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Preface

The Boolean algebra was devised already in the middle of the nineteenth
century by an Englishman George Boole as an algebra of calculus of propositions.
But it is as late as in 1938 that the algebra was put to use in the study of switch-
ing circuits by C. E. Shannon. Thenceforth, the analysis and the synthesis of
switching circuits which had been carried out only by skill and experiences have
largely been systematized. This epoch-making progress in the study of switching
circuits has caused, in conjunction with the progress of electronics, today’s bril-
liant development in electronic digital computers.

Although the application of the Boolean algebra to the study of switching
circuits has achieved a satisfactory result, this does not mean that there are no
problems left in this field. In reality, there remain a number of unsolved or
unexplored problems which call for creative activities of mathematicians and
engineers.

One of such problems is concerned with the search of a general method for
synthesizing the simplest switching circuit under a given standard of simplicity.
A simple circuit is desirable not only by simplicity but also by easy maintenance
and by high reliability. Further, although the profit gained by the use of simple
circuits may not be important in a single circuit, the total effect will be con-
siderable when the same circuit is used hundreds of times in a huge apparatus
like a digital computer. In this sense, the solution of the above mentioned pro-
blem has a primary importance. In spite of its importance, however, the solution
is very difficult, and it has not been so far attained even partially.

As a worker in this field, the author holds a conviction that the clue of this
and other similar problems, if any, must be a penetrating insight into the struc-
ture of Boolean functions representing the operations of switching circuits. Under
the structure of Boolean functions, we mean vaguely some intrinsic properties
such as symmetry or functional separability. It cannot be defined precisely,
because what is the structure is not an established proposition but a crude notion
to be clarified hereafter.

The present paper is the report of the work carried out by the author with
the above object. The contents will now be explained chapter by chapter.

The first two chapters are written as the preliminaries for the later chapters.
In Chapter 1, the fundamental concepts of the general Boolean algebras are ex-
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plained. Especially, the lattice theoretical and ring theoretical background of
Boolean algebras are clarified. In Chapter 2, the fundamental theories of Boolean
functions are described systematically together with the author’s contributions.

In Chapter 3, a new theory concerning the coordinate representation of Boolean
functions are developed. It is shown that the coordinate representation permits
a quick and easy recognition of various structures and leads to the discovery of
a new structure, by which new concepts for the classification of Boolean functions
are introduced.

Chapter 4 deals with the classification of Boolean functions of four variables
as an application of the theory of Chapter 3. Any two Boolean functions are said
to be of the same type, if and only if one of them can be transformed into the
other by a symmetry (a permutation and/or a complementation of variables).
Under the classification we mean to classify Boolean functions into types and to
select a typical function from each type. Functions of the same type are very
alike in many respects and the switching circuits realizing them are physically
similar. Herein consists the significance of the classification. However, on ac-
count of the prohibitive largeness of the number of types, it is impracticable for
the case of more than four variables. The classification of Boolean functions of
four variables has been carried out in the Computation Laboratory of Harvard
University, and the result has been published in the Appendix to the book,
“Synthesis of Electronic Computing and Control Circuits”. But the method used
was primitive and the accomplishment of the classification was possible only by
the help of a computer. The author reattacked this problem on the basis of a
new principle utilizing the knowledge of new structures of Boolean functions
obtained in Chapter 3. The process of the classification is described in detail in
Section 4.4. It is shown there that the process is largely simplified by virtue of
the new principle. The result is tabulated in Appendix 1. In the table, numerous
informations concerning the structures of Boolean functions which are not con-
tained in the Harvard Table are added newly.

In order to make the significance of the table more thorough, the author
synthesized switching circuits for all types of Boolean functions of four variables
which are minimal under rational standards of simplicity. The results are col-
lected in the table of Appendix 2. The table contains relay circuits, rectifier
circuits, vacuum tube circuits and transistor circuits. The summarized properties
of minimal switching circuits for Boolean functions of four variables and the
comparisons of the table with the Harvard Table (on vacuum tube circuits) and
Moore’s table (on relay circuits) are stated in Chapter 7.

In Chapter 5 and Chapter 6, various existing methods for the synthesis of
relay switching circuits (Chapter 5) and electronic switching circuits (Chapter 6)
are explained and supplemented with some new methods devised by the author
himself. These methods are illustrated by numerous examples based on the
experiences of the author. The examples are mainly concerned with switching
circuits for functions of four variables, but the methods are also useful for the
synthesis of switching circuits for functions of moderate number of variables. In
these Chapters, the emphasis is laid on the importance of the direct grasp of the
structures of Boolean functions.

In retrospect, a certain progress has been made in the application of Boolean
algebra to the study of switching circuits. However, many important problems
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are still left unsolved. The author is anxious to struggle with these problem
also in future.

The author wishes to thank professor Kazuo Kondo of Tokyo University and
Professor Zyurd Sakadi of Nagoya University for their valuable criticisms and
continual encouragements.
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1. Theory of Boolean Algebras

1. 1. Postulates of Boolean Algebras

The Boolean algebra is a class B with two rules of combination satisfying a

certain system of

postulates. There are many equivalent systems of postulates

each of which can be used to define a Boolean algebra. From among such sys-
tems, we here adopt the following one known as Huntington’s'.

Postulate 1a.
Postulate 10.
Postulate 2 a.
Postulate 2 0.
Postulate 3 a.
Postulate 3 b.
Postulate 4 a.
Postulate 40.
Postulate 5.

D cf. Ref. 27, p.

If x€ B and y< B, then x+y€< B.

If x€ B and y< B, then x-y€ B.

There is an element 0 € B such that x-+0=x for every x< B,
There is an element 1 € B such that x+1=x for every x€ B.

For any x and vy in B, x+y=y+x.

For any x and ¥y in B, x.y=y.x.

For any %, ¥y and z tn B, x(y+2) = (%+9) + (% 2).

For any %, vy and 2 in B, x+(y-2) = (x+y) « (x+2).

If the elements O and 1 of Postulates 2 are unique, then, for

31.
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every x< B, there is an element ¥’ € B such that x+x' =1 and
xex'=0.
Postulate 6. There are at least two distinct elements in B.

The first eight postulates are grouped together in four sets of each two, and
this grouping illustrates the perfect symmetry or duality of the algebra with
respect to the operations “+” and “-”% In fact, if, in any of these postulates,
0 is replaced by 1, 1 by 0, each + by -, and each - by -+, the result will be the
dual of the original postulate. This duality will appear also when we begin to
derive theorems from the postulates, for, if we are given some theorem, we can
immediately construct a proof of dual theorem starting with the dual expressions
and justifying each step by the dual postulates.

The two operations are called the addition and the multiplication. The symbol
“«” for the multiplication will be omitted whenever this does not lead to confu-
sion. Thus, for example, the expression x+ (y+z) will be written as x+ yz.

Postulates 3 are called the commutative laws and Postulates 4 are called the
distributive laws. The associative laws are not postulated. They will be derived
from the postulates as shown in the next section.

Now, for the sake of illustration, we consider a class B, of exactly two ele-
ments, 0 and 1, where the two operations are defined by:

04+0=0, O+1=1+0=1, 1+1=1,
1¢1=1,1-0=0.1=0, 0.0=0.

Let us now prove that B, satisfies the system of postulates and hence is a Boolean
algebra.

Postulate 1 a: Evident.

Postulate 1b: Evident.

Postulate 2 a: Since 0+0=0 and 1+0=1, 0 is really a 0-element.
Postulate 2b: Since 1-1=1 and 0-1=0, 1 is really a 1-element.
Postulate 3 a: Evident.

Postulate 3 b: Evident.

Postulate 4 a: Examining all the eight cases, we obtain the results shown in
Table 1.1.1, whose fifth column and eighth column indicate that the postulate is
satisfied.

Postulate 4b: Examining all the eight cases, we obtain the results shdwn in
Table 1.1.1, whose tenth column and thirteenth column indicate that the pos-
tulate is satisfied.

Postulate 5: 0+1=1+0=1and 0-1=1-0=0. Hence, if we put 0'=1 and

b Any two symbols, e.g., V and A, may be used for these operations. Here we follow
the latest engineering trend,
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1'=0, the postulate is satisfied.

Postulate 6: Evident.

TABLE 1.1.1

X ¥y z 1 y+z x(y+z) =xy xz xy+xz§ yz x+yz x+y x+z (x+y)(x+2)
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 o 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1 1 1 1
1 0 1 1 1 0 1 1 0 1 1 1 1
1 1 0 1 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

This simple Boolean algebra B, is called the fwo-element Boolean algebra.
It is observed that B, is isomorphic with a field with the character 2.

1.2. Fundamental Theorems

A series of theorems will now be derived from the postulates. The theoremms,

like the postulates, will be presented in pairs where each theorem is the dual of
the one paired with it.

Theovem 1.2.1a. The element O of Postulate 2 a is unique.

Proof. Suppose there be two O-elements called 0, and 0,. Then, for every
element x, we have: x-+0;=x and x+0,=2x  Now substitute x=0, in the first
equation and x=0, in the second equation. Then we obtain: 0.40;=0, and
0:4+0:=0:;. But 0:+0;=0,+0.. Therefore 0,=0:.

Theorvem 1.2.1b. The element 1 of Postulate 2 b is unique.
Theorem 1.2.2 a. For every %, x+x=x.

Proof. x+x=(x+2)1=(x+2)(x+x")=x+xx"=54+0=2x.
Theorem 1.2.2b. For every %, X%x=X.

Theorem 1.2.3a. For every %, x+1=1

Proof. x+1=(x+1)1=(x+D(x+2)=x+1x'=x+2'=1
Theorem 1.2.3b. For every %, x<0=0.

Theorem 1.2.4 a. For every x and v, X+ xy= x.

Proof. x+xy=x-1+xy=5(1+y)=x-1=ux

Theorem 1.2.4b. For every % and v, x (x+y) =x.

D This is the special case for #=0 of B.. See page 11,
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Theorems 1.2.4 are called the absorpiive laws.

Theorem 1.2.5. For every x, ¥ 1s unique.

Proof. Suppose x has %1 and x; such that x+x{=x+ x4 =1 and xx, = x%; =0.
Then G=les= (x4 x)x =2 +x12;= 0+ 215 = xi5 + xlx) = % (x+ %)) = %]+ 1
=2x;. Hence there is only one x’ and this called the complement of x. For
example, the elements ¢ and 1 are the complement of one another. In view of
the uniqueness of the complement, the unary operation x—s' can be defined in
Boolean algebras. The operation is called the complementation.

Theorem 1.2.6. For every %, (x) = 4.
Proof. Since '+ x=1 and x'x=0, x is the complement of %/, ie, (') =2
Theorem 1.2.7 a. For every x and y, (x+y) = x'9y'.

Proof. We shall prove that (x+y)+x'y' =1 and (x+5) -2’y =0. Then it is
clear that x+y and %'y are the complement of one another. In order to carry
out the above plan, we need the following two lemmas.

Lemma 1.2.1a. For every % and 3, x4+ (x' +y) =1.

Proof. x4+ (x'+y)=1:-[x+ (& +9]= (x+2)[x+ (z'+ 1]
=x+x (%' +y)=x+x"=1

Lemma 1.2.1b. For every x and v, x(x'y) =0.

We are now ready to proceed with the plan.

(z+y) +5y =[{x+) +21(x+3) +3']
=L+ L) 100+ +x]=1-1=1
(x+2) 5"y = x5 Y) +9(x'y) = 2(5'y) + (¥ ¥')=04+0=0.
This completes the proof.
Theorem 1.2.7 b. For every % and v, (xy) ="+ %,

Theorems 1.2.7 are called De Morgan’s laws and are very useful in mani-
pulating Boolean expressions.

Example 1.2.1. Find the complement of «[v'+ (wx'+5' %) 1.

Solution. [u[v' -+ (wx' +¥ )TV =o' +[v' + (wx' +¥'2)) =o' +v(wx' + 5 2)
=o' +o[(wx) (¥2)]=o' +ol{(w +2)(y+2)]

From the results of this example, it will be seen that De Morgan’s laws can
be generalized to the following rule: To find the complement of a Boolean expres-
sion, replace each -~bv -, each - by -+ and each letter by its complement.

Theorem 1.2.8 a. For every %, v and z, (x+5) +z=x+ (y+2).

Proof. The proof of this important theorem is somewhat difficult. Hunting-
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ton’s plan for the proof is as follows: Let (x+9) +2z=wnand x+ (y+2)=v». Then
show that v+2'=1 and va'=0. If these relations are true, #' and » are the
complement of one another, and consequently, (#')' =u=uv.

Now v+4u'=v+4 (x'y)2' = (v+4'y)(v+2)=[(v+2)(v+3)1(v+2).
Here the three expreessions v+, v+ 3 and v+ 2' are evaluated as follows.

v+a' =2+ [+ (y+2)I=o4+L(#) + (y+2)]=1

v+ =+ O o)=Y =y +ilx+ (y+2) 1=y + [+ 3 +2)]
=y+y+y)=y+y=1

v+ =(2+2) (F o) =2 taw=2+x+ @+ 2) =2 +[xz+2(y+2)]
=2+ (xz2+2)=2'+z2=1.

Therefore v+u' =[{v+4)(v+y)J(v+2)=(1:1)1=1.1=1.
Again vl =u'lx+(y+2)I=ux+u (y+2) =0 x4+ (1 y+u' 2).
The three expressions u'x, #'y and 'z are evalueted as follows.

w'x= '+ w0’ = %(x' + ') = ol + (8'y) 2] = 2L (&' +#'5) (%' +2') ]
=[x (%' +2)]=xx"=0.
uy=yy +yu' =y +u') =Ly + (¥ 1= L +4'¥) (¢ +2)]
=3[y +2) =3y =0.
wz=2z[2(x'y)]1=0.
Therefore va' =w'x+ (' y+u'2z) =04 (0+0) =04 0=0. This completes the proof.
Theorem 1.2.8b. For every %, y and 2, (xy)z2=2x(yz).

Theorems 1.2.8 are the associative laws. By virtue of the laws, we can write
Boolean sums and products without parentheses just as in ordinary algebra. Thus,
for example, the solution to Example 1.2.1 can be written as: [u(v'+wx' +y'2)7
=u +ov(w +x) (y+2').

Theorem 1.2.9 a. For every x and v, x+x'y=x-+y.
Proof. x+x'y=(x+x)(x+y)=1:(x+y)=2+y.
Theorem 1.2.9b. For every x and v, x(x'+y) = xy.

Theorem 1.2.10. For every %, vy and z, (x+9) (%' +2)=x'y+x2.

Proof. (x+3) (¥ +2)=%xx+x'y+x2+y2=0+x'y+x2+y2°1
=x'y+xz+yz2(x5+5") =x'y+xz+ 5 yz 4+ xyz
=x'y(1+2)+x(1+3)=2'y1+2xz-1
=x'y+ %2

Note that Theorem 1.2.10 is equivalent to its dual: xy+2x'z= (&' +9)(x+2).

Theorem 1.2.11a. For every x, y and z, [(x+9) (¥’ +2)) = (x+3) (2 +2').
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Proof. [(x+3) (&' +2)Y = (a'y+x2) = (x+3) (&' +2).

Theorem 1.2.11b. For every %, v and z, (xyv+x'z) =xy +x'2'.

1.3. Boolean Algebras as Lattices

For any two elements, ¥ and y, of a Boolean algebra such that x+y=2% we
write <y or y=« and read “v includes x’. 'The relation of inclusion, thus
defined, is by no means indispensable to the theory of Boolean algebras, but it
is frequently convenient as well as elegant to use this concept. In this section,
a series of theorems concerning the relation of inclusion will be derived.

Theorem 1.3.1. The relation x=y is equivalent to any of the following four
relations: (1) x+y=29, (2) xy=1%, (3) ¥ +y=1, (4) 2/ =0.

Proof. We shall prove the theorem by showing that (1) implies (3), (3)
implies (4), (4) implies (2) and (2) implies (1).

Assume (1), then #' +y=4+x+y=1+y=1. It follows that (1) implies (3).
Next, assume (3), then xy'= (¥ +9) =1=0. It follows that (3) implies (4).
Further assume (4), then xy=xy+x/'=x(y+y)=x-1=x It follows that (4)
implies (2). Assume, at last, (2), then x+y=xy+y=y It follows that (2)
implies (1). This completes the proof.

Note that x<y and x>y are the dual of one another, since they are equivalent
to x+y=y and xy=y respectively.

Theorem I.3.2. The relation of inclusion is reflexive, anti-symmetric and tran-
sitive, i.e., it is a partial order in B.

Proof. Reflexive law: x<x. Since x4 x=x, we have ¥=< x.
Anti-symmetric law: If x<y and x=y, then x=3y. x=%x+y=29.

Transitive law: If x<yand y<z, thenx<z x+z2=x+y+z=y+z=2z Hence
2= .

Theorem 1.3.3. 0 is the least element and 1 is the greatest element with respect
to the partial order <.

Proof. Since x+0=2x, we have 0<x and 1=x dually.

Theorem 1.3.4. The one-to-one mapping x—x' from B onto B is a dual-automor-
Dhism of B.

Proof. What is to be proved is that («')'=x, and «'=» if and only if x=y.
Now assume x<y, then we have x-+y=y which, when complemented, yields
&'y =9 It follows that ' =3. The converse will be proved similarly. (&) =x
was already proved.

Theorem 1.3.5. B is a complemented distributive lattice.

Proof. Since xz(x+ v) =2x, we have x< x-+y and, by symmetry, y< x+». Now
assume y<z and y<z, then ¥+y+z=(x+2) + (¥+2) =z+2=2 It follows that
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x+y=<z Hence x+y is the least upper bound or join of x and y, i.e, x+y=xV I
Dually xy is the greatest lower bound or meet of x and y, i.e., xy=xAy. Thus it
has been shown that B is a lattice. Its complementedness and distributivity are
evident from Postulates 4, Postulate 5 and Theorem 1.2.5.

1.4. Boolean Algebras as Rings

In the study of the theory as well as the applications of Boolean algebras,
some operations other than addition, multiplication and complementation are
frequently of use. As such auxiliary operations, we here consider the three
operations called Peirce’s operation, Sheffer’s operation and the ring addilion.
Their notations and definitions are given as follows:

Peirce’s operation: x| y=x'y'.
Sheffer’s operation: x|y=x"+y"
Ring addition: xPy=x'y+ 20 = (x+3) (&' + ).

The first two operations are interesting in the sense that each of them alone
can express the three fundamental operations. Indeed, we have

=25 =x1zx,
x+y=(y) = (1) I (x!),
xy= () () =(xlx) L (¥19)
for Peirce’s operation and
¥ =« +x'=x|x
x+y= () + (N = (x]%) [ (YD),
xy=(x'+3)' = (%]») [(x]y) -
for Sheffer’s operation. As a consequence, every Boolean expression can be ex-
pressed by any of the two operations alone. Besides this theoretical significance,
they are fundamental in the application of Boolean algebras to vacuum tube and
transistor switching circuits.
The ring addition has no such property as the other two, but it is rather

more important in other respects. The rest of the section will be devoted to the
description of its properties and their consequences.

Theorem 1.4 4. B is a commutative ring with respect to the ring addition and
the multiplication.

Pyroof. The ring addition is obviously commutative. Its associativity is
proved as follows.

(#DY)Dz= (xDy) 2+ (xPy)2 = (&'y+2y") 2+ (¥ y+ 22
= (x'y +Fa)z+(xy+xy) 2 = ('Y 2+ 2y2) + (&' y2' -+ 2'2)
= (¥ z24+x'y2') + (29 2 +xyz) = 2/ (¥ 2+ y2") + 2 2’ + y2)
=g/ (yz+y2) +x(yz2+y2) =5 (yPz)+x(yDz) = xByDz).

1) We adopt the symbol @ following the latest engineering trend. Some writers have
used this symbol for other purposes, but there is no fear of confusion.
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Hence we can write ring sums of any number of elements unambiguously without
parentheses.

Now observe that x®0=x and xPx=0 for every x, because xP0=2x-0+x0
=04x+:1=0+x=x and xPx=x'5+x2v"=0+0=0. Accordingly, B is an additive
group (Abelian group), 0 being the zero element and any element the negative
of itself. Furthermore, the distributive law holds between the ring addition and
the multiplication, j.e., x(y@z) = xy @z, because yBz) = x(y'z2+yz") = xyz+ %7
= (0+ 5V 2) + (0+xv2) = (& xz+ 25y 2) + (x5 +2y2') = (% + ¥ wz -+ xy(x +2)
= (xy) w2+ xv(x2) = xyDxz2.

Since the multiplication is commutative and associative, the theorem is proved.

Note here that B has the unit 1 (1+x=x), and every element of it is idempo-
tent (xx= x), or equivalently, B is a Boolean ying with uni?. Further note that
the addition and the complementation can be expressed by means of the ring
addition and the multiplication as x+y=xDyDxy and # =1Hx respectively.
The proof is as follows.

XxDyDxy= (5D9) 5+ (DY) () = (#'y+xy") 29+ (' y+ 2" ()’
= (dy Ly + (Fy+ ) (& + ) =2y +x'y -+ =5y +5) +x'y
=x+4y=5+2.

1@z=1ex+1:8=00+4=0+4 =2

Theorem 1.4.2. Let B be a Boolean ring with the unit I, then, if we define
i+ y=xDyDxy and x' =1Dx, B becomes a Boolean algebra.

Proof. Since any element of B is idempotent, we have:
Dy =(5Dy) (DY) = 2xDxy PyxDyy = DY DyxDy = (D) B (xyDyx),

and hence, xy@yx=0. Now, put y=x in the last equation, then we obtain x@x= 0,
which, in turn, vields xy=yx, because xy=xyD0 = xyDxyDyx=0Dyx= Y% Thus,
the commutative law of multiplication (Postulate 3b) is proved. Postulates 1, 2,
and 6 being evident from the begining, the remaining task is to prove Postulates
3a, 4 and 5.

Postulate 3a: x+y=xPyPay=yDxsDyx=y+x
Postulate 4 a: x(y+72) = 2(yDzDy2) = 1y Drz®xyz= xyDxz® (xy) (42) = XY+ 42.

Postulate 4b: (x+ ) (x+2) = (xDyD ) (xB2Dx2)
= 42 ® 22D 222D yr D yz D Y32 D 2yx D xy2P xyx2
= x@xz@xz@xy@yz@xyz@xy@xyz@xyz
= 5D (22D x2) D (59 D xy) Byz2® 192D (xy2 D xy2)
= xPyrDxyz =%+ Y2

Postulate 5:  zx' =x(1Dx) =xDxx=xDx=0.
s =Dy D' = xDHD0=xDx' = xD1Dx= 19xPx=1H0=1.

1 cf, Ref. 39,
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This completes the proof.
By the above two theorems, it has been shown that there is a one-to-one
correspondence between Boolean algebras and Boolean rings with unit.

1.5. Examples of Boolean Algebras

So far we have described fundamental concepts of Boolean algebras from a
purely formal point of view. In this section, we shall present several examples
to which the concepts of Boolean algebras can be actually applied.

1.5.1. Binary Functions
Let us consider the class F of all real-valued functions x(w), y(w), . .. which
are defined on a space I of points w and can take the values 0 and 1, and define:

x+y: Max(x, y),
xy: Min(x, v),
0: the function which is 0 all over I,
1: the function which is 1 all over I,
X 1—x
With these definitions, the postulates of Boolean algebras are satisfied, and hence,

F becomes a Boolean algebra. The proper interpretation of the relation of
inclusion and the ring addition is given by:

XSy xis equal to or smaller than v,
and xPy: x4y (mod. 2).

respectively, where the symbol + means ordinary addition. Owing to this inter-
pretation, the ring addition is called the addition modulo 2 sometimes.

1.5.2. Set Calculus
Consider the class S of all subsets X, ¥, ... of an aggregate I and define:

X+Y (XUY): the set of points w such that w€X or 0 €Y,
XY (XNY): the set of points o such that w =X and o €Y,
0 (8): the empty set,
1 (I): the whole space,
X' (X°): the set of points such that v X,

Thus interpreted, S becomes a Boolean algebra where the proper interpreta-
tion of X<Y and XY is given by:

XY (XCY): “Y includes X,
and XDY (XAY): (X*NYYUXNY?)

respectively. The name “inclusion” for the relation < has its origin in this in-

terpretation. The set XA Y is called the symmetric difference of X and Y because
it is the union of the two difference sets, Y- X=X’\Y and X— V= XN Ye



Study of the Structures of Boolean Functions 161

As is well known, there is a close relationship between S and F. That is:
To each X of S, there corresponds a unique x(w) of F such that x(w)=1 for
every we€ X and x(w)=0 for every o ¢ X. In this correspondence, the function
%(w) is called the characteristic function of the subset X.

The fact that the set calculus obeys the laws of Boolean algebras provides
an easy and quick method for proving or remembering the theorems of Boolean
algebras, because the corresponding theorems of set calculus can be proved or
remembered intuitively by the so-called Venn diagrams. As an illustration, let
us consider the theorems xy(x®y) =0 and xy+ (xPy) =x+y. The corresponding
theorems of set calculus are (XNY)N(XAY)=¢ and (XNYHIU(XaY)=XUY.
The venn diagrams of the sets XNY, XUY and XAY are given in Fig. 1.5.1.
A glance at these diagrams is enough to conclude that the intersection of XNY
and XAY is empty and their union is equal to XU7Y.

FiG. 1.5.1

1.5.38. Calculus of Propositions

Consider a class P of propositions x, ¥, . . . , where a proposition is a sentence
which is either true or false. We now define logical sum, logical product, falsehood,
truth and negative as follows:

%+y: “x or y”, a proposion which is true if and only if at least either of x
or vy is true,
xy: “x and y”, a proposition which is true if and only if both x and y are
true,
0: “falsehood’, a proposition which is always false,
1: “truth’, a proposition which is always true,
%': “not x”, a proposition which is true if and only if x is false.

With these definitions, P becomes a Boolean algebra. The proper interpreta-
tion of the relation x<y is “x implies y°, or more exactly, “x is false or x and y
are true”’. Consequently, for example, the theorems “If < yand y<z, then x= 2"
and “x' =y if and only if x<y” are interpreted as “If x implies y and y implies
z, then x implies z” and “Not y implies not x if and only if x implies y” respec-
tively. On the other hand x@y is read as “either x or else 3 and is interpreted
as a proposition which is true if and only if either x is false and y is true or x
is true and y is false. On account of this meaning of x®y in calculus of pro-
positions, the operation @ is called the exclusive or.

Calculus of proposions is indeed the origin of Boolean algebras. George Boole,
the founder, treated calculus of propositions in his first account for Boolean
algebras published in 1854.
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2. Theory of Boolean Functions

2.1. Boolean Functions

Consider # elements x, %2, . . ., %, of a Boolean algebra B, and assume that
they are mutually independent, or equivalently, that there is no relation among
them other than those derived from the postulates of B. Any expression formed
from these elements through Boolean operations is called a Boolean function of n
variables. The class of all Boolean functions of # variables forms a subalgebra
B, of B. B, is called a free Boolean algebra generated by n elements®. In this
chapter, the investigations will be mainly concerned with the structure of B, and
Boolean functions.

The simplest Boolean functions are the variables x; themselves and their com-
plements xi. These functions are called collectively as literals. Literals are
denoted conveniently by the symbols x{’ where a; belongs to a two-element
Boolean algebra By and #{*=x; if a; =1 and x¥ =x if a;=0.

Functions of the form 75" - - - x5 (%5 + 2+ - - - +x%) are called afoms
(anti-atoms). There are 2" atoms (anti-atoms) and they are denoted by the
symbols @i =« x§* - - - 43"(b; = x1* + 2+ - - - + x}") where 7 is the integer whose
binary expression is given by aias * - - an(Bif} - - - 8i). Thus, for example, the
four atoms (anti-atoms) of B, are ao= %1%}, @ = %%, @& =%% and as = %%,
(o= %1+ %2, b1 = %1+ %3, by=2x%{+ x2 and by =x{+x;). As is easily seen from De
Morgan’s laws, a; and b; are the complement of one another for every i.

Lemma 2.1.1. For any two atoms a; and aj, either aiqj = a;i=a; or aia; =0.

Proof. If a;=aj, then aiaj=ajai=a;i=a;. If, on the contrary, a; % aj, then,
putting @; = 27" % - - - %" and a; = 27'x* - - - #", we have aia; < x7*%%* for all k.
But xi*x3* =0, being % x} or xhxr, for at least one k. Hence aiaj = 0.

We shall now prove a fundamental theorem characterizing the structure of Bj.

Theorem 2.1.1. Every Boolean function f(xi, %, ..., %n) dan be wuniquely
represented by a sum of atoms as:

S

S, %oy ooy x0) =20 at, sy .o ., an)XT R L L L xS

and, dually, every Boolean functon f(%x1, %», . . ., %) can be uniquely represented
by a product of anti-atoms as:

Sy, w ooy xn) =TI0 Ay, as o vy ) + 28 + 25 4 - o 4227,

Proof. Let I be the set of integers [0, 1, ..., 2" —1]. Associate with each
non-empty subset S of 7, the function gs= >\a; and define g5 =0.
=

We shall prove: (1) gs=gr if and only if S=7T, (2) O=g, 1=g1, gs+&r
= gsur, 8s8r = gsar and g§= gs, (3) every Boolean function is represented by a gs.

Proof of (1): The “if” part being evident, it suffices to prove the “only if”

L) cf. Ref. 1.
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part. To begin with, it is noted by Lemma 2.1.1 that a;gs=a; if and only if
;=S and aigs=0 if and only if i€ S. Now assume gs=&r, then, for each i€ 5,
a;i = a;gs= aigr, whence i€ T. It follows that Sc T and, by symmetry, ScT.
Therefore S=T.

Proof of (2): By definition 0 = gy, while, by the distributive law, 1 = IT1(x; + )
j=1
=>a;=g. Next, gs+g&r= S+ Sai= S ai+ > 6= gsor+gser.  But
1€1 =8 iESnT

i=T iE8uT
clearly gsur= &sor, 0.0., gsur+ Gsar = gsur, Whence gs-+ gr = Lsuz- Again, by the

distributive law, gsgr= Siai* >aj= >, >.a;a;.  Therefore, by Lemma 2.1.1,
iE8

Jer ie8 JET

gs8r = .ESET ai=gs~r. 1t follows that gs+ &gse = Gsuso = &1 = 1 and gsgs = Zsnst = 85
=0, whence gt= gs.

Proooj of (3): By (2), every Boolean function of gs is initself a gs. There-
fore it is sufficient to show that every x; is a gs.  But, if X; denotes the set of
i=aias -+ - an such that a;j=1, then %= 2; IL (xx + %) = >\ ai = gs;

kspi =X

Let us now assume that a function f is represented by a sum of atoms, and
write :

Fy Foy o v s &n) = D010 = 20T agen e R x5

where fi = fura,...an 15 1 if @i is a summand of 7 and is 0 otherwise. Since the
above relation is an identity, any function can be substituted for any variable.
If we put m=ay, %2 =2 « - - , ¥n=0an then the atom #7'x3® - - - x%* becomes 1
while all other atoms become 0. It follows that flas, asz ..., &n) = fayayeer one
Thus the first half of the theorem is proved.

The proof of the second half is as follows. Associate with each non-empty
subset S, the function hszg‘;b; and define hy,=1. Then, by (2) and al=b;, we

obtain gs= hs. Hence it follows from (3) that every Boolean function is re-
presented by a hs.  Furthermore, this representation is unique by (1). Now,
for any function f, we have:
Py Koy v v vy an) = 200 (@, @z - Q)X xT e 2
which, when complemented, yields the representation :
S, %oy o v s %) = LAar, azs .. “71)+x§t1’+x§z’+ et +5C§tz"’]-
This completes the proof.

We can see from the proof of the theorem that B, is isomorphic with the
algebra of all subsets of 2" points and hence the total number of Boolean functions
of n variables is 2°". The sum (product) of atoms (anti-atoms) representing a
function f is called the standard sum {product) of /.  When f = g = hg, where
S=[a, b, ...,k land S°=[a, 0, ..., 2], the standard sum and the standard

product of f can be conveniently denoted by :

f=>0a, by ..., k)
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and f=11(a, 0,...,Fk)

respectively.

Example 2.1.1. Represent the function: f (%, 3, ) = xy+ xz+ yz by the standard
sum and the standard product.

Solution. The eight values f(as, as, as) are easily TABLE 2.1.1
evaluated and are given in the following truth table. ‘

Thus, the standard sum is given by: | r Y E !f (%, 2)

, , , . 0 0 0 0 0
F=%'yz+ 2y 2+ 22 + xy2=S(8, 5, 6, 7), 11001 0

and the standard product by: 21010 0
3/]011 1

= +y+2) (x+5 +2)(x+y+2)(%+y+2) 41100 0
=110, 1, 2, 4). S 101 !

6] 110 1

In connection with Theorem 2.1.1, an important 711 11 1

concept, dimension, is introduced.  The number of
atoms appearing in the standard sum of a function f
is called the dimension of f and is denoted by the symbol d(f). As is easily seen,
the dimension has the properties: (1) 0=d(f)<2" (2) d(f)=0 if and only if
f=0, and d(f) =2" if and only if f=1, (3) d(f) <d(g) if f<g and (4) aif) +d(g)
=d(f+d)+d(fg), in particular, d(f) +d(!) =27

Atoms are characterized by the property that dif)=1 if and only if f is an
atom. By the way, we shall show another characterization of atoms for later

uses.

Lemma 2.1.2. A Boolean function a is an atom if and only if a ++0 and either
fa =20 or fa=a for every Boolean function f.

Proof. The “only if” part being evident, we shall prove the “if” part only.
Let us assume that a function g is neither 0 nor an atom. Then g is a sum of
at least two atoms. Let @ be an atom which is a summand of g. Now, putting
f=a, we obtain fg=a. But obviously %0 and a+g. This completes the proof.

Theorem 2.1.2. For any set of variables, say, [%1, %, . . . , ¥s], every Boolean
Sunction f can be uniquely represented by a sum of the form:

Sy %y o vy %) = 208005 0 - 28 f (@, o L e, s, Bsrn, e e ey %),
and dually by a product of the form:
Sy, %2y oo 2n) = TEDAE 28+ - - - a4 flad, ady o o e, @l Hssny -« o o, 20) ]
Proof. By duality, it suffices to prove the first half. Since, by Theorem 2.1.1,

S, my oo o, ) = 2080045 - - - 25 fla, asy e . ., an)

1
=200 45 xS - xS ay, . . ., an),
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the possibility and the uniqueness of the representation are obvious. Now assume
that f is represented by:

JLCRE Y RS 5F TR 74/ SR ¢ FYS RN F9 §
Then, substituting #1=ay, %=« . . . , % = as, we obtain:

f(afl, A2y » o oy Agy Xstly o o oy Xn) =j¢1¢2‘.‘¢s(x5+1, e, Zn).
This completes the proof.

Theorem 2.1.3. For any set of variables, say, [x1, %, ..., %], and any
Boolean functoin f,

AT e (K, Xy e e e, Kn) = ATIATE 0 x5 o, Az e e e s @y Xl - - ey B,
and dually

AP AT Wy o . %)

a L3 o ! 1 /
=x11+x22+ AR +xss+f(((1, Ay o o oy (g Xstly « o o Xn).

Proof. From Theorem 2.1.2, we have:

2 3

AL e xE (g Ky e e, Fn) = AT xP AT xS (By By e -

Bs, Xsin - oo, %n).  But xfaf e aPallaf el is aPa - a8 I =0,
=P ..., as=Ps and is 0 otherwise. Therefore the first half is proved. The

second half is obvious from the duality.
In Section 1.1.4. we have seen that a Boolean algebra in a Boolean ring with
unit. Then, what can be said about the structure of the special Boolean algebra

B, as a ring?

Theorem 2.1.4. Let S(f) be the set of all Boolean functions g such that g<f
for a function f, then S(f) is an ideal of Bx. Conversely, every ideal of Bn is a
principal ideal of the form S(f).

Proof. Let g and & be any two elements of S(f), then
gPh=gW+gh=g+h=f+f=/,

ie., g®h is an element of S(f). Again, let g be an element of S(f) and % be any
element of B, then

IA
IA

gk 5

g
ie., gk is an element of S(f). It follows that S(f) is an ideal of Bx.

Now assume that S is an ideal of B,. Then, since Sis a sublattice of the
finite lattice B,, it has the greatest element, say, /. Hence SCS(f). While, for
any element g of S(f), g=gf € S. Therefore SCS(f). It follows that S=S(/).

The theorem indicates that there is a one-to-one correspondence: f <+ S(f)
between B, and the class of all ideals of B,. The ideals corresponding to atoms
are called atomic ideals. Clearly atomic ideals and only these are simple ideals.
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Theorem 2.1.5. B, is the direct sum of all atomic ideals.

Proof. What is to be proved is that every Boolean function can be uniquely
represented by a ring sum of atoms. But this is evident from Theorem 2.1.1
and the fact that fi+fi+ - +fm=fiDAD - - - Ofm if fif; =0 for every i+j.

2.2. Linear Functions

Boolean functions which can be formed from #» variables xi, %, - -, x» and
their complements through the ring additions only are called linear functions. In
other words, a linear function is a Boolean function of the form:

BixT D Baxt® D - - ¢ D Paxn’

where a's and #'s are elements of a two-element Boolean algebra B,. Making
use of the formula x'=1&x, every linear function is uniquely represented in the
standard form:

Bo® P12 D * -+ DPnZn.

For any linear function, the number of >0 such that g, =1 is called its
length. Thus, for example, the length of 0 and 1 is 0, and that of %D %®x
is 3.

Theorem 2.1.2. Every linear function other than 0 and 1 has the dimension
2n1,

Proof. First consider a linear function f with the standard form x:1Dx®
<+« @ and prove that f'= >V ai a3 - - - xF*, where >,/ means the summation
taken for all products x¥*x3* - - - x%* such that the numbers of x; with a; =1 are
odd. The proof can be carried out by a mathematical induction on the length
k as follows: The proposition to be proved is obviously valid for 2=1. Now

assume that it is valid for Z=m. Then we have: xDH® - %P xm+1
= (DD - Dam) X1+ (XD ® - - - @xm)x%q
= K1 20 AT HTE XA K DY AT S = o AP g e e o e,

where >\ means the summation taken for all products x'x3* - - + x5 such that
the numbers of x; with a;=1 are even. Hence it is also valid for k=m+ 1L

Thus, it has been proved that f is a sum of 2°°! products x¥'x5* - - - xF*. But
each of these products is a sum of 2"7* atoms x¥*x%* - - - xfFxfitt - - - 2% It
follows then that the dimension of f is 271277 % = 2771,

Next, consider a linear function with the standard form 1@ D %® - - - D %

Then, since it is the complement of the above f, its dimension is given by
2" — 2" =2""" This completes the proof.

In view of the fact found in the above proof, we call linear functions with
Bo=0 as odd linear jfunctions and those with Bo=1 as even [linear functions.
Evidently the complement of an odd linear function is an even linear function
and vice versa.

The totality of linear functions of # variables forms a commutative group
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L} with respect to the operation @, and its subset consisting of all odd linear
functions forms its subgroup L. Clearly the order of L is 2™ and that of L,
is 2"

A number of distinct odd linear functions %i, %, ..., ym are said to be
mutually independent if and only if S D B9:@D -+ ©Bmym=0 implies fi1=p:

= -+« =@,=0, where #'s belong to By. A number of distinct linear functions
Y 452 - - - e are said to be mutually independent if and only if the correspond-
ing odd linear functicns i, ¥, . . ., ¥m are mutually independent. As will be

easily seen, there is no set of more than # mutually independent (odd) linear
functions, but there are sets of n or less than z mutually independent (odd)
linear functions. For example, [%1, % . . ., %,] is such a set.

k-1 .
Theorem 2.2.2. There are 1})(2”—-2’)/1@! distinct sets of k mutually in-

k-1 .
dependent odd linear functions and 2F 1}0(2"-—2’)/,12! distinct sets of k mutually

independent lineay functions for every k= n.

k-1 .
Proof. It is sufficient to show that there are TI (2" —2") distinct ordered -

=0

tuples of mutually independent odd linear functions, because, to each set of k&
distinct odd linear functions [y1, ¥ - . . , ¥&], there correspond k! distinct ordered
E-tuples (¥, %o, - - - » ¥s), where (@, b, . .., s) is a permutation of (1,2, ...,k),
and 2F distinct sets [y1, %2 . . ., ¥&] of linear functions.

The proof can be carried out by a mathematical induction on the value of %
as follows: First, it is obvious that there are (2" —1) (2" —2) ordered couples of
mutually independent odd linear functions, because any two distinct odd linear
functions other than 0 are mutually independent. Next, assume that the theorem
is true for a certain 2. Now observe: For each k-tuple (i, ¥s, - . ., Y, the set
of all odd linear functions of the form B y1 D B23:® - - + © Bryr constitutes a group
L of the order 2% and yi, ¥s, . . ., ¥k Y&+1 are mutually independent if and only
if yr+1€ L. Accordingly, 2" —2F B+ 1-tuples (¥1, ¥ . . ., Y& Yk+1) can be con-
structed from each k-tuple (w1, ¥, . . ., ¥&). It follows that the theorem is also
true for 2+ 1. This completes the proof.

A mapping f— pf from L, (L3) onto L (L%) is said to be an automorphism
of Ly, (L%) if and only if it is one-to-one and preserves the operation ©, or
equivalently, x(f®g) = uf® pg. Now, let [y1, 9, . . ., ¥s] be any set of # mutually
independent odd linear functions, then it is evident that the mapping 8% ® B2%:
e D Bnkno P11 DB By D - -+ B Bayn is an automorphism of L, and the mapping
Bo@ B ® v+ Dfukn— foBBYID + -+ - ©Buyy* is an automorphism of L.
Conversely, let ¢ be an automorphism of Ly, then n odd linear functions i, p%,

. ., px, are mutually independent since the independence is preserved under

automorphisms. Thus, putting y;=px; (i=1, 2, ..., n), ¢ can be written in the
form B D Bw® - BBa%n— i1 BBy D + -+ BPuyn.  Similarly, any auto-
morphism z of L must be of the form Ro®@ 14D - -+ DBaka—> LoD PYI'D -+« -

B Bayi where pw=y¥ (=1, 2,..., n).
Now, as an immediate consequence of Theorem 2.2.2, we have:
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n—1 R
Theorem 2.2.3. There are II (2" —2') distinct automorphisms of L. and
=0

n-1 N
2" I_IO(Z” —2') distinct automorphisms of L.

2.3. Automorphisms and Symmetries of B,

A one-to-one mapping u: x—upx from a Boolean algebra B onto B is called an
automorphism of B, if and only if it preserves Boolean operations, .e., u(x-+3)
= px+py, p(xy)=px.uy and u(x') = (ux). From the definition, it is evident that
(1) #(xPy)=px®py, (2) px<uy if and only if x=<y, (3) ux=0 if and only if
x=0, (4) px=1 if and only if x=1.

Now we shall present a theorem characterizing automorphisms of B, the
proof of which calls for a lemma.

Lemma 2.3.1. For every automorphism p of Ba, pa is an atom if and only if
a is an atom.

Proof. “If” part: Let a be an atom, then, from Lemma 2.1.2, =40 and either
Ja=0 or fa=a for every Boolean function /. It follows that pe =0 and either
g-rna=0 or g.-pua= pa for every g, where we put g = uf. Hence, by the “if” part
of the same lemma, xa must be an atom.

“Only if” part: Assume that pe is an atom, then g '(ue)=a where p°! is
the inverse of p. Therefore, by the “if” part, @ must be an atom.

The lemma shows that atoms are permuted among themselves under an
automorphism of B,. Accordingly, the dimeneion is preserved under an automor-
phism of B,; for, if f=3>a; is the standard sum of f, uf = > ura; is the standard
sum of uf.

Theorem 2.3.1. Let a;— pa; be a permutation of atoms, then the mapping u
defined by u(>)Biai) = X\ Biva; is an automorphism of Bx. Conversely, every auto-
morphism of Bn is analytically expressed in a permutation of atoms induced by it.

