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Résumé—With probability density functions of vortices of different inclinations,
radii and circulations, the problem of sound scattering in a turbulent medium is
treated. The anisotropy as well as the isotropy of the turbulence is defined by
means of the probability denmsity function. Scattering intenmsity and power are
calculated in the anisotropic and the isotropic cases.

§ 1. Preliminaries and Notations

The problem of sound scattering in a homogeneous, isotropic turbulence has
been treated by some authors.? Especially, Obuchow » took account of velocity
correlation in the turbulence. Tatarskiy® investigated the fluctuation of scattered
sound by means of Obuchow’s theory. Ellison* considered wave propagation in
a medium, in which refractive index varies randomly in co-ordinate space. It
is sometimes difficult to have a relationship between the fluctuation of the re-
fractive index and the turbulent velocities. Lighthill® did not assume the
isotropy of the turbulence. The velocity correlation in an isotropic turbulence is
rather widely investigated. Little is known, however, about the velocity corre-
lation in a non-isotropic turbulence. Our present knowledge® about the mechanism
of the decay of anisotropic turbulence is also very little.

On the other hand, Miiller” treated the turbulence as a statistical super-
position of vortices, whose axes were orientated spacially at random. In such a
model of vortex, one can easily take into account the anisotropy (non-isotropy)
of a turbulence, because a sort of measure of anisotropy can be expressed by
some parameters involved in the probability density function, whose random
variable is to be taken as angle of inclination of vortices with regard to the
direction of incident sound wave. Accordingly, we shall consider in the present
paper phenomena of sound scattering by means of a single vortex model presented
by Miiller. Then, we describe the anisotropy of turbulence by a superposition
of statistically orientated vortices of different radii and circulations.

Notations

7, ¢, 2 cylindrical co-ordinates,

t time,

il angle of vortex axis with regard to the wave vector of incident sound,
i wave-length of incident wave,

¢ velocity of sound,
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I : circulation of vortex filament,
u=I1(2xic), R=7r/2, Z=2z[2, v=ct/A,
/N : velocity potential of incident sound wave,
uy velocity potential of scattered wave,
O =0+ p0,

7o and 7;: outer and inner radius of scattering region,
Razra/x, Rz‘:fi/}\,

Lse : scattering power emitted from scattering region of unit length,
! . scattering power emitted from scattering region of unit volume,
L . total scattering power emitted from turbulent region of volume V,
2% ATy
M= —1—2— »—errdsﬂ =L . mean Mach number,
nricdo Yo 2nr 7 aC

W(R., 6, #; T): probability density function at co-ordinate point r,
¢ and ¢;: standard deviations.

§ 2. Scattering of Sound Wave by a Single Vortex-Filament

Let a steady vortex of circulation I” occupy the region:
7i<7<7a, — 0Lzl + o,
in cylindrical co-ordinates (7, ¢, z). The fluid is at rest in the region out of the
vortex. As shown in Fig. 1, an incident plane sound wave of wave length 1 goes

through the vortex.
The velocity potential of the incident sound is taken to be
0y = Arexp [2ni (r — R sin 0 cos ¢ —Z cos 0)]. (L)

Let @ be the velocity potential of the wave and be written as

D = 0o+ p0,, (2)
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Fi1G. 1. Relative position of the incident wave

and vortex-filament.
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where p0, is the velocity potential of the scattered sound by the vortex. Then,
@ satisfies the following equations:??

_o'0 _ 2430 ) a
A@ 877 - _2895‘8?’ fOl‘ R1_<_R_<_Ra, (J)
and
G
49 — 5 = 0, for R<R; and R>R,. (4)

Assuming that |u«] <1, and neglecting the quantities of O (x?), we obtain from
(3) and (4)

_90_ 2 I, .
A = 55 = R bgae’ for Ri< R< Ra, (5)

and

40;~ ==} =0, for R<R; and R> R,, (6)

as usual in the Born approximation.
Boundary conditions® ¥ at R=R, are:

