{Max}(u(t), \wedge(t))$ if $t(A) \le t$. Thus the proof is completed.

LEMMA 1.4: $\omega(A) \in \Omega$ if A is finite and $\omega(A) \in \Omega(0, \lambda)$ if A is infinite.

Proof: The assertion is obvious if $\lambda = 0$ or $t(A) = \infty$. Hence we need only to show Lemma 1.4 for regular case. Suppose A is regular. The condition (1.1) for $\omega(A)$ follows from Lemma 1.3. The conditions (1.2)–(1.3) for $\omega(A)$ follow from the definition of $\omega(A)$. Hence we have $\omega(A) \in \Omega$. This completes the proof.

We say that a function ω in Ω is a *fixed function* of A in Ω if $A\omega = \omega$. Denote by $\Omega(A)$ the set of fixed functions in Ω .

LEMMA 1.5: $\omega(A) \in \Omega(A)$ if A is finite.

Proof: Since the assertion is obvious for the other cases, we can assume that A is regular. We write ω for $\omega(A)$. If t < t(A), then, by (1.11) and (1.10), $\omega(t) = u(t)$ and $\wedge(t+1)\lambda < 0$. Hence, by (1.5) and (1.6), $(A\omega)(t) = u(t)$ if $\omega(t+1) = \wedge(t+1)$. If t < t(A) and if $\omega(t+1) = u(t+1)$, then $\omega(t+1) \le \lambda$ and also $(A\omega)(t) = u(t)$. On the other hand, if $t(A) \le t$, then $\omega(t) = \wedge(t)$ and $\lambda \le 0$. $\lambda(t+1) = \omega(t+1)$. Hence, by (1.5), (1.6), and (1.12), $\lambda(t) = \lambda(t+1) + u(t) = \lambda(t)$. Thus the proof is completed.

Proposition 1.1: 1) $\mathcal{Q}(A) = \mathcal{Q}$ if A is singular, 2) $\mathcal{Q}(A)$ is a singleton $\{\omega(A)\}$ if A is regular or semi-infinite, and 3) $\mathcal{Q}(A)$ is empty if A is infinite and not semi-infinite.

Proof: The assertion 1) is obvious.

Proof of 2): The assertion is obvious for semi-infinite case. Suppose A is regular and suppose ω is a fixed function of A in \mathcal{Q} . If $t_{\omega} \leq t$, we have from (1.5) and (1.6)

(1.13)
$$\omega(t) = \omega(t+n) - \sum_{j=0}^{n-1} (\lambda - u(t+j)).$$

By making $n\to\infty$, we get $\omega(t)=\wedge(t)$. Hence we have from (1.5) and (1.12) $\delta_{\omega}(t+1)=\omega(t+1)+u(t)-\omega(t)=\wedge(t+1)+u(t)-\wedge(t)=\lambda$, or $\lambda\leq \wedge(t+1)$. This implies that $t(A)\leq t_{\omega}$. If $t_{\omega}-1< t< t_{\omega}$, we have from (1.5) and (1.6) $\omega(t)=u(t)$ and $\wedge(t+1)=\omega(t+1)<\lambda$. This implies that $t_{\omega}\leq t(A)$. Hence $t_{\omega}=t(A)$. If $t< t_{\omega}$, we have from (1.5) $\omega(t)=u(t)$. From these it follows that $\omega=\omega(A)$. By this combining with Lemma 1.5 we get 2).

Proof of 3): Suppose ω is a fixed function of A in Ω . If $t_{\omega} < \infty$, we have (1.13) for $t_{\omega} \le t$. This is impossible, for A is infinite. Hence $t_{\omega} = \infty$ and $\omega(t) = u(t)$ for all t. Since $\omega \in \Omega$, we have $\lambda = 1$. This is also impossible, for A is not semi-infinite. Hence there is no fixed function of A in Ω and $\Omega(A)$ is empty.

This completes the proof.

The following lemma is merely a restatement of a fact stated in Proof of 2) in the proof of Prop. 1.1.

LEMMA 1.6: $t_{\omega(A)} = t(A)$ if A is finite.

§ 2. B-Mappings

Let Ω and $\Omega(\alpha, \beta)$ be sets defined in § 1. Given $0 \le \lambda \le 1$, $u \in \Omega(0, \lambda)$, and $v \in$

 $\Omega(0,1)$, we construct the mapping B defined by

$$(2.1) (B\omega)(t) = \omega'(t+1) + u(t) + v(t)\omega(0) - \delta\omega'(t+1),$$

where

(2.2)
$$\omega'(t) = \omega(t) - \omega(0) \text{ for all } t, \text{ and}$$

(2.3)
$$\delta\omega'(t) = \begin{cases} \omega'(t) & \text{if } \omega'(t) \leq \lambda, \\ \lambda & \text{if } \lambda \leq \omega'(t). \end{cases}$$

We say that B is definable at a function ω in Ω if $B\omega \in \Omega$. Denote by Ω_R the set of definable functions in Ω , then $\Omega_B = (\omega; \omega(0) \le 1 - \lambda, \omega \in \Omega)$. We call the mapping B of Ω_B into Ω the B-mapping associated with (λ, u, v) . It is easy to see that Ω_B is closed in Ω . For $\omega \in \Omega_B$, set

$$(2.4) t_{\omega'} = \inf(t; \lambda \leq \omega'(t+1)).$$

We call t_{ω} the *critical number* of ω with respect to B.