Proof. First half: Let f=2>8;a; and g=>\riai, then uf=>\Bipa; and g
= > ripai. Since pa; are atoms, >,Biua; and >, 7;pa; represent the same function
if and only if f;=17; for all 4, e, f=g Hence u is a one-to-one mapping. Fur-
ther, u preserves Boolean operations, because

w(f+g) =p(XBiai+ 2riai) = (S Bi+ 1)) = DUBi+ ri) pai
=2\ Bipai + 201ipai = uf + ng,
v(f8) = (X Biai+ Xiria) = (X Biviai) = 2 Bivipai = 3. Bipnai » )1i pa
=ufug,

and p(f") = (X Bia) = 238} pai = (33 Bipa;)' = (uf)'. Hence p is an automorphism
of B,.

Second half: Let p be an automorphism of B, then, by Lemma 2.3.1, ai~>ua;
is a permutation of atoms. Since g is an automorphism, the image of f= S)8ia;
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must be pf = 3B pai. This completes the proof.
The theorem indicates that there is a one-to-one correspondence between the
permutations of atoms and automorphisms of B,. Therefore we have:

Theorem 2.3.2. There are 2"! automorphisms of By.

We now consider an important class of mappings from B, onto B, caused by
permutations and/or complementations of the variables x;, a2, . . ., 4. Obviously
any of these mappings is an automorphism of B,, since it induces a permutation
of atoms. This class of automorphisms is called the symmetry of B..

The totality of symmetries forms a finite group 0,, the law of combination
being defined by successive applications of symmetries, We adopt the usual cycle
notation for permutations so that, for example == (123) (45) means ‘“replace
by m, replace x, by x;, replace x; by x and interchange x, with . The com-
plementations of variables are denoted by operators v=[ab- - - ] which means
“prime g, %5, . .., x.”" Operators of the same kind as 7 are called reflexion
operators. Here it is noted that, for any reflexion operator v =[ab - - - ], and any
permutation raopetor z, n77~! is a reflexion operator and is given by a7x"!=[na,
7b - - - wk]. When this property is used, every element ¢ of 0, can be written
uniquely either in the form ¢ =7r or in the form ¢=rnr. Since there are 2" re-
flexion operators and n! permutation operators, the order of 0, is 2”"xn!. The
group 0, is recognized as isomorphic to the group of symmetry operations of #-
dimensional hypercube or hyperoctahedron and is called the hyperoctahedral group.

We now introduce the concepts of type and genus which are of primary im-
portance for the classification of Boolean functions. Their definitions are as
follows: Two functions f and g are said to be congruent or of the same type if
and only if there is a symmetry ¢ such that of =g  Two functions [ and g are
said to be of the same genus if and only if there is a symmetry ¢ such that either
af =g or of' =g Thus, the concept of genus is wider than that of type. Or-
dinarily, a genus consists of two complementary types. But there are genera
consisting of only one type, and it is clear that every function belonging to such
a genus (type) is congruent with its own complement and consequently of the
dimension 27-!  Such functions (types or genera) are said to be self-comple-
mentary. For n<3, every function of the dimension 27-! is self-complementary,
but, for n>=4, some functions of the dimension 2”-! are self-complementary and
others are not, as will be shown in a later place?.

By the well-known theory of finite group, the number of functions which are
congruent with a given function f is equal to that of left cosets of the group
G(f) where G(f) is the group formed by all symmetries ¢ such that ¢f =/ and is
called the symmetry group of f. Hence it can be obtained by dividing the order
of 0,, 2"n!, by the order of G(f).

A function whose symmetry group contains all permutation operators is
said to be symmetric and a function which is congruent with a symmetric func-
tion to be symmetrizable. Thus, for example, %%+ x1x;x5 is symmetric
and % %2x3 + %1 %345 is symmetrizable. The latter is sometimes said to be sym-
metric with respect to %5, % and x. The symmetric function which is the sum

of all atoms x7*x5* - - + x%" such that the number of variables x; with aj=1 is

1) See page 93.
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equal to 7 is called the fundamental symmetric function with the a-number 7, and
is denoted by S;i (%1, %, . . ., %s). Clearly there are » + 1 fundamental symmetric
functions S; (%, %, . . ., %) (=0, 1, ..., n) and their dimensions are () re-
spectively. With these conventions, the following theorem is obvious from
Theorem 2.1.1.

Theorem 2.3.3. Every symmetric function f can be uniquely represented by a
sum of fundemental symmetric functions:

f(xl,.. . xn)—_—Sa(xx, e ey Xn)+Sb(x1,. . e x71)+ R +Sk(x1,..., Xn)-

The right hand side of the above equation is called the standard form of
symmetric function and is abbreviated as Sas,...,2(%;, . . ., %1), Where we agree
that the g-numbers are arranged in the increasing order. Thus, for example,
X1 % %3 g+ %1 200 %5 %5 = So, 4l %y, %2, X5, %4). With this notation for the standard form
of symmetric function, we have the following theorems whose proofs may be
omitted on account of their simplicity.

Theorem 2.3.4. Sho, .. 2(%, « ooy %n) =Sarbr,. (%1, o « ., %n), where [a, b,
.., Eland La, b, ..., k] are the set-complement of one another with respect
to the set [0, 1, ..., nl

k
Theorem 2.3.5. Say....ap(%, « « « s %n) = 20 238(xt, « .., 55) Selafin, oo oy 20),

i=1b,¢
where [x, . . ., %51 is a permutation of L%y, . .., 2.1 and the first summation
should be taken for all pairs of a-numbers b and c¢ such that b+c=ai, 0=b=7
and 0Zc=n—7.
Thus, for example, we have:

S{,3,5(xl, X3, Xz, Xi, Xs) = So,2,4(961, X2, X3, X4, %5)
and So,2,4( %1, %o, %3, %1) = %1S0,2( %, %3, %4) + %1 S1,2( %2, %5, x4).

When a function f is invariant under the reflexion operator priming the only
one variable x;, f is said to be independent of the variable x; and % to be ines-
sential for /. A function is said to be degenerate or non-degenerate according to
whether it has inessential variables or not. Of course, variables which are not
inessential are said to be essential. Thus, a degenerate function is substantially
a function of essential variables only and can be written in a form where all the
inessential variables are absent. For example, the function ¥ % ¥+ %} % %3 + %1 %573
+ %% % is independent of the variable x: and can be written as x@x where
is absent.

A function which is invariant under the reflexion operator priming all the
variables is said to be anti-self-dual, since, by De Morgan’s laws, its dual is equal
to its complement. On the contrary, of course, a self-dual function is one which
is turned into its complement by complementing all the variables. Evidently, a
self-dual function is self-complementary.

A function whose symmetry group consists solely of the identity is said to
be perfectly asymmetric. Perfectly asymmetric functions are rather rare for mode-
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rate values of #. Indeed, as will be seen later?, there are no perfectly asym-
metric functions of three or less than three variables. But this is only a tran-
sitive phenomenon, and it has been found by Shannon? that the proportion of
perfectly asymmetric functions to all the functions of » variables tends to unity
when # grows indefinitely.

2.4. Functionally Separadle Boolean Functions

A function f(x, . . ., %,) is defined to be functionally separable if and only if
it is non-degenerate and there are a function f* of #—7+1 variables and a func-
tion g of 7 variables such that

f(x17 L ] xﬂ)zf*(g(x;ko LR x;k): x:’;l; L) x?;))

where 1<7<n and [x], ..., 5] is a permutation of [, . . ., %»]. This defini-
tion of functional separability is due to Pobarov.® There is another definition
by Shannon,” but his definition has a less applicability than Pobarov’s since he
imposes the condition 1<7<n—1 instead of 1<7<zn Thus, for example, a
function of the form g(#, . . . , %1-1) %, is functionally separable for Pobarov’s
definition but it is not for Shannon’s.

In dealing with functionally separable functions, it is often required to specify
the variables x7,. .., %7 and the function g. For this reason, the author refines
the definition as follows: The function f of the above definition is said to be
Ffunctionally separable with respect to x7, ..., x; and have the kernel g. Note
here that a kernel is a non-degenerate function of its variables, and further that,
if g is a kernel, g’ is so too.

The notion of functional separability is of a practical importance in the
synthesis of switching circuits, because functionally separable functions usually
permit economical circuit realizations. Accordingly, it is desirable to find some
criteria for this aspect of the structure of Boolean functions. One of such criteria
is given by Pobarov, who stated it in the following theorem.

Theorem 2.4.1. A function f(%, ..., %) is functionally separable if and
only if it is non-degenerate and there is a function glxi, . .., xF) such that all
coefficients, other than O and 1, of the expansion of f with respect to variables
x¥ia, ..., %k are equal to either g or g', where 1<7<n and [, ..., %] is a
permutation of L%, . . ., %nl

Proof. Obvious from the definition.

The theorem is stated with a theoretical simplicity but it needs fairly large
amount of calculations for its practical use. In fact, in order to determine
whether a function is functionally separable or not, we must expand it with
respect to every possible set of variables [xfy, ..., %] and compare all coeffi-
cients other than 0 and 1. But, when we find that some coefficient other than
0 and 1 is a degenerate function of variables i, ..., %5, we may immediately
conclude that the function is not functionally separable with respect to %7, . . ., %

1) See page 93. 2 cf. Ref, 36. 3 cf. Ref, 29, % cf. Ref. 36.
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and proceed to another expansion. Further, when the symmetry structure of the
function is taken into account, the amount of the test procedures will somewhat
be reduced, as will be seen below. At any rate, it is not, in general, an easy task
to determine whether a function is functionally separable or not.

Example 2.4.1. Determine whether the function:

(%, 3, 2)=x'Y' 2+ &' ya+ xy'2 + xy2'
is functionally separable ornot.

Solution. Expanding f with respect to x, we obtain f=«'z+x(yDz). But
2xy®Pz and 2’ yDz. Hence f is not functionally separable with respect to v
and z.

Expanding f with respect to », we obtain f=y'z+y(xDz). But z=x xPz and
Z' % x@z. Hence f is not functionally separable with respect to x and z.

Expanding f with respect to z, we obtain f=2zxy+z(«'+%'). This time,
(xy)!'=«'+3". Hence f is functionally separable with respect to ¥ and y and can
be written as f=xyPz.

The functional separability or inseparability is obviously preserved under
symmetries and complementation, i.e., ¢f for any symmetry ¢ and s/ are function-
ally separable if and only if f is so. Thus, we have:

Theorem 2.4.2. Functions of the same Zenus are either all functionally se-
parable or all not.

On the other hand, there is a close relationship between the functional separa-
bility and the symmetry structure of Boolean functions. The most apparent fact
in this respect is that, when a function f is functionally separable and has the
kernel g, the symmetry group of g is a subgroup of the symmetry group of f .
Hence a function can be functionally separable only when its symmetry group
contains some subgroup which is competent to be the symmetry group of another
function of fewer variables. Thus, for example, no perfectly asymmetric function
of four variables is functionally separable, since no function of less than four
variables is perfectly asymmetric.

Now we are going to derive a series of theorems clarifying more complicated
natures of the relationship. To begin with, concerning the functional separability
of a function which is invariant under the symmetry of the form (ab), [abl(ab)
or [c](ab), we have:

Theorem 2.4.3. Let f be a function which is functionally separable with
respect to a set of variables A, and let %4, x5 and x: be any three variables such
%€ A, xE A and x.& A, Under this condition: (1) If f is invariant under (ab)
or Labl(ab), then f is functionally separable with respect to AULxs); (2) f is
never invariant under Lal(ab) and [b1(ab); (3) f is never invariant wunder
[cl(ab).

Proof. Expand f with respect to all variables outside A except x» and choose
an arbitrary coefficient of expansion % other than 0 and 1. Again expand % with
respect to x; and x5, and write
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ho= %4 xp ho -+ % X6 Iy + %a X6 He -+ Xa %6 Ba.
Further, rewrite this as h= %58+ %651,
where So= Xp P+ Xaha and 81 = Xphi+ Xz hs.

Now, since f is functionally separable with respect to A, and g and g are
coefficients of expansion with respect to all variables outside A, each of them is
equal to g or ¢’ unless it is 0 or 1, where g is the kernel of f.

Proof of (1): It suffices to consider the case where f is invariant under
(ab) ; for, if f is invariant under [abl(ab), [alf is invariant under (abd).

Now assume that f is invariant under (ab). Then, since % is also invariant
under (ab), we have

(ab)h = %4 %4 ho + %y 26 ho + %2 %5 By + Xa %o hs = h,
and consequently, hi= ha.

It follows then that there are exactly three cases: (i) =% =0, (i) h=h=1,
(iii) h; = hy are neither 0 nor 1. Let us examine these cases in detail.

(i) When hi=h=0, we have go=x,hy and g = x.hs First, it is evident
that @1, gi>1, @o=g unless S =g=0 (hy=hs=0) and g=gi unless &=
and g =x, (hy=hs=0). But both provisos are unnecessary, since, if g =g =0,
h is 0, while, if g =« and g = %,, g is degenerate. Hence exactly either of g
or g, must be 0, since, otherwise, we have g =g or & =g It follows then that

either (@) go=0 (ho=0), g =2%hs and h = xa25lis
or (b) go=124h0, &=0 (ha=0) and & = x5 x5 o

(i) When A= h. =1, we have g = %+ h and g = x,, + hs. First, it is evident
that gox0, &1=0, =g unless Z=g=1 (ho=h;=1) and g=g unless g =%
and g1=x; (Bo=hs=0). But both provisos are unnecessary, since, if & =g =1,
h is 1, while, if g =%, and g, = x}, g is degenerate. Hence exactly either of gy or
& must be 1, since, otherwise, we have gy =g or @& =gi. It follows then that

either () @=1(ho=1), gi=%,+hs and h=x,+ x5+ hs
or (d) go=2%a+hy, g1=1 (hy=1) and k= x5+ % + ha.

(iii) When h; = &, are neither 0 nor 1, both of g and g are neither 0 nor 1,
and consequently, either gy =g; or go=g. If we assume g, =g, we have hy= M
= ha = hs, and therefore, gy = g1 = ho. But this is impossible because this means
that g is independent of x.. Hence gy =gi, i.e., hi=hi=he = hi. It follows then
that

(e) go=xa@ho, g1 = (xa@ho), and h:xa@Xb@ho.

Thus, we have shown that there are five cases (a), (b), (¢), (d) and (e) for
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an arbitrary . Now observe: The kernel g is xhs or x;+ s for (a), xhhe or
%2+ 1) for (D), xh+ hs or xghi for (), xa -+l or xzhg for (d) and %, h, or %2 D hy
for (e). Accordingly, there are exactly three possibilities :

(I) either g0=0, &=%0 and h = %2R

or =1 g=x+n" and h=x;+xp+ 7'
for every h;

(II) either Go=2%u0, g=0and h=x,%h N

or G=%+T0, g=1and h=x+ %+ "

for every h;

(II1) either G0=%Dh, G=%DN and h=%DPxDh
or G =%DN, g =%Ph and h=2DxDF,
for every h;

where % is a non-degenerate function of all variables of A except %

In each of the thre epossibilities, the forms of k indicate that f is functionally
separable with respect to A U[x], the kernel being Xaxs B OF Xh+ x5+ R for (D),
%o xb T or %+ %+ 7' for (JI) and %@ %Dk or %D @ k' for (III).

Proof of (2): It suffices to prove that f is never invariant under [al(ab),
since, if f is invariant under [6](ad), [alf is invariant under Lel(ab).

Now assume f be invariant under [el(ab). Then, since & is invariant under
Lal(ab), we have

Lal(ab)h = xb xhhy ++ %0 % ha + XaXpTo + XaZpha = I,
and consequently, Bo=ho = ha = hs.

Thus, we arrive at a contradiction g = g1 = ho, since this means that gis indepen-
dent of ..

Proof of (3): Assume f be invariant under [¢1(ab). Then, since 2 is also
invariant under [¢](ab), we have

Cel(ab)h = xbxh Cedho + % 25 LeIhs + waxelc 1+ xa 2 LcIhs = B,

and consequently, [¢lhy = ko, [clhs= hs and Lclhy = he.

It follows from [clh: = s that there is exactly three cases: (i) hi=h.=0, (i)
Bi=he=1, (iii) hi= ks, are neither 0 nor 1. When we examine these three cases,
the five cases of (1) will be reproduced. But, in each of the five cases, we have
a contradiction that g is independent of xc, since %, and ks are independent of xc.
This completes the proof.

Next, as a generalization of (1) of Theorem 2.4.3, we have:
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Theorem 2.4.4. Let A and B be any subsets of Lxy, ..., %,1 such that
ANB=0 and AN B= 0, then a function which is functionally separable with
respect to A and symmetric with respect to B is functionally separable with respect
to AUB, B and AN B

Proof. The proof can be carried out by induction.

First, assume that A°U B consists of only one variable, say, %. Choose any
variable %, from ANB. Then f is invariant under (@d), so, by (1) of Theorem
2.4.8, f is functionally separable with respect to AU[x]l=AUB, the kernel h
being %7 or xh+ ' for (1), x4 T or %+ 7 for (II) and %@ 7 for (11D, where hisa
non-degenerate function of variables of AU B except ¥a. Now we shall investigate
the structure of % for each of the three possibilities, using the property that 7
is symmetric with respect to B.

(I) We may put &=, Then we have 1 =%, and therefore, by symmetry,
< for all the variables x; of B. It follows that % < %.% * * + % wWhere we put
B=1[%;, %, ..., 1. Thus, we conclude that

D= oy » c %" Or h=xp+xp+ o +as+ Y,

where h* is a non-degenerate function of the variables of A n B
(II) We may put % = x, % Then, by the same reasoning as above, we arrive
at the conclusion that

ho=ahah v oSBT Oor B=Xa4+ x4 ¢ o+ %+ RV
() h=%®h Adding %Dx%® -+ - ®x (ring sum), we obtain
AP xPDx® - Dae=hPx® - -+ Dus.

The left hand side of the equation is obviously symmetric with respect to B.
Further, it is independent of x,, since the right hand side is so. Therefore, by
symmetry, it is independent of all the variables of B. Thus, wo conclude that
hPxDxD - - - Das= k¥, or equivalently,

h=%D %D - - - DasDh*.

Now observe: In each of the three possibilities, # is functionally separable
with respect to both of B and An B°. Hence f is also functionally separable
with respect to both of B and AN B-

Next, we shall prove the theorem when A°N B consists of m-+1 variables
under the assumption that the theorem is proved when A°N B consists of m
variables.

Let x; be any variable of AN B, and let B* be the set of all the variables
of B except x,. Obviously A°N B* consists of m variables, and An B*x¢. More-
over, f is symmetric with respect to B*  Hence, by the above assumption, f is
functionally separable with respect to A*= A UB*. Here ohserve: A*n B= ¢ and
A% B=T[xs]. Therefore f is functionally separable with respect to A*UB
=AUB, B and A*n B°=An B-

Thus, by induction, the theorem is proved,
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The above two theorems are useful for reducing the test procedure of func-
tional separability when the knowledge of symmetry structure is available. For
example, when a function is known to be symmetric with respect to a set of

variables A, it is sufficient to expand the function with respect to sets of vari-
ables B such that AnNB=¢ or AcB.

Besides this usefulness, Theorem 2.4.4 has x}ery interesting consequences,
Theorem 2.4.5 and Theorem 2.4.6 which are originally due to Pobarov?.

Theorem 2.4.5. A function of n variables %, %s, . . ., %n which is symmetric
as well as functionally separable is nothing but one of the six functions: X %
T X XXt Xk, X v A% XA A o X G PH® - x,
(D2 ® - - Dy

Proof. Almost obvious by the proof of Theorem 2.4.4.

Theorem 2.4.6. A function of n variables which is symmetrizable as well as
Junctionally separable is nothing but an atom, an anti-atom or a linear function
of the length n.

Proof. Obvious by Theorem 2.4.2 and Theorem 2.4.5.
Example 2.4.2. Test the functional separability of the function:
fw, x, 9, 2) =wxy+wxz+wyz -+ xy2-+ 5 y' 2.

Solution. As will be seen easily, f is symmetric with respect to x, v and =z.
So we may only expand f with respect to w. Thus, we have

f=w(xyz+ %'y 2) +w(sy+xz+yz2+2'92).

But w-coefficient is equal to neither w'-coefficient nor its complement. Hence f
is not functionally separable.

2.5. Monotonous Boolean Functions

Let (a1, a2 ..., an) and (B, B . . ., Bn) be any two ordered =-tuples of
elements of By, then we define (a1, @2, . . ., )< (B, By - . ., Bn) if and only if
a;i = Bi for every i. Evidently this relation is a partial order by which the class
of all such #n-tuples B” becomes a Boolean algebra,

where 0=(0,0,...,0),
1=(L1,...,1)
(a1, as, o ooy an)+ By, Boy v v oy Bn) = (a1 4By, QB2 o ooy @ntBa),
(os, @z, o ooy an) e (B, Boy o ooy Br) = (1B, 2B . . ., anfin),

and (ay, as, ooy an) = (al, ai, . .., an).

As we saw already in Theorem 2.1.1, a Boolean function f of # variables
is completely specified by 2" values f(ai, as, . . ., as) €B,. Hence it can be
regarded as a mapping from B” into B..

1) cf. Ref. 29.
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A function f which can be regarded as an order-preserving mapping from B”
into By, or in other words, a function f such that f(ai, as ..., an) SSf(B1, Bo
vy Ba) if a, @z .o, an) = (B1, By, . - -, Bn), is said fo be monotonous.

Theorem 2.5.1. A function is monotonous if and only if it can be formed
from the wvariables through additions and multiplications only (without use of
complementations).

Proof. “If” part: First note that, for any two monotonous functions, their
sum and product are both monotonous. Accordingly, it suffices to show that every
variable x; is monotonous. But this is obvious since xi{ay, a2 . . ., &n) = ai.

“Only if” part: For any monotonous function f, let S be the set of all
=(ay, @z . . ., ap) such that f(ay, az. .., as) =1. Further, let aV = (al?, af?,
..., a®) be a minimal element of S and S; be the subset of S formed by all

a« €S such that a=«'”. Then it is observed that S= U S; where the union is

taken for all minimal elements «”. Evidently s is the sum of atoms xi’x3* - - -
%% such that (ai, a2 . . ., an) €S, and therefore, it is given by /= Z /i where

7i is the sum of atoms x*x5* - - + 27" such that (ai, az, ..., an) €Si.

We shall now show that f; is a product of variables. ~Without loss of gen-
erality, we may assume that ai’ =af’= -+ =a’ =1 and afly= + -+ = af =
Then f; is the sum of all the atoms x'x5* - « + 45" such that e =az2= - -+ =as=1,

and hence, is given by:

@5ty &

ﬁ:lexz N xsxgi'}il P x‘;‘;",—_xlxz . x52x8+1 P xﬂ“

n
1
=X1X tt Xs 11 (xj+xj)=xlxz ¢ Xs.
J=s+1

Thus, it has been shown that f is represented by a sum of products of varia-
bles. This completes the proof.

We see from the theorem that the class of all monotonous functions of #
variables is nothing but a free distributive lattice generated from n variables. The
problem of counting the number F, of elements of free distributive lattice gene-
rated from # variables was proposed by Dedekind and has been solved up to # =6.
The results are reproduced in Table 2.5.1. Some estimates
of F, for larger values of # and further accounts related TABLE 2.5.1
to monotonous functions was given by Gilbert®.

Obviously, for any function f and any permutation " I F"w__
operator 7, nf is monotonous if and only if f is monotonous. 1 3
But, for any complementation operator 7, 7/ is not mono- 2 6
tonous even if f is monotonous. Hence the monotony is 3 20
not preserved under symmetries. However, it can be said 4 168
in general that a function is congruent with a monotonous 5 7,581
function if and only if it can be formed from = literals 6 7,828,354

¥, %52, . . ., %% by additions and multiplications only.

L cf. Ref. 8.
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2.6. Geometric Representations of Boolean Functions

2.6.1. Representation by n-Cube.

Associate with each atom x7'x%* - - - x%" a point of xn-dimensional space with
the coordinates (a1, @2, . . ., @x). Thus, we obtain a one-to-one correspondence
between atoms and vertices of the unit hypercube of n-dimensional space, or
simply, n#-cube. Since any Boolean function is represented uniquely by a sum of
atoms, it is represented uniquely by a set of vertices of z-cube. For example,
the functions of three variables /= >3(0, 6, 7) and g= 33(1, 2, 5) are represented
by the sets of three vertices shown in Fig. 2.6.1 and Fig. 2.6.2 respectively.

00 014 00 011

000, 010 000 010
500 110 100 110
FIG. 2.6.1 FIG. 2.6.2

At a glance, it will be recognized that f and g are congruent with each other.
The relation between them is given by g=[21(13)/.

Now a distance is defined between vertices of z-cube as follows: For every
pair of vertices p= (a1, a2, . . ., an) and ¢ = (By, B2, . . ., Bx), the distance between

n

them is defined by: d(p, @) = > la;— B:l. As will be easily verified, the distance

=1

axioms are satisfied, that is,

(1) d(p, @) =0, if and only if p=g,
(2) d(p, @) =0 for every pair of vertices p and g,
(3) d(p, r)Y<d(p, q) +d(q, v) for any three vertices p, g and 7.

In connection with this distance, a sphere can be defined on n-cube as follows:
Let p be an arbitrary vertex, then, by a sphere of radius » about p, is meant the
set of vertices p such that d(p, ps) =7. By this definition, every sphere has two
centers which are called as the nmear-center and the far-center*. As an illustra-
tion, consider the two spheres on 4-cube consisting of the following sets of

vertices:

(a) (O) 0: 0’ 1) and (b) (1» 1: 1, O)

(0,0,1,0) (1,1,0, 1)
0,1,0,0) (1,0,1,1)
(1,0,0,0) 0,1,0,0)
(0,0,1,0)
0,0,0,1)

(a) is a sphere of radius 1 about the near-center (C, 0,0, 0) and at the same
time a sphere of radius 3 about the far-center (1,1,1,1). On the other hand,

b cf. Ref. 15.



Study of the Structures of Boolean Functions 179

the near-center and the far-center of the sphere (b) are (1,0, 0, 0) and (0,1, 1, 1)
but the radii are 2 for both centers. In general, if a vertex (a1, @2, » oo, @n) 18
the near-center of a sphere of radius 7, then the vertex (ad, ad, ..., ah) is the
far-center of the same sphere and the corresponding radius is n#—7 where we
assume r=n—7.

Notice that a function is congruent with a fundamental symmetric function
if and only if it is represented by a sphere. Accordingly, a function is sym-
metrizable if and only if it is represented by a set of cocentral spheres. Es-
pecially, a function is symmetric if and only if it is represented by a set of
cocentral spheres about the centers (0,0, ..., 0) and (1,1,...,1).

The notion of the distance has other important applications in the theory of
error detecting and correcting codes but we shall not enter into such a problem.

2.6.2. Representation by 2"-Cube
Associate with each Boolean function s of n variables a point (Bo, Bis =« « »
Bwm-q) in a 27-dimensional space where we assume that 7 has the standard sum

f=S)Bia;. This gives rise to a one-to-one correspondence between Boolean func-
tions of » variables and vertices of 27-cube. Thus, in contrast with the repre-
sentation by #n-cube, every function is represented by a vertex of 27-cube. In
spite of this theoretical simplicity, this representation is of little practical use,
because it requires a space of a very high dimension even for a moderate value
of . But it is of theoretical importance, opening up a way to the development
of a theory of the coordinate representation which will be treated in detail in the

next chapter.

2.6.3. Representation by the Karnaugh Map

As we saw already in Section 1.5, the Boolean algebra can be interpreted as
the algebra of set calculus. Accordingly, Venn diagrams can be used to represent
Boolean functions. In Fig.2.6.3, a Venn diagram
for the representation of Boolean functions of
two variables is given. In the diagrams, each
area represenets an atom named by its entry.
For examyle, the area which is inside the circle
x and outside the circle y represents the atom xy'.

Venn diagrams using only circles can be used
for as many as three variables, but beyond this, po 7
they are of no use, because we can not produce
all possible areas corresponding to all atoms. FIG. 2.6.3
Therefore some figures other than circles must be
used for four or more than four variables. In Fig. 2.6.4 is given a Venn diagram
for four variables using rectangles. It is noted that the 16 atoms are arranged
in the form of a 4 by 4 matrix. The arrangement is made clearer when we
simplify the diagram as shown in Fig. 2.6.5. The simplified diagram is a very
excellent tool for manipulating Boolean functions of four variables and is called
the Karnaugh map?. In each cell of the map is entered the serial number of the
atom represented by it. For example, the cell located at the intersection of the
third row and the first column contains 14, because it lies within the regions

1
xly?

1 cf. Ref, 13.
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¥
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x 6 |7 5|4
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14 {115 | 13 | 12
w w

101998
¥y

Fi1G. 2.6.4 FIG. 2.6.5

w, x and y but outside the region z and therefore it represents the atom au = wxyz'.
An important feature of the map is that, if we start from any cell and move
either horizontally or vertically, the adjacent cell we reach always represents an
adjacent atom, where atoms are said to be adjacent if one is obtained from the
other by complementing one of the variables, or equivalently, the distance between
the corresponding vertices of n-cube is 1. These adjacencies exist not only within
the interior of the map, but also between the two ends of each row and each
row and each column. That is: The bottom cell and the top cell in any column
and the right cell and the left cell in any row are adjacent. In this sence, the
Karnaugh map is to be regarded as a map drawn on the surface of a forus.

%
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; 2 10

110 3 o é 5
x(|3 |2 (| 67|54 14 15 {43 |12

k4
¥ v 1001119 |8
¥
(a) (b) (c)
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18|19 171612131110 w [ 13931 |29 |28 {14 |15 |13 |12
222312112016 715 |4 X 26 127 [25 |24 {10111 (9 |8
Y 30131 |29 |28 {14 [15 |13 h2 50 |51 |49 48 |34 |35 (33 32
26|27 125 24 {10 |11 |9 | 8 u 54 |55 B3 |52 |38 |39 3T |36 x
y Y w| |62 163 61 |60 146 |47 45 44
- 58 59 |57 56 |42 45 |41 140
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Karnaugh maps are also formed for other numbers of variables. In Fig. 2.6.6,
maps for two, three, five and six variables are shown and a map for four variables
is reproduced for comparison. Maps for more than four variables are formed by
combining 4-variable maps. For example, the map (d) for five variables is formed
by combining two 4-variable maps; the map (e) for six variables is formed by
combining four 4-variable maps. In maps for more than four variables, adjacencies
exist not only within each 4-variable submap but also between any pair of cor-
responding cells of adjacent submaps. Thus, for example, in (e), not only the
cells 16, 25, 26 and 28 but also the cells 8 and 56 are adjacent to the cell 24. In
principle, Karnaugh maps can be formed for any number of variables but they
are difficult to use if more than eight variables are involved.

Now we shall show how to plot a function on a Karnaugh map by an example.

Example 2.6.1. Plot the function of four variables:
flw, %, 9, 2) =22 +wx'y +wyz +w' x'yz+w xy' 2 +w' xz
on a Karnaugh map.

Solution. One way to plot the function is to expand it into the standard sum
and put a 1 in the cell representing each atom appearing in the standard sum.
The standard sum of f is given by:

Flw, x, 9, 2)=2>,(0,2,3,4,5,7,8,9, 10, 14),

so f is plotted as shown in (f) of Fig. 2.6.7.

However, one merit of the Karnaugh map is that such expansions are un-
necessary. Fig. 2.6.7 shows the successive steps followed in plotting the function
directly. The terms of the function are taken up one at a time, and 1's are put
in the proper cells for each term.

First, we take up the term x'z. We note that x' is represented by the top
row together with the bottom row; 2z’ is represented by the left column together
with the right colum; x'z’ is thus represented by the cells common to %' and 2/,
i.e., the four corner cells. Next, we see that wx'y' lies in the right half to be in
4/, in the bottom right quarter to be in both w and 3/, and in the bottom right
eighth to be in w, &’ and ». Therefore we must put two 1's, one in 8 the other
in 9. But 8 is already occupied, we may put only one 1 in 9. The remaining
terms are plotted in the similar fashion. The completed map is shown in (f)
and is the same as that obtained by the first method.

Thus, it is a relatively simple matter to plot a function given in an algebraic
form. But the most important use of Karnaugh maps is to derive the simplest
algebraic form of a function plotted on the map. The method for simplifying
Boolean functions by Karnaugh maps will be explained in the next section together
with another formal one. Here we add only that a familiarity with certain pat-
terns of entries of the map called subcubes is indispensable for the simplification
of Boolean functions as well as for other purposes. A subcube is defined as a set
of cells of a map which represents a product of literals, because the counterpart
on 7n-cube of such a set is a hypercube of a lower dimension. For example, in a
4-variable map, a set of two adjacent cells forms a subcube representing a product
of three literals; a set of four cells each of which is adjacent to two of others in
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the same set forms a subcube representing a product of two literals; a set of
eight cells each of which is adjacent to three of others in the same set forms a
subcube representing a single literal. In general, in an zn-variable map, a set of
2?7 cells each of which is adjacent to p of others in the same set forms a subcube
representing a product of n—p literals. In Fig. 2.6.8 and Fig. 2.6.9 below, typical
subcubes in 3- and 4-variable maps are shown for the sake of illustration.

2.7, Simplification of Boolean Functions

Consider the function x+3. The function can be written in many different
forms: x+y =xy+y=x+%y =29 +2'-+xy. In this simple example already,
we see the multiplicity of algebraic forms of Boolean functions. This opens up
the possibility that some form may be the simplest of all and that there may be
some method for arriving at such a form. However, any such method depends
upon the standard of simplicity and many different standards are conceivable.
In this section and throughout this paper, we are mainly interested in normal
sums and normal products, i.e., sums of products and products of sums of literals.
For these normal formulas, we define the minimal formulas as follows: A normal
sum (product) is a minimal sum (product) if and only if it is drredundant, i.e,, it
cannot be simplified further by eliminating redundant literals or redundant pro-
ducts (sums) of literals, and it requires the minimum number of occurrences of
literals?. Thus, for example, ¥+ is a minimal sum and a minimal product at
the same time, while %y + 3 z2+2%' is not a minimal sum because it is not ir-
redundant and can be simplified as xy' + zx' by eliminating a redundant term y'z.

Here two facts may be stated in justification of the somewhat severe restric-
tion to the normal formulas and the definition of the minimal formulas. One is
that there actually exist some methods for arriving at these minimal formulas
and the other is that there is a strong technical reason for the above restriction
in applying Boolean functions to the synthesis of rectifier switching circuits.
Especially the minimal sum is perhaps of primary importance for mos
For this reason and because a minimal product of a function can be im
obtained from a minimal sum of its complement by De Morgan’s laws,
concentrate our attention to the minimal sum in the remainder of this

2.7.1. Quine's Algorithm®

We shall now explain Quine’s algorithm for converting a normal sum into a
minimal sum. To begin with, we must refine our terminology. A product of
literals is called a fundamental formula if it contains no variable twice. A
fundamental formula which is a summand of a normal sum f is called a clause
of f. A fundamental formula ¢ is said to subsume another fundamental formula
¢, if and only if the literals of ¢ are among theose of ¢. Thus, “¢ subsumes ¢”
is equivalent to “¢ includes ¢”. A fundamental formula is a prime implicant of
a function 7 if and only if it is included in f and subsumes no other fundamental
formula included in f. Accordingly, if a clause ¢ of a normal sum f is not a
prime implicant of f, then there exists a prime implicant ¢ of f subsumed by ¢.
Since ¢ can be replaced by ¢ without altering the function f, ¢ contains redundant

1 The irredundancy dose not imply the minimality. See Ref. 30.
2) cf, Ref. 30, 31 and 32.
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literals. Therefore we have:

Theorem 2.7.1. Any irredundant normal sum and, a fortiori, any wminimal
sum is a sum of prime implicants.

Any function other than 0 and 1 has its prime implicants, because it includes
at least one atom and, for each atom included in it, there is at least one prime
implicant subsumed by the atom. Obviously the number of prime implicants of
any function is finite.

Theorem 2.7.2. Any function is equivalent to the sum of all its prime im-
Dplicants.

Proof. A function f includes each of its prime implicants, and hence, their
sum. Conversely, every atom of f is included in one of its prime implicants.
So their sum f is included in the sum of all its prime implicants.

In view of Theorem 2.7.1 and Theorem 2.7.2, a function can be converted
into a minimal sum in two stages: (I) transform it into the sum of all its prime
implicants, and then (II) delete from the sum the largest possible sum of jointly
dispensable prime implicants. (I) can be carried out by a technique due to Samson
and Mills?, the explanation of which calls for one more definition. If two funda-
mental formulas ¢ and ¢ are opposed in exactly one variable, then they are said
to have as their consensus the fundamental formula which we obtain from the
formal product ¢¢ by deleting the two opposed literals and any repetitions of
other literals.

Theorem 2.7.3. Any normal sum can be eventually converted into the snm
of all its prime implicants, if we apply the following two rules as far as possible.

(1) If a clause subsumes another, drop the former.

(2) Add, as an additional clause, the consensus of any two clauses, unless it
does not subsume an existing clause.

The theorem is proved by proving the following four lemmas :
) Normal sums go into normal sums under (1) and (2).
(b)-A normal sum remains susceptible to (2) as long as some prime implicant
of it is not a clause of it. ,

tc) A normal sum remains susceptible to (1) or (2) as long as some clause
of it is not a prime implicant of if.

(d) No normal sum is suscepiible to (1) and (2) without end.

Proof of (a): Obvious.

Proof of (b): Let f be a normal sum and 7 a prime implicant of  which is
not a clause of . Then there is at least one fundamental formula, ) anyway,
which subsumes ¥ and subsumes no clause of f. Let ¢ be one of the longest
fundamental formulas having the property. Now observe that ¢ is not an atom;
for, if it were, then, since ¢ <7 </, ¢ would subsume some clause of /. But this
contradicts to the property of ¢. So ¢ lacks some variables of f, say, . Since

1 cf. Ref. 34.
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¢ is a longest fundamental formula having the property, each of x¢ and x{¢,
evidently subsuming 7, must subsume a clause of /. So there are clauses ¢; and
¢, of f subsumed respectively by x:¢ and xi¢. But ¢ subsumes neither ¢; nor
¢2. Therefore x, and z{ must occur respectively in ¢; and ¢.. Further, ¢; and ¢»
are not just x and i, otherwise 7 would be 1: nor are they opposed in variables
other than x, since their further literals are common to ¢. So ¢: and ¢: have a
consensus, say, ¢. Moreover ¢ subsumes no clause of 7, for ¢ is subsumed by ¢
subsuming no clause of . Hence f is susceptible to (2).

Proof of (¢): Let f be a normal sum and ¢ any clause of f which is not a
prime implicant. Then, ¢, being included in 7, subsumes a prime implicant ¢.
If ¢ is a clause of f, we can apply (1) to drop ¢, and otherwise we can apply
(2) by (b).

Proof of (d): By the proviso of the rule (2), no clause once dropped by (1)
can ever be restored by (2); neither can a clause already present be reintroduced
by (2). Summing up, (2) can never introduce the same clause twice. But there
are only finitely many different fundamental formuals for (2) to introduce. So
the use of (2) must terminate eventually. Also the use of (1), being subtractive,
must terminate eventually. This completes the proof of the theorem.

A standard sum is obviously a normal sum, so the technique can also be ap-
plied to a standard sum. Since Boolean functions are usually given by or easily
turned into standard sum, it is worth while to describe the process of conversion
of a standard sum into a sum of all prime implicants.

Now assume we are given a standard sum f, then the process will be ac-
complished in at most n—1 steps as follows.

First Step: Compare any atom with all others, and whenever we find any two
atoms which are opposed in exactly one variable, add their consensus to f, and
put a mark on each of them. When all the possibilities are exhausted, drop
every atom having at least one mark.

Second Step: Compare any clause added in the first step with all other similar
clauses, and whenever we find any two clauses which contain the same set of
variables and are opposed in exactly one variable, add their consensus to f and
put a mark on each of them. When all the possibilities are exhausted, drop every
clause having at least one mark.

..........

% th Step: Compare any clause added in the k-1-th step with all other similar
ones, and whenever we find any two clauses which contain the same set of vari-
ables and are opposed in exactly one variable, add their consensus to / and put
a mark on each of them. When all the possibilities are exhausted, drop every
clause having at least one mark.

..........

It is observed that every clause which is added in k-th step is a product of
n— k literals and, indeed, all the products of »n— k literals included in f are added
in the step. Accordingly, clauses added in #-1-th step, if any, are single literals,
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and hence, the process must terminate at the latest in #-1-th step.

At the beginning of every k-th step, the normal sum f is not susceptible to
the rule (1); for, otherwise, there would be a clause which is a product of more
than 7 — k& literals and subsumes another shorter clauses; but this is impossible
because such a clause must have been dropped in a previous step. By the same
reason, it is not necessary to add a consensus of any two clauses other than those
stated above, because such a consensus is a product of more than z—k literals
subsuming other clauses, its parent clauses anyway.

McCluskey? recommends to count the number of unprimed variables of
fundamental formulas—he calls it the index—and classify, preparatorily to each
step, the clauses added in the preceding step into groups according to their
indices. When this is done, it is sufficient for every clause in the group of the
index ¢ to be compared with those in the group of the index 741, starting with
the group of the lowest index and proceeding to the higher one consecutively.
Thus, the amount of comparisons will be reduced considerably.

It is also recommended to pay attention to the number of marks put on clauses
during the process of comparison; for, if a clause containing # literals has obtained
k marks, it can be excluded from consideration thereafter.

So much for the stage (I), the conversion of a normal sum into the sum of
all its prime implicants.

Now the stage (II) will be explained. A method for carrying out the stage
is as follows.

Step I: Construct a table having as many rows as prime implicants and as
many columns as the atoms included in the given normal sum /. Identify each
row with a prime implicant and each column with an atom. Enter a mark in a
position of the table whenever the atom of the column subsumes the prime im-
plicant of the row. This table is called the table of prime implicants. It terms
of the table, the task (II) is to select the simplest combination or combinations
of rows such that any column contains at least one mark on some of them.

Step 2: Examine the columns of the table. If a column contains only one
mark, the corresponding prime implicant is obviously bound to appear in every
irredundant normal sum and therefore in every minimal sum of . Any of such
prime implicants is said to be essential and the sum of all of them to be the core.
Encircle the essential prime implicants together with all marks contained in the
corresponding rows. Reduce the table by deleting all essential rows and all
columns containing at least one encircled mark. Atoms, thus dropped, need not
further be taken care of because they are already accounted for by essential
prime implicants.

Step 3: Further examine the columns of the table. Whenever we find two
columns such that one of them contains a mark on every row where the other
contains a mark, delete the former, because every selection of rows accounting
for the latter accounts for the former.

Step 4: Examine the rows of the table. If there are rows which remain but

b cf. Ref. 21,
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contain no mark, delete all such rows. Any of the prime implicants thus deleted
appears in no minimal sum and is said to be absolutely superfluous. Clearly, a
sufficient condition that a prime implicant may be absolutely superfluous is that
it is not essential and, at the same time, it is included in the core. Quine? con-
jectured that this might be also necessary. But it is found that the conjecture
is wrong. An example proving the negative answer to the conjecture will be
given as Example 2.7.3. below.

Step 5: Now examine the reduced table, and select the simplest set or sets
of prime implicants which taken together include at least one mark in each
column. The sum of the prime implicants together with the essential ones ob-
tained in Step 2 forms a minimal sum of /. This step is simple or complicated
as the case may be.