_ - 1 [90]
[0ne0 = [0Jnm0= 5 [ 5] ()
and
[ o0, _ o0, _ =173
lév?JRﬂJro [é?-]ﬂn-o T 2R} aRa‘P]Ru. (8)
Boundary conditions at R=R; are:
_ 1 (3,
[@1]1?[—0 [@Jnﬁ-o = m[ é? ]Ri ’ (9)
and .
o0 | _je0] _ —1T a0,
3% s (5% )0 = sl g (10)
At R= + oo, it is required that
lim @;=0. (11)

R+

Under the conditions (7)~(11), assuming that the “Aufpunkt” (7, ¢, 2) is far

from the vortex (7. e. R sin 6> R,), we obtain the following solution from (5)~
(6) for the case R;—0:

p0:(R, ¢, Z, 8)
TA 3 .
=\71~';TT—S~in——0 < exp [Z—E] « exp [2ni(r— R sin 6§ — Z cos 6)]
X[]o(élm?a sin ¢ sin —‘;—) —1] . {—1+23in2 6 sin -(Zﬁ « cot -C'Zi, (12)

with Jo (£) Bessel function of order zero.
Scattering intensity I and scattering power Lsc emitted per unit length of
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the vortex are

2 -
] R sin g °© F(Ra, Y 0) Io, (13)
and
Lsc »_—1‘—7/12772 27 '
I, 7 R, sindJ, F(R; @, 6)de, (14)

where Ly=27, sin 0 « I; is the sound power falling on the vortex per unit length,
Iy is the sound intensity of the incident wave (1), and

F(Ra, ¢, 0) = | Ji(4nRe sin 6 sin §-) - 1]
X {:1—2 sin® @ singig—}2 - cot? % (15)

Scattering power [ per unit volume is

[ = L“. (16)
71‘7'4
which has the following expressions in the limitting cases:
1= 22 R sin' 0 (sin'd + 4 cos™d) /{0, for R.< 1, (17
and
1=32 i’n (1 - 42—) sin ¢ L for R.>1. (18)
Ya

§ 8. Scattering of Sound Wave by Turbulence

In §2, we have discussed the scattering of sound by a single vortex. In order
to apply the results obtained in §2 to the turbulent medium, we shall assume
that the turbulence can be described by the statistical superposition of vortices
of different radii 7, different circulations [~ and different inclinations § with re-
spect to the propagation vector of the incident sound wave. As different vortices
are statistically mutually independent, the intensities of the scattered waves pro-
duced by them can be simply added. An assumption is made, also, that the time
required for the incident sound to pass through the vortex is small as compared
with the time in which the vortex undergoes any sensible change. This as-
sumption is equivalent to the requirment that R.> 4.

Let W (Ra, 0, #; v) dRa di dp be the probability such that the volume element
dr at a co-ordinate point r belongs to a vortex, whose radius falls in the region
between R, and R.-+dRa, dimensionless criculation /(2 nic) between # and u-+dpy,
and angle of inclination with regard to the wave vector of the incident wave
between ¢ and f+4df. The probability denszty funcion W (Ra, 6, u; ) has to
satisfy the following condition:

+

7 (" W (R 0, p5 ©) dRadbdu=1. (19)
L

0=0+ Ry=0
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Statistical independence of Ry, # and x, implies the factorization of probability
density functions, i.e.

W Ra 6, 05 v)=f(Re; v)og(l; v)*h{p; 1), (20)

which we shall consider hereafter.

With this probability density function W in (19), we can express the character
of the turbulence (e.g. the homogeneity, the non-isotropy and the isotropy) in the
following manner:

(1) Homogeneity
The turbulence is homogeneous, if W (R, 0, p; 1) is independent of r. In
symbolical expression, the homogeneity of turbulence means

AW (Ra, 0, p; r)

e = 0. (21)

(2) Isotropy
If the probability density function W is independent of the inclination of the
vortex, 7.e.

OW (Ra, 0, 15 1)

50 =0,

or

W(Ra, ﬁ n, 1') W1 (Ra, s 1’) (22)

or

g; v) = 1,

we shall call this isotropy “#-isotropy”.