The proof of the following iemma is obtained similarly as in that of Lemma 1.1 and so it may be omitted.

Lemma 2.1: B is continuous.

Definition 2.1: A function ω in Ω is said to be stable with respect to B if $B^n\omega\in\Omega$ for all n.

Denote by Ω^B the set of stable functions in Ω_B with respect to B.

Lemma 2.2: Ω^B is closed in Ω .

Proof: Suppose $\omega_{\iota} \to \omega$ and $\omega_{\iota} \in \Omega^{B}$ for all ι , where $\{\iota\}$ is a directed set. Since $\omega_{\iota} \in \Omega_{B}$, we have $\omega \in \Omega_{B}$ and $B\omega_{\iota} \to B\omega$. Repeating this argument, we get $B^{n}\omega \in \Omega_{B}$. This implies that $\omega \in \Omega^{B}$. Thus the proof is completed.

Set

(2.5)
$$w'(t) = \sum_{n=0}^{\infty} (1 - v(t+n)).$$

The proof of the following lemma is quite similar as in that of Lemma 1.2 and so it may be omitted.

Lemma 2.3: If $w'(t) < \infty$ for some t, then $w(t) < \infty$ for all t.

Definition 2.2: A *B*-mapping *B* associated with (λ, u, v) is said to be 1) of Type I if $0 < \lambda < 1$, $n(0)^2 + (1-v(0))^2 \neq 0$, and if $w(0) \geq 1$ in case that u(0) = 0 and $w'(0) = \infty$, 2) of Type II if $\lambda = 0, 3$) of type III if $0 < \lambda < 1$ and $u(0)^2 + (1-v(0))^2 = 0$, 4) of Type IV if $\lambda = 1$, and 5) of Type V if $0 < \lambda < 1$, $u(0)^2 + (1-v(0))^2 \neq 0$, w(0) < 1, u(0) = 0, and $w'(0) = \infty$.

Definition 2.3: A B-mapping B is said to be stable if Ω^B is non-empty.

PROPOSITION 2.1: If a *B*-mapping *B* is of Type II or Type III, then *B* is stable. If *B* is of Type I or Type V, then it is stable when and only when $u(0)/(1-v(0)) \le 1-\lambda$. If *B* is of Type IV, then it is stable when and only when u(0)=0.

Proof: Proof for Types I, V: Suppose Q^B is non-empty and ω is in Q^B . Then

$$(B^{n}\omega)(0) = (B^{n-1}\omega)(1) + u(0) + v(0)(B^{n-1}\omega)(0) - \delta_{B}n - 1_{\omega},$$

$$\geq u(0) + v(0)(B^{n-1}\omega(0))$$

$$\geq \dots \dots$$

$$\equiv u(0)(1 + v(0) + \dots + v(0)^{n-1}) + v(0)^{n}\omega(0).$$
(1)

By making $n \rightarrow \infty$, we get

$$(2.6) u(0)/(1-v(0)) \le \lim_{n \to \infty} (B^n \omega)(0) \le 1 - \lambda.$$

Hence the condition is necessary. Suppose next $u(0)/(1-v(0)) \le 1-\lambda$. We show that, if $u(0)/(1-v(0)) \le \omega(0) \le 1-\lambda$, then $u(0)/(1-v(0)) \le (B\omega)(0) \le 1-\lambda$. Since $\omega(0) \le 1-\lambda$, B is definable at ω . If $\omega'(1) \le \lambda$, then $(B\omega)(0) = u(0) + v(0)\omega(0)$, and so $u(0)/(1-v(0)) \le (B\omega)(0) \le 1-\lambda$. On the other hand, if $\lambda < \omega'(1)$, then $(B\omega)(0) = u(0) + v(0)\omega(0) + \omega'(1) - \lambda \ge u(0) + v(0)\omega(0) \ge n(0)/(1-v(0))$, for $u(0)/(1-v(0)) \le \omega(0)$. And also $(B\omega)(0) = u(0) + v(0)\omega(0) + \omega'(1) - \lambda = \omega(1) - \lambda - (\omega(0) - (u(0) + v(0)\omega(0))) \le \omega(1) - \lambda \le 1-\lambda$. Hence we get the above assertion. Repeating this argument, we can conclude that ω is stable with respect to $u(0)/(1-v(0)) \le \omega(0) \le 1-\lambda$. Hence Ω^B is non-empty.

Proof for Type II: If it is the case, then $\Omega_B = \Omega$ and so $\Omega^B = \Omega$.

Proof for Type III: Suppose $\omega \in \mathcal{Q}_{\mathcal{B}}$. Then $\omega(0) = 1 - \lambda$. If $\omega'(1) \leq \lambda$, then we have $(B\omega)(0) = \omega(0) \leq 1 - \lambda$. If $\lambda < \omega'(1)$, then we have also $(B\omega)(0) = \omega'(1) + \omega(0) - \lambda = \omega(1) - \lambda \leq 1 - \lambda$. Hence $B\omega \in \mathcal{Q}_{\mathcal{B}}$. By repeating this argument, we get $\omega \in \mathcal{Q}^{\mathcal{B}}$. Thus we have $\mathcal{Q}^{\mathcal{B}} = \mathcal{Q}_{\mathcal{B}}$ and $\mathcal{Q}^{\mathcal{B}}$ is non-empty.