We shall now explain a systematic method for carrying out Step 5%. Repre-
sent all prime implicants by letters, say, A, B, C etc. Form, for each atom, the
sum of letters representing the prime implicants subsumed by it, so that, for
example, when an atom subsumes prime implicants A, B and nothing else, we
form the sum A-+B. Multiply all such sums formally and construct an expres-
sion #. We shall now regard @ as a Boolean function of the variables A, B, C,
etc. If it is multiplied out and turned into a normal sum, every clause of it
represents a set of prime implicants whose sum is equivalent to f and, indeed,
every such set is represented by a clause. Further observe: If a clause of @
subsumes another, it is redundant and may be dropped, because the corresponding
sum of prime implicants is not an irredundant normal sum. Thus, when the
formal product @ is multiplied out and converted into an irredundant normal sum
by deleting all redundant clauses, the remaining clauses represent all possible
irredundant normal sums of 7. Here, it is noted that the only irredundant normal
sum, and consequently, the only minimal sum of @ is the sum of all prime im-
plicants of @#. For, if an irredundant normal sum of @ lacks a prime implicant,
it should be susceptible to the rule (2); but this is impossible, since it contains
no pair of clauses having a consensus. Hence we may convert ¢ into the sum of
all its prime implicants. A reasonable way to do this is to simplify the product
0 as far as possible before multiplying it out. That is: To begin with, delete
every factor which is a single letter and every factor containing at least one of
such letters. Any of these letters should be restored as a common factor of all
prime implicants after the rest of ¢ is converted into the sum of all its prime
implicants. Obviously these letters represent essential prime implicants of f and
this reduction is the same as that of Step 2 of the preceding table method.

Next, examine the rest of @, and whenever we find two factors such that one
contains only letters contained in another, delete the latter. Of course, this reduc-
tion corresponds to that of Step 3 together with that of Step 4 of the table
method.

The preparatory reduction of @ having been completed, the rest of & is to be
multiplied out and converted into a normal sum, which will be easily converted
into the sum of all prime implicants by deleting all redundant clauses, 7.e., clauses
subsuming other clauses.

D ¢f. Ref. 32, » cf. Ref, 26.
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When @ is converted into the sum of all its prime implicants, it is a simple
matter to obtain all minimal sums of 7, becaus we may only count and compare
the numbers of occurrences of literals for all irredundant normal sums of f.

In view of the parallelness between the reduction of the table of prime im-
plicants and the preparatory reduction of @, it is also possible to start with the
table of prime implicants, reduce the table and then apply the present method.

Now we shall work out a few examples.

Example 2.7.1. Simplify the four-variable function:
flw, %, 9, 2)=3(0,1, 2,5,7,10, 11, 15).
Solution. The stage (I) is carried out as shown in Table 2.7.1.

The stage (II): The table of prime implicants is shown in Table 2.7.2.

TABLE 2.7.1 TABLE 2.7.2
wayz wiyz 01251071115
0¥% 0000 0 1 000- A wawy | w
e, P w %
%% 0001 S0z ? R
2 0010 15 001 0 e L
[ x'yz * *
54 0101 L2 o E wa
10%% 1010 5 7 01-1 o wx'y * b
7R 0111 o - G s Co
1% 1011 715 111 H  wyz ‘
155 1111 i

Since there is no colum ncontaining only one chech mark, no reduction of
the table is possible. Now, representing the prime implicants by the letters given
in the left column, we form the product:

0= (A+B)(A+C)(B+D)(C+E)(D+F)(E+G)(F+H)(G+H).

This can be transformed as follows:
O=(A+B)(A+C)- (F+H(G+H)-(B+D)(D+F)«(C+E)(E+G)
=(A+BC)Y(H+FG) «(D+BF)(E+CG)
=(AH+ AFG+ BCH+ BCFG)(DE+ BEF+ CDG+ BCFG)
=(AH+ AFG+ BCH)(DE 4+ BEF+ CDE) + BCFG.

When we multiply out the first term of the last expression, we obtain:

®=ADEH+ BCFG + ABEFG + ABEFH+ ACDFG+ ACDGH
+ADEFG+ BCDEH+ BCDGH+ BCEFH.

This normal sum being irredundant, we conclude that there are ten irredundant
normal sums of f among which the two represented by the clauses ADEH and
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BCFG are minimal. Thus, the minimal sums of f are given by:
F=w sy + 2 vz +w xz-+wyz
and
JS=wy 2wy 24wy v+ xva.
Example 2.7.2. Simplify the four-variable function:
Aw, x, 3, 2)=2>3(1, 3, 4,6,7,13, 15).
Solution. The stage (I) is carried out as shown in Table 2.7.3.

The stage (II): The table of prime im-
plicants is shown in Table 2.7.4. Ex-
amining the table, we find that the prime WAYE wxyz
implicants w'x'z, w' %2’ and wxz are essential. ) )

TABLE 2.7.3

¥ 0001 1 3 00-1

Essential prime implicants are underlined 4 0100 4 6 01-0
and check marks on the corresponding rows

are encircled. When the encircled rows and e 0011 37 0-11
columns containing at least one encircled 4% 0110 6 7 011-
eheck mark are deleteﬁd, the' table vi/ﬂl be ZeEr o111 715 111
reduced to Table 2.7.5. This table is very

: .. 13% 1101 1315 11-1
simple. It shows that any of the remaining

three prime implicants can be taken as a 5% 1111
clause of a minimal sum of f. Hence we
have three minimal sums:

f=wdz+w x2' +wxz+ ¢ w'yz

w'xy
xVZ.
TABLE 2.7.4 TABLE 2.7.5
1 4 3 6 7 13 15 E 7
wx'z | (%) ) wyz | ¥
w’ %2’ *) (*) waxy | *
T |
w'yz * ® xyz ; *
w' xy k% '
xyz * *
wiz (*) (%)

Example 2.7.3. Simplify the five-variable function:
Ao, w, x, 9, 2)=>,(7, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 29, 30, 31).
Solution. The stage (I) is shown in Table 2.7.6.

The stage (II): The table of prime implicants is shown in Table 2.7.7. There
is only one essential prime implicant »/xyz. Thus, the top row and the columns
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TABLE 2.7.6
VWAYZ vwxyz VWAYZ
16%i% 10000 16 17% 1000~ 16 17 20 21 10-0-
- L0001 16 18% 100-0 16 18 20 22 10--0
Rk |
18k 10010 16 20 10-00 17212529  1--01
20k 10100 17 21%  10-01 18 22 26 30 1—10
7% 00111 ' 17 25% 1-001 252729 31 11--1
, 18 22%% 1010
o1 10101 2627 30 31 11-1-
. 18 26% 1-010
2wk 10110
o 20 21% 1010-
25w 11001
. 20 22% 101-0
26wk 11010
: 7 15 0-111
15 01111
, 21 29% 1-101
Q7% 11011 ,
- 101 22 30% 1-110
, 25 27% 110-1
3w 11110

25 29%* 11-01
3 EEEk 11111 26 27% 1101~
26 30%* 11-10

15 31 -1111
27 31%* 11-11
29 31% 111-1
30 31% 1111~

7 and 15 are deleted. Then it is seen that the columns 20, 21, 22, 29, 30 and 31
can be deleted in favor of the columns 16, 17, 18, 25, 26 and 27 respectively. The
resulting table is shown in Table 2.7.8. In the table, the top row contains no
check mark and can be deleted. The prime implicant wxyz is thus found to be
absolutely superfluous but it is not included in the core »'xyz. Hence it has been
shown that an absolutely superfluous prime implicant is not necessarily included
in the core.

Now representing the remaining six prime implicants by the letters given in
the left column, we obtain:

TABLE 2.7.7 TABLE 2.7.8

16 17 18 20 7 21 22 25 26 15 27 29 30 31 16 17 18 25 26 27
v xyz (*) (*) wxyz
;;c_;z * * A vw'y' *® ¥
o'y’ * % * * B vw'z' * *
o'z’ % % % % Cw'z % ¥
vy'z ® * * * D vyz' ® *
vyz' * * * * E vwz * *
vwz * *k * F vwy kK
vwy ® * *®
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D=(A+BY(A+C)Y(B+D)(C+END+F)(E+F),
which, when multiplied out and simplified, yields the minimal sum:
&= ADE+ BCF+ ABEF + ADCF+ BCDE.
Thus, restoring the core 2/ xyz, we obtain two minimal sums:

=9 xyz+ow'y +ovyz +owz
and
F=vxvz+ow' 2 +vyz+owy.

As shown in the above examples, the minimal sums are not unique in general.
Then it is natural to ask: “Are there any properties common to all the minimal
sums of the same function and what properties?” We shall show one of such
properties. To begin with, we define: For a function 7, a literal is said to be
either essential or inessential according as whether it appears in an irredundant
normal sum of f or not.

Lemma 2.7.1. Let x be a variable of a Boolean function f, and let f = xg-+%'h
be the expansion with respect to x, then:

(1) g=h if and only if x and x' are inessential,

(2) g>h if and only if x is essential and x' is inessential,

(8) g<h if and only if x is inessential and x' is essential,

(4) g and h are incomparable, i.e., neither g>h nor g=h if and only if % and
x! are essential.

Proof. It suffices to prove only the “if” parts because the four cases are
mutually exclusive and exhaust all possibities.

Proof of (1): If x and &' are inessential, then there is an irredundant normal
sum of f where x and »' are absent. Hence f is independent of the variable x.
It follows that f is expanded as f=xf-+«'f, whence, by the uniqueness of the
expansion, we have g=h=/.

Proof of (2): If x is essential and «' is inessential, then there is an irredun-
dant normal sum of f where x is present but #' is absent. Summing up the
clauses containing x and the remaining clauses separately, f can be written in
the form: 7= xg* -+ h* where g* and h* are independent of the variable x. Further,
since h¥= (x+x)h*=xh*+x'h* f can be turned into; f=xg-+x'h where
g=g*+h* andh = h*, whence g=h is obvious. Butg=h,forg="h implies g* < b*
and, a fortiori, xg*<h* so xg* the sum of clauses containing x, becomes
redundant.

Proof of (3): Obvious from (2) by symmetry.

Proof of (4): If x and &' are essential, then there is an irredundant normal
sum of 7 containing both x and &'. Summing up the clauses containing #, those
containing x' and the rest separately, we obtain: f=xg*+'h*+/* where g% n*
and f* are independent of the variable 5. Further, since /*=xf*+x'f*%, f can be
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rewritten as: f=xg+x'h where g=g*+s* and h=n*+r* Now assume g=h,

then it follows that g%+ f*=g¥4 415 Therefore f is turned into:

S =xg%+4h*+* which implies that all occurrences of the literal &' are redundant.

Hence g=h and, by symmetry, ¢<h are impossible. This completes the proof.
Now, in view of the lemma, the following theorem is almost evident.

Theorem 2.7.4. For any function f, any essential literal and no inessential
liteval appear in any irredundant normal sum (minimal sum) of f.

Proof. We shall prove only the case where literals x and &' are essential for
a function f. Other cases can be proved similarly.

Let f=xg+«'h be the expansion with respect to the variable x, then, from
(4) of Lemma 2.7.1, g and 7 are incomparable. Now assume that there be an
irreduntdant normal sum of ¥ where at least one of x and #' is absent. Then it
follows from (1), (2) or (3) of the lemma that g and h are comparable. But
this is impossible in the light of the uniqueness of the expansion.

2.7.2. Simplification by the Karnaugh Map
We shall now explain how to simplify Boolean functions by means of Kar-
naugh maps. The process proceeds as follows:

Stage (I). Plot the given function on a Karnaugh map. Choose an arbitrary
1 cell. Examine the set of all subcubes containing the cell and find subcubes
. which are not contained in any other one of the same set. These subcubes
obviously represent prime implicants subsumed by the atom represented by the
cell. Repeat the same procedure for every 1 cell of the map. If a 1 cell has
only one prime implicant, the prime implicant is essential. Whenever we find an
essential prime implicant, put a dot in the corner of each 1 cell which is included
in it. In the search for further prime implicants, we may omit the above pro-
cedure for every 1 cell which already contains a dot. Thus, it is advantageous
first to try to find 1 cells which give rise to essential prime implicants, especially
those containing only a few literals, because such prime implicants occupy a
large number of 1 cells and consequently we can reduce subsequent work con-
siderably.

Stage (II). When all the prime implicants are found, we must still choose
the simplest set or sets of prime implicants whose sum is equivalent to the func-
tion. One way to do this may be to apply the methods described in Section 2.7.1,
but under most cirucmstances the task can be carried out immediately by the
inspection of the Karnaugh map.

Now, for the purpose of illustratioin, the three examples of Section 2.7.1
will be reattacked by the present method.

Example 2.7.4. Simplify the four-variable function of Example 2.7.1:
flw, %, v, 2)=>0,1, 2,5, 7, 10, 11, 15).

Solution. f is plotted on a Karnaugh map as shown in Fig. 2.7.1. Examin-
ing the map, it will be readily seen that each 1 cell has two prime implicants
and there are two simplest choices of prime implicants. These choices are given



Stpdy of the Structures of Boolean Fuactions 193

in Fig. 2.7.2. Thus, we obtain the minimal sum:

F=w 'y + 3 vz +w xz+wyz
from (a), and the minimal sum:

f=waz +wyz+wsy+xyz

from (b). Of couse, these results agree with those of Example 2.7.1.

EREEEE! HERRn 1 mia
: [T HiB
) B i
13 I o
{a) {b)
y
FIG. 2.7.1 FIG. 2.7.2

Example 2.7.5. Simplify the four-variable function of Example 2.7.2:
flw, %, 9, 2)=>.(1,3,4,6,7,13, 15).

Solution. f is plotted on a Karnaugh map as shown in Fig. 2.7.3. Inspecting
the map, it will be immediately found that there are three essential prime im-
plicants w'«'z, w'xz and wxz, and the only one 1 cell which is free from a dot
is included in three equally simple prime implicants w'yz, w'xy and xyz. Hence
we obtain three minimal sums: )

f=w ¥ z+w 57 +wxz+ | wyz z
w' %y L]
ZY2. .01 L
11 *
Example 2.7.6. Simplify the five-variable func- w
tion of Example 2’.7.3: 5
fv, w, %9, 2) FIG. 2.7.3

=33(7, 15, 16, 17, 18, 20, 21, 22, 25, 26, 27, 29, 30, 31).

Solution. The Karnaugh map of s is shown in Fig. 2.7.4. Examining the
map, we find eight prime implicants. They are v'xyz, vwy, o'y, vwz, vw' 2, vy,
vy z and wxyz of which only »'xyz is essential. Now, observe that, in order to
include the cell 27 (with *), we must take either vwy or wwz as a clause of a
minimal sum. In any case, the cell 31 (with ¥y will be automatically included.
Further observe that the cell 15 (with ¥) has already gained a dot. Therefore
the prime implicant wxyz may be discarded as absolutely superfluous. Then it
will be seen that there are two simplest ways to cover all 1 cells which are free
from dots. They are shown in Fig. 2.7.5. Thus, restoring the essential prime
implicant »'xyz, we obtain two minimal sums:



194 Ichizo Ninomiya

f=v"xyz4+vw'y + vy +vwz
and
f=v'xyz+ow' 2 + vy 2+ vwy.

Z z
1] J1]1 AR 1 A
1 1)1 |1 X 1 11 HEH RN
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FIG. 2.7.4 FIG. 2.7.5

3. Theory of Coordinate Representation of Boolean Functions

In this chapter, a theory of coordinate representation of Boolean functions
will be developed in a general manner. As will be seen, this representation seems
rather awkward for practical manipulation of Boolean functions, but it possesses
a peculiar adaptability for the study of structures of Boolean functions. The
representation was initiated by D. E. Muller?. The author owes the motivation
for the present work to him, but the development in this and the next chapter
were carried out independently.

3.1. Boolean Matrix Representation of Boolean Funections

As we saw already, B, is a Boolean ring with the unit 1 with respect to the
ring addition and the multiplication where the addition and the complementation
are expressed as f+g=/PgPfg and /' =1Df.

Here we take another view point and regard any f< B, as an operator F
transforming any k& B, into Fh=fhe B,. This gives rise to a one-to-one cor-
respondence f < F between Boolean functions f and operations F, since different
functions correspond to different operators. Now let us define the 7ing sum and
the product of operators by (FG)h=F(Gh) and (FRG)h=Fh®Gh respectively.
Then, since (FG)h= F(Gh) = F(gh) = fghand (FOG)h=FhDGh=hDgh=(fDg)h,
we see fg© FG and fPg< FPG. It follows that B, can be represented by an
operator ring isomorphic with itself. Of course, the zero 0, the unity I, the sum
F+G and the complement F' of operators should be defined by 00, 11, f+g
< F+G and f' o F', whence F+G=FOGDFG and F'=IQF.

In Theorem 2.1.5, we found further that any Boolean function ze B, is

®
represented uniquely by a ring sum of atoms as = Z‘ria; where 71;€ By (=0, 1,

.., 2%=1). Accordingly, operators F are represented by 2”x2" matrices on
By, and the class of all such matrices is a ring isomorphic with B,, where matrix
ring sum and matrix product are defined by (ai)® (Bi) = (air®Pix) and

1) cf. Ref. 20.
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D
(air)(Bir) = (Xl aij Bx) respectively.
7
D
New let us determine the matrices F explicitly. Putting /= 2>} aia;, we have:

[&] @ ]
Fh=fh=(aia)(Xria) = 2airvia;, whence we obtain F= (aid;r) where 0ir is
1if i=% and is 0 if 4=k Thus, we have:

@

Theorem 3.1.1. Associate with each Boolean function f =>laia;i a matrix
(aidir), then By is represented isomorphically by the class of all 2" % 2" diagonal
matrices on Bo, where, if f<> (aidn) and g<> (Bidm). (1) f+g< ((ai+B)oin),
(2) fge (aiBidin), (8) F® g ((ai® B:)oir), (4) Frer(aldn), (6) 0¢>(0), 1> (8ir).

3.2. Real Matrix Representation of Boolean Funetions

In the two-element Boolean algebra B,, the elements 0 and 1 are not real
numbers but merely two symbols. However, the behavior of the symbols under
Boolean operations is very alike to that of real numbers 0 and 1 under corre-
sponding ordinary operations. In order to see the resemblance, let us denote the
real counterpart of an element « of By by R{«). Then the following lemma will
be obtained.

Lemma 38.2.1. For every « and [ of By, (1) R(a+B)=R(a) +R(B)
—R(a)R(B), (2) R(af)=R(a)R(B), (3) R(a®B)=R(a)+R(B) —2 R(a«)R(B),
(4) R(a')=1— R(a).

Proof. The lemma is proved by a perfect induction as shown in Table below,
where we put A= R(«) and B= R(f).
TABLE 3.2.1

o(4) B(B) | AB o8| A+B |[A+B—AB a+f A+B—24B asf|1-A

o o o o] o | o 0 0 01 1
1 0o [0 of 1 | 1 1 1 110 0
o 1 |o of 1 | 1 1 1 1
101 |11 211 1 0 0|

Now we define a one-to-one mapping « <& from B, onto the class [1, —1]
by 8=1—2R(«), then we have:

Theorem 8.2.1. If a<dé=1-2R(a) and Bee=1—2R(B), then (1) a-+p
o (—=1+8+e+0e)/2, (2) ape (1+0+e—0)/2, (3) a@p b, (4) a'< =05, (b)
0el1, 1 —1.

Proof. Proof of (5): Obvious.

Proof of (4): a’<1—2R(a’). But R(a')=1-R«) by (4) of Lemma 3.2.1.
Hence a’<1—2(1—R(a))=2R(a) —1= —30.

Proof of (3): a®Bol—2R(a®B). But R(a®B)=R(a)+R(B) -2 R(a)R(B)
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by (3) Of Lemma 3.2.1. Hence a@pol—-2(R(a)+R(B)—2R(a)R(B))
=1-2R(a)—-2R(F)+4R(a)R(B)=(1-2 R(a))(1 =2 R(B)) = de.

Proof of (1) and (2): From (1), (2) and (3) of Lemma 3.2.1, we have
R(a+p) +R(ap) =R(a) +R(B)=(1-8)/2+ (1—¢)/2

and R(a+p) —R(aB)=R(aPp) = (1—de)/2.

Solving R(a+#) and R(af) from these equations, we obtain
2R(a+p)=(3—0—ec—0¢)/2

and 2R(af)=(1—-0—c+de)/2.

It follows that a +8¢1—2R(a+B8)=(~1+0+c+d¢)/2

and af<>1—2R(af)=(1+0+e~dc)/2.

Now, in order to obtain a real matrix representation of Boolean functions, let
us apply the mapping to every diagonal element of Boolean representation mat-
rices. Then we have the following theorem where F* and T¥(F) is the transpose
and the frace of the matrix F respectively and 7 is the unit matrix.

@

Theorem 3.2.2. Associate with each Boolean function f=>laiai a 2"x2"

matrix F = (0;0i) where 6;=1~2 Rla;), then B, is represented isomorphically by

the class of all 2" x2" diagonal matrices with diagonal elements 1 or — 1, where,
if f<F and g G,

1) f+ge (= I+F4+ G+ FG)/2,

(2) fgo(I+F+G—-FG)/2,

(3) fPge FG

(4) f'«> —F,

B5) 0o 1o —1

(6) FG=GF,

(7) FF¥= 1]

(8) Tr(F)=d(f") —d(f)=2(2""1=d(f)).

Proof. The proof is easy by Theorem 3.1.1 and Theorem 3.2.1.

The real matrix representation obtained above is, however, a merely special
one of such representations. Indeed, there are infinitely many of others, since,
transforming every matrix F into 7 = TFT-! by any non-singular matrix 7, we
can obtain another representation which is equivalent to the original one in the

sense that it satisfies the eight properties.

3.2. Coordinate Representation of Boolean Functions

In this section, we shall introduce a coordinate representation of Boolean
functions. The representation will be derived in a natural manner from a par-
ticular real matrix representation as follows.

First, consider all the 2" odd linear functions ¥ %5, ..., y-1, where yo=0
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and v, Dy, = Yrau. Let Yy = (yu7ir) be the real representation matrix of v, and
let the matrix 7°=2""%(3,) be considered.

Lemma 3.3.1. The matrix T is orthogonal, ie., TT* =1

Proof. Let us evaluate 2" times the (4, z) element of T7". It is given by
281
20 minei = Tr(¥,Yy). But, by (3) of Theorem 3.2.2, Y3Y.= Yieu Therefore
S = Tr(Yiew) =2(2"" — d(3en)) by (8) of Theorem 3.2.2. But d(»)
=21 ~ §3) from Theorem 2.2.1. Hence we have En,\mm-:Z”B;g, because
Sreuwo = 6. This completes the proof.

Now we transform every real representation matrix F into F = TFT™ by the
orthogonal matrix 7, then a new real matrix representation will be obtained.

@ -
Let us evaluate the matrices 7. Putting f=>laja; and F=(8:0;%) where

8i=1—2 R(a;) as before, 2" times the (4, z) element of F is given by:
kai&' Bik e = Z{] Bi i = Tr(F® YVign) =227 = d(f © yren)).

Hence the (2, z) element of F is (2"~ d(f ®yen)) /2"

Here it is observed that any row (column) of the matrix F is a permutation
of any other row (column). Accordingly, in a sense, any one row or column is
sufficient for representing Boolean functions. In view of this fact, we define the
coordinates of a Boolean function f by 2"~ times the elements of the first row of
the matrix F, and denote them by f(3,.) (A=0,1, . ..,27 ). Thus, the coordinates
of f are given by:

S() =271 —d(fBy). (3.3.1)
Clearly, F(0)y=27"1—d(f), (3.3.2)
while, for 4=0, F()=d(fm) —dUnl), (3.3.24

since d(fPy) =d(fy) +dif'y) =dfy) + (S y)+d(fy)) —d(fy) =d(fy) —d(fy)
+d((f+11)y) =dfy) —d(fy) +df) =d(fy') —d(fy) +27* for any odd linear func-
tion y other than 0.

Theorem 3.3.1. Coordinates of a Boolean function are integers, the sum of
whose squares is 2°"V, and, for n=2, their parity coincides with that of the
dimension of the function.

Proof. First half: Obvious from the definition of the coordinates and (7) of
Theorem 3.2.2.

Second half: For n=2, f(0)=2""—d(f)=d(f) (mod. 2), while f(y)
=d(fy,) —d(fy5) = dlfy,) +d(fy}) =d(f) (mod. 2).

We shall now present theorems showing how Boolean operations and relations
are represented by the coordinates.
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Theorem 3.3.2. For any functions f and g,

(1) (F+8)3) = (=200 + () + ) + FDg) (m))/2,
(2) (f&) () = (2" 100+ (1) + &) — DL (»))/2,
(3 F®(3) =X (Mmewe(y,)/2" = };jf (yu)&(yron) /2",

4) F1(3) = (),
(5) 0(3) =27"1050, 1(3) = — 2718

Proof. Obvious from Theorem 3.2.2 and the definition of the coordinates.
Theorem 3.3.3. For any functions f and g,
(1) F+ ) = =270+ (n) +&(n)
if and only if fg=0, while
(2) (F8") () =2""100+f () — &)
if and only if f=g.
Proof. First half: If fg=0, then we have
F+8) () = (=210 +f (1) +8(3) + D) (9:))/2
and &) () = (2" 100 +/(3) +g(3) — (D) (3))/2=2""5x

from (1), (2) and (5) of Theorem 3.3.2. Eliminating (f@g) () from the above
equations, the desired relation (1) will be obtained. Conversely, if we assume

(1), (1) of Theorem 3.3.2 yields (f+g)(»)=(fDg) (), ie, f+g=/Bg But
f+g=rDgDsg. Hence fg=0.

Second half: =g is equivalent to f'g=0, so we have
ST+ = =27 18-+ () +2g(n)

from the first half. But (f'+g)'=fg'. Therefore, by (4) or Theorem 3.3.2, we
obtain (2).

Here let us pause for a while and make some conventions for the notation
of linear functions. In the first place, we shall use the letters y and z with or
without suffixes exclusively for odd linear functions hereafter. In the second
place, we shall denote linear functions by symbols such as ¥ where d= +1 and
¥° is y or 3 according as ¢ is 1 or —1. The Greek letters § and ¢ will be reserved

for this purpose.
Now, for the sake of illustration, the coordinates of linear functions and

atoms will be examined. First, for any linear function y;, we have
i(3a) =2" b (3.8.3)

from (3.3.1) and (4) of Theorem 3.3.2. Next, let ¢ be an atom, then, since
d(a)=1 and either d(fa) =1 and d(f'a)=0 or d(fa) =0 and d(f'a) =1 for every
f, we have

a(0)=2""-1, la(y») | =1 (A%0) (3.3.4)
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from (32.3.2) and (3.3.2"). Furthermore, if we put a=x;';" * - - %", we obtain
(% D@D - - - D) =(—1)**leqep - - - &5, (3.3.5)

where the length of %, @%@ - - - @xs is assumed to be & (3.3.5) will be proved
by a mathematical induction on the values of % by the help of the property that,
if <y and a<z, then a< (y®z)~*. Note that (3.3.4) and (3.3.5) yields, for

the atom ao= %1% = = - %,

ao(yy) =27 165 — 1. (3.3.6)

In Table 3.3.1 and Table 3.3.2 below, the coordinates of all atoms of three
and four variables are shown. The coordinates are grouped into sets in accordance
with the lengths of odd linear functions, and, in each set, are arranged in the

lexicographical order. Thus, for example, the column% contains the coordina-

tes for x,®x. Negative signs are denoted by bars put over the digits. These
conventions will be observed from now on.

TABLE 3.3.1 TABLE 3.3.2
1
1 1112 2
112 2 111223 2233 3
0 123 233 3 0 1234 234344 3444 4
0 | 31111111 0 7 IT11 111111 11111
1 3 171 111 1 1 7 I1711 171711 11111
2 3 1711 171 1 2 7 1711 111171 17111 1
3 3 111 1111 3 7 1111 1111171 11171 1
4 3 111 117 1 4 7 T111T 1171171 11711
5 3111 111 1 5 7 T111 1711711 11111
6 3111 1111 6 7 1117 111711 T111 1
7 3111 1111 7 7 1111 1111171 11711 1
8 7 1177 111717 1117 1
9 7 11711131711 1171 1
10 7 11711 171111 11711 1
11 7 17T11 1171171 11171 1
12 7 1117 111111 1111 1
13 7 1111 117171 11117 1
14 7 1111 171711 11171 1
15 7 1111 1171111 1111 1

Now we shall show how to calculate coordinates of an arbitrary function f
from those of atoms. To begin with, we rewrite (1) of Theorem 3.3.3 as:

(f+@)y) — 2" 5 = () ~ 27 00) = (g(90) — 2" o),
then it can be proved by induction that, if f; ;=0 for every i=j,

(/D) =27 o =20 (filon) — 2" 6%),
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which, when applied to the standard sum of f, yields:

Theorem 3.3.4. Let f =2>\a; be the standard sum of f, then
F3) = 2" 5 = >i(ai(yn) —2" o),

or equivalently, F0)y=2""1—d(f)
and F () =2ai(p)

for every 2=0.

Thus, it is a simple matter to calculate the coordinates of an arbitrary func-
tion f. The first coordinate f(0) is given by 27-'—d(y), while any of others
F(y1) by the sum of corresponding coordinates of the component atoms. Here
note that, when d(f) is greater than 27-! we had better first calculate the coor-
dinates of s’ and then reverse the signs of all the coordinates. In this way, we
may add only 27 —d(f) coordinates instead of d(f) coordinates.

Example 3.3.1. Calculates the coordinates of the three-variable function:

f=218,5,6,7).

Solution. The first coordinate f(0) is given by 20~'—d(f)=4—4=0, while
any of other ones by the sum of corresponding ones of the atoms 3,5,6 and 7
shown in Table 3.3.1. The result is shown in the bottom line of Table 3.3.2.

Example 3.8.2. Calculate the coordinates of the four-variable function:
£=330,1,2,3,5,6,9, 10, 12).

Solution. Since d(f)=9>8=2'"1, we calculate the coordinates of f'=S(4,
7,8,11, 13, 14, 15) first. The first coordinate f'(0) is given by 2¢-1—d(s")
=8~—7=1, while any of other ones by the sum of corresponding ones of the
atoms 4,7, 8,11, 13,14 and 15. When the coordinates of s’ are obtained, we

TABLE 3.3.3 TABLE 3.3.4
1
1 1112 2
112 2 111223 2233 3
0 123 233 3 0 1234 234344 3444 4
3 3 111111 1 4 7 11171 111111 1171 1
5 3111 111 1 7 7 I111 111711 1111 1
6 311171111 8 7 1171 1117117 1117 1
7 3 1 111 1 11 7 1711 117111 1717 1
= 13 7 1171 1171171 1117 1
ffozzzoooz e e
14 7 1111 171711 1111 1
15 7 1111 111111 1111 1
f 13311 111113 1 15
f I13311 1711113 1111
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may only reverse their signs. The final result is shown in the bottom line of
Table 3.3.4.

3.4. Some Useful Theorems

In this section, some useful theorems for the study of Boolean functions by
means of the coordinate representation will be derived.

Theorem 3.4.1. For any function f and any linear function v, a necessary
and sufficient condition that f <y is

2’2-18/\0 _f(y)\) = Eu(zn_la%u "'"f(y,\ @yp.)) (3- 471)

Sfor every 1. The set of all odd linear functions y, such that fEy* forms a
subgroup L(f) of Ln. Let its base be [ vy, %o, . . ., ¥2), then we have

f(ya@y;a@ st @yo) = - ( —€a)(—53> Tt (—Eo)d(f)‘ (3.42)
Proof. From (2) of Theorem 3.3.2 and (3.3.3), we have
(fyi”)(yx) = (271—15;0-%']"(})}) +2n~16u3m— s f(n®y,.))/2.

Therefore (3.4.1) is equivalent to (fv*)(»)=f(»), ie, to f=y¥. Strictly
speaking, only

Fy) =e.dlf) (3.4.3)

is sufficient for /=y since it implies (fyi*)(0) = (0), ie, d(f¥) = d(f). Thus
the first half is established.

Next, let L(f) be the set all odd linear functions y, such that f <y?*. Clearly
0= L(f) because f=<1=0. Further, since f=<y* and f=<y$ imply
F= (2@ yy) "%, it follows that, if y.€ L(f) and y,€ L{f), 9. Py, = L(f). Hence
L(f) is a subgroup of L,. When we use the fact that f(y.Dy,) = —eugpdl f) if
F(9a) = ead(f) and f(y;) =<d(f), (8.4.2) can be proved by the induction on
the length of linear function. This completes the proof.

The theorem indicates that, to each function f, there corresponds a certain
group L(f) of odd linear functions. For example, consider the four-variable
function f with coordinates 4 4000 000400 4000 0. Since the first coordinate means
that d(f)=8—4=4, it followsthat f <x, f < (%:Px)' and F < 5D xPDxs. There-
fore, L(f) is given by the four-element group [0, %, ::Dx:, 1P %D x].

Now we shall calculate the coordinates of functions of the form f = y{y§ - - -
i for later uses, where [yi, %2, . . ., ¥&] is any set of £ independent odd linear
functions. The result is as follows.

Theorem 3.4.2. Let Ly, 32, . . ., ¥2] be any set of mutually independent odd
linear functions, then, putting f =33y « - - ¥, we have
F(0) =271 ="k (3.4.4)

S = =(—ed(=g) + - (—er)2"" (3.4.5)
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Jor y=9.By:® + - By, L(f), and

F(y) =0 (3.4.6)
for every v, & L(¥), where L(¥) is the group determined by the base [ y1, Y2, . . « , Vel

Proof. Suppose that (3.4.4) is proved, then, since d(f)=2""% (8.4.5) is
evident from (3.4.2). Again suppose that (3.4.4) and (3.4.5) are proved, then,
from Theorem 2.3.1, we have

oA~ _ Efz(yx) = 2 fz(yx) 3 2 fz(y)\) — (271—1 - 2n—k)2+ (Zk _ 1)22<n—k>
Ln L L(J)®

+ 3000 =20 4 S ()
L(f)° ()¢

Hence L?‘_j_, Fy) =0, ie, f(3) =0 for every »m & L(f). Therefore it suffices to
(f)°

prove (3.4.4).

First, (3.4.4) is seen to be valid for =1 by (3.3.3). Next, assume that it
is valid for a certain value of k. Then putting f =yi'¥y - - - ¥¥ and g=yi%, we
obtain

(F2)(0) = 2"+ 7(0) +2(0) — (fD)(0))/2

from (2) of Theorem 3.8.2. But 7(0)=2""'-2"" and g(0)=0 by (3.3.3).
Further, by (3) of Theorem 3.3.2 and (3.3.3), we obtain

(f®g)(0) = err1 f(Yrs1),
which is 0 by (3.4.6). Therefore (fg)(0) is given by
(fg) (0) - (271—1 + 211—1 _ Zn—-k)/z = 271-—-1 = 2fl—k—1.

Thus, by induction, (3.4.4) is proved.

The theorem implies that, for any set of # mutually independent odd linear
functions [y1, ¥ ..., ¥al, every function of the form yi'y;* - - - y;* has the
dimension 1, or in other words, every function of the form yi'y;* - - -3 is an
atom. Moreover, since there are 2" distinct functions of this form, it is concluded
that every atom can be expressed in this form. This remarkable property of
linear functions will be used to introduce a new transformation of Boolean func-
tions in Section 3.8.

Theorem 3.4.3. Let L be a k-dimensional subgroup of Ln, then, for any func-
tion f and any odd linear function y,, we have

> 8, F(3Dy,) =21 (mod. 2°) (3.4.7)
yy,EE

and |2 6. f(0n@y) =27, (3.4.8)
yy,EL

where 8,=1 or —1 and dugy = 0,0y for any y, and y, in L.
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Proof. Let [y1, %2 ..., yz] be any base of L. Then putting g=y'v5 * * * y¢
in (3) of Theorem 3.3.2 and using (3.4.6), we have

(08 (3 = %Lg(yu>f(yx@yu)/2"’l~
LA

Now, from (38.4.4) and (3.4.5), it will be observed that g(y,) for y.& L can be
given by

g(yu) — 27;—1 Buo - BuZ”—k,

where §o=1, 8i= —&(i=1,2,..., k) and d.g, = 6.0, for any v, and », in L.
Hence we obtain

(F®Q (3) =7F(3) — D suf(m®y)/ 2"

yuEL

This expression for (@ g) (y,), when inserted into (2) of Theorem 3.3.2, yields

(£@)(3) = (2" 155+ g(3) + %}Lﬁuf(m By /252,
I

First, let us assume that y, € L, then, since g(5,) =2""65— 8,2"* the above
expression will be rewritten as

EELauf(ya@yu) =2"718, — 282" 1 55 — (F2) ().

But fg=<y:° because g =593 - - - ¥ <y;°*. Hence it follows that
2" 80— (f2) () = 8d(fg)
from (8.4.1). Therefore we obtain

S 6. (B, =627 =25 d( Fg)). (3.4.9)

yuEL

Since 0 = d(fg) <2" % by (3.4.4), (3.4.7) and (3.4.8) are verified.
Next, assume that v, & L, then we have

(/&) (32) = 33 0.1 (3@ 3,)/2%,
YuEL
and consequently

S 8w f (3 D) =28d Fey) — d(Fgyl)). (3.4.10)

mEL
But k<7 —1 because there exists y, such that y, & L. Hence we have

S 6uf (92 ®p.) =0=2""" (mod. 2F).
yEL

Further, - 2n-k,~1 <d(fgy) —dfgy)) <2"%, since 0=d(fgy)=2""*" and
0=dlfgy))=2" " by (8.4.4). Therefore (38.4.8) is proved.

Theorem 3.4.4. For any function, the sum of the absolute values of any two
coordinates never exceeds 2",
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Proof. Let yx and y,. be any two odd linear functions, then, putting L =[0,
@y, and drep = Sign (F(3:) F(yu)) in (3.4.8), we obtain

| F(92) + dousf ()| =1/ () [+ F o) [ £2"7

Theorem 3.4.5. For every function f of three or more than three variables,
either f(yy) = F(0) (mod. 4) for every A, or else the number of coordinates such
that F() = £(0) (mod. 4) and the number of coordinates such that f(y:)
= f(0) +2 (mod. 4) are equal to one another.

Proof. Putting L=10, Yu yv ¥.®yy], =0 and d.=0,=1 in (3.4.7), we
obtain

FO)+ f(y) + F(3) + F(yuDy) =0 (mod. 4) (3.4.11)

because 2”7 '=0 (mod. 4) for n=3. This can be satisfied if f(,) = (0) (mod. 4)
for every A. In fact, such functions exist. ~An example is the function 0 whose
first coordinates is 277" and all others are 0. On the other hand, if there exists
a certain y, such that f(yu) = 7(0)+2 (mod. 4), then (3. 4.11) can be rewritten as

F(3)+ F(5.D9,) =2 £(0) +2(mod. 4).

Hence we have f(y,®y)=r£(0)+2 (mod. 4) or f(y,®y)=r(0) (mod. 4)
according to whether f(,) = f(0) (mod. 4) or f(y.) = f(0)+2 (mod. 4). Since
L, is partitioned into 2”7" rest classes [y, y.@y,] by its subgroup [0, yul, the
latter half of the theorem is proved. An example of functions for which the
latter half holds is given by the atom x; %% whose coordinates are 3 111 1171 1.

We now proceed to the essential problem of characterizing the coordinates
of Boolean functions.

Theorem 3.4.6. A necessary and sufficient condition that an ordered 2" tuple
[F(y)], (yn€ Lyn) be coordinates of a Boolean function is

20 f () = +£2" (3.4.12)
for every possible combination of values of 6v= +1 restricted by Opgy=0udy for
any vu and Yy in L.

Proof. Necessity: Obvious because (3.4.7) and (3.4.8) are reduced to
(3.4.12) when k=n and y,=0.

Sufficiency : Evidently, a sufficient condition is that the matrix F= T*FT is
diagonal and orthogonal, where F = (f(y:.)/2""") and T=2"""(;). Rewriting
the condition, we have

£2"=2" %mif(y%eau)ﬂui = 2‘"%?%:‘%:’]’@%@@

for every (=0, 1, ..., 2"~1). But mi= =1 and minu =mew. Thus, putting
7 = 0;, we obtain
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2" = T”E‘Z}%@y.f{y}\@u) = 2""27’2511’(3&} = gfhf(%)-

Here it is noted that (3.4.12) provides a way for identifying the Boolean
function f represented by [f(9.)], since, by (3.4.9), the atom 37%;* - - - ¥ is
included in f if and only if (8.4.12) gives the value —2" 7' for di= —&(i=1, 2,

., n), where [ vy, 9, . .., ¥»] is any set of # mutually independent odd linear
functions.

The theorem is stated with a theoretical simplicity, but it is cumbersome to
use, because, in general, 27 trials will be needed to determine whether a given
27-tuple represents a Boolean function or not. Accordingly, some deformations
will be desirable to reduce the number of trials. One of the solutions to the
above problem is given by the following theorem which reduces the number of
trials down to 271,

Theorem 3.4.7. A necessary and sufficient condition that an ordered 2"-tuple
L7y (yae L,) be coordinates of a Boolean function is

%ww = 2" apd %&\ F (9, @) =0, (8.4.13)
or ‘ngﬁxf(yx)zo and gaf(y)\@y,,): + 2"t (3.4.13")

for every combination of values of 6= %1 such that Suzy = 06,6, for any y. and
vy in L*, where [y, ¥, . . ., ¥a1 4s @ base of Ln and L* is the subgroup of Ln
determined by the base [y1, 2, - « « , Yu-1l.

Proof. Ly is partitioned into two rest classes L™ and L™ =y,®L" so the
condition (3.4.12) is equivalent to

%]&f(yx‘) = %%f(,’h) +LE“8xf(y§) = %81]"(,’)&) + Bn%} S (3 ®yn) = £277,

whence the sufficiency is evident. The necessity is also proved by Theorem
3.4.3, because it tells us that

Sy = =2"1or 0
L’F
and Lz*axf(yx@m = +2"" or 0.

Note here that (38.4.13) and (8.4.13") provide a way for identifying the
Boolean function f represented by [f(»:)], since, by (3.4.9) and (3.4.10), the

€n

atom yi'ws - - - v is included in f if and only if either

gaxf(y)\) — _271—1
or %6Af(yx)=0 and %‘,5Af(yx®yn)=2""len

for §i= —¢ (i=1,2,...,n—1).

As another interesting deformation of Theorem 3,4.6, we have:
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Theorem 3.4.8. A necessary and sufficient condition that an ordered 2"-tuple
Lf(y)] (ya& L, be coordinates of a Boolean jfunction ¢s that the malyix
F = (f(yeu)/2"") is orthogonal.

Proof. Necessity: Obvious.

Sufficiency :
(% ()= ;gaxauf(yx) F ().

Putting . ®y, =y,, we obtain
(Ealf(y)\))z = 2}\2\]6\;f(3’k)f(_’)’k@)’v) = E)‘f(y}\)z +§)5v§}\3f(y)‘) f(y%@yv)'

But F is orthogonal. Hence we have

Elf(yl>2 — 22(n—1)

and Exf(yx)ﬂyx@yv) =0.

Therefore
E 6,\](<y)\) = =+ 2%—1'

This completes the proof.

3. 5. Coordinate Representation of Symmetry Structures

In Section 2.3, we have referred to the symmetries (symmetric automor-
phisms) and the symmetry structures of Boolean functions. In this section, we
shall return to the same subject and see how the symmetries are expressed and
how the symmetry structures can be recognized in the coordinate representation.
The following theorem is fundamental for these purposes.

Theorem 8.5.1. Let ¢ be a symmetry, then, for any Boolean function f, we
have

(af) () =f(a" ). (3.5.1)
Proof. From (3.3.1), we have

f) =2"7T = d(f D yu).

Accordingly,  (of) (oy,) =2" ' —dlof Boy.) =2"" — d(s(f Dy.)
=2""—d(f D y.) =7(3u).

Hence, putting ¢y, =2y, we obtain (3.5.1).