(3) Extreme Non-Isotropy

When all the vortex has parallel axes, making an angle to the direction of
the wave vector of the incident wave, we call this non-isotropy “extreme non-
isotropy”. In this case the probability density function W is expressed as

W (R, 0, p; ) =606y - Ws (Ra, 13 r). (23)

(4) Amnisotropy

We shall call the turbulence “#-anisotropic”, if W (Ra 0, u; ¥; ax) is ex-
pressed by a probability density function, which, in extreme cases, is reduced to
(22) and (23) with limitting values of parameters a, involved in W. In another
word, the *“f-anisotropy” (non-isotropy) means that W has an intermediate
character between (22) and (23). For example, we can take W to be GauBian
with regard to 4:

(0 07,,) ]

WARa, 6, u; v) = exp{ * Ws(Ra, 15 1), (24)

where 0, and ¢ are parameters. The expression (24) is reduced to (23) when
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o—0. If we take (24) as a probability density function which describes the ani-
sotropy of turbulence, the parameter ¢ serves as a measure of the anisotropy
of turbulence.

Analogous considerations hold also for R, and g, if the radius and circulation
of the vortex vary statistically in the turbulent medium. The probability density
function f (R.) for R,>0 may be taken to be

(i) GauBian:

1 (Ro — Rp)* -
F(Re) = Vra exp{ - J 25
with two positive parameters Ry and o1,
(ii) y2-distribution of degrees of freedom »=>2:
_ B =22, _BRs
7 (R = gom o7y (8RS exp| - 2%, (26)
with a positive parameter 3,
(iii) with a parameter « = -g— >0 and » =2 in (26):
f(Rs) =aexp [—aR., @n
or
(iv) Rayleigh distribution:
Ra _Ra
F(Ry) = . . exp[ ~5 ], (28)

with a parameter o,
etc.
As for the distribution for u, we may take also the probability density
function % (u) as
(1) GauBian;
1 : (M—/lm)2

h(/x)z"/m'exp‘——*-é?} for — o << 4 (29)

(ii) 72-distribution of degrees of freedom s>2:

0= gy 0 el ) w

with a positive parameter 7, and for >0,
or
(iii) Rayleigh distrbution:
2

B =4 exn] =5 (31)

with a parameter oy,
etc.
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If all vortices have the same radius 7, or the same value of circulation o,
we can put
f (Rq) =4 (Ra - Ro), (32)
or
Flw) =8 (u— m).

Assuming (21), (33) and GauBian distribution both for # and R, just as in
(24) and (25), we write the joint probability density function W (R 6, ) as

follows:
(i) anisotropic case:
1 ) ﬁ""ﬁr})z RQ—EH z o
174 (R{z, 6, ,(l) = Zﬁdd; * £XD [ - (‘ ’2’8‘2“{"“} ° eXp{ - £*‘”2“';%“_z')"}'0 (/.l - /JO).
for 0<f<n and R:=>0 (34)

As is well known, the expression (34) leads to the Rayleigh distribution if

we put
‘32 = (5 - ﬁm)2+ (Ea - Rm)z
and
tan p= (Ra - Rm)/(ﬁ - ﬁ?ﬂ)-

(i1) isotropic case:
for R,.=0 (35)

L (Ra— Rm)*
W (Ra, 0, H)ZJancm -exp[~ Ty ]-B(M*"um).

In the above expressions (34) and (35), an assumption should be made that
(36)

20<m<m—20 and 2 61< Ry,
in order to keep the relative error, which may occur in calculating the value of

the probability, smaller than 5%.
If we take other probability density functions (for example 7*-distribution for
Ra=0), there does not occur such a trouble as to assume the range of parameters.

§ 4. Scattering Power in a Turbulence
Total scattering power L emitted from a turbulent volume V is calculated
by means of the probability density function W in (19) and (16).
mo Wel+dR,dfdndr.