Proof for Type IV: The condition is necessary, because $\Omega_B = (\omega; \omega(0) = 0, \omega \in \Omega)$ and $(B\omega)(0) = u(0)$ for ω in Ω_B . Suppose u(0) = 0, then $u \in \Omega_B$ and Bu = u. Hence $u \in \Omega^B$ and Ω^B is non-empty.

This completes the proof.

Let B be a B-mapping of Type III associated with (λ, u, v) and ω be a function in Ω^B . We have from (2.1) and (2.2)

$$\omega(0) \leq (B\omega)(0) \leq (B^2\omega)(0) \leq \cdots = 1 - \lambda.$$

Hence there exists the limit of $\{(B^n\omega)(0)\}$. Denote it by $\beta_0(\omega)$.

Let B be a stable B-mapping associated with (λ, u, v) . Set

(2.8)
$$\beta' = n(0)/(1 - v(0))$$
 for Type I, II, IV, V cases,

(2.9)
$$\beta'' = (1 - w(0))/\mu' \quad (\beta'' = 0 \text{ if } w(0) + \beta'w'(0) = \infty),$$

(2.10)
$$\beta' = (1 - w(0))/\beta' \quad (\beta' = 0 \text{ if } w(0) + \beta' w(0) = \infty),$$

$$\beta = \begin{cases} 1 - \lambda & \text{if } \beta' = 1 - \lambda \\ \text{Max } (\beta', \beta'') & \text{if } \beta' \neq 1 - \lambda \end{cases} \text{ for Type II, V cases,}$$

$$1/\mu' & \text{for Type III case,}$$

$$\beta_0 \quad (\text{Min}(\text{Max}(0, \beta''), 1 - \lambda) \leq \beta_0 \leq 1 - \lambda) \text{ for Type III case,}$$

$$0 & \text{for Type IV case.}$$

We call the standard function of the A-mapping associated with $(\lambda + \beta, u + \beta v)$

the standard function of B (except for Type V case) and denote it by $\omega(B)$. (We set $\omega(B)(t) = u(t) = 0$ for t < 0 and $\omega(B)(t) = w(0) - w(t)$ for $t \ge 0$ if B is of Type V). Given ω in Ω^B , we call $\omega(B)$ the standard function of B at ω if B is not of Type III, and we call the standard function of the A-mapping associated with $(\lambda + \beta_0(\omega), u + \beta_0(\omega)v)$ the standard function of B at ω .

Definition 2.4: A *B*-mapping *B* associated with (λ, u, v) is said to be finite (resp. semi-infinite, infinite) if the *A*-mapping associated with $(\lambda + \beta, u + \beta v)$ is finite (resp. semi-infinite, infinite) for all β .

The following lemma is an immediate consequence of Lemma 1.4.

Lemma 2.5: $\omega(B) \in \mathcal{Q}$ if B is finite and $\omega(B) \in \mathcal{Q}(0, \lambda + \beta)$ if B is infinite.

Lemma 2.6: If B is infinite and of Type I or II, then one of the following conditions occur: a) $w(0) = \infty$, and b) $w(0) < \infty$, $w'(0) = \infty$, and $\beta' \neq 0$.

Proof: Suppose $w(0) < \infty$. Since B is infinite, $w(0) + \beta w'(0) = \infty$. Hence $w'(0) = \infty$ and $\beta \neq 0$. Since $w'(0) = \infty$, $\beta'' = 0$. Hence $\beta' = \beta \neq 0$. Thus the proof is completed.

We say that a function ω in Ω^B is a fixed function of B if $B\omega = \omega$. Denote by $\Omega(B)$ the set of fixed functions of B in Ω^B .

PROPOSITION 2.2: Let B be a stable B-mapping associated with (λ, u, v) , then we have 1) $\mathcal{Q}(B)$ is the set of standards functions of B in \mathcal{Q} and 2) $\mathcal{Q}(B)$ is empty if and only if one of the following conditions are satisfied: a) B is finite and of Type I or III with $1-\lambda < \beta''$, b) B is finite and of Type V, c) B is infinite and of Type I with $\lambda + \beta \neq 1$, and d) B is infinite and of Type II.

Proof: We prove the assertions for Type I, II, V cases, because the others are verified similarly. We first show that $\mathcal{Q}(B)$ = the singleton $\{\omega(B)\}$ if $\mathcal{Q}(B)$ is non-empty. Suppose $\omega \in \mathcal{Q}(B)$. If $\omega'(1) \leq \lambda$, then $\omega(0) = u(0) + v(0)\omega(0)$ and so $\omega(0) = \beta'$. Hence, $\omega(t) = \omega(t+1) + n(t) + \beta' v(t) - \delta(t+1)$ for all t, where $\delta(t) = \omega(t)$ if $\omega(t) \leq \lambda + \beta'$ and $\delta(t) = \lambda + \beta'$ if $\lambda + \beta' \leq \omega(t)$. This shows that ω is a fixed function of the A-mapping associated with $(\lambda + \beta', u + \beta' v)$. If $\beta' = 1 - \lambda$, then B is semi-infinite and $\omega = \omega(B)$. Hence we can assume that $\beta' < 1 - \lambda$. Since $\omega(0) = u(0) + \beta' v(0)$, we have from Lemma 1.3 $\beta' \geq \wedge (0) = 1 - (w(0) + \beta' w'(0))$, or $\beta' \geq \beta''$. Hence $\omega = \omega(B)$. On the other hand, if $\lambda \leq \omega'(1)$, then $\lambda \leq \omega'(n)$ for all n. Hence $\omega(0) = \omega(n) - \sum_{i=0}^{\infty} (\lambda - u(i) + (1 - v(i))\omega(0))$. By making $n \to \infty$, we get $\omega(0) = 1 - (w(0))$