The theorem expresses in a simple form the effects of a symmetry on the
coordinates of a Boolean function. If a permutation operator is denoted by =,
a reflexion operator by 7, and an odd linear function by y,, then zy. is an odd
linear function of the same length as y. and 7y, is y, or yi. Therefore the effects
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pointed out in Theorem 3.5.1 are a permutation and/or changes of signs of the
coordinates. Precisely speaking, the effect of a permutation operator is a per-
mutation of the coordinates within each set corresponding to the set of odd
linear functions having the same length and that of a reflexion operator is changes
of signs of the coordinates.

Example 3.5.1. Apply the symmetry ¢ = E2§3 (}3‘) to the three-variable function
f=31(5, 6, 7) whose coordinates are 1 311 111 1.

Solution. First, apply (18) to f, then, since (13)7"=(13), we obtain (13) f*
1113 117 T by interchanging f(x1) =3 with /(%) =1, flx: D %) =T with (%9 x;)
=1 and keeping other coordinates unchanged.

Next, apply [23] to g=(13)f, then, since TABLE 3.5.1
[237"'=[23], we obtain [23]g: 11131111

by changing the signs of g(x2), g(w:), g(x1B %) 112 é
and g(x, @ x;) and keeping others unchanged. 0 123 233 3

Evidently two functions f and g are of 513111111
the same type (genus) if and only if there (13)f 1 113 111 1
exists a symmetry s such that /(¢™'3) = g(s) 281 F 1 113 111 1

(ef(o7 %) =g(5)). But the above condition
may be replaced by a somewhat weaker one
for functions of odd dimensions.

Theorem 8.5.2. If f and g are functions of an odd dimension, then they are
of the same genus if and only if there exists a permutation operator m such that

Az ) =gl

Proof. As will be easily seen, it suffices to prove that, two functions f and
g of an odd dimension such that |f(y)]=1g( )| are of the same genus.

First, assume 7#<2, then every function of an odd dimension is either an
atom or an anti-atom. Therefore the theorem is valid because atoms and anti-
atoms are of the same genus.

Next, assume #=3. To begin with, we shall show that any function of an
odd dimension can be transformed into a certain standard form by a suitable
reflexion operator. Let f be transformed into f*=1f by a reflexion operator 7,
where F%(x)=/*0)=/(0) (mod. 4) (i=1,2, ... ,n). This is always feasible,
because we may prime the variables x; such that f(x:)=s(0)+2 (mod. 4). Now,
we see from Theorem 3.4.3.

FH0) 5 () FF(%5) + (% D) =0 (mod. 4),

which means f*(y,) =/%(0) (mod. 4) for every y: of the length 2. Again we see-
from the same theorem

F(0) +75( ) + 55 D %) +5(% Dx;Dxe) =0 (mod. 4),

which means F*(y,) =/%(0) (mod. 4) for every y of the length 3. Going on in
this way, we arrive at the conclusion that

() =/#(0) (mod. 4)
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for every y.. This function £ is called the standard Jorm of f.

Now let g* be the standard form of g, then obviously f*(¥.)=g*%(y:) or
J*() = —g*(»,) according as f(0) =g(0) or f(0)= —g(0). This completes the
proof,

In connection with this theorem, there arises a natural question: “Is the
similar proposition true as well for functions of even dimensions?” Unfortunately,
however, the answer is “No”, because a counter example is found for n=4. In
fact, the four functions shown in Table 3.5.2 below provide a counter example.
As is seen, every coordinate of these functions has the absolute value 2, but they
are of different types.

TABLE 3.5.2
(0,7, 11, 13, 14, 15): 2 2222 2222232 2222 2
(1,6, 11, 13, 14, 15): 2 2222 222222 2222
2(3,5 10, 13, 14, 15): 2 2222 222222 2222 2
(8, 7,11, 12, 13, 14): 2 2222 222222 22232 2

We now consider the problem of analysing the symmetry structures of Boolean
functions by their coordinates. To begin with, the problem of recognizing some
of the typical symmetry structures will be considered. The following four
theorems serve for this purpose.

Theorem 3.5.3. A necessary condition for a function to be symmelrizable is
that all the coordinates appertaining to each set of odd linear functions of the same
length have the same absolute value; A mecessary and sufficient condition for a
Junction to be symmetric is that all the coordinates appertaining to each set of
odd linear functions of the same length have the same value.

Proof. Obvious.

Theorem 3.5.4. A necessary and sufficient condition for a function of an odd
dimension to be symmetrizable is that all the coordinates appertaining to each set
of odd linear functions of the same length have the same absolute value.

Proof. Evidently the above condition is necessary. Its sufficiency is proved
as follows. First, assume #<2, then every function of an odd dimension is sym-
metrizable, because it is an atom or an anti-atom.

Next, assume % =3, then the standard form of a function satisfying the condi-
tion of the theorem is symmetric. Therefore it is symmetrizable.

For example, the three-variable function 2 000 222 0 is symmetric and the
four-variable function 3 1111 111111 3333 3 is symmetrizable. Notice that
Table 3.5.2 provides a counter example against the validity of the generalization
of Theorem 3.5.4 to even dimensions, because only the first function of the table
is symmetric and all the others are not.

Theorem 8.5.5. A function is independent of a variable if and only if its
coordinates corresponding to odd linear functions containing the variable are all 0.
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Proof. Obvious.

Thus, for example, the three-variable function /: 2 220 200 0 is independent
of x3, because its coordinates f(x3), f(x:1® %), f(x:Dx5) and f(x:1Px:PHwg) cor-
responding to odd linear functions containing x3 are all 0.

Theorem 3.5.6. A function is self-dual (anti-self-dual) if and only if iis
coordinates corrvesponding to odd linear functions of even (odd) lengths are all 0.

Pyoof. QObvious.

Thus, for example, the three-variable function 0 222 000 2 is self-dual and

the three-variable function 2 000 222 0 is anti-self-dual.
Next, we shall explain the methods for finding the symmetry group of a

Boolean function with a few examples.

Example 3.5.2. Find the symmetry group of the four variable function:

oW N
SV N
I I N
W N
=R O DD b

1
0 1234 2
f: 1 3311 3

W oW e
o
oW N
s DN
=

Solution. Examining the four coordinates in the second set, we see that
possible elements of the symmetry group may be (12), (34) or (12)(34), because
only these make the four coordinates invariant. Again examining the four coor-
dinates in the fourth set, we see that possible elements of the symmetry group
may be (13), (24) or (13)(24), because the four coordinates taken in the reverse
order behave like the four in the second set under permutation operators. But
the above two sets of possible elements have no common element. Therefore f

must be perfectly asymmetric.

Example 3.5.3. Find the symmetry group of the four-variable function:

[T g
DN LY
B s o
oW
NSRS X}
NI s
DD o b
DN s D
N s
DI s w0
ENQEICI N g

0
2 2.

4
2

Dol DY
DNl W

1
f: 2

Solution. Transforming f by the reflexion operator [237], we obtain
[23]7: 2 2222 222222 2222 2

Then, examining the four coordinates of the fourth set, we see that only
(12), (34) and (12)(34) are the possible elements of the symmetry group of [23]/.
Evidently, it is sufficient to consider the six coordinates of the third set in order
to test these elements. Thus, transforming the six coordinates by (12), (34) and
(12)(34), we obtain 222222, 222222 and 222222 respectively. Therefore
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(12)(34) is the only one non-trivial element of the symmetry group of [23]/.
Accordingly, f has only one non-trivial symmetry element and it is given by

[237(12)(34)[231"*=[231(12)(34)[23]=[23]1[141(12)(34) =[1234](12) (34).

Example 3.5.4. Find the symmetry group of the four-variable function:

1

1112 2

111223 2233 3

0 1234 234344 3444 4

fi 0 4400 000000 0044 0.

Solution. From the four coordinates of the second set, we see that possible
elements of the symmetry group of f are those which can be generated from
(12), (34), [3] and [4]. Thus, applying these elements tentatively to the four
coordinates of the fourth set, we obtain (12): 0044, (34): 0044, [38]: 0044,
[4]: 004 4. Hence (34) is an element of the symmetry group but the others
are not. The remaining task is to test [347, [3](12) and [4](12). Thus, trans-
forming the four coordinates by them, we find that all of them are really the
elements of the symmetry group. Therefore the symmetry group is the one
generated by the three elements (34), [347] and [37(12). It has eight elements
and they are: Identity, (34), [34], [3](12), [4](12), [347(34), [41(12)(34) and
[31(12)(34).

3. 6. Coordinate Representation of Functional Separability

Consider a function f which is functionally separable with respect to variables
2, x5, ..., xF, and assume f=/7(glx’, x5, ..., %), %, ..., &5) where
Lz, %, ..., 241 is a permutation of [x1, %, . . ., #x]. Then, expanding f by g
f can be written in the form:

F=glf, . o, ) oXhn - o ., w0) 2, L, ) o(xhs, - .., %)

Now, let L and L' be the groups of odd linear functions determined by the
bases [« ..., xi1 and [%41, ..., %+] respectively. Then every odd linear
function y, is expressed uniquely in the form of y»=y.@y, where y,&L and
yye L'. With these preliminaries, we are going to calculate the coordinates f( Y.

To begin with, we have

(gEB ¢) (y)\) = y%—% g(yu @yc)¢(yv @.%)/2"'1

from (3) of Theorem 3.3.2. But g(».®ys) =0 for every y,& L, because g is
independent of variables %f4, . . ., xx. Similarly, ¢(y, B y,) =0 for every yo & L.
Therefore only the term for y,= L and y. =L/, ie., y,=0 survives in the above
expression, and we obtain

(g®9¢) () =glya) o) /2",
which, when used in (2) of Theorem 3.3.2, yields
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(g9) (1) = (2" 800 + Br0g( ) + B0 (3) — g 9(3,)/277)/2,

because g(3.) = 6,0g(.) and ¢(3) = Suod( ).
Applying the same reasoning to g'¢ and taking account of g'(y»)= —g(.),
we obtain

(g'¢) (1) = (2" 0a0 — Brog( ) + 8u0d(3,) + g(3) ¢(3.) /277 /2.
But g¢-g'¢=0. Hence, by (1) of Theorem 3.3.3, f(5) is given by
7)) = 8u(p() + ¢(3:))/2 = g(3.)(6(3) = (3:))/27, (3.6.1)
where m =59y, oL and y, e L".
Now, the form of (3.6.1) suggests the following theorem concerning the

coordinate representation of functional separability of Boolean functions.

Theroem 3.6.1. A function f is functionally separable if and only if there

are a partition [Lx7, . . . 250, [xtin - - ., 2513 of the set [xi, %2 . . ., %u] and
a function g(xi, . .., x;) such that 2sk=n-—1 and
F() =a(p) gy (3.6.2)

for every y,%0 in L and every y, in L', where 3 =y.®yv, and L and L' are the
group of odd linear functions determined by the bases [xf, .. ., xi] and Lxf,
. .., %51 respectively.

Proof. The “only if” part has been already proved because (3.6.1) becomes
f(yk) = "'g(yu) (?5(5’0 _El’(yv))/2n

for y,=0. The “if” part is proved as follows.
Let us put

B(») =f(») — Oi(yv)g(o),

then 7(») is written as /() = 8w B(y) + a() g(3.).
Now, from (3.4.12), we have

o 2”—1 = gakf(yk) = Zﬂgb}; 3»(%03(3’») + af(yv)g(yy.))
= gav B(y\o) -+ %aug(yu) gﬁwx(yv)-

But 3)6,g(y.) = =2"7* because g is independent of xf\s, . . ., #i. Furthermore
®

the two values 277! and — 277! can be actually attained by suitable choices of the
values of 6,, because g is neither 0 nor 1. Thus, we have

330,(8(5,) = 2" ar(3,)) = =277

Hence, by Theorem 3.4.6 and Theorem 3.5.5, B(»)+2"'a(y.) and B(5)
— 2" 1q(y,) are the coordinates of two functions which are independent of i,
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., x;. Let us denote these two functions by ¢ and ¢ respectively. Then we
obtain

B +2" al(y) =¢(p,) and B(yy) —2" a () = ¢(3),
and consequently,

a(3,) =(¢(») —¢(»))/2" and B(») = (¢(3,) + ¢(3))/2.

Therefore f must be of the form
F() =0u0(p () + ¢ (3.))/2 = (6(3,) — (1) g(3,) /2™

This completes the proof.

The theorem is theoretically fairly simple, but it requires a large amount of
calculations for practical applications, because we must test the condition (3.6.2)
for every possible partition of the set of variables. However, when the symmetry
structures of functions are taken into account, the required work will be reduced
considerably under most circumstances. In this respect, the viewpoints of Section
2.4, especially, Theorem 2.4.3 and Theorem 2.4.4 are useful.

Now we shall work out a few examples illustrating some typical situations
in the test of functional separability.

Example 3.6.1. Test the fuctional separability of the four-variable function:
fr 1 3311 331111 13713 1.

Solution. This function is shown to be perfectly asymmetric in Example
3.5.2. Hence it is not functionally separable, because no function of less than
four variables is perfectly asymmetric.

Example 3.6.2. Test the functional separability of the four-variable function:
fi 2 2222 222222 2222 2

Solution. It has been shown in Example 3.5.3 that f has the unique non-
trivial symmetry [12347(12)(34). Since no function of less than four variables is
perfectly asymmetric nor has the unique non-trivial symmetry [12347(12)(34), f
is not functionally separable.

Example 3.6.3. Test the functional separability of the four-vari-able function:
f: 0 4400 000000 0044 0.
Solution. The symmetry group of f is:
[L (84), [841, [31(12), [41(12), [341(34), [31(12)(34), [41(12)(34)],

where [ is the identity element (see Example 3.5.4). This group has many
subgroups among which only [, [37¢12)], [1, [41(12)] and [, (34), [34], [347(34)]
can be symmetry groups of functions of less than four variables. Accordingly,
if f is functionally separable, it must be so with respect to one of [, %, %],
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[x, %2, %0, Do %, [, s, 4] or [z, 25, %], But, by (1) of Theorem 2.4.3, if S
is functionally separable with respect to [, %, %] or [z, %, %], it is so with
respect to [, %], since f is invariant under (34). Furthermore, by (3) of
Theorem 2.4.3, f is not functionally separable with respect to [, %, %] and
%, %3, %], since f is invariant under [3](12).

To sum up: If f is functionally separable at all, it must be of the form
F=71%(g(x, %), %, %). Hence it suffices to test the condition (3.6.2) for the
partition [[xs, 2] [%, %11

Let us arrange the 16 coordinates of f as shown in Table 3.6.1. Then it
will be found that (3.6.2) can be satisfied by taking g(y.) and a(y,) as shown
in the bottom row and the sixth column

respectively of Table 3.6.1. The values TABLE 3.6.1
of B(»), ¢(») and ¢(y,) calculated from .
. — :

g(ye) and' a(yy) are shown in the y\)yj‘ 0 3 4 4 « B 6 ¢
seventh, eighth and ninth columns of
the table. 0 00 00 0 0 0 0

Thus, it is found that 7 is really 140047 12 4038
functionally separable. Moreover f is 2 400 4 —1/2 4 80
given  explicitly as Jf=x(%HDxn) 2 0000 o 000
+ 0 (0Bx), since g=uDx, ¢=5 and g 0008
¢ = . ‘

3. 7. Divisible Boolean Functiions

A Boolean function 1 is said to be divisidle if and only if L(f), the group of
odd linear functions y, such that /< 2 contains at least one function other than 0.

Now, consider a divisible function / and let [y, s . . ., ¥»] be any base of
L(f). TFurther assume f<%(i=1,2,..., k). Then, by (3.4.2), we have

() =27 8.0 — 8,.d(S) (3.7.1)

for any v, € L(f), where 8i= —&(i=1,2,..., k) and g = 8,0 for any y, and

v, in L(f). Next, let any n— & variables which are not in L(y) be x{, 7, . . .,
xi"k and let the group of odd linear functions determined by the base La, %7,
., %i_1] be denoted by L*. Then any v in L, is represented uniquely in the

form
=YD (3.7.2)

where y, € L{f) and y,=L*. When y, is represented in the above form, (3.4.1)
yields

27 e — F(30) = 8,027 8y — S (). (3.7.3)

This indicates that the knowledge of f(y,) for v, L* is sufficient to determine
all the coordinates f(y,.) for vy, & L(f).
Now, from (3.7.2), (8.7.3) and (3.4.12), we obtain

SN () =20 = 3066, 206027 e — () = £ 277
A P v
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because 6 =20,08l. If we take 9, =4, for every y.<L(f), the above equation
becomes

2" — 2 SN8L(2" 6y — £( ) = £ 2771,
v

Here, let us put
2" 8y = f() = 27K 15,0 — (), (3.7.4)
then we obtain
230 = + 2"h

which means that [*(y,)] (., € L*) represents a Boolean function f* of n—k
variables %1, %7, ..., %1z  Clearly f* has the same dimension as f and is
indivisible.

Now we shall show that /=39 - - - yi*f*. First we note that 7¥, when
considered as a degenerate function of %, %, . . ., %, has the coordinates

FH0n) = 8,028/ (9),
because
38 () =28 28l () = 207
v

Further, by Theorem 3.4.2, g=4'y;* - - - ¥ has the coordinates
gyn) = 600(2" 60 — 277" 5,).
Therefore, by (8) of Theorem 3.3.2, we obtain
(@) (») = 23803 el (@27 = (27 0 — 27828 () 127
= (2880 = 28,)7 (1) =/ (1) =2 8,7 * ().
Then, it follows, by (2) of Theorem 3.3.2, that

(gf*) () = (2" 350+ 0w (2" 80— 277%6,) + S (30) — (F* () — 28,7 (3))) /2
=2"" 000 — 0,27 1500 — fH (1)),

because dno = dudw. Since it is seen that (gf*)(w\) =f(».) by (3.7.3) and (3.7.4),
=30y - - ¥ F* is proved.

In dealing with divisible functions, it is convenient to assume that they are
of the standard form, where a divisible function f is said to be of the standard
form if and only if f< ! for every odd linear function y; of a base of the group
L(f). Thus, for example, the functions

[N

6 2220 220200 2000 0,

and 5 1111 331311 1111 1

are of the standard form. For divisible functions of the standard form, (3.7.1)
and (8.7.3) are simplified as
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Fl) =2n_15;\o—d(f) (me L)) (3.7.1)
and 2" 00— f(3) =2"""0u— 7)) (m=y®y, vue LD, v,eL®) (3.7.3)

respectively.

Note that the definition of the standard form of divisible functions is com-
patible with the previous one of functions of odd dimensions given in Section 3.5.
Precisely speaking, if a divisible function of an odd dimension is of the standard
form in the previous sense, it is of the standard form in the present sense, too.

Now we shall prove that every divisible function can be transformed into
the standard form by a suitable reflexion operator. In order to transform a
divisible function f such that f <y (i=1, 2, ..., k) for odd linear functions ¥i
of a base of L(f) into the standard form, we need a reflexion operator which
transform [y1, e, - . ., ¥ into [37% 7%, ..., y7°*] The existence of such a
reflexion operator is shown in the following theorem.

Theorem 3.7.1. Let Ly, 2, - . ., ¥ul be any base of Ly, then there is a unique
reflexion operator which transform [yi, yo, . . ., yal into [33, ¥5, .. ., v for

every combination of values of e, e, . . ., &n

Proof. Associate with each atom #i', x3* - - - 43 the refiexion operator prim-
ing only the variables x; such that ¢ =1. Then there arises a one-to-one cor-
respondence between atoms and reflexion operators. In this correspondence, the
reflexion operators which transform an odd linear function » into 3’ correspond
to atoms @ such that ¢ <y (see the proof Theorem 2.2.1). Therefore the reflexion
operator in question is given by that which corresponds to the atom 7% y;®

-+ -y, This completes the proof.

3. 8. Linear Auntomorphisms and Linear Transformations

In Section 3.4, we have seen that, for any set of » mutually independent odd

linear functions [y1, ¥2 . . ., ¥s], every function of the form »{y;*--- v is an
atom, and conversely every atom is expressed in this form. Hence the mapping
v f(%1, % ..., %) =S8 98, ..., ¥¥) induces a permutation of atoms, and

therefore, by Theorem 2.3.1, it is an automorphism of B,. Moreover, it is an
automorphism of L, the group of all linear functions (see Section 2.2). " In this
sense, the mapping is called a linear automorphism (of B,). Obviously, a linear
automorphism is a symmetry if and only if it preserves the length of the linear
function.

The effects of a linear automorphism r on the coordinates of Boolean func-
tions are similar to those of a symmetry. That is: For any function f, we have

(o) () = (7). (8.8.1)

Therefore the effects are a permutation and/or changes of sgns of coordinates.
Precisely, when 7 z; - ¥ is divided into two steps, & — v and v;— v{’, the effect
of the first step is a permutation and that of the second step is changes of signs
of coordinates.
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Example 3.8.1. Apply the linear automorphism 7: % —»>x1Dx, % —> %D,
%3 — %5 to the function:

1

112 2

0 123 233 3
i1 311 171 1

Solution. T—I(.’&@xa) = X1, T‘_l(x-_),@x:;) = X, 'E‘_IJGS = x;
Solving these equations, we have
= (0Om), T = (m® %), o=,

whence the coordinates of 7/ is given by:

¢fr 1 111 131 1.

There is one more kind of mappings with the similar effects on the coordinates
of Boolean functions. Such mappings are induced by the ring addition of linear
functions y;. For the sake of brevity, we call these mappings f - f Dy} as linear
transformations.

Since we have (FOy) (90 = (5 Dy (3.8.2)

from (3.3.3) and (3) of Theorem 3.3.2, the effects of a linear transformation
are a permutation of the coordinates and/or the change of singns of all the
coordinates.  Although the linear automorphism and the linear transformation
are very alike in regard to the effects on the coordinates of Boolean functions,
they are entirely different kinds of mappings. In fact, a linear transformation
is never an automorphism, because 0 is not invariant under a linear transforma-
tion.

Now, in view of the simplicity of the effects of the linear automorphisms
and the linear transformations on the coordinates of Boolean functions, we in-
troduce the following four definitions.

Two functions are said to be homologous (analogous) if and only if one of
them is transformed into another by a linear automorphism (a linear transforma-
tion).

Two functions are said to be of the same protofype (family) if and only if
one of them is transformed into another by a linear automorphism (symmetry)
and/or a linear transformation.

Thus, we have four concepts of type, genus, family and prototype for the
classification of Boolean functions. Comparing their definitions, it will be seen
that they form an increasing sequence in regard to the generality in the above
listed order.

The concept of prototype is the most general. Indeed it is so general that
Boolean functions may be classified into a surprisingly small number of proto-
types. For example, as will be seen in the next chapter, 65,536 Boolean func-
tions of four variables are classified into only eight prototypes. Next comes the
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concept of family. It is an intermediate concept between prototype and genus,
and is significant in the sense of the following theorem.

Theorem 3.8.1. Funotions which are analogous to a function f and functions
which are analogous to anociher junction g are classified into the same set of
genera, if and only if f and g ave of the same family.

Proof. “If” part: If f and g are of the same family, then there are a linear
function v} and a symmetry ¢ such that +(f® ) =g
Therefore, for each linear function yi, we have

dfO(RBeT)) = gDy
and SOy =0 g®s(yiDy)).

It follows then that each function which is analogous to g is congruent with a
certain function which is analogous to f and vice versa. Thus, the “if” part is
proved.

“Only if” part: If we assume the conclusion of the theorem, then, for each
linear function 3, there are a linear function vi and a symmeiry ¢ such that
df@y) =g®yi, ie. (/B (»@s™'y, )) =g But this means that / and g are
of the same family. Thus, the “only if” part is proved.

The theorem tells us that, in order to classify Boolean functions into genera,
it is of advantage to classify them into families first, since every genus will then
be represented by a function analogous to an arbitrary representative of a unique
family. In the next chapter, this plan will be actually used for the classification
of Boolean functions of three and four variables.

3.9. Geometric Derivation of Coordinate Representation

The coordinate representation has been derived algebraically through the
matrix representations. But it is also possible to derive the coordinate repre-
sentation geometrically. As a matter of fact, the original work of D. E. Muller?
was along this line. We shall now describe Muller’s geometric derivation.

As we have seen in Section 2.6.2, a Boolean function of % variables is
uniquely represented by a vertex of a 2%cube. Let us take a new coordinate
system, say, the C-system with the origin at the center of the cube and the
coordinate axes which are parallel to the sides of the cube. Referred to the
C-system, a vertex corresponding to an arbitrary function f has the coordinates
(86/2, 8:/2, . .., Bn_1/2), where §;=11if f=a;and §;= —1if f=2@. The Euclidean
distance between any vertex and the center is 272!, Let the inner product of
the radius vectors for the vertices f and g be denoted by (/, & as usual, then
we have

f, &) = (g, /) = 2]0:ei/4,

where we assume that the vertex g has the coordinates (e/2, &/2,...). Now
observe: 8ie;=11f ;< (/Pg) and diei= —1 if &;<fDg. Hence we have

1 ¢f, Ref. 20,
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(f, &) =(@d(f®g)) —d(fdg) /4 (3.9.1)
and, in particular,
0, £)=(d(f"y=d(f)/4 (8.9.2)
Note here that (3.9.2) implies

0, f®g) = (d((FBg)") - dFB))/A

Therefore, from (3.9.1), we have

(f, &) =0, fDg) (3.9.3)

and more generally

(fBh g)=(f, g@h), (3.9.4)

because both sides of (3.9.4) are equal to (0, f®g®h) by (3.9.3).
Now, since the dimension of every linear function other than 0 and 1 is 2”7,
we obtain

(0, ¥)) = 82" 26 (3.9.5)
from (3.9.1), and

(53, ¥5) = 8:2"7% 0, (3.9.6)
from (3.9.8). Thus, the following theorem is established.

Theorem 3.9.1. 2" lines connecting the cenier of 2"-cube and verlices cor-
responding to linear functions are orthogonal to one anolher.

The theorem suggests the advantage, in regard to the representation of
Boolean functions, of using a new coordinate system having the origin at the
center of the cube and the axes passing the vertices corresponding to the linear
functions. It is evidently rectangular. Let us call it L-system because it is defined
by the linear functions. The positive direction of each axis of the L-system may
be taken as the direction from the origin to the vertex corresponding to the odd
linear function passed by it. The coordinate transformation from C-system to
L-system is given by the orthogonal matrix:

S=27nt(£gy;) (4, 2=0,1, ..., 2"—1), (3.9.7)

where (&) (i=0, 1, ..., 2"—1) is the row vector having the coordinates of
odd linear function y, in C-system as the components.

Now let us define: By the coordinates of a Boolean function f we mean the
coordinates of the corresponding vertex in L-system multiplied by 2"%. Then it
will be observed that the coordinate f(v.) is given by

F(y) =20, ). (3.9.8)

Hence, from (3.9.1) and (3.9.2), we obtain
Q) =2""1—dlf) (3.9.9)
and Fy) =d(fy) —dlfyh) (3.9.9)
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for every 22c0.

The coordinate representation thus derived geometrically is the same as that
derived algebraically, because (3.9.9) and (3.9.9') agree with (3.3.2) and (3.3.2')
respectively.

4. Classification of Boolean Functions of Three and Four Variables

4.1, Significance of Classification of Boolean Funection

The exact meaning of classification of Boolean functions is to find a class of
Boolean functions which is complete in the sense that, for any given function,
there is only one function which is congruent with it.

Congruent functions are very alike in almost every respect. Their dimensions
are equal; they have similar minimal sums with the same number of essential
prime implicants, of essential literals, and of occurrences of literals; They may
be all symmetrizable, functionally separable, divisible etc. or all not. Furthermore,
they can be realized by physically similar switching circuits. For example, they
can be realized by similar relay contact circuits with the same number of contacts
and of transfer contacts. Thus, by classifying Boolean functions and considering
only the representatives, a great amount of research efforts can be saved in the
study of theory and applications of Boolean functions.

The preliminary stage for the classification of Boolean functions is the enu-
meration of types of Boolean fnnctions. Accordingly, it is worth while to make
a survey of the present state of development in this field.

Slepian’s? work is the most important in this field. He devised an ingeneous
method for this problem and counted the number of types of Boolean functions
up to #=6. His results are reproduced in Table 4.1.1, where T, is the number
of types of Boolean functions of » variables.

TABLE 4.1.1

#w 1 2 3 4 5 6

Tn 3 6 22 402 1, 228, 158 400, 507, 806, 843, 728

Historically, the first successful approach to this problem was made by Pblya.?)
He counted the numbers of types of n-variable Boolean functions with dimensions
d, T4, for d=0,1, ..., 27 and n=1, 2, 3, 4. His results were correct but his
method was rather intuitive and short of mathematical rigor. Polya’s results are
shown in Table 4.1.2.

TABLE 4.1-2

. idﬂ 0 1 2 3 4 5 6 7 8 T
1 1011 3
2 11 2 1 1 6
3 1 1 3 3 63 3 1 1 22
4 1 1 4 6 19 27 50 56 74 | 402

U ¢f. Ref. 37. 2 cf, Ref. 28,
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In the table, the values of T\ for d>8 are omitted, because they can be
obtained by the obvious formula T4 = T%"~%. There are some explicit formulas
of T for moderate values of d, among which 7%’ =1 and 7%’ =1 are evident,
and T = is almost evident. Concerning 7, Durst derived the formula®

n [r/3)
= 33831+ ) (k=372

by using the distance between atoms, where [x] is the usual notation for the
integral part of a real number x. Recently the present author? has made an
attempt to count 7%’ and T%’ by means of the coordinate representation. He has
not only reproduced Durst’s result for 7% but also succeeded in deriving an
explicit formula for 7. However the formula is too complicated to be presented
here. So we shall only show the values of T together with those of T3’ cal-

culated for moderate 7, in the following table.

TABLE 4.1.3

n112345678910

7 | 0 1 3 6 10 16 23 32 43 56
T 0 1 6 19 47 103 203 373 649 1079

On the other hand, the number of genera of Boolean functions of n variables,
G, has been calculated recently by the author” up to n=6. The results are
shown in Table 4.1.4, where S, is the number of genera (types) of self-com-
pelmentary Boolean functions of » variables. Obviously, we have Gn=(Tw+ 5u)/2.
The table contains also the values of T#'" obtained form Table 4.1.2. By
comparing S, and 7%""", we see that every function of the dimension 2% s
self-complementary for » =3, but the same is not true for n=4.

TABLE 4.1.4

n |1 2 3 4 5 6

G. | 2 4 14 222 616 126 400, 253, 952, 527, 184

Sa 1 2 6 42 4,09 98, 210, 640
TN 1 2 6 T4 x ®

Turning to Table 4.1.1, it is noted that T, are already very large even for
moderate values of #. In this extraordinary growth of T., we see a practical
limitation for the possibility of classification of Boolean functions. Indeed, no
attempt has been made so far beyond n=4. Even for n=4, the problem involves
serious difficulties. There seems to be no practical solution for this problem
other than the following one. That is: “Choose an arditrary function. Apply
every possible symmetry to it and record all different functions obtained. Choose
another arbitrary function which is not recorded in the previous step. Apply

D ¢f. Ref. 7. 9 cf. Ref. 25 (unpublished). ¥ cf. Ref. 24,
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every possible symmetry to it and record all different tunctions obtained. Con-
tinue the process until all the functions are exhausted”. As a matter of fact, the
only one contribution, so far as the author is aware of, for n=4 by the Staff of
the Computation Laboratory of Harvard University has been carried out by this
method with a high speed computer.)

The author’s intention here is to attack the same problem by an entirely
different method based on the coordinate representation. The development in the
following sections will show that the intention proves to be fairly successful in
reducing the process of classification largely and in finding out some new aspects
of classification which have been hitherto overlooked.

4, 2. Principle of the Method of Classification

The classification will be carried out in four stages from the wider to the
narrower in accordance with the four concepts: prototype, family, genus and type.
Before proceeding to the description of the four stages, the definitions of the
four concepts will be relisted for the sake of definiteness.

“Two Boolean functions are of the same prototype if and only if one of them
is transformed into another by a linear automorphism and/or a linear transforma-
tion”.

“Two Boolean functions are of the same family if and only if one of them is
transformed into another by a symmetry and/or a linear transformation”.

“Two Boolean functions are of the same genus if and only if one of them is
transformed into another by a symmetry and/or the complementation”.

“Two Boolean functions are of the same type if and only if one of them is
transformed into another by a symmetry”.

Stage 1: Classification into Protoiypes

In the beginning, Boolean functions will be classified according to the greatest
absolute value of the coordinates. For simplicity, the above mentioned value is
called index. Then each class of functions with the same index will be easily
classified into prototypes by the theory of Chapter 3. In doing this, we may only
consider those functions the first coordinates of which are equal to the indices,
because any function can be transformed into this form, if necessary, by a suitable
linear transformation. Each prototype obtained in this stage will be represented
by an appropriately chosen function of the above form.

Stage 2: Classification into Families

In this stage, each prototype obtained in Stage 1 will be classified into families.
Practically, this will be done indirectly as follows. That is: First, functions which
are homologous to the representative of the prototype will be classified into types.
Then, it will be examined whether the types obtained are of different families
or not. In order to do this, some calculations are necessary but no serious
difficulties are involved. At any rate, in the end of Stage 2, we have the list of
representatives of all the families.

Stage 8: Classification into Genera
In this stage, each family obtained in Stage 2 will be classified into genera,

b cf, Ref, 38,
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This can be done by applying all linear transformations to the representative of
the family, since, as we have seen in Section 3.8, every genus of the family is
represented by a function which is analogous to the representative. It is not
true, however, that every genus should be represented by only one of such func-
tions. Therefore some functions are redundant as the representative of the genera
and must be eliminated. For this purpose, a closer investigation concerning the
set of functions which are analogous to the representative of a family is necessary.

The most apparent fact in this respect is that (f@®y,) =/® ¥, where f is
the representative of a family and y; is an odd linear function. Therefore either
of f@yx or fDy) is redundant for each v,. Here, as a possible decision, we take
S @y and discard @y} for each y.. Thus, 2" redundant functions of the form
S@y\ have been eliminated. Further eliminations are still necessary and the
following lemma serves for this purpose.

Lemma 4.2.1. Let f be any function, and let v, and Yu be any odd Ilinear
Junctions, then f@yy and By, are of the same genus if and only if either
oyn=y, Jor a symmetry o such that of = f°, or o(9,®p,) =95 for a symmetry o
and an odd linear function y, such that o(f ®y,) = 7°.

Proof. The first condition being the special case of the second condition for
»v=0, it suffices to consider only the second condition.

“If” part: Forming the ring sum of ¢(9,®y,) =5 and +(f®9.) = F’, we
obtain s(f ®y)) = (f ®v,)°° which means that f @y, and S @y, are of the same
genus.

“Only if” part: Assume that f® yr and f @y, are of the same genus, then
there is a symmetry o such that o(f @) = (F @)%, i, of D f = oy ® .. Since
the right hand side of the last equation is a linear function, say, oy), we obtain
o(f®y) =5° and o(y,By,) =y, where ¢= s

Now, by the lemma, the elimination of the redundant functions will be carried
out as follows. That is: Classify, for each representative f, all the odd linear
functions into classes in accordance with the conditions of Lemma 4.2.1, then
functions f@y\ for all but one yr in each class are redundant and can be eli-
minated.

First, only the first condition of the lemma will be taken into account and
any two odd linear functions y\ and y, will be put into the same class if and only
if gyi=y, for a symmetry ¢ such that ¢f'=/°. Here, we notice the following two
facts. The one is that we may neglect the possibility ¢f =", since the first
coordinate f(0) is not 0, being equal to the index, and therefore, f is not self-
complementary. The other is that, for any permutation operator 7, any reflexion
operator r and any odd linear function y, zyx is an odd linear function and 7y,
is either y, or yi. T aking these facts into account, we may proceed as follows.
That is: Put any y, and y, such that =y, =y, for a symmetry =7z satisfying
of = f into the same class.

Next, the classes formed will be merged by the second condition of Lemma
4.2.1. Evidently this condition is effective only if there are some 7,%0 and ¢
such that ¢(f@y3) = . We call such a v as a comservative linear function for
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£ and such a ¢ as a restoring symmetry for f and 8. Here it is observed that
any class is composed exclusively of either non-conservative linear functions or
conservative linear functions primed or unprimed. Now a little investigation
shows that we may proceed as follows. That is: Choose an arbitrary 33 form a
class of conservative linear functions and an arbitrary restoring symmetry o for
5. Merge any two classes if there are a y in one and a y, in the other such
that z(v.@»,) =¥, where » is the permutation part of 5. Repeat the same
procedure for each class of conservative linear functions.

After the classification of odd linear functions is finished, we may choose an
arbitrary odd linear function y,. form each class and form f@y.. In this way,
we shall obtain the set of representatives of all the genera.

Stage 4: Classification into Types

In this stage, each genus obtained in Stage 3 will be classified into types.
This can be done immediately by complementing the repressntative of each genus.
But on account of its triviality, the process may be entirely omitted. ~The only
non-trivial task is to detect self-complementary genera. Fortunately, however,
this is feasible in process of Stage 3 by the following lemma.

Lemma 4.2.2. Let f be any function and v\ be any odd linear Sunction, then
7 ®y, is self-complementary if and only if either ay,=9"° for a symmetry ¢ such
that of = f° or ol @53) =% for a symmelry o and a linear function 3% such that
o(fOy) = 1.

Proof. The proof is similar to that of Lemma 4.2.1.

In testing the self-complementarity of a function f@y\ by Lemma 4.2.2, the
following remarks may be of use. That is: In the first place, only functions
f@y, such that f(».) =0 may be tested. In the second place, we may neglect the
possibility ¢f =/ by the same reason as stated concerning the first condition of
Lemma 4.2. Accordingly, f@y, is self-complementary if oy, = v} for a symmetry
s such that ¢f = f. In the third place, it is necessary to consider all the restoring
symmetries ¢ for each conservative linear function v, when we use the second
condition. Clearly the set of all the restoring symmetries is given by the right
coset G(f)s of the symmetry group G(f), where ¢ is an arbitrary restoring
symmetry.

4. 3. Classication of Boolean Functions of Three Variables

The classification of Boolean functions of three variables is a well-established
problem and there is almost nothing to be added newly by its reinvestigation.
The intention here is to apply the method of Section 4.2 to the problem for the
purpose of demonstrating its power.

Now we proceed to the classification. Since the sum of squares of eight
coordinates of any function of three variables is 16 (Theorem 3.3.1), its index
cannot be other than 4, 3 or 2. We shall treat these three cases separately.

4.8. 1. Classification of Functions with the Index 4
Evidently there is only one function with 4 as the first coordinate. It is the
function 0 with the coodinates
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4 000 000 O.

Therefore there is a unique prototype and at the same time a unique family of
functions with the index 4. Here it is intuitively evident that there are four
genera of them represented, for example, by the func-

TABLE 4.3.1 tions shown in Table 4.3.1. In this table and also in

the similar ones appearing hereafter, the numbers

“;” g 000000 0 standing to the left of the coodinates are the serial
s 400 000 0 numbers of the genera. From Table 4.3.1, we see
1070 000 400 0 that the genera “9”, “10” and “11” are self-comple-
“11” 0 000 000 4

mentary, since they are represented by the linear func-
tions %1, P and x Px,Px: respectively.

Thus, it turns out that functions with the index 4 are classified into a proto-
type, a family, four genera and five types.

4.3. 2. Classification of Functlions with the Index 8

Functions having the index 3 as the first coordinate are nothing but atoms,
because the first coordinate means that they are of the dimension 1. Therefore
there exists a unique prototype and at the same time a unique family of functions
with the index 3. As the representative of this prototype (family), we take the

atom xix; % with the coordinates

3111 111 1.

In this case also, it is evident that there are four genera

TABLE 4.3.2 represented, for example, by the functions shown in
“27 3 111 111 1 Table 4.3.2.
“6” 1T 311 111 1 Thus, it turns out that functions with the index 3
“77 1 111 311 1 are classified into a prototype, a family, four genera
“g” 1 111 1171 3 and eight types.

4.3.3. Classification of Functions with the Index 2

The possible absolute values of coordinates of functions with the index 2 are
2 and 0. Hence they must have four coordinates with the absolute value 2 and
four coordinates with the value 0 (Theorem 3.3.1). Now, let 7 be a function
with the index 2 such that f(0)=2, then f(y;)=2¢ for some three odd linear
functions yi, y, and y;, and f(y.) =0 for all other y.. Further, since f is of the
dimension 2, we have f <yi*»;* (Theorem 3.4.1). But y{* is also of the dimen-
sion 2 ((3.4.4)). Hence we obtain f = y1*yi*, and consequently, y; Dy, Dy, =0 and
siees = — 1 ((3.4.5)). This means that functions having the index 2 as the first
coordinates are products of two linear functions other than 0 and 1. Since any
two such functions are homologous, there exists a unique prototype of functions
with the index 2. As the representative of this prototype, we take the function

%%, whose coordinates are
2 220 200 0.
Next, functions which are homologous to this function, or in other words,
functions of the dimension 2 are to be classified into types. In doing this, we
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may only consider functions of the standard form (Section 3.7), i.e., those f with
FO) =2, f(3) =113)=S(5) =9 for some three odd linear functions s, 3. and ¥
such that @@y =0 and f(») =0 for all others. Such functions as these are
uniquely determined by the three coordinates F(x), flae) and f(x) by virtue of
the relations

F(0) +S(x) +1%) +/(2%:Dx;)=0 (mod. 4)
and ) () () +/ (0D %D %) =0 (mod. 4)

(Theorem 3.4.3).

Thus, it will be easily found that there are three types of functions of the
dimension 2 represented, for example, by the functions shown in Table 4.3.3.

Now we shall examine whether the three functions
are of different families or not. First, we note that TABLE 4.3.3
odd linear functions corresponding to the coordinates
2 and 2 form a group for any of these functions. Then
it follows that any even linear function corresponding
to the coordinate 2 is conservative. Hence these three
functions are of different families.

The three families obtained above are now to be classified into genera. The
process and the results of the classification are shown in Table 4.3.4.

“3” 2 220 200 O

“47” 2 200 002 2
“5” 2 000 222 0

1
112 2
0 123 233 3 Symmetry CL. R.S.
“g” 320 200 '
22zdzd 0 | A | e
L % [1]
14 (x1@x2) [12]
549 5] ‘- 5 B
4 2200002 2 (23), [23] %! 121
(m2®x3) [11]
_1_3_ (1D x2®x3) fi21
., TN
“g 2 0002220 (1, 2, 3), (m@x2) 131
° [123] (x1@x3) [21
12 (220 x3) [1]
“12” 222 000 2
“13” 022 220 0
#147 002 022 2
TABLE 4.3.4

The exact meaning of Table 4.3.4 will now be explained. Each set of symbols
in the column “Symmetry” gives a generating system of the symmetry group of
the function in the same row. The symbol (I, 2, 3) in the row “5” indicates that
the function is symmetric. ~We adopt this symbol instead of the symbols (12)
and (13), because the former is more concise than the latter. Arcs placed under
some coordinates show the results of classification of odd linear functions by the
first condition of Lemma 4.2.1. Thus, for example, odd linear functions are
classified into classes [07, [#, %], [%] [m@ %], [x:D %, %Ox] and [0O %O x]
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for the function “3”, because (12) x = and (12) (1P %) =P x. Small circles
put under some coordinates indicate that the corresponding linear functions, odd
or even as the case may be, are conservative. All conservative linear functions
are given in the column “C.L.” and corresponding typical restoring symmetries
in the column “R.S.”. Arcs placed over some coordinates indicate mergers of
classes of odd linear functions by the second condition of Lemma 4.2.1. Thus,
for example, two arcs of the function “3” indicate that the classes [xs], LoD s,
%@ %] and [ @ xDx] are merged. Arcs indicating mergers of classes of con-
servative linear functions are omitted, since it is evident that all the classes of
conservative linear functions should be merged together. Now it is seen that
odd linear functions are classified into two classes for any of the three represent-
atives. Hence any of the three families is classified into two genera of which one
is represented by the representative of the family itself and the other is named
by the number standing under the arrowhead. A representative of the latter
genus can be obtained by the linear addition of an arbitrary odd linear function
chosen from the class where the arrow starts. Thus, for example, the function
“138” is obtained as the ring sum of x and the function “4”. The underlines
drawn under the numbers of new genera indicate that they are self-complementary.
For example, the genus “13” is self-complementary, because [23] x» = x} (The first
condiion of Lemma 4.2.2).