= §5 L0

Calculation is made for the f-anisotropic and the f-isotropic cases. As the first
example, we take (32), (33), and g(d) to be GauBian as shown in (34), and

37

obtain: ;
(A) g (0) and f (R;) are GauBian
(1) 6-anisotropic case
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2 8
L=v-#5 DR (47-56 cos 20, - 2+ 12 cos 46 - E°
~8cos 68y« 5°+5cos 80, « P, (28)

for the case Ry<l, with Z=exp[ —¢*] and o<1, o1kl

—09 % Ve 272 2.[“.' . L 3
L=32-V-un (1-—-;) . - sin 6 * exp [ - 71 (39)
for the case Re>1.
(ii) 6-isotropic case
I = liLZZSV o 'R - :g".. for Ro<l (40)

and

L=6avepne(1-2) -2 for R>1 (41)

T 7o

The asymptotes of (38)~(41) are plotted against R, in Fig. 2., for
on= %‘MRO with the mean Mach number M. If we fix the radius of vortex 7. as

constant, R, is proportional to the frequency o of the incident wave. Accordingly,
the scattering power is proportional to the fifth power of frequency in the
region of small w, and is proportional to the second power of frequency in the

region of large w. The scattering power becomes maximum for 6,=90" and ¢=0,
and decreases with 6—0 or with 0-n.
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F1G. 2. Total scattering power versus radius
of vortex Ru.

As another example, we calculate the scattering power by means of (27).
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(B) g (0) is Gaubian and f(R,) is y*-distribution with »=2.
(1) 0-anisotropic case

2_6
L= v{%} b, (47 — 56 cos 20, » Z° 412 cos 4.0, * E°

A
et = . 532 '__ -a 2 2
—~8cos60y° "+ 5c0580p° 5 )x{ e (1+»&~+;2)
2 9 2 . .
+ S -2 (1-2) b sing 2w B~ ] @)
and
(ii) ¢-isotropic case
AT Ly s Do e 22, 2
L=qgg- Verta' e o {=e (145 + 2 )+ =
2 2 I .
—-V'64;/J7’:‘(1—'”T;~)'*—XQ*'Q”Ei("O.'), . (43)

with exponential integral Fi(£). In this case, the scattering power is proportional
to the third power of frequency of the incident wave, ie. propotional to the
third power of (1/2) if other parameters are kept constant. The graphs of (42)
and (43) are plotted against 1/ in Fig. 3, with N=T7/(zc).
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A

F1G. 3. Total scattering power versus wave
number 1/2.

§ 5. Discussions

1) In quantum mechanical analogy, we shall call the operator (2 p/R?) » & [ogor
appeared in the right hand side of the equation (3) “scattering potential”. In
equation (3) this potential comes essentially from the induced -velocity of the
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fluid caused by the vortex-filament lying at the z-axis. If @ is proportional to
exp [2ni(r—R sin § cos ¢)], the scatttering potential becomes to be proportional
to 1/R. As the type of the scattering potential is Coulombian, its integral
diverges at R=--o, and we have assumed that the potential is only effective
within a range R;<R<R, The divergence at R=-+o0 can be avoided if we
take the potential as a form:

expl —bR1/R, (44)

with positive 5. In this case, the parameter b measures the screening effect of
the fluctuating velocity field of the scattering medium.

2) The error of probability caused by cutting off the skirts of the probability
density functions of GauBian type (34) and (35), should be kept to be small (less
than 5%). Accordingly, the assumption (36) for 6, and R, is to be taken into
account. If 0, or R, does not satisfy the conditions (36), we should take other
probability density function which is defined in the interval 0<0<x for 4, or in
the interval R,>0 for R..

3) The upper limit R, of the radial extension of the scattering region should
be necessarily taken into account, if we take the joint probability density function
similar to W (Ry, 6, #; v), which is defined as the probability such that the volume
element dr at a co-ordinate point r belongs to a vortex, whose radius falls in the
region between R, and R,-+dR,. Accordingly, if we take the scattering potential
of the form (44), we may take R, such that

exXp [-bR.] = 1/2, ie. Ry= (log 2)/b
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