 $+w'(0)\omega(0)$), or $\omega(0)=\beta''$. Hence, $\omega(t)=\omega(t+1)+u(t)+\beta''v(t)-\delta(t+1)$, where $\delta(t)=\omega(t)$ if $\omega(t)\leq \lambda+\beta''$ and $\omega(t)=\lambda+\beta''$ if $\lambda+\beta''\leq \omega(t)$. This shows that ω is a fixed function of the A-mapping associated with $(\lambda+\beta'', u+\beta''v)$. Since $\omega(0)=\Lambda(0)$, we have from Lemma 1.3 $\beta''\geq u(0)+\beta''v(0)$, or $\beta''\geq \beta'$. Hence $\omega=\omega(B)$.

In the rest of the proof, we show that $\omega(B) \notin \mathcal{Q}(B)$ if and only if all the conditions a)-d) are not satisfied. Assume first B is finite. It is obvious that $\omega(B) \notin \omega(B)$ if $1-\lambda < \beta''$. Suppose $\beta' < \beta'' \le 1-\lambda$. Then $w(0) < \infty$ and $w'(0) < \infty$. Hence B is not of Type V. Since $u(0) + \beta''v(0) \le \beta'' = 1 - (w(0) + \beta''w'(0))$, we have $\omega(B)(0) = \beta''$. From this combining with Lemma 2.5 we have $\omega(B) \in \mathcal{Q}(B)$ in this case. Suppose next $\beta'' \le \beta'$. If B is not of Type V, then $u(0) + \beta'v(0) = \beta'$

 $\geq 1-(w(0)+\beta'w'(0))$. Hence, $\omega(B)(0)=\beta'$ and so, by Lemma 2.5, $\omega(B)\in\mathcal{Q}(B)$. If B is of Type V, then $\omega(B)(0)\neq\beta'=\beta''=0$ and $\omega(B)$ is not a fixed function of B. Assume next B is infinite, then we have $\omega(B)(t)=u(t)+\beta v(t)$ for all t. We also have $\beta''=0$. In fact, if $\beta''>0$, then $w(0)+\beta'w(0)<\infty$ and hence $w(0)<\infty$, $w'(0)<\infty$, or B would be finite. Hence $\beta=\beta'$. Since $\omega(B)(0)=u(0)+\beta'v(0)=\beta'$, $\omega(B)\in\mathcal{Q}(B)$ if and only if $\lambda+\beta=\lambda+\beta'\neq 1$.

This completes the proof.

§ 3. Main Theorem

Theorem 3.1: Let B be a stable B-mapping associated with (λ, u, v) , then $\lim B^n \omega_0$ exists for all ω_0 in Ω^B if and only if

(*) the greatest common divisor of $(n; p(n) \neq 0, n \geq 1) = 1$ when B' is finite and of Type I or II and $\beta' < \beta'' \leq 1 - \lambda$, where p(1) = v(0) and p(n) = v(n-1) - v(n-2) $(n \geq 2)$, and if it is the case, the limit is equal to the standard function of B at ω_0 . Moreover the limit is in Ω if and only if B is finite or semi-infinite.

Corollary 3.1: Let A be an A-mapping associated with (λ, u) , then $\lim A^n \omega_0$ exists for all ω_0 in Ω , and the limit is equal to the standard function of A at ω_0 . Moreover the limit is in Ω if and only if A is finite or semi-infinite.

COROLLARY 3.2: (P. Erdös-W. Feller-H. Pollard 1): Let $\{\eta_1\}$ be a sequence of real numbers such that

$$(3.1) \eta_i \ge 0 \text{ for all } i, \text{ and}$$

$$(3.2) \qquad \sum_{i=1}^{\infty} \eta_i = 1,$$

and let $\{\lambda_n\}_{n=0}^{\infty}$ be a sequence of real numbers determined by

(3.3)
$$\lambda_{n+1} = \eta_1 \lambda_n + \cdots + \eta_{n+1} \lambda_0 \quad (n \ge 0) \quad \text{and} \quad \lambda_0 = 1,$$

then $\lim \lambda_n$ exists if and only if

(**) the greatest common divisor of $(n; \eta_n \neq 0, n \geq 1)$ is equal to 1. And, if it is the case,

(3.4)
$$\lim \lambda_n = (\sum_{i=1}^{\infty} i \eta_i)^{-1}.$$

In this section we prove the above two corollaries by making use of Theorem 3.1. Theorem 3.1 will be proved in the next section.