Thus, it turns out that functions with the index 2 are classified into a proto-
type, three families, six genera and nine types, since three genera are self-com-
plementary.

4.3.4. Conclusion

The results obtained are tabulated in Table 4.3.5 and Table 4.3.6. In Table
4.3.5, various numbers characterizing the classification of Boolean functions of
three variables are collected from the preceding sections. Only the numbers of
functions in the last column are added newly. They are obtained by summing
up the appropriate numbers given in the column “T” of Table 4.3.6.

TABLE 4.3.5
Index Prototype Family Genus Type Function
4 1 1 4 5 16
3 1 1 4 8 128
1 3 6 9 112
Total 3 5 14 22 256

In Table 4.3.6, the 14 genera are listed with some useful informations added.
The numbers in the column “N” are the serial numbers of genera. The next
eight columns give the coordinates of the representatives of genera. The repre-
sentatives are so chosen or so transformed that their first four coordinates may
be positive and the three in the second set may form decreasing sequences. The
column “STANDARD SUM?” contains the standard sums of the representatives.
The column “SYMMETRY” gives generating systems of symmetry groups. The
last column “T”’ contains the numbers of functions which are congruent with the
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representatives. They are obtained by dividing the order of the group 0, 48 by
the orders of symmetry groups.

Surveying the table, we see that the five genera s w7 wh” “8” and <117
are symmetric and the three genera “9”, “10” and “11” are selfdual, Further-
more, it is noted that any function has a non-trivial symmetry and any function
having 0 as the first coordinate is self-complementary. These properties are
characteristic of Boolean functions of less than four variables, since they are no
longer true for functions of four or more than four variables.

TABLE 4.3.6. Table of Boolean Functions of Three Variables
1

112 2
N 0 123 233 3 Standard sum Symmetry T
1 4 000 000 0 (1, 2, 3, 111, [2], [3] 1
2 3111 1111 7 (1, 2, 3) 8
3 2220 2000 6 7 (12), 131 12
4 2 200 002 2 47 (23), [23] 12
5 2 000 222 0 07 (1, 2, 3), [123] 4
6 1 311 1111 567 (23) 24
7 11113111 1617 (12) 24
8 11111113 35 6 (1, 2, 3) 8
9 0 400 000 0 4 5 6 7 (23), [2], [31 6
10 0 000 400 0 2 3 4 5 (12), 121, [3] 6
1 0 000 000 4 1 2 4 7 (1, 2, 3), [121, [13] 2
12 0 222 0002 35 67 (1, 2, 3) 8
13 0 220 022 0 3 46 7 (12)13] 24
14 0 200 220 2 05 6 7 (23) 24

4. 4. Classification of Boolean Functions of Four Variables

Boolean functions of four variables have 16 coordinates and the sum of their
squares is equal to 64 (Theorem 3.3.1). Hence the possible values of the index
are 8, 7, 6, 5, 4, 3 and 2. These seven cases will be treated successively in the
above listed order.

4.4.1. Classification of Fuuctions with the Index 8
Evidently there is only one function with the index 8 as the first coordinate.
That is the function 0 whose coordinates are

8 0000 000000 0000 O

Therefore there exists a unique prototype which we call the prototype “8-0" and
at the same time a unique family of functions with the index 8  The process
and the results of classification of the family are given in the following table
which is to be interpreted in the same way as Table 4.3.4.

The representatives of the genera “165”, “166”, “167” and “168” are not given
here for the sake of economy of space. They are given in the table of Boolean
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“1” 8 0\0‘—()/0 OwO 0\0{0/0 {[) (1, 2, 3, 4), [11, [2], [31, 141
v
165 106 167 168
TABLE 4.4.1

functions of four variables of Appendix 1 together with all others.
Thus, it turns out that functions of the index 8 are classified into a prototype,
a family, five genera and six types, because four genera are self-complementary.

4.4.2. Classtfication of Functions with the Index 7

Functions having the index 7 as the first coordinates are atoms. Therefore
there exists a unique prototype which we call the prototype “7-1” of functions
with the index 7. As the representative of this family, we take the atom ! xx !
whose coordinates are

7 1111 1171711 11171 1

Since atoms are of the same type, the prototype “7-1" consists of a unique family.
The process and the results of classification of the family are given in Table 4. 4.2.

“27 7 1111 1111711 11711 1 (1, 2, 3, 4)
109 110 11 112
TABLE 4.4.2

Thus, it turns out that functions with the index 7 are classified into a proto-
type, a family, five genera and ten types.

4.4.3. Classification of Functions with the Index 6

Functions with the index 6 have one coordinate with the absolute value 6,
seven coordinates with the absolute value 2 and eight coordinates with the value
0 (Theorem 3.3.1, Theorem 3.4.4}. Now, let /' be a function such that F(0)=6,
then, since f is of the dimension 2, seven odd linear functions corresponding to
coordinates with the absolute value 2 together with the function 0 form a group
of the dimension 3 (Theorem 3.4.1). Let a base of the group be [y, 3, ¥5] and
assume f(y) =2¢ (=1, 2, 3). Clearly f <yilyi2ys®.  But vivi*yi® is also of the
dimension 2 (Theorem 3.4.2). Therefore we have f =iy, It follows then
that functions having the index 6 as the first coordinates are products of three
independent linear functions. Since any two such functions are homologous, there
exists a unique prototype which we call the prototype “6-2-0" of functions with
the index 6. As the representative of the prototype, we take the function x| xsxj
whose coordinates are

6 2220 220200 2000 0.
Next, functions which are homologous to this function, or in other words,
functions of the dimension 2 are to be classified into types. In order to do this,
we may only consider functions of the standard form, z.e., those for which seven
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coordinates with the absolute value 2 are all 2. Here it is noted that these func-
tions are completely determined by the four coordinates f (x:)(4=1,2,3,4) by
means of the relations

F(0) + (%) + f(x) + f(%:Dx)=0 (mod. 4),
F(x) + f () 4+ f() + F(: D% D) =0 (mod. 4),
and FO) + F (D% + faPr)+ f(1DnOxnDx)=0 (mod. 4)

(Theorem 3.4.3).
Hence they are classified into four types represented by functions whose four

coordinates in the second set are 2220, 2200, 2000 and 0000. The four re-
presentatives are shown in T able 4.4.3. Further, these functions are of different
families, since none of them is analogous to any other. Therefore they may be
taken as the representatives of the four families of the prototype “6-2-0".

The four families are now to be classified into genera. The process and the
results of classification are shown in Table 4.4.3.

TABLE 4.4.3
1
1112 2
111223 2233 3
0 1234 234344 3444 4 Symmetry
«“3” 6 2220 220200 2000 0 (1, 2, 3), [4]
\1/5 ‘ LI ) Yy
59 4 62 v 63 4
2179 180 18
“4” 6 2200 2 2 22 2
\T(/) ;’OODQi 00\‘3 ‘ (12, (34), [34]
& 4 e 65 66 67
m o o 11
“5” 6 2000 000222 2220 0 (2, 3, 4), [234
61 l 68 69 ¥ ‘
170 174 175 176
“g” 6 0000 222222 0000 2 (1, 2, 3, 4), [1234]
N~ T~ \T/ !
1 7

O g

Ne}
~J
(=)

1
173

oy

l

Thus, it turns out that functions with the index 6 are classified into a proto-
type, four families, 30 genera and 47 types, because 13 genera are self-comple-

mentary.

4.4, 4. Classification of Funclions with the Index 5

Functions with the index 5 have one coordinate with the absolute value 5,
three coordinates with the absolute value 3 and 12 coordinates with the absolute
value 1 (Theorem 3.3.1, Theorem 3.4.4). Now, let /7 be a function such that
£(0)=5. Since f is of the dimension 3, three odd linear functions corresponding
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to coordinates with the absolute value 3 together with the function 0 form a
group of the dimension 2 (Theorem 3.4.1). Transforming f into the standard
form (Theorem 3.5.2), or rather assuming that f is already of the standard
form the beginning, we have f(0)=5, f(y;)=3(G=1,2,3) for some three odd
linear functions such that @@y =0 and f(y) =1 for all other y. Since any
two such functions are homologous, we conclude that there exists a unique proto-
type which we call the prototype “5-3-17 of functions with the index 5. As the
representative of the prototype, we take the function x!xj(x;+ x;) whose coor-
dinates are

53311311111 1111 1.

Next, functions which are homologous to this function, or in other words,
functions of the dimension 3 will be classified into types. This can be easily
done by considering only functions of the standard form. Thus it will be found
that there are six types of functions of the dimension 3. Their representatives
are given in Table 4.4.4. Obviously these six functions are of different families,
because none of them is analogous to any other. Therefore they represent all

TABLE 4.4.4
1
1112 2
111223 2233 3
0 1234 234344 3444 4 Symmetry
wz” 53311?1111111111 (12), (34)
& T 1
117 127 141 132 143 145
“g” 5?111 111?11 3111 1 (23)
33 l 36 37 vr
114 § 123 140 142 | 137
120 131 135
“gr 5?111 11111\/1 1113 3 (2, 3, 4)
34 l 389}9
118 128 130 133
“10” 5 1111 331311 1111 (1, 2, 3)

DN e b
S ol
L)

e,

DO e et

—
—t

19

0

ot

™

[

w

D

—
W

'y

“11” 5 1111 ? 11113 111 13 (12), (23), (13)(24)
T T
116 138 125
“12” 51111?11111 11331 (12),(34)
LTI TE ]
115 119 129 124 134 126
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the six families of the prototype “5-3-1". The process and the results of clas-
sification of the six families are also given in Table 4.4. 4.

Thus, it turns out that functions with the index 5 are classified into a proto-
type, six families, 52 genera and 104 types.

4.4.5. Classification of Funclions with the Index 4

Functions with the index 4 are classified into two kinds according to whether
all coordinates are congruent modulo 4 or not (Theorem 3.4.5).

First, we consider functions of the first kind, those all the coordinates of
which are congruent modulo 4. Clearly such functions have four coordinates
with the absolute value 4 and 12 coordinates with the value 0 (Theorem 3.3.1).
Now, let f be a function of the first kind such that f(0)=4. Since f is of the
dimension 4, four odd linear functions corresponding to coordinates with the
absolute value 4 form a group of the dimension 2 (Theorem 3.4.1). Transform-
ing f into the standard form, or rather assuming that f is already of the standard
form from the beginning, we have f(0)=4, f(y)=4(i=1, 2, 3) for some three
odd linear functions such that y1PBy:By:=0 and F(y.) =0 for all other y.. This
means that f is a product of two even linear functions other than 1. Snce any
two such functions are homologous, we conclude that there exists a unique proto-
type which we call the prototype “4-0” of functions of the first kind. As the
representative of the prototype, we take the function x/x whose coordinates are

4 4400 400000 0000 O.

Next, functions which are homologous to this function are to be classified
into types. But this can be done immediately by analogy with the classification
of functions of the dimension 3, because, by replacing 4 with 5, 4 with 3 and 0
with 1, the functions under consideration are turned into those considered in
Section 4.4.4. Hence we see that there are six types. Their representatives are
given below in Table 4.4.5. Further, these six functions are of different families,
because, for any of them, any even linear function corresponding to a coordinate
4 is conservative. Therefore they represent all the six families of the prototype
“4-0”, 'The process and the results of classification of these families are given
in Table 4.4.5. _

The self-complementarity of 13 new genera can be verified by the first condi-
tion of Lemma 4.2.2. For example, the genus “183” is self-complementary,
because [23]x% = ;.

Thus, it turns out that functions of the first kind with the index 4 are clas-
sified into a prototype, six families, 19 genera and 25 types.

We now consider functions of the second kind. These functions have two
coordinates with the absolute value 4, eight coordinates with the absolute value
2 and six coordinates with the value 0 (Theorem 3.3.1, Theorem 3.4.5). Now,
let f be a function of the second kind such that f(0)=4. Then, since f is of
the dimension 4 and f has one more coordinate f(y )4, it is divisible. Further,
let xf, x5 and x7 be any three variables such that x;, ), %3 and y; are mutually
independent, and L* be the group of odd linear functions determined by the base
[xf, %5, %+ ]. Then we have f(3,) = F f(»,) for any odd linear function y, of
the form y, =y,®Py,, where y,&L* and 7,50 ((3.7.3)). On the other hand,
concerning the coordinates f(y,) for v, € L*, we see that [f(y,) — 448,01 (v, € L")
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TABLE 4.4.5
1
1112 2
111223 2233 3 ,
0 1234 234344 3444 4 Symmetry C.L. RS.
«3* 4 3300 100060 0000 0  (12), (34 ,
! 1400 4 00 Egl’),[g ) 3 gig
2
186 194 (x1012)" [12]
a4 100T000T00 1000 Y (2
' , %! [21
° ~e ° [2s], [4] () [1]
183 193 189 (monoxs) [12]
— ~~ N N - -
“15 4 4000 D0OOOCO 0004 4 (2 8 4), x! [21
e~ e [231, [24] (x2@x30%4) [1]
187 (X1B00x30x1) [12]
P U
“16” 4 00007420300 0000 0 (1,2 3), (x1@%2)" [31]
° [1231, [4] (110)" [21]
182 192 190 (x28x3) (I
/“‘\ .
“17 4 0000 40000470000 4 (12), (34), (1®x2)" [31
° \I/ ° " o (13)(24), (s x4 [1]
15 191 [12], [34] (X192 x3D %)’ [131
187 4 OOMO (12), (34 (1®%2) [31
“18” )s )s x1®0x2)"
~ e \f oo [123], [34] (x1®x30x1)’ L21
184 18 (R2@x3@x1)" [1]

l

represents an indivisible function of the three variables xf, x° and % of the
dimension 4 ((3.7.4)). Here an inspection of Table 4.3.6 tells us that there are
three types of such functions and they are all homologous (“12”, “13” and “14”
of Table 4.3.6). Furthermore, since it is readily seen that any two functions
like f are homologous, we conclude that there exists a unique prototype which
we call the prototype “4-2-0" of functions of the second kind. As the represent-
ative of the prototype, we take the function >3(11, 18, 14, 15) whose coordinates
are

4 4222 222000 0002 2.

Next, functions which are homologous to this function are to be classified
into types. In doing this, we may only consider functions f such that f(y)=4
for =, x1PBx, PP %, x1PXDx:Px..  Then, it is seen that we may put
X1 =%, %7 =5, and %7 =x;. On the other hand, concerning the coordinates ()
for y,&L* we may assume f(y)=7(y)=s(»)=2 and f(3Oy»Py) =2 for
some three independent odd linear functions 3, » and y;, and f(y,)=0 for all
other y,. In this way, it will be found after a little examination that there are
13 types of functions under consideration and they are of different families. The
representatives of the 13 types which are at the same time the representatives
of the 13 families of the prototype “4-2-0”, are so chosen that the four coordinates
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in the second set may form positive decreasing sequences. They are given below
in Table 4.4.6 together with the process and the results of classification of
families represented by them.

In Table 4.4.6, we see that, among 28 genera of functions of the dimension
8, 12 genera are self-complementary and the other 16 genera are not. The self-

TABLE 4.4.6

Symmetry C.L. R.S.

“19”7 4 4222 222000 0002 2 (2, 3, 4) x [234]
o

20 4 :4)220 2\_/2002\[/2 02\_/20 0 (23) [4] x1 [23]
e T
78 97
199 215 220

‘21”7 4 4 2 (34) x1 [2]
]

22”7 4 2222 A00000 223272 (12), (34) (1622 [34]
TT Y 7

74 86 104
207 209

[aelf

/\___
“237 4 2222 000000 222

\égg/\r/\/

A
208

“24” 4 2220 210‘2‘024 2000 2 (12) (x1®x2) [123]
° !

4 (1,23 4) mononodxn [1234]
€257 4 22 240072 (12) 21 22D %y [123]
o]
“26" 4 2200 4222200022 0 @ (12), (34) (r19x2)" [12]
o

“p7” 4 2200 022222}; 0022 0 (12)[34], (x3024) [12]

NPT W
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TABLE 4.4.6. (Contivued)

1
1112 2
111223 2233 3
0 1234 234344 3444 4  Symmetry C.L. R.S.
«“28"” 4 22000222290 402\_; 0 (123[4] XOXD A3 [12]
Qi/ (e}
79J 98 1 1
200 16 203

“9” 4 2200 T 2222070022 4 (1211341, S X BXIB A4 (123
° (34)

“30” 4 2 (23) (x2®x3)’ [11

“31” 4 000 222000 222 Zf 2 (2, 3, 4) (%2®x39x4)" [1]

77 9

<

205

complementrarity of the 12 genera can be verified by the both conditions of
Lemma 4.2.2. For example, the genus “220” is self-complementary, because
(2410 D40x) = (D xPx) (First condition), and the genus “210”" is soO
too, because (12112371 Px® (@ %)) = (1) (Second condition).

Thus, it turns out that functions of the second kind with the index 4 are
classified into a prototype, 13 families, 74 genera and 136 types.

4.4.6. Classification of Functions with the Index 3

Functions with the index 3 have six coordinates with the absolute value 3
and ten coordinates with the absolute value 1 (Theorem 3.3.1). Now, let ¥ be
a function with the index 3 such that f(0)=3. Assuming that f is of the
standard form (Theorem 3.5.2), we have f(0)=3, f(y)=3 for some five odd
linear functions y: (=1, 2, 3 4,5), and f(y,)=1 for all other y». When we
choose any four, say, 31, . ¥ and y. out of the five y; at least three of them,
say, v, y and y; are mutually independent. Let the group of odd linear functions
determined by the base [y, s, ¥ be denoted by L. Now, if we assume that at
least one of y, or y; belongs to L, we obtain }_, Ff(y) =12 or 2 f(yk) =16. But

these are both impossible, because Z F(m) must be equal to +8 or 0 (Theorem

3.4.7). It follows then that any four out of the five y; must be independent.
Since there is no set of five independent odd linear functions, we have y: D@y
Dy Pys=0. Therefore any two functions like f are homologous. Consequently,
there exists a unique prototype which we call the prototype “3-1” of functions
with the index 3. As the representative of the prototype, we take the function
S(7, 11, 13, 14, 15) whose coordinates are
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Next, functions which are homologous to this function, 7.e., those with the
index 3 as the first coordinates are to be classified into types. Considering only
functions like the above f, it will be found after a little examination that they
are classified into 14 types represented by the functions from *“45” to “58” shown
in Table 4.4.7. Furthermore, it will be found that the 14 types are grouped
into four families, [45, 51, 587, [46, 48, 52, 55, 571, [47, 49, 54, 567] and [50, 53].
As the representatives of the four families, we take “45”, “46”, “47” and “50”.
The process and the results of classification of these families are given below.

TABLE 4.4.7

1
2
3
4

0o
O
W €0 bt
RNFRENY

Symmetry C.L. R.S.

45" 33333 111111 1

=l
i}
i}

3 (1, 2, 3,4)

=
{
i

152 159
“46” 3 3331 'ii:fiivi 11713 1 (23)
48 52 i 551 l L SL
149 151 148 y (162
154 158 161
“47” 3 33171 1371133 1111 1 (12)(34)
PN LT
49 154 56 vy
147 150 156 160 155 163
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“48” 3 331

=t
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w
b}
P
L]
s
i
Lo
w
]
-

149" 3 331

“50” 33311 11111 3311 § (12, (34) X19x0x30xs  (13)(24)

157 146 153 164
“51” 3 31171 333111 1113 1
“52" 3 31717 3371131 1131 1
“53” 33111 3113371 1113 1
“54” 3 3111 311311 1311 3
“55” 3 3111 311111 3313 1
“56 3 T1T1 33711371 33711 1
“677 3 11311 331111 3113 3
w587 3 1711 111117 3333 3
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Thus, it turns out that functions with the index 3 are classified into a proto-
type, four families, 33 genera and 66 types.

4.4.7. Classification of Fnnctions with the Index 2

Clearly every coordinate of functions with the index 2 has the absolute value
2 (Theorem 3.3.1). Let f be a function with the index 2 such that f(0)=2.
Without loss of generality, we may assume f = xix;xi%i, or equivalently, %} ()

= —8 (Theorem 3.4.6), since any function other than 0 can be transformed into
such a function, if necessary, by a suitable reflexion operator. Under this as-
sumption, f has six coordinates with the value 2 and ten coordinates with the
value 2. Now, let y; be the five odd linear functions such that y;+0 and f(y:) =2
(=1, 2, 3, 4, 5). When we choose any four. say, ¥, ¥2, ¥s and y; out of the five,
at least three of them, say, y;, y. and y; are independent. Let the group of odd
linear functions determined by the base [y, ys, ys]1 be denoted by L. If we
assume that at least one of y; and y; belongs to L, we obtain g f(y) =4 or
Elf (y,») =8 But these are both impossible, because >, f(y,) must be equal to

L
0 or —8 when f=#lxjxix, (Theorem 3.4.7). It follows that any four out of the
five y; must be independent. Since there is no set of five independent odd linear
functions, we conclude that y @®»@®y:Dy:Dys=0. Therefore any two functions
like f are homologous. Consequently, there exists a unique prototype which we
call the prototype “2-2” of functions with the index 2. As its representative, we
take the function >3(0, 7, 11, 13, 14, 15) whose coordinates are

Next, functions which are homologous to this function, z.e., those with the
index 2 as the first coordinate are to be classified into types. Here it is noted
that functions with the index 2 as the first coordinate can be turned into those
with the index 3 as the first coordinate by replacing 2 with 3 and 2 with 1.
Therefore, in classifying functions under consideration, we may only take 14
functions corresponding to the representatives of the 14 families of the prototype
“3-17, It is plausible, however, that some of these 14 functions are congruent,
because they have further symmetry structures based on the uniformity of the
absolute value of coordinates which are not possessed by those of prototype “3-1".
In fact, by transforming the 14 functions in such a manner that the four coor-
dinates in the second set may become positive, it will be found that any two of
these functions are of the same type and at the same time of the same family,
if and only if they correspond to those of the same family of the prototype “3-1".
Thus, we conclude that functions with the index 2 as the first coordinate are
classified into four types. Their representatives are shown in Table 4.4.8.

TABLE 4.4.8
“1057 2 2222 222222 2222 2
“106” 2 2222 222222 2222 2
“107" 2 2222 222222 2222 2
“108” 2 2222 222222 2222 2
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The above four functions represent all the four genera of the prototype “2-27,
since any function which is analogous to any of them has the first coordinate
with the absolute value 2. Incidentally it may be added that the four functions
constitute a counter example against the possibility of generalization of Theorem
3.5.2 and Theorem 3.5.4 to functions of even dimensions.

Thus, it turns out that functions with the index 2 are classified into a proto-
type, four families, four genera and eight types.

4.4.8. Conclusion

The results of the classification of Boolean functions of four variables are
tabulated in Table 4.4.9 and Table of Boolean Functions of Four Variables in
Appendix 1.

In Table 4.4.9, various values characterizing the classification are collected
from the preceding sections. Only the numbers of functions in the last column
are added newly. They are obtained by summing up the numbers given in the
column “T” of Table of Booclean Functions appropriately.

TABLE 4.4.9

Index Prototype Family Genus Type Function

8 1(“8-07) 1 5 6 32
7 1(H7-17) 1 5 10 512
6 1(“6-2-0") 4 30 47 3,840
5 1(%5~3-1") 6 52 104 17,920
4 1(%4-07) 6 19 25 1,120
4 1(*4-2-0") i3 74 136 26,880
3 1(#3-17) 4 33 66 14,336
2 1(“2-27) 4 4 8 896
Total 8 39 222 402 65,536

Thus, 65, 536 Boolean functions of four variables are classified into 8 proto-
types, 39 families, 222 genera and 402 types.

Muller studied the coordinates of Boolean functions of four variables by a
digital computor. He calculated the numbers of coordinates of the absolute values
0,1,2, ...,8 for each function, and put all the functions for which these nine
numbers agreed into the same equivalence class. In this way, he has found that
there are 8 such equivalence classes. Obviously the 8 classes are nothing but
the 8 prototypes in the present terminology. But it is doubtful that Muller’s
equivalence classes and prototypes are identical for functions of more than four
variables.

In Table of Boolean Functions of Four Variables in Appendix 1, the 222
genera are listed with some useful informations added. The first column “N”
gives the serial numbers of genera. The next 16 columns give the coordinates
of representatives of genera. They are so chosen that their first five coordinates
may become non-negative and the four in the second set may form decreasing
sequences. The column “Standard Sum” gives the standard sums of the re-
presentatives. The column “Symmetry” contains generating systems of symmetry
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groups of the representatives. When the column contains an entry “-”, the
corresponding representative is perfectly asymmetric. The colum “T” gives the
numbers of functions which are congruent with the representatives. They are
obtainable by dividing the order of the group 0., 384 by the orders of symmetry
groups. The last column “Remarks” contains some symbols specifying certain
particular structures of the representatives or genera. The meanings of the
symbols appearing in the column are as follows. The digits 0, 1, 2 and 3 give
the numbers of essential variables of degenerate representatives. The symbols
Se,5, ..., means that the corresponding representative is the symmetric function
with the a-numbers @, b, . .., 2. The symbols FS, SD and M are the abbrevia-
tions of “functionally separable”, “self-dual” and “monotonous” respectively.
Among the structures given by the column, those specified by the symbols Sz, ..., %
and M are not the properties of genera. However, it will be observed from the
way of choice of the representatives that, when a genus contains a symmetric
(monotonous) function, its representative is symmetric (monotonous).

There are 58 genera of functions of the dimension 8 (having 0 as the first
coordinate) of which 42 are self-complementary and the other 16 belonging to
the prototype “4-2-0” are not (see Section 4.4.5). These 16 genera are dis-
tinguished from self-complementary ones by splitting each of them into two
complementary types. Thus, for example, the genus “197” is split into two types
“197 a” and “197 b".

We now explain how to identify the genus or the type of a given function
by the table.

Step 1: Expand the given function f into the standard sum.

Step 2: Examine the dimension of f. If it is greater than 8, take f' instead
of f. Calculate the coordinates of ¥ by Table 3.3.2 or the same table relisted
in Appendix 1, where 7 is f or f' as the case may be.

Step 3: Examine the four coordinates in the second set, and apply a symmetry
¢ to f, if necessary, to turn the four coordinates into a non-negative decreasing
sequence. '

Step 4: Look for the function ¢f in the table. If it appears there, the process
terminates. But if it does not appear there, ¢f must be transformed somehow.
Clearly, in this case, we may only consider such symmetries ¢ as preserve the
four coordinates of ¢/ as a whole. Testing every possible symmetry with the
above property, we eventually arrive at a function t¢f appearing in the table.
Under most circumstances, however, the choice of a correct symmetry will be
suggested by the inspection of other coordinates. Sometimes it is even possible
to identify the genus or the type without transforming f further.

The rules stated above will now be illustrated by the following examples.

Example 4.4.1. Identify the genus (type) of the function:
f=>11,2,3,7,11, 12).
Solution. Calculating the coordinates by Table 3.3.2, we obtain
fi 2 2222 222222 2222 2
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In order to remove the negative signs of f(m) and f(), we apply the reflexion
operator [127 to f. Thus, we obtain

ri2lf: 2 2222 222222 2222 2.

This function appears as the representative of the genus “105”. Hence f
belongs to the genus “105” (the type “1057). Since [12]f is symmetric, f is
symmetric with respect to %{, x, x; and 2.

Example 4.4.2. Identify the genus (type) of the function:
=352, 3,4,6,8,10,11, 12).
Solution. Calculating the coordinates by Table 3.3.2, we obtain
f: 0 0224 220422 0220 0.

First, we apply the reflexion operator [24] to remove the negative signs of /()
and f(x:) and obtain

[24]7: 0 0224 220722 0220 0.

Next, we apply the permutatition operator (14) to rearrange 0224 into 4220 and
obtain

(1241 0 4220 220422 0220 0.

But this function does not appear in the table. Hence it must be transformed
somehow. Clearly, possible symmetries to be applied are [4], (23) and (23)[4],
because only these preserve the four coordinates 4220 as a whole. Thus, ap-
plying [4] tentatively, we obtain

[1241(14)7: 0 4220 220422 0220 0,

because [4](14)[24]=T47[12](14)=[124](14). This function appears as the re-
presentative of the type “200b”. Therefore / belongs to the genus “200” (the
type “200b”). Since [1247(14) f has only one non-trivial symmetry 2341, 1
has only one non-trivial symmetry (25)[123] =[1247(14)(23)[41([1247(14) )~

Example 4.4.3. Identify the genus (type) of the function:
F=340,1,2,4,5,9,10, 11, 14).
Solution. Since d(f)=9>8, we take the complement:
F=71(3,6,8,12,13,15).
Calculating the coordinates by Table 3.3.2, we obtain
f: 11311 151113 1311 1.
We apply (12) to rearrange 1311 into 3111 and obtain

(12)f: 1 3111 111513 1311 1,
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Here it may be observed that, among 11 representatives having the four coor-
dinates 3111 in the second set, only the representative of the genus “130” has the
coordinates 5 and 3 in the third set. Therefore f must belong to the genus “130”
(the type “130"’). In fact, transforming (12)7' by (23), we obtain

(123)f: 1 3111 111531 1131 1,

the representative of the genus “130”. Since (123)f’ is perfectly asymmetric, f
is so too.

4.4.9. Comparison of the New Table with the Harvard Table

As we mentioned in Section 4.1, the classification of Boolean functions of
four variables has been carried out by the Staff of the Computation Laboratory
of Harvard University. The results have been published in the Appendix to the
book “Synthesis of Electronic Computing and Control Circuits”. The Appendix
contains three tables, of which Table 1.3 (Harvard Table) is the main table
listing the 402 types of Boolean functions of four variables, and the other two
are auxiliary tables. The Harvard Table has six columns and from left to right
they give:

. The dimensions.

. The serial numbers of types.

The standard sums of the representatives of types.

. Standard vacuum tube circuits realizing the representatives.

The numbers of control grids necessary in the circuits.

. The numbers of functions which are congruent with the representatives.

D U W N

As the representative of each type, the function having the earliest standard
sum in the lexicographical order with respect to the atoms 0,1, ...,15 is
chosen. The representatives are grouped according to their dimensions, and, in
each group, they are arranged in the lexicographical order.

The process for the identification of the type of a given function f is as
follows. First, / will be transformed, if necessary, into a function including the
atom 0 by a refiexion operator . Table 1.1 is prepared for this purpose. It
contains all the results of applications of the 16 reflexion operators to the 16
atoms. Next, the function 7 is to be looked for in Table 1.2. It contains about
3,000 functions and, for each of them, the serial number of the type and a per-
mutation operator transforming it into the representative of the type are given.
Thus, when the function 7/ is found in Table I.2, the process terminates. But,
when it is not found there, the process must be repeated from the beginning by
choosing another reflexion operator. In this way, the process will be continued
until, for a certain reflexion operator r*, r*f is found in Table I.2. Since no
criterion is available for the choice of the correct reflexion operator, the process
may be short or long as the case may be.

We now proceed to the comparison of the New Table with the Harvard Table.
The following items may be regarded as the relative merits of the New Table.

a. The New Table contains the informations concerning the symmetry struc-
tures and several other structures of Boolean functions which are not contained
in the Harvard Table.
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b. In the New Table, it is clarified that 42 types among the 74 types of
functions of dimension 8 are self-complementary and the remaining 32 types are
not, while, in the Harvard Table, this fact is altogether overlooked.

c. In the New Table, each representative of the type manifests the structure
of the type straightforwardly, but, in the Harvard Table, the same is not always
the case.?

d. The New Table does not require an extensive auxiliary table like Table
1.2 of the Harvard Table.

Fairly speaking, however, only the first two items should be considered as
the decisive merits of the New Table. On the other hand, the New Table has
following drawbacks.

a. The New Table requires the column for standard sums besides the column
for the coordinates in order to express the representatives explicitly.

b. The New Table requires somewhat cumbersome calculations for identifying
the type of a given function.

These drawbacks, however, are not considered as serious, because, in the
first place, the drawback b is compensated for to some extent by the ease of the
choice of the correct or at least reasonable reflexion operator. The New T able
contains no information corresponding to the columns 4 and 5 of the Harvard
Table. But it is not a drawback, because it is irrelevant for the present com-
parison.

In conclusion, it may be added that the perfect agreement of the two tables
has been verified by an exhaustive comparison.

5. Synthesis of Relay Switching Circuits
5.1. Relay Switching Circuits

In a relay switching circuit, the input is specified by whether each relay is
energized or de-emergized, and the output is specified by whether the circuit is
closed or open. Let us represent the states of relays with the variables each of
which takes the value 0 or 1 according as the corresponding relay is de-energized
or energized, and the state of the circuit with the variable which takes the value
0 or 1 according as the circuit is open or closed. The former varialbes are called
the input variables and the latter variable is called the ouiput variable. Ordinarily,
the output is uniquely determined by the input, so the output variable is a binary
function, and therefore, a Boolean function® of the input variables. This is the
reason why the Boolean algebra is an indispensable tool for the analysis and the
synthesis of relay and other switching circuits.

Now, before proceeding further, two remarks will be stated. In the first
place, the above mentioned simple functional relation between the input and the
output holds only for one kind of switching circuit called combinational, but does
not for another kind called sequential. In a sequential switching circuit, the
output is determined not only by the present input but also by the past inputs.
Accordingly, the output variable is a Boolean function not only of the present input

1) For example, each representative of symmetric types is a symmetric function in the
New Table, but the same is not always the case in the Harvard Table.
2) See page 8.
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variables but also of the past input variables. Nonetheless, the Boolean algebra
is still very useful for sequential circuits as well. At any rate, we are concerned
only with combinational switching circuits in this paper and we shall omit the
adjective “combinational” hereafter.

In the second place, there are two formulations or languages in dealing with
switching circuits by Boolean algebras. One is called the transmission language
and the other the hindrance language. In the transmission language, the input
and the output variables are defined as above, while, in the hindrance language,
they are defined with the roles of 0 and 1 interchanged. The output variable is
called the fransmission in the transmission language, and the hindrance in the
hindrance language. Thus, the transmission (hindrance) is 1 (0) if the circuit
is closed, and is 0 (1) if the circuit is open. These two languages are perfectly
dual to one another and there is no essential reason for discriminating between
them. But the recent tendency seems to be in favor of the transmission language,
and so we adopt it also in this paper.

We now return to the subject and see how relay switching circuits are
analyzed by Boolean algebras. To begin with, we shall find the transmission
of a single contact. Let x be the input variable of the relay X, and m(x) and
b(x) be the transmissions of a make contact and a break contact of X respectively.
Then, since every make (break) contact is closed or open (open or closed) ac-
cording as the relay is energized or de-energized, we obtain the following table
which indicates that

m(x)=x and b(x) =«

TABLE 5.1.1

Relay x ‘ Make Contact me(x) Break Contact b(x)

energized

E
closed 1 [ open 0
‘ closed 1

1
de-energized 0 z open 0

Thus, it has been shown that the transmission of a make contact is the input
variable of the realy itself and the transmission of a break contact is the com-
plement of the input variable of the relay.

Next, we shall find the transmissions of a parallel conmection and a series
connection of two circuits. Let f and g be the transmissions of two circuits, and
p and s be the transmissions of their parallel connection and series connection
respectively. Then, since the parallel connection is closed if and only if at least
one of the component circuits is closed, and the series connection is closed if and

only if both of the component circuits are closed, we

TABLE 5.1.2 obtain the following table which indicates that
|
ngP;i_ p=f+g and s=fg.
g (1) (1) g Thus, it has been shown that the transmission of a
parallel (series) connection is the sum (product) of the
Lo ! 0 transmissions of component circuits.
11 ! ! Now it is easy to analyze a series-parailel circuit,
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because its transmission will be written down immediately from the circuit dia-
gram by the above rule.

Example 5.1.1. Analyze the series-parallel circuit shown in Fig. 5.1.1.

Solution. The transmission is written down

immediately as: z!

x! yi
F=xy+(w+)(w+5). w i W

The analysis of a non-series-parallel circuit, F16. 5.1.1

or, a bridge is a little complicated but it is still

easy. Since a bridge is closed if and only if at least one of the paths between
terminals is closed, its transmission is given by the sum of transmissions of all
paths.

Example 5.1.2. Analyze the bridge shown in Fig. 5.1.2.

Solution. The circuit has four paths xy, vw,

xuw and vyy. So the transmission is given by: x ’ ¥
- 1 n
f = xy -+ ow + xuw -+ vuy. v ] -
Thus, there is no difficulty so far as the F1G. 5.1.2

analysis is concerned.

As regards the synthesis, on the contrary, the situation is entirely different.
Of course, it is always possible to synthesize a circuit, for example, a series-
parallel circuit with the given transmission, but that is not enough. What is
required is to synthesize a circuit with the given transmission which is as simple
as possible under a certain standard of simplicity. There are two common
standards of simplicity: One is the number of contacts and the other is the
number of springs. At first sight, these two standards seem to be identical,
because every contact requires two springs. But the fact is that, by combining
any pair of a make contact and a break contact of the same relay sharing a node
into a transfer contact, we can save one spring per one transfer contact. Thus,
occasionally it happens that a circuit which is minimal in contacts is not minimal
in springs and vice versa.

The search for a general method for synthesizlng a circuit minimal in contacts
or in springs is the central problem in the synthesis of relay switching circuits.
But, unfortunately, there is no such method available at the present. Indeed, it
is very difficult even to determine whether a given circuit may be minimal (in
contacts or in springs) or not. Perhaps the only general criterion for the mini-
mality of circuits may be the following: Let C, S and E be the number of
contacts, the number of springs and the number of essential contacts respectively,
where a contact is said to be essential when its transmission is equal to an es-
sential literal of the transmission function of the circuit. Then, since obviously
every essential contact is indispensable for the circuit, we have C=E. Therefore
if C=E, the circuit is minimal in contact. Next, concerning the relation between
C and S, we have S=[(3 C-+1)/2], because the largest possible number of transfer
contacts is [C/2]. Hence, if C is minimal and SZ[3 C/2]+2, there is no circuit
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which is not minimal in contacts but is minimal in springs.

Example 5.1.3. Determine whether the circuit shown in Fig. 5.1.3. may be
minimal or not.

Solution. The transmission of the circuit

W [ ® J is given by:
. z'
X'——-L-{ ;f‘ f=xy +w x +wyz

F1G6. 5.1.3 This is the minimal sum and we obtain E= 7.

Further, we obtain C=7 and S=11 from the

circuit diagram. Therefore C=FE and S=[(3C+1)/2]. Accordingly, the circuit
is minimal both in contacts and in springs.

Now we are going to explain various methods for synthesizing relay switching
circuits in the following sections. The methods may be very effective and lead
to minimal circuits sometimes but in a particular problem they may be of little
use.

5. 2. Expansion Method

One of the most general and powerful methods is the expansion method. In
this method, the transmission function is expanded with respect to one or more
variables and then a circuit is synthesized directly on the basis of the result of
expansion. This method can be used extensively and, under most circumstances,
results in a bridge, planar or non-planar. Furthermore, circuits synthesized by
this method have usually many transfer contacts. There are several varieties
of the method, of which the disjunctive tree method" is fundamental.

5.2.1. Disjunctive Tree Method
The disjunctive tree method is based on the interconnection of two networks
shown in Fig. 5.2.1. Boxes M and N represent networks with n-+1 terminals
each. The network A has the trans-

mission u; (i=1, 2, ...,#n) Dbetween
- ; ; - terminals ¢ and ¢; the network N has
T the transmission v (i=1,2, ... ,%)
e — ¥ S between terminals & and ¢; M is a dis-
o n n - junctive network, i.e., the transmission
between any pair of terminals ¢ and j
FI1G. 5.2.1 is 0.

With these assumptions, the follow-
ing theorem was proved by Shannon: “If the corresponding terminals 1,2, ...,
n of M and N are connected together, the transmission f between the terminals
@ and b is given by f= > wuiv.”

In view of the theorem, the disjunctive tree method proceeds as follows:

(1) Write the given transmission f in the form f= > u;v:. Usually the ex-
pression will be obtained by expanding # with respect to some variables. Then,
i are products of literals of the expanding variables and »; are the correspond-

1 cf. Ref. 36.
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ing coefficients.

(2) Construct a disjunctive network M realizing #; functions. Usually M is
a disjunctive tree.

(3) Construct an N network realizing v:.

(4) Connect the corresponding terminals of A and N. For a terminal of NV
network corresponding to »;=0, no connection is needed and the corresponding
element in M network can be eliminated.

Let us now apply the method to transmission functions of three variables.
By the expansion theorem, any function of three variables can be written in the

form:

F(x 5, 2)=470,0,2) +xv700,1, 2)+x' f(1,0, 2) +xy/(1, 1, 2).

Putting U= x’y’; 1= f(os 0, 2):
U = «'y, m= (0,1, 2),
us= %y, v=f(1,0,2),
wi= XY, n= (1,1, 2),
4
we obtain f(%, 3, 2) = > uivi.
1=1
The M network realizing u; is the dis- — 1
junctive tree of Fig. 5.2.2. The wv; are : x1__[y —z
functions of the variable z.  Therefore y— 2 ___z]_ b
they must be selected from the set [0, 1, & yi— 3 ’
z,2]. Evidently, the largest N network x-—{: S
is the one shown in Fig.5.2.2. Thus, we y— 4
see that any function of three variables FI1G. 5.2.2
can be realized with not more than 8 con-
tacts.

Functions of four variables can be realized in either of two ways. In one
way, the function will be expanded with respect to three of the variables. Then
the N network is again to realize functions of a single variable, and therefore,
the largest N network is the same as that of Fig. 5.2.2.  The M network is a
disjunctive tree containing 14 contacts if all #; are present. Accordingly, the
combined circuits have at most 16 contacts. In another way, the function will
be expanded with respect to two of the variables. When a function f(w, %, ¥, 2)
is expanded with respect to w and x, we have

flw, %,9,2)=w x £(0,0,92) +w' %7 (0,1, 5 2) +wx' (1,0, 5 2) +wxf(1, 1,9 2).

The u; and v; are now identified as:

wm=wx, vn=£(0,0,9, 2),
o =w'x, 2= f(0,1, 9, 2),
s = wx, vs=7(1,0, 9, 2),
Uy = WK, v=f(1,1, 9, 2).

The M network is a disjunctive tree similar to that of Fig. 5.2.2. The w:
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are now functions of two variables and must be selected from the set of 16 such
functions. Shannon classified all funtions of two variables as shown in the fol-

lowing table.

TABLE 5.2.1

0, 1.
»y, z 2.
y'+2, ¥4z y+2, y+a
', ¥z y2, yz.

yez (yoz).

HUO0Ows>

By the help of this classification, Shannon studied all the possible selections
of functions of two variables exhaustively and gave the upper bound of 14 contacts
for the combined circuits.” We shall not discuss how this upper bound was
obtained. Here we shall show some typical cases in the following examples.

Example 5.2.1. Synthesize a circuit with the transmission:
F=wy +x'y +wx'2 +w x2 +w' x' 2+ wxyz.
Solution. Expanding f with respect to w and x, we obtain
F=ws'(y+z2)+w x(y +2) +ws' (Y +2') +wxyz.

The #; and v; are identified as:

wm=wx, =y -tz
w,=w'x, n=y+2,
U = wx', vy=y + 2,
Uy = WX, V= Y2.

We note that v, = s, so the terminals 2 and 3 of the M network will be connected
to a single terminal '+ 2’ of the N network. The best N network is shown in
Fig. 5.2.3. The two functions y' +z and 3+ 2’ are realized by the three terminal
network containing only three contacts, and the function yz is obtained by adding
only one contact y. When this N network is connected to the M network, the
circuit shown in Fig. 5.2.4 will be obtained. The circuit is a non-planar bridge
and requires 10 contacts and 15 springs.

