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ABSTRACT

An attempt is made to discuss an electroacoustic wave in plasma with the help
of the quasi-steady approach and the substitution method.

The result shows that the attenuation of the wave is a function of the steady
electric field existing in the plasma or the diffusion coefficient.

I. Introduction

A number of types of oscillation or fluctuation may exist in gaseous discharge
plasma.V-* Recently, many people have paid their attentions to low frequency
oscillation in connection with the problem on plasma instability.

The plasma ion oscillation may take place in plasma if a density disturbance
occurs. Under a certain condition, such local oscillation may propagate through
the plasma as an electroacoustic wave.

In a previous paper,” we discussed the problem as to whether the ion oscil-
lation could be transmitted or not with the macroscopic description and the sub-
stitution method and found that under a certain condition the propagation of a
steady low frequency oscillation was possible if the thermal velocity exceeds the
steady drift.

Our purpose of the present paper is to solve the same problem by means of
the quasi-steay approach.

II. Basic Eguation and Dispersion Relation

Many authors have used the quasi-steady approach to treat low frequency
phenomena such as moving striation® =% and screw instability.!

In this approach, the velocity expression is given by a sum of the drift ve-
locity due to the electric field, the diffusion and the thermal conduction. Thus,
the velocities of electron and ion are expressed respectively by
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where b is the mobility and D the diffusion coefficient. Here, for simplicity, the
second and the third terms are disregarded.
Then the velocities are
U= - b]E (3)
Uy = sz (4:)
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The basic equations in the quasi-steady approach are the continuity and the
Poisson’s equations. These are written as

a}’lz/alt—‘}' a/aJ‘C( - blEﬂ_{) = i T 711/'5‘ =0 (5)
one/ ot + 3/0x(02Ens) = mypi — ny/v =0 (6)
2E/9x = 4 rmelsm — n)) (7)

where »; is the production rate of electron and < the life time of electromn.
The electric field and the densities of electron and ion consist of two parts,
steady and perturbed, as follows;

E=E{l+cexpilKx— wt)} (8)
7y =n{l + prexp i Kx — wf) } (9)
Nz = 1m{1 + ¢ exp i Kx — wt)} (10)

where K is the propagation constant and o the angular frequency. If the ampli-
tude of the perturbed part is assumed to be much smaller than those of the
steady part, i.e., 1> 1>¢: and 1> ¢s, egs. (5), (6) and (7) are combined to yield
the following linearized equations;

i — dw -+ dwensh; — iKbiEy) — 4 menybygs = 0 (1D
-4 7?8730529’)1 -+ gf)a( —iw -+ 4 mebs - Z[fngo) = (12

Combining egs. (11) and (12), we have
Kb Ei — wKEo\ by — bs) ~ 0° + 1 4 wene(by 4+ bs) o = 0 (13)

Since we are concerned with the attenuation of wave, X is divided into two
parts, real and imaginary, as

K—': Kr“f"i‘Ki (14)

where K, is the wave number and K; the attenuation constant. Substituting eq.
(14) into eq. (13) and separating them into the real and imaginary parts, we get

(.ffi - K?)blngg - .Kero(b;{ - bg) - a)z = O, (15)
2 Ky Kibibo B — KiwEy(by — by) — 4 menyw (b + bs) = 0. (16)

Further simplification is made assuming that |K;| < |K,|. Therefore, the
validity of the result obtained from this simplification is justified only when the
attenuation is small.

Eq. (16) results in

Ki=4men(d, + b)) w/[2 K, b1 EX ~ wFEy(by — bs)]. (17)
Under the assumption made above, eq. (15) leads to
Kr = (O/szo or - w/bon. (18)

From eq. (15) the corresponding K; is found to be
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[{i = Z'EZLEQ’}’I(\/E(). . (19)

According to the final expression for K, it is obvious that the attenuation or
growing of wave toward the direction x is proportional to the plasma density
and inversely to the stedy electric field.

Further analysis will be given by making another assumption that the steady
electric field considered above does not exist, but a diffusion takes place instead.

With this assumption, the velocities are prescribed as

Uy = — blE - (Dl/%1)af’l1/ax (20)

instead of egs. (3) and (4). Here, it is noted that E comes from the perturbation,
which is expressed as

E=Eexpi(Kx— ot) (22)

The continuity equations are
oni/ot — b1o/3x(Eny) — Dd*ni/0x° =0 (23)
ons/ot + b0/2x(En) — Du2"na/2x" = 0. (24)

Adopting the same procedure as used above, we get the following relations from
egs. (7), (9), (10), (20) to (24);

( — =+ D1[<2 + 4 7T€7’lgb[)¢1 — 4 ﬂéﬂobﬂpz = O, (25)
— 4 ﬁ@ﬂqbg(/); -+ (ia) - Dsz -+ 4 ﬂeﬂnbz)qiz = (. (26)

The combination of these relations yields
D1D2K4+ {4 TEQ'}’lu(szL + bez) - i(O(Dl -} Dz)}Kz - (1)2 - 24: ﬁé?lo(b1 4 bz)a) = O (27)

Using eq. (14) and neglecting the second order of K or more, eq. (27) is re-
written by a set of the following relations, one being the real part and another
the imaginary part;

DD K+ 4 meng(byDy + b;D)KE+2wKK(Dy + D) —0® =0, (28)

4 DjDzKi[{l - a)Ki(D; -+ Dz) + 8 7‘58%9(1):}1)1 -+ lez)K'Ki - 47‘:‘2?20(171 + b;)a) = 0. (29)

Combination of egs. (28) and (29) leads to the following equation, from which
the wave number X, can be found as a function of various plasma parameters;

4 DIDAKE + 24 memD Dy (b Dy -+ b: Do) Ki + {82 7% ni(by Dy + b:Ds)*
+2(Dy+ D2)20)2>K72~ + 8 en (b + bz)(D1 -+ Dz)wz =0. (30)
This equation may have a real solution if the following condition is satisfied;

1 (Di+ Ds)* 22 2}(52D1“b1D2)2(D§—D§)2_(52D1+51D2)2(D1+D2)4 4
b, 77 e e, 4 | r fo

-+ “gM fei?’lé(szl + D)) ( D+ D)% — —g% 75t ni (6D, + lez)SJ =0 (31)
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In this case, X, is given by

K =2Y—e/2 —a/3 (32)
where
— e’ )
e=- E?DA;?? (0:D — b; D) (D} — DY) (33)
_ 67’:‘8)20( bgD;'}' bxng)
a= DD, (34)

From eq. (32), we obtain
K; = D?D; Umenw® (b: Dy — b1D:) (D} — D}) 2} — meny (. D; + b, D) ] 23)

The attenuation constant X; is found from egq. (29) as

K= A K7 (Di+ Ds) + dmeny(by+ b))

" KA4 D\D:K; + 8 meno(b2Dy + byDs) § (36)

General solution can be obtained without any restriction for . The solution
for K, is

e / o
K3=3‘/—-2£+\/7’+3,\/——§——\/T—a/3 (37)

I7I. Conclusion

We derived the dispersion relation for two extreme cases; one being the
drifting plasma with zero temperature, while the other the diffusion plasma with
a finite temperature. The form of the dispersion relation is quite different from
each other. Further study will be done in future.
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