Proof of Corollary 3.1: The assertion is obvious if $\lambda=0$. Suppose $\lambda>0$, then there exists an ural number r such that $1< r\lambda$. We first assume that $u(t)=w_0(t)=0$ for t< r. Construct v in Ω such that v(t)=1 if $t\geq 0$ and v(t)=0 if t< 0. Denote by B the B-mapping associated with (λ,u,v) . Since u(0)=1-v(0)=0, B is of Type III. We show that

$$(3.5) (Bn\omega_0)(s) \leq \operatorname{Max}(0, 1 - (r - s)\lambda) \text{ for all } n (s \leq r).$$

In fact, it is true for s=r. Suppose it is true for $k < s \le r$. We then have from

(2.1)

$$(B^{n+1}\omega_0)(k) = (B^n\omega_0)(k+1) - \delta B^n\omega_0'(k+1)$$

$$\leq \text{Max}(0, (B^n\omega_0)(k+1) - \lambda)$$

$$\leq \text{Max}(0, 1 - (r-k)\lambda) \quad (n \geq 0),$$

and $(B^0\omega_0)(k)=0$. Thus we get (3.5). Since $1 < r\lambda$, we must have $(B^n\omega_0)(0)=0$ for all n. Hence $\beta_0(\omega_0) = 0$ and $\omega(A) = \omega(B)$, the standard function of B at ω_0 . This implies that $A^n\omega_0 = B^n\omega_0$ for all n and $\lim A^n\omega_0 = \lim B^n\omega_0 = \omega(B) = \omega(A)$. By a suitable translation of t, thus, we get $\lim_{n \to \infty} A^n \omega_0 = \omega(A)$ if $u(t) = \omega_0(t) = 0$ for t < r, where r is an arbitrary number, Set

$$u'(t) = \begin{cases} u(t) & \text{if } r \leq t, \\ 0 & \text{if } t < r. \end{cases} \qquad \widetilde{\omega}_0(t) = \begin{cases} \omega_0(t) & \text{if } r \leq t, \\ 0 & \text{if } t < r. \end{cases}$$

Denote by A' the A-mapping associated with (λ, u') , then $(A^n \omega_0)(t) = ((A')^n \widetilde{\omega}_0(t))$ for all n $(r \le t)$ and $\lim_{n \to \infty} (A^n \omega_0)(t) = \lim_{n \to \infty} (A')^n \widetilde{\omega}_0(t) = \omega(A)(t)$ for $r \le t$. Since r is arbitrary, we get $\lim A^n \omega_0 = \omega(A)$. This completes the proof.

Proof of Corollary 3.2: Set $v(t) = \sum_{i \le t} \eta_{i+1} \ (-\infty < t < \infty)$ and construct the B-mapping B associated with (0,0,v). Since $\lambda=0$, B is of Type II. Set

(3.6)
$$\omega_0(t) = \begin{cases} 1 & \text{for } 0 \le t, \\ 0 & \text{for } t < 0, \end{cases}$$

and $\gamma_n = (B^n \omega_0)(0)$ $(n \ge 0)$. We have from (2.1) and (2.2)

$$(3.7) \gamma_{n+1} = 1 - (1 - \eta_1)\gamma_n - \cdots - (1 - \eta_1 - \cdots - \eta_{n+1})\gamma_0,$$

Set

(3.8)
$$\xi_i = \sum_{j=1}^{\infty} \eta_j \ (i \ge 1).$$

We have from (3.2) and (3.7)

$$\xi_1 \gamma_n + \cdots + \xi_{n+1} \gamma_0 = 1 \text{ for all } n \ge 0.$$

Set $\varphi(z) = \sum_{n=1}^{\infty} \gamma_n z^n$, $P(z) = \sum_{n=1}^{\infty} \eta_n z^n$, and $Q(z) = \sum_{n=1}^{\infty} \xi_{n+1} z^n$. These functions are regular in |z| < 1. We have from (3.9) $\varphi(z)Q(z) = (1-z)^{-1}$ and from (3.8) 1-P(z)=(1-z)Q(z). Hence we get $\varphi(z)$ (1-P(z))=1, or (3.3). On the other hand, we have

(3.10)
$$\mu' = 1 + w'(0) = 1 + \sum_{i=1}^{\infty} \xi_i = \sum_{i=1}^{\infty} i \eta_i.$$

Thus we get $\lim \gamma_n = \lim (B^n \omega_0)(0) = 1/\mu' = (\sum_{i=1}^{\infty} i \eta_i)^{-1}$ if (*) (and so (**)) holds when $\mu' < \infty$. Denote by m the greatest common diviror of $(n; \eta_n \neq 0, n \geq 1)$. If m>1, we have

(3.11)
$$\lambda_{m(n+1)} = \eta_m \lambda_{mn} + \cdots + \eta_{mn} \lambda_0 \quad (n \ge 0),$$

and the greatest common divisor of $(n; \eta_{mn} \neq 0, n \geq 1)$ is equal of 1. Hence $\lim_{n \to \infty} \lambda_{mn} = (\sum_{i=1}^{\infty} i \eta_{mi})^{-1} = m/\mu'$. But we can prove that $\lim_{n \to \infty} \lambda_n = 1/\mu'$ if $\lim_{n \to \infty} \lambda_n$ exists. Therefore, $\lim_{n \to \infty} \lambda_n$ does not exist if m > 1 and $\mu' < \infty$. Thus the proof is completed.