2 ‘__'l
v w——‘gﬂ‘—-y z
yi+e ————i-—- 2z ‘\ y!
X
! b W"‘—'LXN——Z'

v
y'+z‘ ......._._i_...z'

FI1G. 5.2.3 F16. 5.2.4

1) The real upper bound is not 14 but 13. See page 179.
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In this example, all the ¢; are selected from the groups C and D. Usually,
it is easy to treat the cases where all the v; are selected from the groups A, B,
C and D.

Example 5.2.2. Synthesize a circuit with the transmission:

f=ws'y+wx 2+ wyz +wxy 2 +w' xy2 +w' xy 2

Solution. Expanding f with respect to w and x, we obtain
f=w'x(y z2+y2") +wa'(y+2) +ww(y 2 +9z).

This time, »: =0, and v, and v are from the group E. The best N network
is given in Fig. 5.2.5. The two functions ¥ z+yz' and »'z'+yz are realized by
a network which contains the three-terminal network similar to that used in the
preceding example, and is tapped without any additional contact to yield the
function y+z.

The combined circuit is shown in Fig. 5.2.6. It is a planar bridge and
requires 12 contacts and 19 springs.

y'a+yas’
Fi gt
4 ——L—TJ_Z —X{zv;{—“
=1 z! __/Y:]J__.
y' oz L
yizt4yz —L

F1G. 5.2.5 F16G. 5.2.6

Next, we change the variables of expansion to y and 2z  The result of the
expansion is

f=yZwx+yz2(w x+wx') +y2 (W x+wx') + yaw.

The »; are now identified as v =wx, v:=v:=w'x+wx’ and vsi=w. The best
N network and the combined circuit are shown in Fig. 5.2.7 and Fig. 5.2.8
respectively. The circuit is non-planar bridge and requires 11 contacts and 17
springs. Therefore it is simpler than the previous circuit by one contact and
two springs.

WX-—-—‘
.
X

W -——-}——w N w
x! }. b :./ xl,
w'x+wx’—--Lx.._w1 : E ’
¥ z! Kt

FI1G. 5.2.7 FI1G. 5.2.8
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As illustrated in the above example, the quality of circuits depends upon the
choice of expanding variables so that it is necessary to try every possible choice
to obtain the best circuit.

Transmission functions of more than four variables can be treated also by
the disjunctive tree method. But, in such cases, there are many ways for dis-
tributing variables between the }/ and N networks. For example functions of
six variables can be realized with three variables in both the M and N networks,
with two in the M network and four in the N network, or vice versa. Because
of the complexity of the problem, almost nothing has been found which is general
enough to serve as a guide.

The disjunctive tree method is only one of the varieties of the expansion
method and several others are conceivable. Here the author proposes the follow-
ing three varieties which seem to be new. They are the sandwich method, cross
connection method and square connection method. They are based on the expansion
of the transmission function with respect to two variables. Although their scopes
of application are restricted somehow, they have a common advantage over the
disjunctive tree method in that they require only four contacts for the expansion
part, while the disjunctive tree method requires six contacts for the M network.

5.2.2. Sandwich Method
Assume that the given transmission function f is expanded with respect to
two variables, say, x and y as:

F =5y vi+ ' o2+ 2y vs - xyva.

The general principle of the sandwich method is to realize this function by the
circuit shown in Fig. 5.2.9. The expansion part is split into two parts on both
ends of the circuit and sandwiches the coefficient
part. In order to use this method, the four condi-

x-——-~<—-v 5! .
’ tions:
! ml 93, < ! <
: » ¥y vvsvi £ f, Pynivsn < f,

xy’vlvzm =/ XYV Vs =S
FIG. 5.2.9
should be satisfied, since, otherwise, a sneak path
appears in the circuit. For example, when the condition x'y'v.vsvs<f is violated,
the detour x'—wv,—v;—wv;— 3y becomes a sneak path.

The sandwich method may not seem to be of much use because of the re-
stricting conditions. But the fact is that the conditions are not so restrictive as
they first seem to be and it is sometimes possible to make use of the prohibited
detours with advantage (see Example 5.2.4).

Example 5.2.3. Synthesize a circuit with the transmission:
f=wxz' +w' xy +wx'y+wxz.

Solution. The transmission function is already expanded with respect to w
and x. The circuit synthesized by the sandwich method is shown in Fig. 5.2.10.
No sneak path is present in the circuit, because the four conditions are satisfied
by virtue of yy'=0 and zz'=0. Since C= E=8, the circuit is minimal in contacts.
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Example 5. 2. 4. Synthesize a circuit with the

W 1 z ¥ % 1
transmission: :y{ ;
YN
el 7, x

=32 x4+ 2w +y2w+vz(w & +wx).

Solution. Omitting the last term wvzwx for F16G. 5.2.10
the moment, we construct a circuit for the re-
maining part of the function by the sandwich method. The result is shown in
Fig. 5.2.11. In this circuit, the detour y—w—x—w — z is alive and realizes the
omitted term wzwx. Hence, the circuit, as it
stands, realizes the function f. It requires 9

contacts and 15 springs. It is probably minimal ¥ :

in contacts but not in springs, because a better

circuit exists as will be shown in Example 5.2.6. __,_zw,__x,
5.2.3. Cross Connection Method FiG. 5.2.11

In this method, a transmission function f
expanded as

S =5y v+ 5 yv. + 2y 03 + 2yvs

is to be realized by one of the two circuits shown in Fig. 5.2.12. In any of the
circuits, the expansion part is connected in the shape of a cross. Evidently, this
method is applicable only when »10:<f and vwu<f, or viv:=f and vis=f
according as whether the circuit (a) or (b) is used.

72 T V4 v3 T V4
F x
£ } ! ¥ } y!
y! xl
V1 4 Vx "4‘1 . VZ
Fi1G. 5.2.12

This method is very powerful with a rather wide scope of application. Some-
times it is even possible to utilize the prohibited paths with profit.

Example 5.2.5. Synthesize a circuit with the transmission:
f=xDyDz=a"y 2+ 2 y2' + x5y 2 + xyz.

Solution. The disjunctive tree method or the sandwich method, when applied
to the function, yileds the well-known circuit of Fig. 5.2.18. The cross connec-
tion method, on the other hand, yields the circuit of Fig. 5.2.14. This circuit is
as good as that of Fig. 5.2.13 in the number of contacts and in the number of

springs.

z!

X ———<—-y' }
x 4 z!

J

1

__L__V! Z z!

F16. 5.2.13 FI1G. 5.2.14
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Example 5.2.6. Synthesize a circuit with the transmission:
f=wx+wy z2+wyd +x9'2 +w' x'yz.

Solution. The transmission function is the same as that of Example 5.2.4.
The cross connection method, when applied to the function with the first term
missing, vields the circuit of Fig. 5.2.15. Since
this circuit includes the path wx automatically,

B o ¥ e 3 o

. v o it realizes the function f without any additional
‘ Y modification. It is as simple as the circuit of
b3 w Fig. 5.2.11 both in contacts and in springs. Now
F1G. 5.2.15 we note that the x and the x' contacts are far

apart and cannot be combined into a transfer
contact. But it is possible to rearrange these two contacts so that they may be
combined into a transfer contact. To begin with, we note that the term wy'z
may be replaced by wx'y' z without affecting the transmission. Therefore, in
“trial, we insert a contact x' in series to the contact w in the right lower side as
shown in Fig. 5.2.16. This circuit does not realize f because the path wx is
now dead. However, by moving the two %' contacts to the left of z contact and
merging them into a single contact, the path wx reappears.

o=

b
o

1
E mmmriras

x

t
¥y

W—-——-—T—-—W' w - w'
¥ . ¥
! P TR ) -1 %!

w

FIG. 5.2.16

FiG. 5.2.17

In the modified circuit of Fig. 5.2.17, the x and x' contacts share the left
terminal and hence can be combined into a transfer contact. This circuit requires
9 contacts and 14 springs, and is simpler by one spring than the circuit of Fig.
5.2.11.

The modification was enabled by replacing the term wy'z with a longer term
wx'y' z. This tells us that, although the minimal sum is usually the best form of
transmission function to use in the synthesis, it is not always advisable to adhere
to the minimal sum.

5.2.4. Square Connection Method
Assume that the given transmission function f, when expanded with respect
to two variables, say, x and v, takes the form:

F=y+x)g+ (2y+xy)h.

The square connection method is to realize such a function by one of the circuits
of Fig. 5.2.18.  The four contacts of the expansion part are now connected in
the shape of a square loop. Obviously, it is necessary to take gi, gi, 7 and 7
so that g,¢1=g and hhi=h, and, x'g/m<f and xgh=f, or, yg=j and
ygiho < f, according as the circuit (a) or (b) is used. This method has the fol-
lowing two drawbacks. That is: Its scope of appaication is very narrow and the
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four contcts of the expansion part cannot be combined into transfer contacts.
Nevertheless, when it is applicable, it brings forth a very good circuit which
cannot be obtained by other methods.

3T
ho——j—«-—- -—--L--—-gg _..._1—— _—.jﬁgj
(a) (b)
FI1G. 5.2.18

Example 5.2.7. Synthesize a circuit with the transmission:
f=xDyDz=2a'y z+x'y2 + 22 + xyz.
Solution. f can be rewritten as:
F= &y +a)z+ (6 y+x9)7,

so we may take g =g =2z and ho=hi=2. The reslut of the synthesis is given in
Fig. 5.2.19. This circuit requires 8§ contacts
as the previous two circuits, but requires 14

- > - . z x‘ z'
springs. In this respect, it is worse than the yi yl,
previous ones. A T

Example 5.2.8. Synthesize a circuit with FIG. 5.2.19
the transmission:

F=w sy +w 5 yz+way z-+wxyz'.
Solution. Expanding f with respect to y and z, we obtain
=92 +y2)w 5 + (¥ 2+ 32 )wx.

An appropriate choice of g, &, Jio and Jn is now g = w, g =4, hh=x and hh=w.
Thus the circuit of Fig. 5.2.20 will be obtained. This circuit is minimal in
contacts because of C=E=8, and no circuit which is minimal in contacts has
been found yet other than this or those similar to this. But it requires as many
as 16 springs, and it is not minimal in springs. In fact, a circuit requiring 10
contacts and 15 springs can be synthesized by the disjunctive tree method as
shown in Fig. 5.2.21.

T LI

F16. 5.2.20 FI1G. 5.2.21



252 Ichizo Ninomiya

5. 8. Absorption Method?

The successive steps of the absorption method are described as follows.
(1) Expand the given transmission function f by one of the variables. For
the sake of determinateness, let us put

f=x'g+ xh.

(2) Construct a circuit as shown in (a) of Fig. 5.3.1.

(3) Modify the two residue networks g and % until they will become identical.
A general stratagem for the modification is to cut open a solid connection and
insert a contact which is the same as the external contact into the gap and to
connect a pair of nodes with a contact which is complementary to the external
contact. These procedures are valid by virtue of Theorem 2.1.3. When the
residue networks are alike, the modification is usually very simple. But, when
they are not alike, the imagination will be required for finding out the necessary
modification.

(4) Superpose the two identical residue networks and discard the external
contacts as shown in (b) and (c¢) of Fig. 5.3.1. The resulting circuit realizes f
automatically. In effect, we absorb the external contacts into the residue
networks.

1 1

L,

4 - % £
N I
(a) (b) (¢)
F1G. 5.3.1

Example 5.3.1. Synthesize a circuit with the transmission:
S =vw+xy+oyz+wrz
Solution. Expanding f with respect to z, we obtain
f=z(v+x)(w+y) +2 (ow+xy).

We construct the series-parallel circuit of Fig. 5.3.2. The residue networks are
very alike. They contain identical contacts in the same positions. The only
difference between them is that the z-residue has a solid connection between the
nodes 1 and 2 but the z'-residue has no connection between the nodes 3 and 4.
Thus, in order to make the residue networks identical, we may replace the solid
connection between the nodes 1 and 2 with a z contact and connect the nodes 3
and 4 with a z contact. The modified network is the planar bridge of Fig. 5.3.3.
Of course this circuit is minimal in contacts.

In the above example, only external contacts were used to modify the residue
networks. In general, however, other contacts must be used together with the
external contacts. The following example illustrates such a situation.

D ¢f. Ref. 4, p. 287,
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, —

R S |

p= -3 b
’7) y
[v W - ] ¥
z!
Emg— 3
Fi1G. 5.3.2 F16. 5.8.3

Example 5.3.2. Synthesize a circuit with the transmission:
JF=wxy+wyz +xy z2+w' ¥ vz

Solution. Expanding f with respect to x, we obtain
F=xwy+y2) + 5 y(wz +w' 2).

We construct the residue networks as shown in (a) of Fig.5.3.4. The networks
are not alike. The only similarity is that they contain the w and z contacts in
the same positions. They contain the y contacts but the positions are not exactly
the same. Accordingly, we must first relocate the v contacts into the same posi-
tion. This is done by adding an x contact to the right terminal of the x-residue
and by inserting an x’' contact in series to the y contact of the x'-residue. The
modified networks are shown in (b) of Fig. 5.3.4.

Vg 1

w y I
x-residue -{ l— - 4 f_x.....—q 2
4 v __z_____{ 3
5 '
C W
T y
x’-residue ¥ - 8 f 6
1
z——-L—z' -—e—z——éﬁ-—-—-—z’

T

(a) (b)
F1G. 5.3.4

Now the two residue networks must be turned into an identical network. It
is not difficult to find out that the necessary procedure is to insert a w’ contact
between the nodes 1 and 2, a 2z’ contact between
the nodes 2 and 3, an &' contact between the

nodes 3 and 4, an x contact between the nodes 6 " v M

and 8, and a y contact between the nodes 7 and r,“L"r;‘—"x -
8. Thus, the circuit of Fig. 5.3.5 will be ob- L, 1 T ..
tained. This circuit is minimal both in contacts FIG. 5.3.5

and springs.
5.4. Path Accumulation Method?

The general idea of the path accumulation method is to realize a transmission

U ¢f. Ref. 4, p. 301,
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function usually given as the minimal sum not at once but successively term by
term. At each step, we try to add another path realizing a remaining term of
the function. An important point here is to use as many existing contacts as
possible without introducing a sneak path. Sometimes we encounter a difficult
situation where the contacts we are going to use form a closed loop. The diffi-
culty will be overcome by cutting open the loop somewhere and inserting a
harmless contact or contacts in the gap.

Example 5.4.1. Synthesize a circuit with the transmission:
F=wx+wy+xyz +a4'y7 + 2y 2

Solution. Starting with the first two terms, we construct the circuit shown
in (a) of Fig. 5.4.1. The next two terms can be written in the form of
2 (x' +5)(x+y), and so can be realized as shown in (b) of Fig. 5.4.1. The last
term x'y'z is now to be taken up. We want to make use of the existing ' and
3" contacts. For this purpose, we modify the circuit as follows: First, the posi-
tions of 2z’ and &'+ are interchanged. ‘Then, one of x' or y', say, ¥ is cut off
from the left terminal and a harmless contact 2’ is inserted into the gap. The
modified circuit is shown in (c) of Fig. 5.4.1. Now it is easy to add the path
%'y'z. We may only insert a z contact between the right terminal and the node
1. Thus, the circuit of (d) of Fig. 5.4.1 is obtained. This circuit require 8
contacts and is probably minmal in contacts.

—t
[ Z.|8[
(2)

a (b)

X
¥

w'
z'
x'—]
yl
z'—t ez
(d)
FIG. 5.4.1

The path accumulation method is very flexible; it places no preassumption
for the final form of circuits and no restriction on the order of selection of terms
of the transmission function. This flexibility is rather a disadvantage than an
advantage of the method, because it means the lack of policy. A good plan
which can serve as a remedy for the disadvantage is to endeavor to grasp the
global structure of the transmission function by some means, for example, by
Karnaugh maps. When we use this plan, it is not seldom that we can make use
of good ready-made circuits.

Now, before working out some examples, we shall present several types of
four-variable functions which have very good circuits as the building blocks for
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other circuits and can be easily recognized by their appearances in Karnaugh
maps.

The type shown in Fig. 5.4.2 may be called the square type, because each
function of this type, when plotted in a Karnaugh map, takes the form of a
square or a diagonal. Functions of the square type have two kinds of circuits,
each of which is minimal both in contacts and springs. The typical circuits
shown in Fig. 5.4.2 are both for the function plotted in (a).

1 1 1 _}
1 1 1 1 1
1 1 1 1
1] 1 ‘ 1 1] ] 1
Square Diagonal Sub-diagonal Sub-diagonal
(a) (b) (c) (d)
-y o x - yl—z W e W
' y ¥
: 1 1 -
Z 3
W x! b z x! ! T
(e) (£)
FIG. 5.4.2

The type shwon in Fig. 5.4.3 may be called the parallelogram type, because
each function of this type, when plotted in a Karnaugh map, takes the form of
a parallelogram or an oblique square. The typical circuit shown in (d) is for the
function (a), and is essntially the same as that of Fig. 5.2.20.

1 - F-h

Parallelogram Oblique Square Oblique Square
(a) (b) (c)

BRI
x'——-L——y'——L—-x
(d)
FI1G. 5.4.3

The type shown in Fig. 5.4.4 may be called the T type, because each function
of this type, when plotted in a Karnaugh map, takes the form of a letter “T7”
or a Japanese character “#”. The typical circuit shown in (c) is for the func-
tion (a).



256 Ichizo Ninomiya

w'-——x—-r——-—z .
1011 1 _{ ¥ r
w l

1 10111
1 1

o “wpen
(a) (b) (c)
FI1G. 5.4.4

The type shown in Fig. 5.4.5 may be called the 6-bridge, because each func-
tion of this type is of the dimension 6 and its best circuit is a bridge like that
of (d) for the function (a). The key point for recognizing this type by the
Karnaugh map is to note that four 1-cells form a two-literal subcube and the
remaining two are combined to two adjacent cells of the subcube.

' 1] A
B ot [T
1 ‘ z'-J—-—s

(a) (b) (c) (d)
F16G. 5.4.5

—
—
o
-t
~[[=]=]
-

The type shown in Fig. 5.4.6 may be called the 8-bridge, because each func-
tion of this type is of the dimension 8 and its best circuit is a bridge like that
of (d) for the function (a). The key point for recognizing this type by the
Karnaugh map is to note that seven 1-cells are included in a one-literal subcube
and the distance between the remaining 1-cell and the vacant cell of the subcube
is 4. In the figures, the 1-cell which is not included in a one-literal subcube and
the vacant cell of the subcube are marked with small circles.

{WT){}
1,
(d)

@

b | et | et | et
e | O =
[SVR IS R

1

1

1111 @]

1 ®

(a) (b) (c)
FI1G. 5.4.6

Now we shall work out some examples illustrating the usefulness of the above
mentioned plan.

Example 5.4.2. Synthesize a circuit with the transmission:
f=wxy+wxz+wyz+wx'y 2 +w' xy' 2.

Solution. Examining the Karnaugh map of f, we decompose s into two
parts as
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f=g+hn,
where g=w xy' 2 +wx'yz+ws'y' 2
and h=wxy +wxz.

The Karnaugh maps of f, g and . are shown in Fig. 5.4.7. The function g is,
as it were, of an incomplete square type, because, if the vacant cell with the
cross mark is filled with 1, it becomes a function of the square type.

I 1 _ x| 1 .
1)1]1 1(1]1
i |1 1] |1
f g h
FIG. 5.4.7

Now we construct the circuit for the supplemented g as shown in Fig.
5.4.8(a). The circuit for g can be easily obtained from this circuit by inserting
a w contact between the y and z contacts, because the unnecessary path w'xyz
corresponding to the cell with the cross mark is eliminated by this procedure.
Next, the remaining part % is to be realized by using the existing contacts w, %,y
and z.  This can be done easily by inserting an x contact between the right
terminal and the node 1. The final circuit shown in (¢) requires 10 contacts and
16 springs. Probably this circuit is one of the minimal circuits. It is instructive
to note that the inserted w contact palys the double role of eliminating the un-
necessary path w'xyz and of facilitating the addition of the path wxz. '

BININININIS

F1G. 5.4.8
Example 5.4.3. Synthesize a circuit with the transmission:

N-———%
N*——i—@-“w‘

f=wxy+wx'y +w' ¥y +w xz+w'y 2.

Solution. It is not difficult to find out from the Karnaugh map that f can be
decomposed into two parts g and 2 both of which are of the T type. The de-
composition is shown in Fig. 5.4.9.

The functions g=wxy +w'xz+w'yz and k=wx'y' +w' 'z +w'y' 2’ are realized
by the circuits of (a) of Fig. 5.4.10. These two circuits are now to be combined
into a single circuit. This can be done by merging the bottom line of the circuit
g and the top line of the circuit 2. Thus we obtain the circuit of (b). This
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1]t 1 1 1 1
1l1]1 _ 11 . 1
111 11
111 11
f g n
FiG. 5.4.9

circuit can be simplified further by merging two w' contacts in the left end into
a single contact. The final circuit of (c) is a nonplanar bridge requiring 9 con-
tacts and 14 springs, and is presumably minimal both in contacts and springs.

- w'——z-—r——-y -
_{ X ‘. g W e 2 s e W2 ——— ¥ ——
W . w' l_— b4 x
w }‘ w! W ——-—-—{-—'——w'-—-—-
— w' l— X bid
-’ %' l h W g ey oA SR L—
Wz 'y :
(a) (b) (c)
FIG. 5.4.10

Example 5.4.4. Synthesize a circuit with the transmission:
f=x"2' 4wy 2+ w' x'y +wxz -+ wr'y'.

Solution. There are two good ways to decompose # into two parts. One way
is to decompose f as shown in Fig. 5.4.11.

1)1 1 1 1 11
1 ~ 1 )
1)1 11
1 1)1 1 1)1
f g k
FIG. 5.4.11

The function g=x'2'+w'y'z +wx'y' is of the 6-bridge type and can be re-
alized by the circuit of (a) of Fig.5.4.12. Two paths corresponding to the terms
of & =wxz+w'x'y can be easily added by the existing &' and w contacts as shown
in (b). The final circuit requires 9 contacts and 15 springs.

- x" P %" z!
| Ly—w
- ¥y L. ¥
1
| E— 1 w w—] |
X~ w

(a) (b)
FIG. 5.4.12
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Another good way to decompose f is shown in Fig. 5.4.13.

1[1] |1 111] |1
1 1 ‘

11 - N 111
EEE 1 1 1
r g i
FIG. 5.4.13

The function g= %'z’ +w'y' 2’ +w'x'y is also of the 6-bridge type and has the
circuit shown in (a) of Fig. 5.4.14.  The remaining part /= wxz+wy'z is best
realized by adding the corresponding circuit independently of the circuit of g
The final circuit shown in (b) requires 9 contacts and 15 springs, and so is as
good as the previous one.

x! 5! x! z'

G s

S I i
(a) (b)
F1G. 5.4.14

We shall now show that we can synthesize a simpler circuit. First, we modify
the circuit of (a) by inserting a z contact in series to the y contact as shown in
(a) of Fig. 5.4.15. This modification does not affect the transmission of the
circuit. Then, we add a path wy'z by inserting a w contact in parallel to the y
contact as shown in (b). The term wxz is now to be added. Available existing
contacts are w and z. After a few trials, it will be found that we may insert
an x contact together with a w contact in parallel to the v’ contact. The w
contact is necessary to prevent the sneak path w'xz'. The final circuit shown in
(c) reuires 9 contacts and 14 springs, and so is simpler by one spring than the
previous ones.

%! 2! %! 1 %' i z? .
- ! - w! A
§ hE
| y__,J ¥ E{;}z] Lc:i;ji[:w}z—j
) (c)

(a) (b
FIG. 5.4.15

5. 5. Double Complementation Method

In the synthesis of relay switching circuits, we often encounter the situation
that the given transmision function is complicated butits complement is com-
paratively simple. In such a situation, a reasonable method is first to synthesize
a complementary circuit and then to apply the well-known method of geometrical
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complementation to the complementary circuit. The method is called the double
complementation method, because the final circuit is obtained as the geometrical
complement of the complementary circuit. By this indirect method, it is frequently
possible to obtain a good circuit which may be very difficult to synthesize by
direct methods.

Here, two important points must be stated. One is that, between a circuit
and its geometrical complement, the numbers of contacts are the same but the
numbers of springs are generally different. The other is that the complementary
circuit to be synthesized in the first step must be planar, because the method of
geometrical complementation is applicable only to a planar circuit. This un-
favorable fact is a practical limitation to the usefulness of the method.

Now we shall sketch the method of geometrical complementation without the
proof. Suppose we are given a planar circuit with two terminals in the same
horizontal line. To begin with, we place a node in the area enclosed in each
mesh of the circuit, considering the top and the bottom spaces as meshes. Then
we choose any pair of nodes and connect them with as many lines as the contacts
located in the branch of the circuit separating the corresponding pair of areas.
Each line is to be so drawn that it passes a contact when it crosses the separat-
ing branch. In each line thus drawn, we insert a complementary contact of the
one passed by it. When the same procedure is repeated for every pair of nodes,
the resulting circuit is the geometrical complement of the original circuit. Pre-
cisely speaking, it has the complementary transmission between the top and the
bottom nodes.

The method of geometrical complementaton is very powerful and requires no
materials other than the circuit diagram. It can be applied to any planar circuit,
but is not applicable to nonplanar circuits. The procedures may be cumbersome
for beginners, but, after some experiences, all the work can be carried out
mentally and the geometrical complement will be drawn immediately.

Let us now apply the method to the circuit shown in (a) of Fig.5.5.1. The
result is the circuit of (b). Note that the numbers of springs are different be-
tween the two circuits. The circuit (a) has 16 springs but the circuit (b) has 17
springs.

Now we shall work out some examples illustrating the merit of the double
complementation method.
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Example 5.5.1. Synthesize a circuit with the transmission:
F=wxy+wyd +xv'zt+w' 'y 2.
Solution. This function is rather simple but its complement
'=wy+az+wy 2 +ay'2

is still simpler. This function is very easy to handle and can be realized by the
commonplace circuit of (a) of Fig. 5.5.2. We now apply the method of geo-
metrical complementation to this circuit. The result is shown in (b). This
circuit is obviously minimal in contacts and in springs. It would be very difficult
to obtain such a good circuit as this by other methods.

w! ¥ w y X
w | l
_Exj y! Z Vi e 57 Ve 3 U
x! z y! z z'

(a) (b)
FIG. 5.5.2

1

Example 5.5.2. Synthesize a circuit with the transmission:
f=wxy +wx z+wyd +w xyz+w' ¥y 2.

Solution. This time the double complementation method loses its proper func-
tion, because s is self-complementary or f is congruent to its own complement.
Accordingly, we cannot help resorting to a direct method. The Karnaugh map
shown in Fig. 5.5.3 suggests that a reasonable plan here is to decompose f into
two parts and use the path accumulation method. The appropriate decomposition
is as follows:

f=8+h,
where g=w x'y 2 +w xyz+wx'yz +wxy' z
and h=wxz+wxz.
1 1
1 ~ 1
1 11 a 1 1 1
1011 1 1)1
s g h
FiG. 5.5.3

The function g is of the parallelogram type and can be realized by the circuit
shown in (a) of Fig. 5.5.4. A path wxz will appear when we interchange the
x' and 2z’ contacts. This modification does not affect the four paths of g but it
gives rise to a sneak path w'x'z along the bottom line. Thus, inserting a harmless
2 contact in series to the x' contact to eliminate the sneak path, we obtain the
circuit of (b). Now a path wx'z must be added. We can do this by inserting a
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w contact between the nodes 1 and 2 together with a z contact which prevents

the appearance of a sneak path wx'y'z. The final circuit is shown in (c). The
circuit requires 11 contacts and 18 springs.

>4 w X x x-—T—w——T—z‘
¥ ¥ l> ‘{ l-—w' l~
PAR ! |-——z x!-z -l—w'-l— '-—l-z-

T

.

(a) (b) (c)
FIG. 5.5.4

Here we note that 7' can be obtained from f by complementing w, since f
can be written as

F=wd(xyz+xy'2).

Hence, by interchanging the w and w' contacts in the circuit of Fig. 5.5.4, a
complementary circuit will be obtained. The method of geometrical complementa-
tion, when applied to the circuit, yields another circuit for f shown in Fig. 5.5.5.
This circuit requires 11 contacts and 17 springs, and so is simpler by one springs

than the previous one.
In general, when we have synthesized a planar
circuit for a self-complementary transmission
x'_Tm‘”"'x'_l function, another circuit can easily be obtained

w

H—w w from it by the double complementation method,
2 Y ﬁ__J where the first complementation will be done by
an appropriate symmetry and the second com-

FIG. 5.5.5 plementation by the method of geometrical com-

plementation.

5. 6. Synthesis of Circuits for Symmetric Functions

In the synthesis of circuits for symmetric functions, the standard method is
to use the well-known symmetric trees. A symmetric tree is a multi-terminal
network realizing all the fundamental symmetric
functions simultaneously. For example, the net-
work shown in Fig. 5.6.1 is the symmetric tree
for five variables. Each branch of the network
represents a contact. Specifically, a horizontal
branch represents a break contact and an oblique
branch a make contact. The contacts located

/ / / / / 1 in the same vertical line have the same designa-
0 tion. Thus, for example, the four horizontal

v w x ¥y = branches and the four oblique branches in the
FIG. 5.6.1 column identified as y represent the contacts 3/

and y respectively. The numbers attached to

the right terminals represent the a-numbers. For example, the number 2 means
that the transmission between the left terminal and the terminal 2 is given by

[T SN
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the fundamental symmetric function S(v, w, x, », 2).

In order to realize a given symmetric function, it suffices to connect the
terminals corresponding to the relevant g-numbers together and delete the re-
dundant part. Under most circumstances, however, further simplifications are
possible by other methods.

Examgple 5.6.1. Synthesize a circuit with the transmission:
S =51y, w, %, 9, 2).

Solution. The relevant part of the symmetric tree for this problem is shown
in Fig. 5.6.2. When we combine the terminals 0 and 1, the encircled z contact
and 2’ contact can be replaced with a solid connection by virtue of z+2=1. In
general, such a simplification as this is possible when we combine the consecutive
terminals. A similar simplification is possible at the left end in the present case,
when we add one more path »'w'x'y'z along the top side by inserting a ¢’ contact
in parallel to the » contact. The final circuit is shown in Fig. 5.6.3.

_-l 1, -1, ' 1
¥ /// 1 “’T*‘I—Y y z
1
© 0 v'—L-w‘-—L—x'-J—y'
v w X y z

F1G. 5.6.2 F1G. 5.6.3

Example 5.6.2. Synthesize a circuit with the transmission:
S=wBwBxDyPr) =S40, w, %, ¥, 2).

Solution. The relevant part of the
symmetric tree for this problem is
shown in Fig. 5.6.4. First, we combine R
the terminals 4 and 2. Then, the en-

circled two z' contacts can be merged S— 2
into a single contact as shown in Fig. / / / /
5.6.5. In effect, the upper part beyond -1
the level 3 is folded down onto the lower / / / / 0
part. v w % ¥ i
Further, it is observed that the two
identical parts each consisting of the
three contacts with the marks O, &
and (D can be merged into a single part.

This is done also by folding the upper
part beyond the level 2 down onto the

lower part as shown in Fig. 5.6.6. ///9’/®7
Now the terminals 0 and 2, 4 must f .1
be combine. When they are combined, / / / /
0
v w x ¥ z

4

2

FI1G. 5.6.4

it is again possible to merge the two
identical parts each consisting of the
five contacts with the marks O, <, @, FIG. 5.6.5
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@ and © into a single part. Thus, in
effect, the upper half is folded down
onto the lower half. The result is the
well-known circuit shown in Fig. 5.6.7.

In general, when the a-numbers
form an arithmetic progression beyond
or beneath some number, the folding
procedures can be used with profit. For
example, the network shown in Fig.
5.6.8 is synthesized by the folding
procedures. It is a network realizing
the three functions So,s,6 Si,« and Sis
v w X y z simultaneously.

F1G. 5.6.7

Example 5.6.3. Synthesize a circuit
with the transmission:
2,5

/WW - F=S0,n(%1, %y o+« 5 Xn).
/7 W 0,5,6 Solution. This problem is easily

P solved by the circuit of Fig. 5.6.9.
IG. 5.6.8 . . . . .. .

The circuit is obviously minimal in

contacts but it is uneconomical in regard

K] —aeeneee ! to the number of transfer contacts.

1 2 o Now, in order to improve this point,

we consider a part of the circuit con-

sisting of two consecutive contacts such

FIG. 5.6.9 as shown in (a) of Fig. 5.6.10. This

part can be deformed as shown in (b)

without affecting the transmission of the whole circuit. In this new form two

pairs of complementary contacts can be combined into transfer contacts. When

the same deformation is carried out in every similar part of the circuit, our

purpose will be accomplished. Thus, for example, the function S,s(v, w, %, 9, 2)

will be realized by the circuit of Fig. 5.6.11, and the function So,s{#, v, W, %, ¥, 2)

by either of the circuits of Fig. 5.6.12.

x1__xZ_-..ou..—xn

- o Ixaﬂ*. ‘{:vlw.—xly‘-z}
"o Xj Xigq— o o0 —*ivt Xy Wik vy ex 2t
(a) (b)
FIG. 5.6.10 FIG. 5.6.11

Ve V e W — K Y == 2 ‘[u-——vi[w—x[y——z}
{vv—_[ut__x:[w'_z:[y]— U oo W e y e X 2!
(2) (b) ,

FIG. 5.6.12
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5. 7. Boolean Matrix Method?

Suppose we are given a relay contact network. To begin with, we select all
the terminal nodes and some of non-terminal nodes of the network, and number
them in an arbitrary manner. Then, we construct a matrix with as many rows
and columns as the selected nodes, and enter the direct transmission from the
node 7 to the node j into #j-position. This matrix is called a connection matrix
of the network. Evidently, every diagonal entry is 1 in every connection matrix.
Further, a connection matrix is symmetric when the network contains no unila-
teral element such as a rectifier, since then the transmission from the node i to
the node j is identical with the transmission from the node Jj to the node 4.
Hereafter, we assume that every connection matrix is symmetric.

A special connection matrix where all the nodes are taken into account is
called the primilive connection matrix. In such a matrix, every entry is 0, 1, or
a single literal or a sum of literals. For example, the primitive connection matrix
of the two-terminal network of Fig. 5.7.1 is given by the following matrix.

1 2 3 4 5 6
h 6 1 10 0 ’ 0

5 Ew'—y' 3y L1
* 2 l 3t 2 0 1 y+z'  x 0 0

1 W 2
1] 3 y+z 1 w oz oy
x' X

i 4 x x w 1 0 0
Fi1G. 5.7.1 5 x 0 z 0 1w
6 0 0 ¥y 0 w’ 1

On the other hand, the non-primitive connection matrix of the same network
where the nodes 5 and 6 are excluded from the consideration is given by

! 1 2 3 4
1 ‘[ 1 0 xlz+w'y') P
2 0 1 y+z2 %
3 f x(z+w'y") y+2 1 w
4 3 x x w 1

Another Boolean matrix called the output matrix is defined for any network.
This matrix has as many rows and columns as the terminal nodes and its ij-
entry is the total transmission from the terminal i to the terminal 7. Thus, for
example, the output matrix of the network of Fig. 5.7.2 is given by the follow-
ing matrix.

1 Z2+xy ¥+ xz

Z-/\i 2+ %y 1 X+ Yz
* y+xz2 x+9yz 1
FI1G. 5.7.2

D cf, Ref, 11.
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Clearly any two-terminal network has an output matrix of the form

17
I

Now, in terms of Boolean matrices, the analysis and the synthesis of a
network are expressed as follows: The analysis is to derive the output matrix
from a given connection matrix, and the synthesis is to derive a primitive or a
nearly primitive connection matrix from a given output matrix.

A standard method for the analysis consists of the following steps.

(1) Write down a connection matrix C= (¢i;), primitive or non-primitive,
corresponding to the given network, where ¢ij is the éj-entry of C.

(2) Choose any number, say, 7 assigned to a non-terminal node. Construct
a matrix (¢ij+circr;) and delete the 7-th row and #-th column. The resulting
matrix C: is also a connection matrix of the network, because its #j-entry is the
sum of the direct transmission ¢;; and the indirect transmission c¢i;¢r; by way of
the node 7 between the nodes i and j. But it has no row and column correspond-
ing to the non-terminal node 7.

Apply the same procedure to Ci to obtain a connection matrix C; where two
of non-terminal nodes are excluded from consideration. Apply the same procedure
to C, to obtain a connection matrix C; where three of non-terminal nodes are
excluded from consideration, and so forth. Thus, we shall eventually arrive at a
connection matrix C; with no row and column corresponding to non-terminal
nodes. We call this connection matrix as the reduced matrix.

(3) Calculate C%, C, .. . etc. until we shall find that C¥ = CP** for a certain
p. Then, C? is the output matrix we are seeking for. T his step is based on the
following two theorems due to Lunts®, Hohn and Schissler.”

Theorem 5.7.1. Let A be any connection matrix with m rows and columns,
then there exists an integer p such that p<m—1and A< Al - S AP=APtI= e

Theoyem 5.7.2. Let A be the reduced matrix and F be the oulput matrix of

an m-terminal network, then there exists an integer P such that p<m-—1 and
A?=F.

Thus, the analysis is reduced to a routine calculation of Boolean matrices.
The synthesis, on the contrary, is very complicated. There is no standard method
like that of the analysis. Perhaps, the most powerful tool for the synthesis will
be the node insertion, the reverse procedure of the node elimination used in the
second step of the standard method of the analysis. Precisely speaking, the node
insertion means to enlarge a connection matrix or an output matrix of the form
(¢cij+cic;) by adding a new row (cu€ - - - » 1) and a new column (¢, €2, - - .« » 1)
and eliminate the terms cic, from the existing entries. ~Another important tool
is the manipulation of redundant terms. Sometimes a connection matrix may be
simplified by eliminating redundant terms, and other times redundant terms may
be added to some entries so that the node insertion may become applicable.

Now we shall explain how to use these tools by the following examples.

U of, Ref. 17. 2 cf. Ref, 11,
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Example 5.7.1. Synthesize a circuit with the transmission:
S =wxy' +wx'y + xvz.
Solution. The output matrix is given by
1 wxy' + wx'y + xyz
{wxy’ + wx'y + xyz 1 ]

First, by inserting a new node 3, the terms wxy’ and wx'y of the 12-entry and 21-
entry can be eliminated as follows.

1 xyZ w
xyz 1 2y + xy'
w  Xy+ xy 1

It should be noted here that the node insertion can be applied to any output
matrix with two rows and columns. Now we try to eliminate the terms xyz and
%'y by inserting a new node 4. Since the two terms are in the second row
(column) and share the factor y, the 24-entry (42-entry) of the new connection
matrix must be y. Then, it follows that the 41-entry (I14-entry) must be xz and
the 43-entry (34-entry) must be x. Further, in order that the node insertion may
be valid, it is necessary that the 13-entry (3l-entry) should include the product
of the 14-entry and the 43-entry. In the present case, the 13-entry is w and the

product of the 14-entry and the 43-entry is 0. Therefore the procedure is really
valid. The result is given by

1 0 w =xz
0 1 x 9
w xy 1 « J
%2 vy x 1
This is not a primitive connection matrix but it leaves no room for further im-
provements. The circuit corresponding to the matrix is shown in Fig. 5.7.3.
In this example, we have seen that, when-

ever there are two terms of the form xg
and x7 such that gh=0 in a row (column) W x y'
g ( 1 L };{v -—}. 2
Z x y

I\

of a connection matirix, we are able to -
insert a node to eliminate these terms.

Obviously, the procedure amounts to the FI1G. 5.7.3
saving of one x contact.

Example 5.7.2. Synthesize a circuit with the transmission:
f=xyz+wx+wy +wa.
Solution. The output matrix is given by

[ 1 'x(yz+w)+wy+wz]
#(yz+ w) +wy + wz 1
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First, we eliminate the term x(yz+w) by inserting a node 3 as follows.

1 wy -+ wz X
wy -+ w2 1 yz+w
X yz+w 1
Next, we want to eliminate the terms w2 and yz by the node insertion. But this
time the procedure is not valid because 13-entry does not include wy. Now it is
observed that there is a path wy from the node 1 to the node 2, and a path w
from the node 2 to the node 3, and hence, an indirect path wy from the node 1

to the node 3 by way of the node 2. Accordingly, we may add a direct path wy
between the node 1 and the node 3. Thus, we obtain

1 wy +wz  x+wy
wy -+ w2 1 w-+ y2
X+ wy w-+yz 1

In this form, the node insertion above mentioned is possible. The result is given by

i wy x w
wy 1 w z]
x w 1 y}
w 2z y 1

Here, again, we note that there are a path w from the node 1 to the node 4,
a path y from the node 4 to the node 3 and a path w from the node 3 to the
node 2, and consequently, an indirect path wy from the node 1 to the node 2 by
way of the nodes 4 and 3. Hence the 12-entry (21-entry) wy is redundant and
can be deleted.

The simplified matrix is given by

1 0 x w 3
0 1 w =z [x—-‘—w]
1 y 2
x w 1 ¥ j — 7
w oz vy 1 4

Fi1G. 5.7.4

This is a primitive connection matrix and represents the planar bridge of Fig.
5.7.4.

Example 5.7.3. Synthesize a circuit with the transmission:
f=wx'2d +wxy+wy +wxz

Solution. We write the output matrix as follows.
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[ 1 w(x’z'+xy)+w’(y’+xz)}
w(x' 2+ xy) +w' (¥ + xz) 1 -
Inserting two nedes 3 and 4 to eliminate all terms of 12- and 2l-entries, we

obtain

1 0 w w

0 1 Xz +xy Y +xz

\ w x4+ axy 1 0 ]
w Y+ xz 0 1

Now we want to eliminate the terms xy and xz in the second row and the
second column by the node insertion. In order to be able to do this, the term
yz to be added to the 34- and 43-entries must be redundant. Although the term
is really redundant, it is not easy to recognize the redundancy of the term, because
there is no indirect path yz between the nodes 3 and 4. Presumably, the only
way to achieve the purpose may be to add yz to 34- and 43-entries and examine
all the possible paths between the nodes 1 and 2. The procedure is very cumv-
bersome, because we must calculate the output matrix of the modified connection
matrix after all. At any rate, when the redundancy of the term »s is proved
somehow, and the node insertion is carried out, we obtain the following matrix.

1 0 w
0 1 x'z oy
w %'z 1 0

w Y 0 1

[ A - I =

0 X y z

Let us now reconsider the same problem from the ordinary viewpoint. The
second and the third connection matrix represents respectively the circuits (a)
and (b) of Fig. 5.7.5.

[—e)
D 21—
M
- ) x
1 Z—X 1 T
7 7! w ¥!
(a) (b)
F1G. 5.7.5

The node insertion under consideration is equivalent to simplifying the circuit
(a) by merging two x contacts into a single contact as shown in (b). This pro-
cedure is valid because, as will be seen easily, no sneak path appears in the
circuit of (b). Thus, from the ordinary viewpoint, this problem is very easy,
but, from the viewpoint of the Boolean matrix method, it is not easy.

The Boolean matrix method is drastically different from the other methods.
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It has an aim to remove intuitive means such as circuit diagrams as far as pos-
sible and reduce the synthesis to a routine calculation of Boolean matrices. The
aim has not so far been attained satisfactorily, but, in its rationality and especially
in its direct applicability to multiterminal circuits, the Boolean matrix method is
the most promising of all the methods.

6. Synthesis of Electronic Switching Cireuits

6. 1. Electronic Switching Circuits

In electronic switching circuits, each of the inputs and the outputs is specified
by whether the voltage level is high or low, or by whether a pulse is present or
absent at the corresponding terminal. In this paper, we shall concentrate our
attention to one-output combinational switching circuits operatin g on voltage level.
Nevertheless, most part of the following developments can be applied to similar
circuits operating on pulse.