§ 4. Proof of Theorem 3.1

Let B be a stable B-mapping associated with (λ, u, v) and ω_0 be a function in Ω^B . Set

$$\beta_n = (B^n \omega_0)(0) \text{ for } n \ge 0.$$

Lemma 4.1: For each $n \ge 0$ there exists $-\infty \le i_n \le \infty$ such that

$$(4.2) \quad 1 - (B^{n+1}\omega_0)(i) = 1 - \omega_0(n+i+1) + \sum_{j=0}^n (\lambda - u(i+j) + (1-v(i+j))\gamma_{n-j})$$
for $i_n \leq i$, and

(4.3)
$$(B^{n+1}\omega_0)(i) = u(i) + v(i)\beta_n \text{ for } i \leq i_n - 1.$$

Proof: If n=-1 we have $(B^0\omega_0)(i)=\omega_0(i)$ for all i, and we can consider i_{-1} as $-\infty$. Hence we may prove Lemma 4.1 by induction starting from n=-1. Suppose Lemma 4.1 is true for k=n-1. Note that $i_{n-1}=t_{R^n\omega_0}'+1$, where $t_{R^n\omega_0}'$ denotes the critical number of $B^n\omega_0$ with respect to B. Using this we can conclude that i_n exists and equals to $[t_R n'_{\omega_0}]$, where $[\cdot]$ denotes Gauss' symbol. Thus the proof is completed.

LEMMA 4.2: If B is infinite and of Type I or II and if $\beta' \leq \gamma_n \leq 1 - \lambda$ $(n \geq 0)$, then $i_n \to \infty$ $(n \to \infty)$.

Proof: Suppose $I=(n; i_n \le i)$ is an infinite set, then we have from (4.2)

$$1 \ge \overline{\lim} \left(1 - (B^{n+1} \omega_0)(i) \right) \ge w(i) + \beta' w'(i).$$

This is impossible because of Lemma 2.6. Hence I is finite for all i. This shows that $\lim i_n = \infty$, or $\lim i_n = \infty$. Thus the proof is completed.

Lemma 4.3: If B is of Type I or II or V, if $\beta' \leq \gamma_r \leq 1 - \lambda$ for all r, and if $i_n = 0$ for some n, then, by setting

$$(4.4) \gamma_{n+k+1} = \omega_0(n+k+1) - \sum_{j=0}^{n+k} (\lambda - u(j) + (1-v(j))\gamma_{n+k-j}) + a(k),$$

we have

(4.5)
$$|a(k)| \leq \sum_{j=0}^{k} (\lambda - u(n+j) + (1 - v(n+j))\beta').$$

Proof: Set

(4.6)
$$(B^{n+k+1}\omega_0)(i) = \omega_0(n+k+i+1) - \sum_{j=0}^{n+k} (\lambda - u(i+j) + (1-v(i+j))\gamma_{n+k-j}) + a(k,i).$$

We have from (2.1), (2.2), and (4.6) $a(k, i) = a(k-1, i+1) + (\lambda - \delta)$, where $\delta = \delta'_{\omega}(i+1)$ and $\omega = B^{n+k}\omega_0$. Since $a(0, i) \ge 0$, we have $a(k, 0) \ge a(0, k+i) \ge 0$ for all k, i

 ≥ 0 . We prove

(4.7)
$$a(k,i) \leq \sum_{j=0}^{k} (\lambda - u(n+j) + (1 - v(n+j))\beta').$$

Since $\beta' \leq \gamma_r$ for all r, we have

$$(B^{n+k}\omega_0)^1(i+1) = \omega_0(n+k+i+1) - \omega_0(n+k) + \sum_{j=0}^{i} (\lambda - u(j)) - \sum_{j=0}^{i} (\lambda - u(n+k+j)) + \sum_{j=0}^{n+k} (v(i+j+1) - v(j))\gamma_{n+k-j-1} + a(k-1,i+1) - a(k-1,0)$$

$$\geq \lambda - u(0) - (\lambda - u(n+k)) + \sum_{j=0}^{n+k} (v(j+1) - v(j))\beta' - (a(k-1,0) - a(k-1,i+1))$$

$$\geq \lambda - (\lambda - u(n+k) + (1 - v(n+k))\beta' + a(k-1,0) - a(k-1,i+1)).$$

If $(B^{n+k}\omega_0)'(i+1) \ge \lambda$, then a(k,i) = a(k-1,i+1). If $(B^{n+k}\omega_0)'(i+1) < \lambda$, then $a(k,i) - a(k-1,i+1) \le \lambda - u(n+k) + (1-v(n+k))\beta' + a(k-1,0) - a(k-1,i+1)$, or $a(k,i) \le \lambda - u(n+k) + (1-v(n+k))\beta' + a(k-1,0)$. Hence we can prove (4.7) by induction. If we put i=0 in (4.7), we get (4.5). Thus the proof is completed.

Lemma 4.4: $\lim \gamma_n$ exists under the assumption (*) of Theorem 3.1.

Proof: Type I, II, V Cases. It is easy to see that

(4.8) if
$$\gamma_n \leq \beta'$$
, then $\gamma_n \leq \gamma_{n+1}$, and

$$(4.9) if $\beta' \leq \gamma_n, \text{ then } \beta' \leq \gamma_{n+1}.$$$

Moreover, if $r_0 \le r_1 \le \cdots \le \beta'$, then $\lim r_n$ exists. Hence we can assume without loss of generality that

$$(4.10) \beta' \leq \gamma_n \leq 1 - \lambda \text{ for all } n.$$

If $i_n=1$ for almost all n, then we have $\gamma_{n+1}=u(0)+v(0)\gamma_n$ for almost all n, or $\lim \gamma_n=\beta'$. Hence $\lim \gamma_n$ exists for infinite case because of Lemma 4.2. Hence we can assume without loss of generality that B is finite and that $(n; i_n=0)$ is an infinite set. Arrange $(n; i_n=0)$ as $\{n_k\}$, $n_1< n_2<\cdots$.

In the rest of the proof of Type I, II, V case, we devide it into two cases. We first assume that $\beta'' \leq \beta'$ and that B is not of Type V. By Lemma 4.3, given $\varepsilon > 0$, there exists a natural number n_0 such that

$$|1 - \gamma_{n+1} - \sum_{j=0}^{\infty} (-u(j) + (1 - v(j))\gamma_{n-j})| \le \varepsilon$$

for $n = n_k \ge n_0$, where we set $\gamma_r = \beta'$ if r < 0. Then,

$$1 = \gamma_{n+1} + (1 - n + 1)$$

$$\geq \beta' + w(0) + w'(0)\beta' - \varepsilon$$

$$\geq \beta'' + w(0) + w'(0)\beta'' - \varepsilon$$

$$\geq 1 - \varepsilon.$$

This implies that $\beta' = \beta'' = \beta$ and that $|\gamma_{nk+1} - \beta| \le 2\varepsilon$ for $n_k \ge n_0$. For $n_k < n < n_{k+1}$ $(n_k \ge n_0)$, we have $\gamma_{n+1} = u(0) + v(0)\gamma_n$ and $|\gamma_{n+1} - \beta| \le 2\varepsilon$. This shows that $\lim \gamma_n$ exists.

We next assume that $\beta' < \beta''$ or that B is of Type V. Set

(4.11)
$$\gamma_{n+1} = 1 - w(0) - \sum_{j=0}^{n} (1 - v(j))\gamma_{n-j} + b_n.$$

We have from (4.2)

$$(4.12) b_n \to 0 (n \to \infty).$$

We have from (4.12) $w(0) \le 1$. If w(0) = 1, then $0 \le r_{n+1} \le b_n$ and so $\lim r_{n+1} = 0$. Assume w(0) < 1. Set $r'_n = r_n / (1 - w(0))$ and $b'_n = b_n / (1 - w(0))$, then

(4.13)
$$\gamma'_{n+1} = 1 - \sum_{j=0}^{n} (1 - v(j)) \gamma'_{n-j} + b'_{n}.$$

Set $\xi_1 = 1$, $\xi_{i+2} = 1 - v(i)$ ($i \ge 0$), and $\eta_i = \xi_i - \xi_{i+1}$ ($i \ge 1$). Using φ , P in § 3, and $R(z) = \sum_{n=0}^{\infty} (1 + b'_n) z^{n+1}$, we have from (4.13) $\varphi(1-P) = (1-z)R + Q$, where Q is a suitable polynomial of z, or

(4.14)
$$\gamma'_{n+1} = \gamma_1 \gamma'_n + \cdots + \gamma_{n+1} \gamma'_0 + c'_n \text{ for almost all } n, \text{ where}$$

$$(4.15) c'_n = b'_n - b'_{n-1} \to 0 \ (n \to \infty).$$

By a slight modification of W. Feller [2, Chap. 12, Sec. 7], from (4.12)–(4.15) it follows that $\lim r'_n$ exists (and equals to $1/\mu'$). Hence $\lim r_n$ exists (and equals to β'').

Type III Case: If it is the case, $\lim \tau_n = \beta_0(w_0)$ (cf. § 2).

Type IV Case: It is obvious that $\lim r_n = 0$ for this case.

This completes the proof.

Lemma 4.5: $\sum_{j=0}^{n} (1-v(j))\gamma_{n-j} \to 0$ or 1-w(0) if B is finite and of Type I or II or V, $\beta'=0$, and $w'(0)=\infty$.

Proof: We have $\beta' = \beta'' = 0$. If $(n; i_n = 0)$ is finite, then $\gamma_{n+1} = v(0)\gamma_n$ for almost all n $(0 \le v(0) < 1)$ and so $\sum_{j=0}^{n} (1 - v(j))\gamma_{n-j} \to 0$. If $(n; i_n = 0)$ is infinite, then we have from (4.11) $w(0) \le 1$. If w(0) = 1, then $\gamma_n \to 0$ and $\sum_{j=0}^{n} (1 - v(j))\gamma_{n-j} \to 0$. If w(0) < 1, then $\gamma_n \to \beta'' = 0$ and $\sum_{j=0}^{n} (1 - v(j))\gamma_{n-j} \to 1 - w(0)$. Thus the proof is completed.

Proof of Theorem 3.1: Finite Case: We first assume that $\lim \tau_n = 1 - \lambda$. Given $-\infty < t < \infty$ and a subsequence $\{n'\}$ of $\{n\}$ such that $\lim (B^{n+1}\omega_0)(t)$ exists, there exists a subsequence $\{n''\}$ of $\{n'\}$ such that $\lim (B^{n''+1}\omega_0)(t+i)$ and $\lim (B^{n''}\omega_0)(t+i)$ exist for all integers $i \ge 0$. Since $\lim \tau_n = 1 - \lambda$, we have from (2.1) $\lim (B^{n''+1}\omega_0)(t+i) = u(t+i) + v(t+i)\tau$, where $\tau = \lim \tau_n$. This shows that $\lim (B^n\omega_0)(t)$ exists for all t, and equals to $u(t) + v(t)\tau$.