There are some essential differences between a relay switching circuit and
an electronic switching circuit. Relay circuits are bilateral, but electronic circuits
are unilateral. There are paths conducting electric current in a relay circuit,
but there are no such paths in an electronic circuit. Relay circuits consist of
relay contacts, each of which does not perform a logical operation by itself, but
electronic circuits consist of gates, each of which performs a logical operation by
itself.

The three gates performing addition, multiplication and complemetation are
fundamental. These gates are called add gate, multiply gate and complement gate
respectively, and represented symbolically as shown in Fig. 6.1.1,

€1 ey
es ey ) .

Add Gate Multiply Gate Complement Gate
Fi1G. 6.1.1

The operations of these gates are given by the following table, where the
values 0 and 1 signify the low and high voltage levels respectively.
By means of the three fundamental gates, every Boolean function of the

TABLE 6.1.1
er e f €0 er e ! €0 e J eo
0 00 0 0|0 01
0 171 0 110 .,
1 o |1 ev=e1+e2 1 0l o ev=e1ez e=¢e
1 111 1 171

Add Gate Multiply Gate Complement Gate
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input variables can be realized. For example, let us realize the function
f=xyz+x'(y'+2). Since f can be rewritten as f=xp+x'p = (x+0) (% +D)
where p=yz, we obtain the following two circuits.

f=xp+x'p’

. £=(x'+p)(x+p")

F16. 6.1.2

Now we observe that in the upper circuit the input voltage x is used as the
input to the complement gate producing %' and at the same time as the input to
the multiply gate producing xp, and the voltage p is used as the input to the
complement gate producing 2’ and at the same time as the input to the multiply
gate producing xp. The same is observed in the lower circuit too. In general,
a voltage represented by an input variable or a function of input variables can
be used simultaneously as the inputs to arbitraaily many gates. Of course, there
is a technical limitation on the number of gates to which a voltage can be ap-
plied simultaneously. Anyhow, this is an important property of electronic circuits.
By virtue of this property, the substitution p=yz is very effective in the above
example. Without this substitution, the circuits become more complicated.
Obviously, one more reason why the substitution is successful is that f is func-
tionally separable and can be written as f=x'@®yz Thus, the recognition of the
functional separability of Boolean functions is very important in the synthesis of
electronic switching ciruits. However substitutions are often useful even when
the function to be realized is not functionally separable. We shall illustrate some
of such situations by a few example in later places.?

6. 2. Rectifier Switching Circuits

Many kinds of rectifiers are used for various purposes in switching circuits.
For example, the unilateral nature of electric conduction of the rectifier can be
used with profit in relay switching circuits. The following is an example of
such a use of the rectifier. By virtue of the use of a rectifier as shown in Fig.
6.2.1, the function

F=wx'y 2 +wxy 2 +wxyz
is realized with only 8 contacts. Without the rectifier, this function requires at

1 See pp. 164-167,
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least 9 contacts for its realization. Al-

W g X, et 3 e 3,
» though such a use of the rectifier may be
important, we here consider the rectifier
I x* w'. 7! ha

as the component of electronic switching

circuits.
N = The general construction of the rec-
FIG. 6.2.1 tifier add gate and the multiply gate is

shown in Fig. 6.2.2,

84 : : €4 ]: :
eQ o
e2

€2
€0
$x

NI
|2
62 | 81 1l<}
R
A
no« 82 ~N

(a) (b)
FIG. 6.2.2

€1

€0

In the gate of (a), the low voltage represented by 0 is applied to the output
terminal through a resistor R, and two rectifiers are directed in the forward
direction from the input terminals to the output terminal. When one of the input
voltages is 1, the electric current flows through the corresponding rectifier and
the resistor, and consequently, the output voltage becomes high. If we choose
the resistance R sufficiently large compared with the forward resistance of the
rectifiers, the output voltage is substantially as high as 1. When, on the other
hand, both of the input voltages are 0, no current flows through the gate and the
output voltage is 0. Thus, it has been shown that the gate (a) is really an add
gate. By the similar consideration, it will be shown that the gate (b) is really a
multiply gate. Obviously, these gates can be extended to gates with more than
two inputs performing the logical operations eo=e1+e+ - - - +e, and e =ee

- - en respectively.

Complement gates cannot be formed by means of rectifiers. Accordingly,
when a complement gate is required, we must use some other elements than
rectifiers. However, when it is assumed that all the input variables and their
complements are available as the input voltages, no complement gate is required
and any Boolean function of the input variables can be realized by means of add
gates and multiply gates. The assumption made above is not impractical. It will
be satisfied usually when we are synthesizing a small part of a large apparatus.
Therefore, we shall make this assumption hereafter whenever it is convenient.

Now we introduce the following two symbols.

Fﬂ(el, €2, « « ,en)=e1+ez+ R
Bule, e, . . . ,en)=e1e;: - - e,
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Fn(es, €, . . . , €n) TEpresents an add gate and Ba(e, e, .. ., e,) represents a
multiply gate with » inputs e, e, . . ., én Note that F stands for ‘“forward”
and B stands for “backward”, and the suffix »
indicates the number of inputs. With these
symbols, any rectifier circuit can be represented
conveniently by a symbolical expression. For
example, the circuit shown in Fig. 6.2.3 can be
represented by the expression

F[B(w, %), By, 21

FI1G. 6.2.3

Since this representation of rectifier circuits is
very concise and the number of rectifiers required in a circuit can be easily
obtained as the sum of suffices of all symbols, we shall use it exclusively here-
after.

Now suppose we have synthesized the circuit of Fig. 6.2.4 realizing the
function f = z(y+wx).

(a) (b)
FIG. 6.2.4

In the circuit diagram (b), we see that the voltage level 1 is applied to the
multiply gate producing wx and its output serves as one of the inputs of the add
gate produéing y+wx. The voltage level 0 is applied to the add gate through
the resistor R.. Accordingly, if w=x= 1, the resistors R: and R; are substantially
in series between the voltages 1 and 0. In this state, the current flows from R
to R, and, in spite of wx=1, the output of the multiply gate does not reach the
level 1 but takes a certain lower value determined by the ratio Ru/Ri. In order
to make this value nearly as high as the level 1, it is necessary to make R,
sufficiently large compared with R

In the next stage of the circuit, the output of the add gate is one of the
inputs of the final multiply gate. The voltage level 1 is applied to the gate
through the resistor Rs. Thus, if both inputs of the add gate are in the 0 level,
the resistors R, and R, are substantially in series between the voltages 1 and 0.
In this state, the current flows from R; to R, and, in spite of y+wx=0, the
output of the add gate does not go down to the level 0 but takes a certain higher
value determined by the ratio R:/R.. In order to make this value nearly as low
as the level 0, it is necessary to make Rs very large compared with R.
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Here we see that it is never necessary to connect two or more than two add
gates or multiply gates consecutively, because the same effect can be obtained
by a single gate carrying all the inputs. Hence we may assume that add gates
and multiply gates alternate in multi-stage rectifier circuits as in the above ex-
ample. Under this condition, it is necessary to increase the size of the gate
resistor by a large factor for each stage in order to maintain the distinction of
the levels 0 and 1. This requirement is so severe from the engineering viewpoint
that most rectifier circuits practically constructed do not have more than two
stages.

As a consequence of confining the number of stages within two, the problem
of synthesizing minimal rectifier circuits, s.e., circuits with the minimal number
of rectifiers is reduced to the problem of finding minimal normal formulas of
Boolean functions, because any function which is neither a normal sum nor a
normal product requires a circuit with more than two stages. When we use a
minimal sum (product), the number of rectifiers needed is the sum of the number
of total occurrences of literals and the number of clauses (factors). But, when
single literals appear in the minimal sum (product), their number must be sub-
tracted from the above sum, because no rectifier is needed for producing the
voltage represented by a single literal. The number of rectifier thus determined
may be denoted by Rs; and R, respectively for the minimal sum and the minimal
product. Then, a minimal circuit can be synthesized by using the minimal
formula giving the smaller one between Rs and Rp.

Example 6.2.1. Synthesize a minimal rectifier circuit realizing the function:
F(w, %, 9, 2)=2(4, 7, 8, 11, 12, 15).
Solution. This function has the minimal sum:
S=wy'2 +wyz+ xy' 2+ xyz,
and the minimal product:
F=w+x)(y'+2)(y+2).

The Rs and R, are now obtained as Rs=16 and Rp=9. Therefore the minimal
product is preferred, and we obtain the minimal circuit:

B F(w, %), F2(y, 2), Ba(, 2)].
Example 6.2.2. Synthesize a minimal rectifier circuit realizing the function:
fw, %, 9, 2) =310, 3, 7, 11, 12, 13, 14, 15).
Solution. This function has the minimal sum:
f=wityz+w's'y' 2,
and the minimal product:

f=@'+x+2)(w+x +2)(w+y+2)(x+y +2).
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It follows that Rs=11 and R,=16. Therefore the minimal sum is preferred, and
we obtain the minimal circuit:

E[B:i(w, %), B:(9, 2), Biw', &, 5, )]
Example 6.2.3. Synthesize a minimal rectifier circuit realizing the function:
f=335,6, 8,11, 12, 13, 14, 15)
Solution. This function is self-dual and has the minimal sum:
F=wy 2 +wyz+xy 2+ w2,
and the minimal product:
f=(w+y +2) w+y+2) (x+y +2)(x+y+2).

It follows that Rs= Rp=16. Therefore there are two minimal circuits each requir-
ing 16 rectifiers. They are given by

F4[Ba(w3 y,7 Z’), B3(wa ¥, Z), B3(x: y': Z), B3(x: Y Z’)]
and B4[F3(u): y,: Z’)) F3(w’ Y, Z), F3(x: y” Z)’ F3(x: Y, z,):]-

6. 3. Vacuum Tube Switching Circuits

In this section, we deal with vaccum tube switching circuits which are formed
from triodes and pentodes. Vacuum tube circuits containing diodes or any kind
of rectifiers will not be considered here.

" When a vacuum tube is used in a switching circuit, it is generally so operated
that, when the high input voltage represented by 1 is applied to the grid or grids,
the plate current takes the saturated value, and, when the low input voltage
represented by 0 is applied to the grid or grids, the plate current is cut off. In
this mode of operation, the plate cur-
rent is almost insensitive to small
fluctuations of the input voltages.
Unlike the rectifier circuit, it is not
necessary to restrict the vacuum tube
circuit within two stages by virtue of o
amplifying action of vacuum tubes.

The complement gate is readily con-
structed with a single triode as shown

in Fig. 6.3.1. The plate is connected (a) (b)

to the high supply voltage through a FIG. 6.3.1

plate resistor R, and to the low sup-

ply voltage through a potentiometer R. The input ¢ is applied to the grid and
the output e, is taken from an appropriate point of the potentiometer.

When e is at its high level, the tube conducts and the plate voltage drops.
When e is at its low level, the plate current is cut off and the plate voltage
becomes the high supply voltage. Thus the variation of the grid voltage e induces
the change of the plate voltage in the opposite direction. Therefore the output
voltage e, is the complement ¢ of the input voltage e. The potentiometer R is
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to adjust the levels of the output voltage relative to the ground. This gate is
represented by the symbolical diagram shown in (b).

The twin-triode gate is shown in Fig. 6.3.2. The two triodes are connected
with a common plate resistor R, which has a very large resistance compared
with the tube plate resistance.

(b)

F1G. 6.3.2

When the high input voltage is applied to one of the triodes, the correspond-

ing triode conducts and the plate voltage drops. Only when both inputs are low,
the plate voltage is high. The relation between the inputs

TABLE 6.3.1 and the output is given by the following table, which in-
dicates that e, =eje;. Note that the gate performs the Peirce’s
operation on the inputs. This gate can be extended to in-
clude any number of triods. If #n triodes are connected with
a common plate resistor, the output is given by e =ele; -
e

The pentode gate is shown in Fig. 6.3.3. In this gate,
the plate current flows only when both grid voltages are
high. The relation between the inputs and the output is given by Table 6.3.2,
which indicates that e, = e} + e;. Note that the gate performs the Sheffer’s opera-
tion on the inputs. Unlike the triode gate, this relation cannot practically be
extended to include more than two input variables, because there is no vacuum
tube with more than two grids which conducts only if all the grid voltages are
high.

The common plate resistor connection may be applied to any number of
triodes and pentodes. When any number of vacuum tubes are connected with

€1 (4] 4]

0
0
1
1

O e O
[ e R

TABLE 6.3.2
er e 2]
0 0 1
0 1 1
1 0 1
1 1 0

(a) (b)
FI1G. 6.3.3
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a common plate resistor, the plate voltage drops and the output voltage becomes
low, if at least one of the tubes conducts. Accordingly, the output is the product
of the outputs of the component tubes. This property of the common plate
resistor connection is very useful in the synthesis of vacuum tube circuits, because
the product of any number of functions can be realized by this connection without
any additional tubes. For example, when a complement gate and a pentode gate
are operated with a common plate resistor as shown in Fig. 6,3.4, the output is
given by e, = ej(el + e}).

82 :!:

e3

(a) (b)
FIG. 6.3.4

When two triodes are operated with a common cathode resistor as shown in
Fig. 6.3.5, the output is high if and only if at least one of the input is high.
Thus, the output is given by e;=e;+e. This gate is called the cathode follower
gate. Any number of triodes can be combined into a cathode follower gate. The
switching action of a cathode follower gate including = triodes is given by
e=e1+e- - +eénu

o+
eq
D o
e —
€0 &2
C

R

(a) (b)
FiG. 6.3.5

Now we introduce the following four symbols.

Pule, €2, ..., en)=ele; -+ e

Sules, €, ..., en) =el-+er+ + - +en

Fn(el, €3, . « ., en) =e +e-+ * - +én
Baules, €2, ..., ey) =e1e3* * - e,
Thus, Pi(e) represents a complement gate with the input e, Pu(ei, e, . .., ey) a

triode gate with the inputs e, ¢, . . ., ex, S:(e1, @) a pentode gate with the inputs
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ey and e, and, Fu(e, &, . . ., e,) a cathode follower gate with the inputs e, e,

.+, en. There is no vacuum tube gate represented by S, for #>2 and B
Hence these symbols are useless in vacuum tube circuits, but they are useful in
transistor circuits as will be seen in the next section. Note that P, S and F
stand for “Peirce”, “Sheffer” and “follower” respectively, and further that F and
B have the same meaning as in the preceding section. With these symbols and
with the convention that the common plate resistor connection of any number
of gates is represented by the product of the corresponding symbols, and vacuum
tube circuit can be represented by a symbolical expression. For example, the
circuit of Fig. 6.3.6 is represented by S.[F(u, v), Pi(w)]P:(%, ), and that of
Fig. 6.3.7 by Su(x, p)S:[#!, Pi(P)], 2= P(», 2).

When we use the symbolical representation, we must pay our attention to
the fact that F may be used as an argument of, but may not be multipiled by
any other symbol, because it is impossible to operate a cathode follower gate and
any other gate with a common plate resistor. Thus, for example Fi(x, »)S:(x, ¥)
is meaningless.

; °
a I

<

4

FIG. 6.3.6 FIG. 6.3.7

Any Boolean function can be realized by twin-triode gates or pentode gates
alone, because a twin-triode gate performs Peirce’s operation and a pentode gate
performs Sheffer’s operation. However, in order to synthesize simple circuits,
it is necessary to use all kinds of gates combined appropriately. A common
standard of simplicity of vacuum tube circuits formed from triodes and pentodes
is to count the number of control grids assuming that all the input variables and
their complements are available as the input voltages. When we represent a
vacuum tube circuit by a symbolical expression, the number of control grids is
given by the sum of suffices of all the symbols appearing in the expression.
Thus, for example, the circuit represented by the expressions

So(w, p)BLP(w, p)S:(y', 2], p=Six, 3)S:(', ')

requires 11 grids.
A general stratagem for the synthesis of vacuum tube circuits is to try to

use as many common plate resistor connections as possible. Consequently, we
must pay more attention to the minimal product than to the minimal sum, or in
other words, we must pay more attention to the minimal sum of the complement
of the given function than the minimal sum of the function itself. The above
paraphrase will be justified as follows: Not only the minimal product of a func-
tion is usually obtained from the minimal sum of its complement, but also the
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latter is actually more convenient than the former in the synthesis of vacuum
tube circuits. For example, let us consider the function f = (w+«")(y+2). This
function is realized by the circuit S.(w', x)S:(3', z). When we start with the
minimal product f = (w+x')(y+2'), we must turn every literal into its comple-
ment before entering it as an argument of S; symbols. When we start with the
minimal sum f'=w'x+3'z on the contrary, such complementations are not
required and every literal can be entered directly as an argument of S, symbols.

Another stratagem is to try to find a good substitution. Accordingly, the
preliminary examination of the functional separability is indispensable. Fur-
thermore, since the usefulness of substitutions is not restricted to the case of
functionally separable functions, it is important to grasp particular structure of
functions by some means, for instance, by Karnaugh maps.

Now, we shall work out several examples for illustrating some typical situa-
tions encountered in the synthesis of vacuum tube circuits.

Example 6.3.1. Synthesize a circuit for the function f =x@y.
Solution. Since f'=x'y"+xy, f can be realized by the circuit:
S:(%, 9) Se(#', ¥').
This circuit requires 4 grids and is minimal. Another circuit for this function is
S (%, ¥) PALP: (%, v)].

This circuit reqnires 5 grids and is not minimal. But, if additional complement
gates are necessary to produce x’ and ', the circuit is simpler than the previous
one. Moreover, if x and y are not the input variables but the functions p and ¢
of the input variables, complement gates are necessary to produce p' and ¢, and
therefore, the latter is simpler than the former. For example, consider the fnnc-
tion f =wPxPyPz. Using substitutions

P=wDx=S(w, %) Su(w', &)
and 2=yDz= 5y, 2) (¥, 7'),
f can be realized by the circuit:
S:(p, OPLP:D, @)].

This circuit requires 13 grids and is probably minimal.
Further, this function illustrates that the quality of the circuit depends upon
the ways of substitutions. If we use the substitutions

r=wdx=S(w, x) Sy(w', &)
and s=yDr= Sy, ) AL P7, ¥)]
we obtain the circuit: Su(7, 2) P Pa(7, 2)].
This circuit requires 14 grids and is less simple than the previous one.

Example 6.3. 2. Synthesize a circuit for the function:
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f=wx+wy+xyz
Solution. The minimal sum of f' is given by
t=wx+wy + wz' + xy.
Thus, we obtain the circuit
Se(w, %) Si(w, ¥) Se(w, 2') S:(%, ¥)
requiring 8 grids. But, if we simplify s’ as
"=w(x+y+2) +xy,
we obtain the circuit
Si[w, Fs(%,, 2)15(%, 9)

requiring only 7 grids. This example illustrates that the factoring is sometimes
profitable.

Example 6.3.3. Synthesize a circuit for the function:
f=wyt+wz+xy +2'2.
Solution. The minimal sum of s’ is given by
f=wx+wyz+x'y2.
Using this form directly, we obtain the circuit
Se(w, %) PLPs(w', ', 2), Ps(&', 9, 2)]
requiring 10 grids. Further, when we rewrite f' as
fl=wlx+ ' +2)1+x2'2,
we obtain another circuit
Sifw, SiLa', S:(y, 2) JT1PLPs(x', 3, 2)]

requiring also 10 grids. No better circuit can be obtained if we start with the
minimal sum of f'. But, when we start with the form

f=w(y+z)+2+2)
and use a cathode follower gate, we obtain the circuit
ELP(w)S:(y', 2'), Pi(x)S:(¥, 2)]

requiring only 8 grids. Thus, it is not always profitable to adhere to the use of
common plate resistor connections. Sometimes better circuits can be synthesized
from the minimal sum of the given function by means of a cathode follower gate.

Example 6.3.4. Synthesize a circuit for the function:

f=wy' +x2' +yz
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Solution. The minimal sum of 7/ is given by
fT=way +w'yz+xy2.
Rewriting this as =wy (5 +2)+xy2,

we obtain the circuit P.[ P(w, ) S:(%, 2'), Ps(x, ', 2)] requiring 9 grids. On the
other hand, since it is seen from the minimal sum of f that s’ can be realized
by the circuit

Sa(w, ') S: (%, 2') Sely, 2),
we obtain another circuit

PLS:(w, y')S:(x, 2') Sa(y, 2)]

requiring only 7 grids. As shown by this example, it is sometimes profitable to
utilize complementary circuits. It should be noted that an additional complement
gate is not always required. When the complementary circuit is of the form
Fu( - ) or Pu(---), no additional complement gate is required and the desired
circuit is given by P,(---) or by Fu(- . -) respectively.

Example 6.3.5. Synthesize a circuit for the function:
f=wx+wy+w xyz
Solution. This function is functionally separable and can be written as
f=wp +w'pz,
where p=«'y'. The minimal sum of s’ is given by
f=w (' +2") +wp.
Therefore we obtain the circuit
Si(w, p)S:Lw', S:(z, p)], p= Pa(x, 3).
The circuit requires 8 grids and is probably minimal.
Example 6.3.6. Synthesize a circuit for the function:
F=wxy +wx'y+wx'2 +w xy+w 2y 2.
Solution. This function is functionally separable and can be written as
f=wp +w'p=(w'+2)(w+p),
where p=(x'+2)(x+") (x+2).
Therefore we obtain the circuit
S:(w, P) PLP(w, $)1, p=S:(x, ¥)Su(x, ) So(#', 2')

requiring 11 grids. The structure like this may be recognized by means of
Karnaugh maps as follows. The map of the function of this example is shown
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in Fig. 6.3.8. Now, if we fold up the w'-region onto the w-region, it will be
observed that 1's coming from the w'-region fill up exactly the vacant cells of
the w-region. This means that the w-residue and the w'-residue are the com-
plement of one another.

When we expand a function with respect to %, ¥ or z in stead of w, we may
fold the map as shown in Fig. 6.3.9.

‘ N\ TN
1 X
w
11 > )
11 *
Woltlt 1 X' )
y y' z oz oz
(a) (b) (c)
FIG. 6.3.8 FIG. 6.3.9

The folding procedure is also applied to the cases where the function has
not exactly the same structure as above. It is often successful in finding good
substitutions.

Example 6.3.7. Synthesize a circuit for the function:
f=wxy +wxz+wx'yz' +w' x'yz.

Solution. The function is plotted in a Karnaugh map as shown in Fig. 6.3.10.
Now, if we fold up the x'-region onto the x-region, it will be found that 1's of
the «'-region go to vacnt cells of the x-region but do not fill up
all of them. This implies that the x-residue is included in the
—y complement of the x'-residue and vice versa. Let the x'-residue
and the x-residue be denoted by p and g respectively. Then there
—? 11 are a function g and another function k such that ¢=gp’' and
p=nhq'. Since g and h are not determined uniquely, it is desirable
to find the simplest ones. This can be done as follows. First,
we enter marks in the vacant cells of the xregion, each of which
is filled with a 1 coming from the x'-region. Then we select some of marked
cells so that the selected cells, when combined with the original 1-cells, may form
the simplest function in the x-region. As shown in (a) of Fig. 6.3.11, the best
choice in the present case is to select the
marked cell in the bottom row. There-

F1G. 6.3.70

Z
R § ‘ lz fore, the simplest form of g is g=w.
OJafifw F [1[x[x[x]w The similar procedure, when applied to
y y the x'-region, reveals that the simplest
(a) (b) form of h is h=vy(w-+2z). Thus, we
FIG. 6.3.11 obtain the relations ¢=wp' and

p=3(w-+2)g. Using the first relation,
f can be rewritten as

f=wip' +x'p= (& +p) (wx+p) = (& +2)[ (W +2")p'7,
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where D=y + 2" (w-+2).
Hence, f can be realized by the circuit
Sa(x, D) PLPi(D) Sew, )], p= Pi(y") Se(w, 2) S:(', 2').

This circuit requires 11 grids and is perhaps minimal.

The present method is generally more successful when not the given function
itself but its complement has the structure of this example. For example, the
circuit realizing s’ is immediately synthesized from f=wxp'+x'p as

Si(«’, D) ALP(w', %', D).
Example 6.3.8. Synthesize a circuit for the function:
Ff=wy+ws'y +w x2' + 5y 2

Solution. The Karnaugh map of this function is shown in Fig. 6.3.12. Now
imagine that the cell at the right upper corner contains a 1, then map will re-
present a function which can be decomposed into two terms x'y’ and w'(y+=z').
Since any of the 1-cell of ¥ is included in exactly one of and the imaginary 1-cell
in both of the two terms, we conclude that f can be expressed as

S=5yDw (y+7).

1l1]1]x 1]1 [1]1] [1]
11 |1 11 |1
= @

1)1 11
f 2y w'(y-+2')
FIG. 6.3.12

Therefore, using the substitutions
p=x'y'=Px,y)
and g=w'(y+2)=Pi(w)S:(y, 2),
we obtain the circuit
S:(p, @) PLPA(D, ).

This circuit requires 10 grids and is probably minimal.

As illustrated by this example, it is sometimes of advantage to assume the
structure f=g@h. One method to find simple g and & functions is to set up
some imaginary 1-cells in the map of / and see whether the resulting map may
represent a sum of two simple functions such that any of the real 1-cells is
included in exactly one of and any of the imaginary 1-cells in both of them.

Example 6.3.9. Synthesize a circuit for the function:

f= 31,2,4(w, X, Y, z).
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Solution. Symmetric functions are the most difficult to handle in the synthesis
of vacuum tube circuits. One way to solve the present problem is as follows.
We write /=S, s(w, %, , 2) in the form:

S= (' + 2 (w+2)yz+wx(y +2)(y+2) +w' 'y 2.
Then, putting p=wx, g=w's', r=yz, s=y'2/, we obtain
f'=0"qr+pr's +gs.
Hence, f can be realized by the circuit
S:(q, $)S:Lp, Pu(r, $)1SI7, P(p, )],

where p= B(w', ), = Py(w, %), r= B, 2'), s= Py, 2).
This circuit requires 18 grids.

Another way is to apply the method of Example 6.3.8. It will be found
from the Karnaugh map that f' can be expressed as

fl=gDh
where g=w'x"+yz
and h=(w'+x)(w-+2)(y+2),

as shown in Fig. 6.3.13. Thus f can be written as

f=pDa
where p=g'=(w+x)+2)
and g=h=(w + %) (w+2)(y+2).

Hence, we obtain the circuit

SZ(P, Q) PIEPZ(p’ Q)]

where p=S,(w', ¥)S:(y, 2) and g= S;(w, x') S:(w', %) S:(v', 2.
This circuit requires only 15 grids and is far simpler than the previous one.

Xix{x!|1 11411 11141
1 1 ;
1lx]1 . 1 ® 11111
1 1 3
f g h
FIG. 6.3.13

6. 4. Transistor Switching Circuits

The transistor is a very promising componnt of electronic circuits. It is
made very compact, it requires nothing analogous to the incandescent filament
of the vacuum tube and it operates with a very small total power drain. Owing
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to these advantages over the vacuum tube, the transistor is beginning to displace
the vacuum tube in many fields.

In electronic switching circuits, various types of transistors are used. But
here we shall confine the discussions to the PNP and NPN transistors only.
These two types of transistors are usually
represented by the symbolic diagrams as
shown in Fig. 6.4.1. Three electrodes are
called emitter, collector and base. The
emitter-base circuit and the collector-base B— CE 4
circuit are equivalent to rectifiers, and their
forward directions are from E to B and from 3 B
C to B in a PNP transistor, and from B to (a) (b)

E and from B to C in an NPN transistor. FIG. 6.4.1

The proper mode of operation of a transistor

is to control the backward current of the C-B circuit by the forward current of
the E-B circuit. Accordingly, the polarities of the emitter and the collector
relative to the base are positive (negative) and negative (positive) respectively
in a PNP (an NPN) transistor. These transistors are commonly operated by
grounding the emitter, applying the input to the base and taking the output from
the collector. When operated in this way, a transistor bears close analogy with
a triode. In the analogy, the emitter, the base and the collector of a transistor
correspond to the cathode, the grid and the plate of a triode respectively.
Especially, between an NPN transistor and a triode, the polarities of the cor-
responding electrodes are the same, and therefore, they are almost equivalent as
switching elements. On the other hand, between a PNP transistor and a triode,
the polarities of the corresponding electrodes are opposite, and therefore, they
are almost dual to one another. Of course, a PNP transistor and an NPN tran-
sistor are perfectly dual to one another.

The complement gate can be formed from a
single PNP transistor or a single NPN transistor
as shown in Fig. 6.4.2.

When the base voltage ¢ is high (low) in the Re c
PNP (NPN) gate, no e-emitter current flows, and eg eg
collector current is cut off. In this state, the
output voltage & is equal to the supply voltage, o e
e, it is low (high). When e is low (high), on
the contrary, the emitter current flows and in-
duces the collector current. In this state, the .
output voltage becomes high (low) by the PNP NFN
presence of the collector resistor R.. Thus, it FIG. 6.4.2
has been shown that each of these gates is really
a complement gate.

When two transistors are operated with a common collector resistor as shown
in Fig. 6.4.3, the output voltage is equal to the supply voltage only if both tran-
sistors are turned off. Hence the relation between the inputs and the output is
given by Table 6.4.1, which indicates that e,=ei+¢ in the PNP gate and
ey = ele; in the NPN gate.

Each of these gates is called the parallel gate. Any number of transistors

PRP NPH
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- +
RC Rc
60 eO
€4 e2 4 €2
PNP NPN
FI1G. 6.4.3
TABLE 6.4.1 can be combined into a parallel gate. The
a el e . 3 output of the parallel gate including # PNP
| ; (NPN) transistors is given by
0 0 1 0 0 1
o 110 o 1|1 eco=eltej+ - +ehle=ele; + - - en)
1 0 0 1 0 1 . .
11 0 1 1o The transistor gate corresponding to the
pentode gate is a series connection of two
PNP NPN transistors. This connection is very rare in

vacuum tube circuits but it is rather common

in transistor circuits. In each of the gates shown in Fig. 6.4.4, the current flows
through R and hence the output voltage is different from the supply voltage, only
when both transistors are conducting. Therefore we obtain Table 6. 4.2 indicating
eo=ele} in the PNP gate and e = ef +¢; in the NPN gate. Each of these gates
is called the series gate. Unlike the pentode gate, the series gate can be extended
to include any number of inputs by connecting transistors, each carrying a
single input, in series. The output of the series gate consisting of n PNP (NPN)

transistors is given by

eo=ele) - -

%a

enleo=el+ej+ -+ +en).

O

eq
PNP
TABLE 6.42.

a1 e ‘[ o e1 e t eo
0 0 t 1 0o o | 1
o 110 0 1 1
10 1 0 1 0 1
1 1 0 101 0

PNP NPN

@0 _L eg

91 8o

NPN
F1G.6.4.4

Now we have three gates for each type
of transistor. As in the case of vacuum tube
gates, any number of these gates formed
from the same type of transistor can be
operated with a common collector resistor.
It will be easily observed that the output of
a common collector resistor connection of
PNP (NPN) gates is the sum (product) of
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the outputs of component gates. Thus, for example, the outputs of the circuits
shown in Fig. 6.4.5 are el + elel and ei(eh+ e;) respectively.

€1

PNP NPN
FIG, 6.4.5

The gate which is analogous to the cathode follower gate is the emitter fol-
lower gate. Fig. 6.4.6 shows the emitter follower gates formed from two tran-

sistors.

- +
eo eO
°1 €2 ®1 e2
R, R,
PNP NPN

FIG. 6.4.6
In these gates, two transistors are con-

TABLE.6.4.3

nected with a common emitter resistor. Since
their outputs are equal to the emitter voltage a el e P
only when both transistors are turned off, '

we obtain Table 6.4.3 which indicates that 0 0 0 0 0 | 0
the output of the PNP gate is e, =eie; and o 1 0 o 111
that of the NPN gate is e =1+ e 10,0 10

11 1 1011

The emitter follower gate may include
any number of transistors. The output of PNP NPN
the emitter follower gate including » PNP
(NPN) transistors is given by

eqv=eie;- - -epleo=er+e+ - - - +en)

All the transistor gates have now been introduced. Any transistor switching
circuit can be synthesized by means of these gates. As in the case of vacuum
tube circuits, it is convenient to represent transistor circuits by symbolical ex-
pressions. For this purpose, we shall employ the same symbols introduced in the
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TABLE 6.4.4

Symbol Switching Action PNP Gate NPN Gate
Pi(e) ¢’ -~ Complement Gate
Si(e) 4 Complement Gate —

Pn(es, en,..., en) ejey <+ el Series Gate Parallel Gate
Saley, e2,... , en) e;+ept - +el, Parallel Gate Series Gate
Fulet, e2,..., en) ertest - ten — Emitter Follower
Gate
Bu(ey, e2,..., en) erez--- e Emitter Follower —
Gate

preceding section. The meaning of the symbols is given in the above table.

Further, it is agreed that a sum (product) of any number of P symbols and
S symbols represents a common collector resistor connection of the corresponding
PNP (NPN) gates. It should be noted that any sum or product including F
symbols or B symbols is meaningless. Thus, for example, Pi(ei, &) + B:le1, ),
Si(er, &) Fi(er, @) and Fi(ei, e;) -+ Bi(ei, e;) are all meaningless.

The most reasonable standard of simplicity of transistor switching circuits is
to count the number of transistors required, assuming that all the input variables
and their complements are available as the input voltages. When a circuit is
represented by a symbolical expression, the number of transistors required is
given by the sum of suffices of all the symbols appearing in the expression.

With the above standard of simplicity and the symbols, the synthesis of NPN
transistor circuits is formally almost the same as that of vacuum tube circuits.
Accordingly, all the methods for the synthesis of vacuum tube circuits are equally
applicable to the synthesis of NPN transistor circuits. The only one difference
is that the symbol S, for n>2 can be realized by a single NPN transistor gate
but not by any single vacuum tube gate.

On the other hand, the synthesis of PNP transistor circuits is perfectly dual
of that of NPN transistor circuits. Thus, to any method of the synthesis of
NPN transistor circuits, there corresponds a dual method of the synthesis of PNP
transistor circuits, and vice versa. For example, the predominance of the minimal
sum over the minimal product in the synthesis of PNP transistor circuits cor-
responds to the predominance of the minimal product over the minimal sum in
the synthesis of NPN transistor circuits.

Now in the rest of this section, we shall work out some examples, laying
special emphasis on the difference between transistor circuits and vacuum tube
circuits and the duality between PNP and NPN transistor circuits.

Example 6.4.1. Synthesize transistor switching circuits for the function:
f=w+x'+xy+x'2.
Solution. The minimal sum of f' is given by
"= wxy +wx'y' 2.

From these minimal sums, we can immediately synthesize the PNP transistor
circuit
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Si(w) + P, ¥) + Pe(%, ¥') + Prl%, 2),
and the NPN transistor circuit
Sa(w, %, ¥)Si(w, &', ', 2)-
Both circuits require 7 transistors and are probably minimal.
Example 6.4.2. Synthesize transistor switching circuits for the function:
F=w xy+wx'y +w'y 2+ x'y7.
Solution. The minimal sum of s’ is given by
f=wy+wy 2 +xyz
From these minimal sums, we can synthesize the PNP transistor circuit
Py(w, o, 5') + P, %, 9) + P(w, 3, 2) + F(% 5", 2),
and the NPN transistor circuit
Si(w, %) Ss(w', ¥, &) Ss(4, 35 2).

The latter circuit requires 8 transistors and is minimal, but the former circuit
requires 12 transistors and is not minimal. A better circuit can be synthesized
as follows. First, we synthesize a complementary circuit

Py, &)+ Ps(w, y, 2) +Pa(x, 5, Z)

from the minimal sum of . Then complementing this circuit by a complement
gate, we obtain

SLP(w', &) + Ps(w, 3, 2) + Ps(%, 5", )1

This circuit requires 9 transistors and is perhaps minimal.

Note that the complementary circuit can also be obtained from the NPN
transistor circuit by replacing S symbols with P symbols, multiplications with
additions and complementing all the literals. This procedure is always valid by
virtue of the duality of PNP and NPN transistor circuits. In general, when we
are given a PNP (an NPN) transistor circuit, the complementary NPN (PNP)
circuit will be obtained by interchanging P symbols with S symbols, B symbols
with F symbols, additions with multiplications, and complementing all the literals
appearing in the symbolical expression.

Example 6.4.3. Synthesize transistor switching circuits for the function:

f= wx-+wy -+ w2+ xyz.
Solution. The minimal sum of s/ is given by
fl=w's +wy +w'2 + 5y 2

This time, it is of advantage to rewrite these minimal sums as
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f=w(x'y 2) + xyz
and fl=w(x'+y+2)+292
respectively. From these expressions, we can synthesize the PNP transistor circuit
Plw', Pu(x, 9, 2)1+ Ps(«', 5, 2')
and the NPN transistor circuit
S:[w', Ss(x, v, 2)1S:(«', o', 2).
Both circuits require 8 transistors and are perhaps minimal.
Example 6.4.4. Synthesize transistor switching circuits for the function:
f=w'xy' +wx'y' +wx'z4+w'y' 24+ w'yz'.
Solution. The minimal sum of /' is given by
"=wx+ w'yz+wyz +w'x'y 2.
First, we synthesize the NPN transistor circuit
S:(w, %) Ss(w', v, 2) Ss(w, ¥, 2)Su(w', &', ¥, 2')

form the minimal sum of /*. This circuit requires 12 transistors.
Another equally simple NPN transistor circuit can be obtained as follows.

Rewriting f, we obtain
f=wx' (¥ +2)+w' (¥ +2)(x+y+2).
Then, using an emitter follower gate, we synthesize the circuit
ELP(w', %)S:(y, 2), P(w)S:(y, 2)Ss(&', ¥, 2')].

Next, we shall synthesize a PNP transistor circuit. First, we synthesize the
complementray NPN transistor circuit

PLP (', %) S:(y, 2), Pi(w)S:(y, 2)Ss(«', ¥, 2')].
Then, applying the general rule stated in Example 6.4.2, we obtain the circuit
S:[Su(w, &') + Po(y', 2), Silw') + Po(¥', 2"+ Po(x, 9, 2)].

This circuit requires also 12 transistors.

Example 6.4.5. Synthesize transistor switching circuits for the function:

f=w'y +w'd +xy'2 45 yz+ xy 2+ xy2.
Solution. The minimal sum of /' is given by
fl=xyz+wx'y 24+ wx'yz' +wxy 2.

Applying the method used in Example 6.3.6, /' can be rewritten as
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f=zp+wdp
where p=xy+wxy,
or as f=2d+wiq
where g=p =w's+5y+xy.

Suppose we are synthesizing vacuum tube circuits, then the above two forms
yield the circuits

Sz, ) ALPs(w', 2, D)]

Where 15::52(20', X’) Sz(x':y)sz(x, .’Y'),
and SLP:(w', 2), g1PLP(Z, q)]
where a=S(x, y) ALPs(w', x, »)]

respectively. Since the former circuit requires 12 grids and the latter requires
13 grids, the first form is preferred for the vacuum tube circuits. But, for the
NPN transistor circuits, on the contrary, the second form is preferred. In fact,

we obtain the circuit

S:(z, p) ALP(w', 2, D)1
where p=S(w', ¥)S:(x, ¥) Se(x, V')
from the first form, and the circuit

Sy(w, 2, @) ALP:(7, )]
where =5, y) Si(w, &', ')

from the second form. The former circuit requires 12 transistors but the latter

requires 11 transistors.
Next, a PNP transistor circuit will be synthesized. From the two forms of

1!, we obtain
S=ap +2 (W +p) = 2D + (z+wp))
and f=2q+2w+2q

respectively.
These form yield the circuit

P2, p)+Si[Si(2) + P(w', p)]

where P=Pz(%’, y,)+P3(wl’ X, y)’
and the circuit Pi(z, q) + P(w, 2) +Si[S:(2, p)]
where g= Po(w, %)+ Pu(x, ¥) + P, ¥)

respectively. The former requires 11 transistors but the latter requires 13 tran-
sistors. Hence, this time, the first form is preferred.
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Example 6.4.6. Synthesize transistor switching circuits for the function:
F=wxy +wxy+wxz+wyz+w 2’y +wx' y 2.

Solution. Using the method explained in Example 6.3.8, it will be found
from the Karnaugh map that f can be rewritten as

F=w(y+2)B(xy +x'y2'),
or F=2(y"+2)B(wy+w'y +5'z).

These two forms are epually good from the viewpoint of vacuum tube circuits,
because each of them yields a circuit requiring 14 grids. But, from the viewpoint
of transistor circuit, they are not equally good. That is: The first form is better
for the PNP transistor circuit, and the second form is better for the NPN tran-
sistor circuit. The reason is as follows: First we synthesize NPN transistor
circuits from the two forms. Then, we obtain the circuit

S:(p, @) PiLP:(p, @)]
where p=Pi(w")S:(y, 2) and q=S:(x%, 9)S:(x', ¥") S: (&', 2)
from the first form, and the circuit

Se(7, s)PLP:( D, @]
where r= P (x)S:(y, 2) and s=S:(w', ¥)Ss(w, ¥, 2)

form the second form. The former requires 14 transistors but the latter requires

13 transistors.
Next, we synthesize PNP transistor circuits. We obtain the circuit

Py(p, @) +SILS:(p, q)]
where  p=Si(w)+P:(y, 2) and a= Py, y)+ Ps(x, ¥, 2)
from the first form, and the circuit
Py(7, 8) +Si[S:(7, s)]
where  7=S5(#)+ 0", 2) and  s=Pu(w', )+ Pw, y) + Py, &)

from the second form. The former requires 13 transistors but the latter requires
14 transistors.

7. Minimal Switching Circuits for Boolean
Functions of Four Variables

There is no general method for synthesizing minimal switching circuits of any
kind under any standard of simplicity. Consequently, the only way to find mini-
mal circuits off hand is to prepare a table of minimal circuits for all Boolean
functions. In reality, it is sufficient to prepare a table of minimal circuits for all
representatives of the type, because Boolean functions of the same type are



Study of the Structures of Boolean Functions 293

realized by minimal circuits which are substantially identical or can be so regarded
under some conditions. The plan is feasible in the case of four variables, but,
beyond this, it becomes extremely expensive.

The author endeavored to construct a complete table of minimal switching
circuits for Boolean functions of four variables. The result is given in Appendix
9 under the title “Table of Minimal Switching Circuits for Boolean Functions of
Four Variables”. The table contains relay circuits, rectifier circuits, vacuum
tube circuits and transistor circuits which are minimal or presumably minimal
under the respective standards of simplicity. Since much time has been spent
for the construction of the table, it may be permissible to assume that the table
is free from errors.

7.1. Minimal Relay Switching Circuits

For each type of Boolean functions of four variables, one relay circuit which
is minimal both in contacts and springs is given. But, when no such circuit
exists, two circuits are given. Of course, one is minimal in contacts and the
other is minimal in springs. It has been revealed that, except five iypes, every
type has a circuil which is minimal both in contacts and springs.

When a series parallel circuit and a bridge are equally simple, the series-
parallel circuit is chosen. Series-parallel circuits are not given by circuit diagrams
but algebraic expressions. Further, when a planar circuit and a nonplanar circuit
are equally simple, the planar circuit is chosen. It is interesting to note that
planar brigdes occupy a large proportion (about 66% ) of all minimal circuits.

The number of contacts and the number of springs are given in the columns
“C” and “S” respectively. The table indicates that the real upper bound of the
number of contacts is not 14 (the Shannow's upper bound)?) but 75 13. Moreover,
there is only two types (112 and 112’) requiring 13 contacts. All other types
require at most 12 contacts.

One more remarkable fact exists. That is: With only one exception (69 and
69", the minimal number of contacts are identical between complementary types.