We next assume that $\lim_{n \to \infty} \gamma_n < 1 - \lambda$ and $\sum_{j=0}^n (1 - v(j)) \gamma_{n-j} \to 0$. If B is of Type IV, then $\sum_{j=0}^n (1 - v(j)) \gamma_{n-j} \to 0$ for all n. Notice that $\sum_{j=0}^n (1 - v(t+j)) \gamma_{n-j} \to 0$ for all t. There exists n_0 and t_0 such that

$$(4.16) 1 - (B^{n+1}\omega_0)(t) \leq 1 - \omega_0(n+t+1) + \sum_{j=0}^{n} (\lambda - u(t+j) + (1-v(t+j))\gamma_{n-j})$$

$$\leq 1 - \lambda - \gamma_{n+1} for n_0 \leq n and t_0 \leq t,$$

or
$$(B^{n+1}\omega_0)'(t) \ge \lambda$$
. Hence we have from (2.1)
 $(B^{n-1}\omega_0)(t) = \omega_0(u+t+1-n_0) - \sum_{j=0}^n (\lambda - u(t+j) + (1-v(t+j))\gamma_{n-j})$ for $n_0 < n$ and $t_0 \le t$

By making $n \to \infty$, we get $\lim(B^{n+1}\omega_0)(t) = \bigwedge(t) = 1 - (w(t) + \tau w'(t))$ for $t_0 \le t$, where $\tau = \lim \tau_n$. In view of (2.1), if $\lim(B^n\omega_0)(t+1)$ exists, then $\lim(B^n\omega_0)(t)$ exists. Hence $\lim(B^n\omega_0)(t)$ exists for all t. Denote it by ω . We show that $\omega \in \Omega$. It is easy to verify that ω satisfies the condition (1.1). The condition (1.2) for ω is an immediate consequence of the fact that $\omega(t) = \bigwedge(t)$ for $t_0 \le t$ and

(4.17)
$$\omega(t) = \omega'(t+1) + u(t) + v(t)\gamma - \delta'_w(t+1).$$

The first part of (1.3) follows from the fact that $\omega(t) = u(t) + v(t) \gamma$ for t < 0. The second part of (1.3) follows from the fact that $\omega(t) = \wedge(t)$ for $t_0 \le t$. Thus we get $\omega \in \Omega$. From (4.17) it follows that ω is a fixed function of B in Ω . Hence $\omega = \omega(B)$, the standard function of B at ω_0 . If B is of Type V, then it is finite and has no fixed function in Ω . Hence we also saw that $\sum_{j=0}^{n} (1 - v(j)) \gamma_{n-j} \to 1 - w(0)$ if B is of Type V.

We have the same result when $w'(0) < \infty$. By the proof of Lemma 4.5, $\sum_{j=0}^{n} (1 - v(j)) \gamma_{n-j} \to 0 \text{ if } B \text{ is finite, of Type I or II, } \beta' = 0, \text{ and } w'(0) = \infty. \text{ Hence,}$ $\sum_{j=0}^{n} (1 - v(j)) \gamma_{n-j} \to 1 - w(0) = 0 \text{ if and only if } B \text{ is of Type V.}$

We finally assume that $\gamma < 1 - \lambda$ and that $\sum_{j=0}^{n} (1 - v(j)) \gamma_{n-j} \to 1 - w(0) \neq 0$ (or equivalently, B is of Type V). We have $\gamma = 0$ and $\sum_{j=0}^{n} (1 - v(t+j)) \gamma_{n-j} \to 1 - w(0)$ for all $t \ge 0$. Moreover, by the proof of Lemma 4.5, $(n; i_n = 0)$ is an infinite set. Set

$$(4.18) \quad (B^{n+1}\omega_0)(t) = \omega_0(n+t+1) - \sum_{j=0}^n (-u(t+j) + (1-v(t+j))\gamma_{n-j} + s(n,t).$$

By a similar argument as in the proof of Lemma 4.3, we can conclude that

$$(4.19) s(n,t) \to 0 (n \to \infty).$$

By making $n\to\infty$ in (4.18), we thus get $\lim(B^{n+1}\omega_0)=w(0)-w(t)$ for $t\ge 0$. On the other hand, we have $(B^{n+1}\omega_0)(t)=u(t)+v(t)\gamma_n$ for t<0 and $\lim(B^{n+1}\omega_0)(t)=u(t)=0$ for t<0.

Infinite Case: We have from Lemma 4.2 that $i_n \to \infty$. Hence, given t, $(B^{n+1}\omega_0)(t) = u(t) + v(t)\gamma_n$ for almost all n, and $\lim_{t \to \infty} (B^{n+1}\omega_0)(t) = u(t) + v(t)\gamma$, where $\gamma = \lim_{t \to \infty} \gamma_n$. It is easy to see that γ is the β described in § 2.

This completes the proof.

References

- 1) P, Erdös, W. Feller, and H. Pollard, A Theorem on Power series, Bulletin of the American Mathematical Society. Vol. 55, pp. 201-204 (1949).
- 2) W. Feller, An introduction to Probability Theory and its Applications, Volume I (1950).