During the preparation of the table, the author became aware of the similar
table of minimal relay circuits compiled by E. F. Moore. Moore’s table was
published as the Appendix to the book, “Logical Design of Electrical Circuits”
by R. A. Higonnet and R. A. Grea. The author compared his initial table with
Moore’s table and found that some revisions are necessary for both tables. Some
circuits adopted in the author’s table were not minimal in contacts and some
others were not minimal in springs. These errors were corrected in the table
published here. On the other hand, 35 circuits of Moore’s table are pointed
out not to be minimal in springs. The simpler circuits of the author’s table are
distinguished by attaching the asterisk to the number of springs in the column
«g”,  Incidentally, it may be added that Moore’s table is based on the Harvard
Table.

7.9. Minimal Reectifier Switching Circuits

For each type of Boolean functions of four variables, a minimal two-stage
rectifier switching circuit is given. The circuit is given by the minimal sum in

1) See page 120.
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the top line of each block. The number of rectifiers required for the circuit is
shown in the column “R”. If the number has an asterisk, the circuit is not
minimal and another circuit must be synthesized on the basis of the minimal
product. The minimal product can easily be obtained from the minimal sum
given in the block for the complementary type. Evidently, the number of recti-
fiers required for the new circuit is given by the number of the column “R” for
the complementary type. Surveying the table, it is seen that the upper bound of
the number of rectifiers is 40.

7. 3. Minimal Vacuum Tube Switching Circuits

For each type of Boolean function of four variables, a vacuum tube switching
circuit with minimal number of control grids is given by the symbolical expres-
sion. Here it is assumed that no complement gate is necessary for producing
the complements of the input variables. The number of grids is shown in the
coulmn “G”.

By comparison with the Harvard Table,” it has been found that as many as
151 circuils of the present table are simpler than the corresponding circuits of the
Harvard Table. These circuits are distinguished by the asterisk attached to the
number of grids in the column “G”. For the sake of reference, the Harvard
serial number of type is shown in the column “H”.

As regards the upper bound of the number of grids, the table tells us that
it s not 20 (the value from the Harvard Table), but only 16, and further, that
there are only three types (58, 112, 176) requiring 16 grids.

7. 4. Minimal Transistor Switching Circuits

For each type, of Boolean functions of four variables, a transistor switching
circuit which is minimal in the number of transistors is given by the symbolical
expression. Of course, it is assumed that no complement gate is needed for
producing the complements of the input variables. The number of transistors is
shown in the column “T”. As a matter of fact, only NPN transistor circuits are
given, since PNP transistor circuits will be esily obtained from NPN transistor
circuits for the complementary types by interchanging P symbols with S symbols,
F symbols with B sumbols, by replacing multiplications by additions, and by
complementing all the literals. Only for every type of functions of the dimension
8, both circuits are given in full. When a block contains only one symbolical
expression, the expression represents the vacuum tube circuit and the NPN
transistor circuit at the same time. It is seen that about three quarters of the
types have minimal vacuum tube circuits and tramsistor circuits with the same
symbolical expressions. For the remaining quarter of the types, transistor circuits
give smaller numbers of transistors than the numbers of grids of the correspond-
ing vacuum tube circuits. The difference between these numbers is usually 1 and
rarely 2, but never 3.

As regards the upper bound of the number of transistors, the same thing is
observed as in the case of vacuum tube circuits. That is: Only three types (58,
112, 176) require 16 itransistors, and all the others require at most 15 transistors.

D cf. Ref. 38.
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Appendix 1. Table of Boolean Functions of Four Variables
Coordinates of Atoms
1
1112 2
111223 2233 3
Atom 0 1234 234344 3444 4
0 7 1111 111111 1111 1
1 7 1111 IT1111 Ti11ir 1
2 7 1111 111171 1111 1
3 7 1111 T11111 1111 1
4 7 1111 117111 1171 1
5 7 1111 171171 13111 1
6 7 1111 111711 1111 1
7 7 1111 111111 1111 1
8 7 1111 111111 1111 1
9 7 1111 1117111 1111 1
10 7 1111 111111 T111 1
11 7 1111 1171111 1111 1
12 7 1111 111111 1111 1
13 7 1111 11711171 11711 1
14 7 1111 I11711 11711 1
15 7 1111 TI1I111I1 1111 1
1
1112 2
111223 2233 3
N 0 1234 234344 3444 4 Standard Sum Symmetry T  Remarks
1 8 0000 000000 0000 O (1,2,3,4),[1], 10,8
[21,[31,14]
2 7 1111 IIIIIT 1111 1 15 (1,2,3,4) 16 FS, M, Si
3 6 2220 220200 2000 0 1415 (1,2,3),[4] 32 3, FS, M
4 6 2200 200002 0022 2 1215 (12), (34), [34] 48 FS
5 6 2000 000222 2220 0 815 (2,3,4), [234] 32 FS
6 6 0000 222222 0000 2 015 (1,2,3,4), [1234] 8 So,4
7 5 3311 3T1111 1111 1 131415 (12), (34) 96 FS, M
8 5 3111 111311 3111 1 91415 (23) 192 FS
g 5 3111 TI11111 1113 3 111314 (2,3,4) 64 FS
10 5 1111 331311 1111 1 11415 (1,2,3) 64
11 5 1111 311113 1111 3 31215 (12), (34), (13)(24) 48
12 5 1111 311111 1133 1 31314 (12), (34) 96
13 4 4400 400000 0000 O 1213 14 15 (12),(34),[31,[4] 24 2, M
14 4 4000 000400 4000 0 8 91415 (23), [231, [4] 48 3, FS
15 4 4000 000000 0004 4 9101215 (2,3,4),[231,[24] 16 FS
16 4 0000 440400 0000 0 O 114 15 (1,2,3),[1231,[4] 16 3
17 4 0000 400004 0000 4 0 31215 (12),(34),(13)(24),12 FS
[12], [34]
18 4 0000 400000 00442 0 0 313 14 24 FS

(123, (34), [123],
[34]
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1112 %

111223 2233 3
N 0 1234 234344 3444 4 Standard Sum Symmetry T Remarks
19 4 4222 222000 0002 2 11 13 1415 (2,3,4) 64 FS, M
20 4 4220 220022 0220 0 1013 14 15 (23)[4]1 192 FS
21 4 4200 200220 2202 2 81314 15 (34) 192 FS
22 4 2222 400000 2222 0 31314 15 (12), (34) 96
23 4 2222 000000 2222 4 7111314 0 (1,2,3,4) 16 S:
24 4 2220 402022 2000 2 2131415 (12) 192
25 4 2220 002022 2400 2 61013 15 (12) 192
26 4 2200 422220 0022 0 0131415 (12), (34) 96 FS
27 4 2200 022224 0022 0 4111215 (12)[341, (34) 96
28 4 2200 022220 4022 0 4 91415 (12)[4] 192
29 4 2200 022220 0022 4 7 813 14 (12)[34], (34) 96
30 4 2000 222400 2220 2 0 91415 (23) 192
31 4 2000 222000 2224 2 01113 14 (2,3,4) 64
32 3 5311 3111117 II11I 1 1112131415 (34) 192 FS, M
33 3 5111 TIT11311 3111 1 10 11 1213 15 (23) 192 FS
34 3 5111 TTII11I1 1113 3 811131415 (2,3,4) 64 FS
35 3 3311 511111 1111 1 3121314 15 (121, (34) 9% FS
36 3 3111 111511 3111 1 7 8 914 15 (23) 192
37 3 3111 111311 5111 1 71011 12 13 (23) 192
38 3 3111 1117111 1115 3 7 9101215 (2,8,4) 64
39 3 3111 111111 I1II3 5 7 81113 14 (2,3,4) 64
40 3 1111 531311 1111 1 2 3121315 (12) 192
41 3 1111 BITITI3 1111 3 1 2131415 (12), (34) 96
42 3 1111 BITITIII 1133 1 0 3131415 (129, (34) 96
43 3 1111 T13111 5113 1 3 5 81415 (23) 192
44 3 1111 311113 1111 5 5 6 91015 (12), (34), (13)(24) 48
45 3 3333 IIII11 1111 3 711131415 (1,2,3,4) 16 Ss, 4 M
46 3 3331 I1I3111 1113 1 611131415 (23) 192
47 3 3311 131133 1111 1 5101314 15 (12)(34) 192
48 3 3311 133117 1111 3 411131415 (34) 192
49 3 3311 131117 1331 1T 511121415 — 384
50 3 3311 111111 3311 3 7111213 14 (12), (34) 96 FS
51 3 3111 333111 1113 1 011131415 (2,3,4) 64
52 3 3111 3311317 1131 1 111121415 - 384
53 3 3111 311331 IT1I3 1 311121314 (34) 192 FS
54 3 3111 311311 1311 3 310121315 —_— 384
55 3 3111 311111 3313 1 3 8131415 (34) 192
56 3 1111 331131 3311 I 6 7 91112 (12)(34) 192
57 3 1111 331111 3113 3 6 7 81113 (23) 192
58 3 1111 TIITII1 3333 3 0 7111314 (1,2,3,4) 16 So,3
59 2 6220 220200 2000 0 10 11 12 13 14 15 (23), [4] 9 3, FS, M
60 2 6200 200002 0022 2 811121314 15 (34),[34] 96 FS
61 2 6000 000222 2220 0 910111213 14 (2,3,4),[234] 32 FS
62 2 2220 620200 2000 0 2 312131415 (12),[4] 9 3
63 2 2220 220200 6000 0O 6 710111213 (1,2 3),[4] 32 3
64 2 2200 600002 0022 2 1 212131415 (12),(34),[34] 48 FS
65 2 2200 200006 0022 2 4 7 8111215 (12),(34),[34] 48 FS
66 2 2200 200002 0062 2 4 7 9101314 (34),[34] 96 FS
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1112 é

111223 2233 3
N 0 1234 234344 3444 4 Standard Sum Symmetry T  Remarks
67 2 2200 200002 0022 6 5 6 9101215 (12), (34), [34] 48 FS
68 2 2000 000622 2220 0 1 6 8 91415 (23),[234] 96
69 2 2000 000222 6220 0 1 610111213 (23), [234] 96
70 2 0000 622222 0000 2 1 2 3121314 (12), (34),[1234] 48
71 2 0000 222222 0000 6 3 5 6 91012 (1,2,3,4), [1234] 8 S
72 2 4422 200002 2200 2 71112131415 (12), (84) 96 FS, M
73 2 4420 202020 2022 0 61112131415 (12)[41 192
74 2 4400 222222 0000 2 41112123 14 15 (12)[34], (34) 96
75 2 4222 400222 0002 0 31112131415 (34) 192 FS
76 2 4222 000222 4002 0 71011121315 (23) 192
77 2 4222 000222 0002 4 7 811131415 (2,3,4) 64
78 2 4220 402200 0220 2 21112131415 — 384
79 2 4220 002240 0220 2 7 81013 14 15 — 384
80 2 4220 002200 4220 2 61011 1213 15 (23) 192
81 2 4220 002200 0224 2 6 811131415 (23) 192
82 2 4200 422002 2202 0 01112131415 (34) 192
83 2 4200 022402 2202 0 41011121315 — 384
84 2 4200 022002 2242 0 4 910131415 (34) 192
8 2 4200 022002 2202 4 4 811131415 (34) 192
8 2 4000 222222 4000 2 01011121315 (23) 192
87 2 4000 222222 0004 2 0 811131415 (2,3,4) 64
88 2 2220 224240 2000 0 5 7 8101415 (12)[4] 192
89 2 2220 224200 2400 0 5 7101112 14 — 384
90 2 2220 224200 2004 0 0 61113 1415 (23) 192
91 2 2220 224200 2000 4 2 411131415 (23) 192
92 2 2220 220200 2440 0 3 410131415 (23)[4] 192
93 2 2220 220200 2400 4 2 7111213 14 (12) 192
94 2 2200 244002 0022 2 0 411131415 (34) 192
95 2 2200 240402 0022 2 6 7 8 91215 (12)[34] 192
9 2 2200 240042 0022 2 0 510131415 (12)(34) 192
97 2 2200 240002 4022 2 6 7 8111213 — 384
98 2 2200 240002 0422 2 1 410131415 —_— 384
99 2 2200 200002 4422 2 3 4 8131415 (12), (34) 96
100 2 2000 440222 2220 0 0 110131415 (23)[4] 192
101 2 2000 400222 2224 0 0 3 8131415 (34) 192
102 2 2000 200222 2220 4 1 2 8131415 (34) 192
103 2 2000 000222 2224 4 0 7 9101215 (2,3,4) 64
104 2 0000 222222 4400 2 2 3 4 81315 (12), (34)[12] 96
105 2 2222 222222 2222 2 0 711131415 (1,2,3,4) 16 So, 3,4
106 2 2222 222222 2222 2 1 611131415 (23) 192
107 2 2222 222222 2222 2 3 510131415 (12)(34) 192
108 2 2222 2222272 2222 2 3 7111213 14 (12), (34), (13)(24) 48 FS
109 1 7111 117111 TTII1 1 9101112131415 (2,3,4) 64 FS, M
110 1 1111 711111 1111 1 1 2 312131415 (12),(34) 96 FS
111 01 1111 111111 7111 1 1 6 710111213 (1,2,3) 64
112 1 1111 111111 1111 7 3 5 6 9101215 (1,2,3,4) 16 Sz, 4
113 1 5331 111111 3111 1 710111213 1415 (23) 192 M
114 1 5311 131371 1111 1 5101112131415 — 384
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€O DO
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O
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111223
N 0 1234 234344 Standard Sum Symmetry T  Remarks
115 1 5311 TI111I3 TIT11 3 781112131415 (34) 192
116 1 5311 T111T1 TI33 1 791012131415 (34) 192
117 1 5111 331111 3111 1 110111213 14 15 (23) 192 FS
118 1 5111 311113 1113 1 381112131415 (34) 192
119 1 5111 111331 1131 1 78 910131415 (34) 192
120 1 5111 311111 1131 3 39101213 1415 (34) 192
121 1 5111 1131111 3331 1 7910111213 14 (2,3,4) 64
122 1 3331 117117 5111 1 6710 11 1213 15 (1,2,3) 64
123 1 3311 151371 1111 1 4510111314 15 — 384
124 1 3311 1ITI1I5 1111 3 56 9101314 15 (12),(34) 96
125 1 3311 1ITTIT1 1153 1 47 9101314 15 (34) 192
126 1 3311 1TI1ITI3 1111 5 47 8111314 15 (12),(34) 96
127 1 3111 531111 3I11 1 23 912131415 — 384
128 1 3111 517113 TIT11I3 1 031112131415 (34) 192
129 1 3111 TI3511 II1I3 1 351011121314 (23) 192
130 1 3111 171531 1131 I 251011121315 — 384
131 1 3111 51T111 TI81 3 1211121314 15 (34) 192
132 1 3111 331111 5111 1 67 910111213 (23) 192
133 1 3111 317113 T1T5 1 47 91011 1215 (34) 192
13¢ 1 3111 TITIT133 5111 1 071011121315 (23) 192
185 1 3111 II3111 B5IT1 3 171011121314 (23) 192
18 1 3111 TIIT111 5331 1 161011121315 (23) 192
137 1 3111 317111 TI31 5 56 910111215 (34) 192
138 1 1111 531133 1111 1 45 7 8101115 (12)(34) 192
139 1 1111 533111 1111 3 45 6 91011 15 (34) 192
140 1 1111 531111 1331 1 45 7 910 11 14 — 384
141 1 1111 511111 3311 3 56 7 9101112 (12),(34) 96 FS
142 1 1111 313111 5131 1 23 4 91314 15 — 384
143 1 1111 311111 5311 3 23 5 9121415 (12) 192
144 1 1111 333111 1111 5 12 411131415 (2,3,4) 64
145 1 1111 311111 3311 5 12 711121314 (12),(34) 96
146 1 3333 311113 ITIT 1 3711121314 15 (12),(34),(13(24) 48 FS, M
147 1 3331 313111 1131 I 37101213 1415 — 384
148 1 3331 311111 1311 3 271112131415 (12) 192
149 1 3311 333TI3 11711 1 37 812131415 (34) 192
150 1 3311 331TI31 1111 3 36 9121314 15 (12)(34) 192
151 1 3311 33ITIT1 1313 1 27 912131415 —_— 384
152 1 3311 3ITITII3 3311 1 07111213 14 15 (12),(34) 96
1683 1 3311 131131 3311 1 67 911121314 (12)(34) 192
154 1 3311 131113 3131 1 67 811121315 — 384
155 1 3311 131111 3113 3 67 91012 1315 — 384
156 1 3111 331313 1131 I 67 8 9111215 - 384
157 1 3111 3371311 1113 3 67 8 9111314 (23) 192
158 1 3111 317133 1311 3 47 81011 13 15 — 384
159 1 3111 ITI333 1113 3 07 811131415 (2,3,4) 64
160 1 3111 371311 3133 1 56 8 911 14 15 — 384
161 1 3111 TIT311 1333 3 16 811131415 (23) 192
162 1 1111 333311 3113 1 01 611131415 (23) 192
163 1 1111 331131 1133 3 03 5101314 15 (12)(34) 192
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111223 2233 3
N 0 1234 234344 3444 4 Standard Sum Symmetry T  Remarks
164 1 1111 311113 3333 1 03 711121314 (12), (34), (13)(24) 48
165 0 8000 000000 0000 0 8910111213 1415 ({%}3,4),{2},[3], 8 1, SD, M
166 0 0000 800000 0000 0 45 6 7 8 91011 ({132{,{(4%4),[12], 12 2
167 0 0000 000000 8000 0 23 4 5 8 91415 g,}z,3),[12],[13], 8 3, FS, SD
168 0 0000 000000 0000 8 12 4 7 8111314 (1,2,3,4),[12], 2 FS,S1,3
[13], [14]
169 0 6222 000000 2222 0 7910111213 14 15 (2,3,4) 64 SD, M
170 0 6220 002022 2000 2 6910111213 14 15 (23) 192
171 0 6200 022220 0022 0 4910111213 14 15 (34) 192 FS
172 0 6000 222000 2220 2 091011 1213 14 15 (2,8,4) 64 FS
173 0 2222 000000 6222 0 16 71011121315 (1,2,3) 64 SD
174 0 2220 006022 2000 2 24 6 9111314 15 (23) 192
175 0 2220 002022 6000 2 16 71011121314 (1,2,3) 64
176 0 2220 002022 2000 6 35 6 910121415 (1,2,3) 64
177 0 2200 062220 0022 0 14 51011121415 — 384
178 0 2200 022220 0062 0 34 7 9101213 14 (34) 192
179 0 2000 622000 2220 2 12 3 812131415 (34) 192 FS
180 0 2000 222000 6220 2 16 7 81011 12 13 (23) 192 FS
181 0 2000 222000 2220 6 35 6 8 9101215 (23,4) 64 FS
182 0 4440 000000 4000 0 67 1011 12 13 14 15 (1,2,3),[4] 32 38, SD, M
183 0 4400 0403200 0000 0 67 8 91213 14 15 (12)[3], [4] 96 3
184 0 4400 000004 0000 4 56 91012 13 14 15 (12),(34),[34] 48 FS
185 0 4400 000000 0044 0 56 8§11 12 13 14 15 (12)[3],(34),[34] 48 FS, SD
186 0 4000 440000 4000 0 0110111213 14 15 (23),[4] 9% 3, FS
187 0 4000 400004 0004 0 03 811 12 13 14 15 (34),[341 96 FS
188 0 4000 000440 0040 0 07 8 91013 14 15 (34),[234] 96
189 0 4000 400000 0040 4 03 91012 13 14 15 (34), [34] 96 FS
190 0 4000 000000 4440 0 07 910 111213 14 (2,3,4),[234] 32 FS, SD
191 0 0000 440044 0000 0 01 2 51013 14 15 (14)[3]1,(23)[4], 24
(12)(34), [1234]
192 0 0000 444000 0000 4 01 2 4111314 15 (2,3,4),[1234] 32 FS
193 0 0000 240000 0440 0 01 2 51112 14 15 (23)[4], [123] 96 FS
194 0 0000 200000 4400 4 01 2 7111213 14 (12),(34),[12] 48 FS
195 0 4422 022220 2200 0 57 1011 12 13 14 15 (12)(34) 192 M
196 0 4420 020202 2022 2 471011121314 15 — 384
197a 0 4222 222400 0002 2 3851011 12 13 14 15 (23) 192
197 0 4222 222300 0002 2 67 8 91113 14 15 (23) 192
198a 0 4222 222000 4002 2 17101112 13 14 15 (23) 192
198b 0 4222 222000 4002 2 67 91011 1213 15 (23) 192
199 0 4220 224022 0220 0 26 91112131415 — 384
2002 0 4220 220422 0220 0 251011 12 13 14 15 (23)[4] 192
200b 0 4220 220422 0220 0 67 8 91112 14 15 (23)[4] 192
20la 0 4220 220022 4220 0 071011 12 13 14 15 (23) 192
201b 0 4220 220022 4220 0 67 910 11 12 13 14 (23) 192
202 0 4220 220022 0224 0 36 81112131415 — 384
203 0 4220 220022 0220 4 27 81112131415 — 384
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N 0 1234 234344 3444 4 Standard Sum Symmetry T Remarks
2042 0 4200 240220 2202 2 051011121314 15 — 384
204b 0 4200 240220 2202 2 67 8 911121314 — 384
2052 0 4200 200224 2202 2 07 811121314 15 (34) 192
205b 0 4200 200224 2202 2 56 910111213 14 (34) 192
206a 0 4200 200220 2242 2 34 910 12 13 14 15 (34) 192
206b 0 4200 200220 2242 2 47 8 9101314 15 (34) 192
207 0 2222 440000 2222 0 23 7 912131415 — 384
208a 0 2222 400004 2222 0 03 71112 13 14 15 (12),(34),(13)24) 48
208b 0 2222 400004 2222 0 56 7 91011 13 14 (12),(34),(18)24) 48
209a 0 2222 400000 2222 4 12 711121314 15 (12),(34) 96
209b 0 2222 400000 2222 4 56 7 9101112 15 (12), (34) 96
210 0 2220 442022 2000 2 23 7 812131415 — 384
211a 0 2220 402022 2400 2 02 711121314 15 (12) 192
211b 0 2220 402022 2400 2 56 7 91011 1214 (12) 192
212a 0 2220 402022 2040 2 03 71012131415 — 384
212b 0 2220 402022 2040 2 46 7 910111314 — 384
213 0 2220 002022 2440 2 25 7 811121415 — 384
214a 0 2200 422224 0022 0 03 41112 13 14 15 (34), (12)[34] 96
214 0 2200 422224 0022 0 56 7 8 910 13 14 (34),(12)[34] 96
2152 0 2200 422220 4022 0 01 61112 1314 15 (12)[4] 192
215D 0 2200 422220 4022 0 56 7 8 10 11 12 13 (12)[4] 192
216 0 2200 022224 4022 0 06 7 811121315 — 384
2172 0 2200 422220 0022 4 12 41112 13 14 15 (34), (12)[34] 96
217b 0 2200 422220 0022 4 56 7 8 91012 15 (34), (12)[34] 96
218a 0 2200 022224 0022 4 04 7 81113 14 15 (12),(34) 96
218b 0 2200 022224 0022 4 35 6 9101213 14 (12), (34) 96
219 0 2200 022220 4422 0 06 7 91112 13 14 (12)(34) 192
220 0 2200 022220 4022 4 24 5 811131415 — 384
221 0 2000 222440 2220 2 06 7 8 9101315 — 384
222a 0 2000 222400 2224 2 01 6 81113 14 15 (23) 192
222b 0 2000 222400 2224 2 35 6 81011 12 13 (23) 192
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Appendix 2. Table of Minimal Switching Circuits for
Boolean Functions of fonr Variables

Table of Symbols for Vacuum Tube and Transistor Switching Circuits

Symbol SX(i:tt%;ng Vacuum tube gate NPN ’gzgxsistor PNP '{g‘zﬁgsistor
Pi(e) e Complement Gate Complement Gate ——
Paler, ..., en) e---€, Triode Gate Series Gate » Parallel Gate N
Si(e) 4 — — Complement Gate
Sules, ..., en) el +---+e, Pentode Gate Parallel Gate Series Gate

(n=2)

Fu(er, ... en) eit - +en Cathode Follower - Emitter Follower

Cate Gate -
Bn( €1y 000, En) €1+ €n — —_ gg?ter Follower
s 1s Common Plate Common Collector
. Mg;%%ﬁ' Resistor Connec- Resistor Connec- —
tion tion
Common Collector
+ Addition — — Resistor Connec-
tion
N H Switching Circuit R C 8 G T
1 0 0 0 0 0
2 1 wxyz 4 4 8
Pyw', #, ¥, 2') 4 4
3 2 wxy 3 3 6
Ps(w', &, ¥) 3 3
4 3 wxyz+wxy' 2’ 10*
wx(yz-+y' 2') 6 10
Po(w’, 2')S2(y, 2")S2(y', 2) 6 6
5 4 wxyz+wx'y' z' 10
w(xy+x" 2 )y +2) o7 1
Pi(w’) Sa(x, ¥') Sa(x’, z) Sa(y, 2') 7 7
6 5 wxyz--w' x'y’ 2’ 10
' (wx+w'y' ) (yz+2'2") 8 12
Sa(w, x') Se(w’, z) Sa(x, 3') Sa(y, 27) 8 8
7 6 wxy+wxz 8%
wx(y+2z) 4 8

Po(w', x') Sely/, 2') 4 4
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Switching Circuit

wxy+wx'y' z
w(xy-+x'zy")
Py(w') Sa(x, y') Sa(x', ) S2(&!, 2)

wxyz' +wxy z4+wx'yz

X y—2z'
T
—w‘-[— y'
x'—-y—l—z

Pr(w') Sa(x, p) S:la’, Pup)1Say’, 2), p=Paly’, 2)

15%

10 10

10

wxy+w' x'y' z
(wxtw'zy' ) (%' +y)
Sa(w!, %) Se(w, y') Sa(w', 2') S’y 3)

11

10

wxyz+wxy' 2’ +w' x'yz

LTS

Sa(w, x') Sa(w’, x) Sa(w', ¥') Saly, 2') Sy’ 2)

15

10 10

12

11

wxyz' +wxy z--w' &' yz

w -———-—w‘-—-y—l—z
{: y'
A ] -—»-Ly-—-—z‘

Salw, ') Sa(y’, 2') Se(w', p) Selx, Pup)], p=S2y, 2)

15

11* 11

13

12

wx
Pa(w', 2

14

19

wxy-+wx'y’
wlxy+x'y")

Pi(w') Sa(x, y') Sa(x', 3)

8*

15

25

wxyz-+wxy' 2’ +wx' yz' +wx'y' z

[——z' z

— bd b4 .x!
1

[-——-z ¥ z"

Pi(w') Sa(x, p)Sa[x’, Pi(p)], p=S2(y,2) Saly’, 27)

20%

10 10

16

24

wxy+w' x'y’
(wx~+w'y' ) (' +y)
SZ(W, x’) S?(w,: y) SZ(x, ;V')

17

29

wxyz+wxy 2/ +w' X yzt+w' x'y' 2’
(wx+w'x")(yz-+y'2")
Salw, x')Sa(w', x)Say, 2') Se(y’, 2)

20%
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Switching Circuit R C

18

30

wxyz' +wxy z-+w' &' yz+w' x'y' 2 20%

Tr] s
X——L——-z-——L—xv

{2 .

Sw(w, x") So(w’, p)S2[x, Pi(p)], p=Sa2ly, z) Sy, 2')

16

1 11

19

13

wxy-+wxz--wyz 12%

x ¥
i 6
S

Pi(w') So(x', 3°) S2(2/, 2') Sy, 27)

11

20

14

wxz+wyz' 8%
w(xz+yz') 5
Pi(w') S, 2) Sy, 2')

21

15

wxy+wxz+wx'y' 2 13*

X——-—,—-—'Z
xl_..y‘_L_. z!

Pi(w") So(x, p) S:[2’, Pup)]l, p=Pauly, z)

11

22

16

wxy-+wxz+w' 5’ yz 13
w——;~-y—~r— w!
4 w
x'—«l——————-l——-x

Se(w, x)Sely’, 2) Selw’, Fa(x, ', 2)]

12

23

26

wxyz +wxy' z+wx' yz-+w’ xyz 20

y——-z'
10

__x_L_ _.L__

Sap, @) Pi[P:(p, q)],
p=Py(w', 2')S2(y’, 2'), q=Paly’, 2)S2(w’, x')

16

13% 13

24

17

wxy+wxz+w' x'yz’' 13%
(w'+x)(w+x"2") (y+2) 7
S2(w, x°)Sa(w’, x)Sa(w’, 2)Saly’, ')

11
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25 20 wxz-+wx' yz' +w' xyz’ 14

w X = Z
-‘ x! [— 8 13
Wl x—-——J— y—z'

Sa(w', x') Sa(z, p)S2[2, Sa(y, P)1, p=Suw, %) 10% 10

26 18 wxy+wrz+w' X'y z 13

W__wl_;..le._...z!
-{ ¥ 8 12
x'——\--—-x—-l-———z

Sa(w', x)Se(w, p) Sel', Pai(p)], p=Fely, 2) 9 9

27 22 wyz-+xy' 2’ 8
ywz+y' xz' 6 10
F[Ps(w', ¥', 2'), Ps(x', ¥, 2)] 8
Pi[Sa(w, v, 2)Ss(x, ¥, 2)] : 7

28 21 wxy-+wx'y 2w xy' 2 14
'

N ‘L“y“J * l 8 12
__L__

Sa(w’, 2z) Sa(x’, 2') Saly, p) Saly’, Pup)l, p=S:w, x) 11 11

29 27 wxyz' +wxy' 2+wx'y' 2’ -+w' xyz 20

——r-y X
10 16
[ __y_J__

Salw’, 2') Salx', 2)Sa(y’, p)Sely, Pu(p)], p=Pu(x") Salw, 2 12% 12

30 23 wxy+wx'y z+w'x'y' 7' 14

—I———————Tx—-
I R

BEIPs(w’, %', y'), Pix, y)Su(w, 2')Sa(w', 2)] 11 11

31 28 wxyz' +wxy' z-4wx'yz+w' x'y' 2’ 20

—EZ -——;——-Z'
7'—-—1—-—-7

Sa(w’, ) S:lPa(w’, %), g1 PiLPi(x') Sa(p, @)1, 14%
Sa(w’, p)Ss(w, ', @) PALPi(x") S2(p, @)1, 13
p=S:1y', 2"), q=Saly, 2)
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32

31

wx-+wyz
w(x+yz)
Pi(w') S, y') Se(x', 2')

33

38

wxy' +wx’'y+wxz
w(x+y & +y +2)

Pilw') Sa(x', ¥') Sa[x, Paly', 2)]
Pi(w') Sa(x', y') Sl x, 3, 2')

12%

34

33

wxy+wxz-+wyz+wx'y' z

__w{’ﬁjlr";}
QG y!

Z

Sa(x, p) Palw’, Palx, p) Sy, 2)1, p=Paly, 2)

17%

10 10

35

32

wx-+w' x'yz
wx-+w' yzx'
Salw, ') Selw’, Fslx, y', 2')]

6 10

36

46

wxy+wx'y' +xyz
x——-—-—-x'-—}—w

[ z’
y'———y—l—-—-z]

Sa(w’, %) Se(w’, 2') Salx, y') S22, y)

37

50

wxy' +wx' y-+w' xyz
w—!—x-— :
x! 7
w'—z——x-——L———y
Sa(x', ') S2(w, p) S2[w’, Sz, p)1, p=Pa(x’, ")

12

8 8

13

10 10

38

51

xyz-t+way' 2’ +wx'yz +wx'y' z
y y

[TE

LA

Sa(w’, x')Sa(z, p)S:[2, Sa(w, p)1, p=Sa(x, y)Sa(x', ¥')
Sa(y, @) PiLPu(y) S2(w, q)], g=Su(x, z) Ss(w, 2', 2')

19

12
11

39

[$11
W

wxyz' +wxy' 2+wx'yz-+wx'y 24w’ xyz

e e e
X——r——‘x:‘
1 ‘
[

Sa(w’, ¥') Saw’, 2') Sa(x, p)Solx’, Pi(p)],
p=Pi(w’) Sy, 2') Sy, 2)

25
11 17

14% 14
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40

49

wxy' +wxz+w' x'y
(w4 ) [w' y+x(y'+2)]
EFy[Py(w’, x') Sa(y, 2'), Ps(w, %, )]

12

11

41

48

wxy+wrz+w' 2’ yz'+w' x'y z
(w'+x)[w+x"(y+2)1(y+2)

Sa(w, ') Sa(w!, x)Sa(y', 2') PilPs(w, 3', 2')]
Se(w, x')Sa(w’, x)S2(y’, 2’) Ss(w', 3, 2)

18%

12

10

42

47

wxy+wxz+w ' yz+w' %'y’ 2

w x l y
' wi— T H—y

Fi[Py(w', x')S2(y’, 2'), Pa(w, x)Sa(y, 2') Sy, 2)]

18

14

12 12

43

52

Pt ot

wxy-+wx'y' 2’ +w' xy z4+w' 2’ yz
.__L__y-_J..{'_‘Z:)._

&

J

X

=

Wz
x!

)

Ay —

So(w, p) Pi[S2(w, y) S2(w, 2') So(z, p)1, p=S2(x, y) S2(x', ")

19

10

17

15%

13* 13

44

57

wxyz-+wx'yz +wx'y z-+-w' xyz'+w' xy' z

w-—-—-—r———-z -—-—r—z'
F—

'..—J..—..w....._.l_.__z

Salw’, x7)Saly’, 2')Se(p, q) PiLP2(p, )],
p=S2(w, X}, quZ(y" 2')

25%

10

13% 13

45

34

wxy-+wxz-+wyz-+xyz
T —T—y]
__L__ —1

Suw', %')Sa(y", 2') Pi[S2(w, x) Sa(y, 2)]

16

14

46

35

wxz-+wyz-+xyz’

{—W Z——T—'—-X]-
1

Sa(w’, 2) Sa(x', ¥') Sa(x', 2') Sa(y', 2')

12

11
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47

39

wxy+wyz' +xy' z
(w+y" ) (y+2)(x-+2)
Se(w’y 3) So(x, 2) Sa(y’, 2')

12%

10

48

36

wxy-t+wxz-t+wyz+w' xy' 2’

w x Z
Lo
Y I

Sa(#, ") Sa(x’y 2') Se(w, p)Selw’, Pi(p)], p=Pi(y, 2)

17%

14

1 11

49

40

waz' +wyz-+w' xy' z

v =
L.t 1

Salw’, p) PiLP1(P) Se(w’, x)], p=S2(y’, 2) Sa(a', 27)

13

11

10¥ 10

50

42

wxy' +wxz' +wx' yz--w' xyz

[T

Sa(p, q) PilP2(p, @)1, p=Pelw’, ), g=Sa(w’, 2’) Paly’, 2')

18

14

1 11

51

37

wxy-+wiz+wyz+w' ¥’y 2

W l X l Z-:}
z y
{w‘—x'—y‘l—————l—z'

Sa(x, p) Pa[Pa(w, p), Po(w', x) Sy, 2)], p=Paly, 2)

17

15

12% 12

52

41

wxz' +wyz-+w' x'y' z
[D— |
[w—ﬂz'—z
y' y
Sa(w’, x) Selw', ¥) Sa(x’, 2’) Pi[Ps(w’, y, 2')]
Sa(w', %) Sa(w’, y) S2(x, 2') Sa(w, ¥, 2)

13

12%

10

45

wxy' +wxz' -+x"yz

L3
x! _v—-[—-—z

Sa(x!, p) Salx, Sa{w, p)1, p=S:(y, 2)

12

11

8¢ 8
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54

44

wxy +wxz+wx'yz+w' £ yz 18%

z
‘!: 9 14
*"—v W o 7, !

Sa(x, p) PALP1(p) Sa(w, %)1, p=P1(y") Sa(w, z) Sa(w', 2')

11% 11

55

43

wxy+wxz+wx'y' 2'+w' x'yz 18
xl

14

i——N
N
w0

,v.:}l——y

Sa(x, p) PALPi(p) Salw, %)1, p=Sa(w’, 3') Se(w, 2) S2(y, 2')

12% 12

56

54

w' xy+wx'z+wxy' 2 13

z X"
1

1
z
| 8 12
N
13

w

wt ¥ X

So(w', ') Sa(w', ¥ S2tx, ) PiLPai(w’, x')Sa(y’, 2)]

11 11

57

53

w' xy-+wxy' z+wx yz-+ws'y' 2’ 19

{ L“‘“"L.

Sa(w', p)Salz, q) PiLPi(w') S20p, Falz q)11,
p=8:=x, ), g=Pa(x, y)

10 15

14% 14

56

wxyz +wxy’ z+wx' yz+w' xyzt+w'x'y' 2’ 25
‘4,(_&_ L__

S:[p, Pi(q)1S:Lg, Pu(p)],
p=Su(w’, &) Sy, 2z}, g=Se(w, ') Sa(w’, x)S2(y’, 2')

12 18

16* 16

59

58

wx+wy 6%
w(x+y) 3 5
Pi(w') Sa(x', ¥')

60

59

wx+wyz+wy' 2’ 11%
w(x+yz+y' 2") 6 10
Pi(w’) S2[x, Sy, z)Saly’, 2]

61

79

wxy +wx’ z-+wyz' 12%
w(x+y+z)(x'+y'+2') 7 11
Pofw’, Sa(x, y') Sax’, 2)Suly, 2')]

Pl(w/)S3(x, Y Z) S3(xrt J’" Z,)
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62

66

wx+w' x'y
wx+w'yx'
Sa(w, &7) Sa(w’, %) Se(w, ¥')-
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146

116

wWXTYZ
Pi[S2(w, %) S2ly, 2)]

147

119

wx+wyz +uw' yz

w T X
Lot

Fa[Pow’, &), Pi(y') Sa(w, 2)Sa(w’, 2')]

11

10

148

117

wx-+wyz+xyz+w' x'yz'

w—-[——-z e e
Z'
w! w

Sa(z, p) PilS2(w, x)S:ly, Faz, p)11, p=Piw, x)

16

13

11% 11

149

121

wx+wy 2’ -+w' yz
w(x+y' 2’ )+w'yz
P Pi(w) Sa(y, 2), Palw’, x)S2(y’, 2')]

11

12

150

122

wx+wy z--xyz'+w' 2 yz

w X
R
w'-—-y-——l——l—-z——-x‘

Sa(w’, ¥') Sa(x’, 2') PALP(y’, 2') S2lw, %) Sa(w’, x")T

16*

12%

11* 11

151

120

wx+wy' z+xyz+w' £ yz’

T
z
—l

Py Pi(w) Sa(«’, y) Saly, 2), Pi(x)Su(w’, 2') Saly’, 2)]
Sa(u’, ¥') Ss(w, &', ') Ss(w’, x, 2/) S3(«', 3, 2)

16%

12
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152

118

wxt+wyz+xyz+w' x'y' 2
X
x! _——J.
x
FH—y

Py[Sa(w, x) Sa(w', ') Saly, z), Pi(w, x), Sy, 2')]

z

16

12*% 12

153

150

wxy' +w' xy+wxz' +wx' z

w Z e x?
i T T }
IR N N

So(x', 2') Sa(w', p) PiLPs(w', 2', p)1, p=Sa(x, ¥)

16*

10 10

154

138

wxy'+w' xy+wyz+wy' 2’
w z
-[ _T— BN
z w!
x-—_—l—___!_ W Y 1,

BLPiy") Solw’, x7) S2(w, 2'), Paw', y) Sa(x', 2)]
Sa(w', x')Se(w', ¥') Ss(w, y, 2) Sa(x', 3, 2)

16*

11%
10

155

131

wxy' +w' xy-+wy' 2-+xyz-twx'yz'

L AT
x z
¥ y—w'

S:(p, q) PilP(p, @],
p=Su(w’, ¥")Se(x', ), g=Pa(w', z)Sa(x, y')

21%

10 15

13% 13

156

153

wx'y +w' xy+wyztwy' 2
w—r——z fmeyr!
z
x'
—
w—x—L

Sa(w', x') Sely, pY P[Py, 3, p)], p=Pa(w', z)

16*

8 12%

10* 10

157

135

wx'y'+w' xy+wx' z4+wy z+xyz

W ——

w
L
L
¥ -3 ! z'

S:(p, q) PiLPp, @)1,
p=Pix', ¥'), g=Pi(w') Sa(%, 2') Sa(y, 2')

20%

9 15*%

12% 12
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158

141

wxz-+wx' 2/ +wyz-+xyz+w xy' 2

z
w
v X! |

Sz(w', x') S2(z, p) PiLPs(#',2, p)], p=Pi(y) S:{w, ¥)

21%

11% 11

159

129

wxy+wxz-+wyz-+xyz-+x'y 2
x 1

W ——p——X%
x' ¥

x— y!
S A
z' z

Fs[Pow’, ) Saly', 27), Salw’, &) Paly', 2), Ps(x, 3, 2)]
Si(x, ¥, 27) PiLS2(w, %) Saly’, 2) PALS:2(w’, %) Paly’, /)11

10 16

14
13

160

148

wx'y fwyz-+xyd +w' %y’ z

yﬁ
x———L-{ v x' -

Sa(w’, ) Sa(y's pYPALP2Y, D)S2(w, 2) ], p=Pi(x)S2(, 2)

17

9 14%

12% 12

161

132

wxz-+wyz+xy2 +wx'y 2w &'y z
X W — 2
¥y w!
ine
W
x! % e 7

Sa(p, q) PilPAp, @)1,
p=Pa(x,y) Salw’, 2), g=S2(w’, 2) Sal ¥, 2') Sa(y', 2)

22

10 16

15% 15

162

143

w' %'y Fwrz-+wyz--xyz

W'
[
T

S?(w, P) P1[Sz(w, z) PZ[P) P3(x,y y') Z)]], P=P2(x,y)
S2(w, p) PALPi(p) S2(w, 2) Ss(x, 3, 2")1, p=Pa(%,5)

16

12%
11

163

154

wxy+wyz +xy' z+w' & yz+w' 2’y 2

W’ X' ,y! z
~y7 }
;v'jzxk_z

S2p, @) PAALP:(p, @)1,
p=Pi(w)Sa(x, ¥') S2(¥', 2), =S¥, 2) Saly’, 2)

22

10 16%

14% 14
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164 159 wxy +wxz +w' yz+x yz+w 2’y 2 21
w X —p—y" B
zl
e e o
y_._L.._.yl y
Sa(p, q) PALP:(p, q) Pi[Py(w, %, v, 2)11, 14%
Sa(p, @) PILP(p, q) Su(w', &, y', 2')], 13
p=Pw', %), g=P2(y', 2')
165 164 w 0 1 2 0 0o
166 204 wx'+w' x 6 4 6
Sa(w, x)S2w’, x') 4 4
P(w, x')+Py(w', x) 4
167 236 wxy+wx'y' 4w xy'+w' x'y 16
y! T ¥
w = w' 8 12
yi
Sa(w, p) Selw’, Pi(p)], p=S2(x, y)Su(x', »') 9 9
Pi(w, ¢)+Prw', Sig)], g=Palx, y)+Pi(x', y') 9
168 237 wxyz' +wxy z-+wx' yz-wx'y' 2w’ xyz-w' xy' 2w’ 2’ yz’ 40
+w'x'y z
y—7—-—2‘
12 18
_l._
S2(p, q) PALP:(p, q)], 13% 13
p=Sa(w, x)Sa(w’, x"), ¢=S2(y, z) Saly’, 2')
Palr, s)+S1[Sa(7, s)], 13
r=Pyw, x")+P(w', x), s=Pyly, z)-+Py’, 2)
169 165 wx-+wy-+wz--xyz 13
w T 2
. F'e - 5 10
N ! w
Solw!, Fs(x', ¥, 21 Pi[Ps(%, y, 2)] 9
Selw’, Sa(x, y, 2)1Ss(%', ¥, 2') 8
Pifw', Ps(x, 3, 2)1+Ps(x', 5, 2') 8
170 166 wx-+wy-+wz-+xyz’ 13
X
- x! 7 12
X y 2!
Salw', Fs(x', y', 2)1 PiLPs(%, 3, 2)] 9
Sa[w', S3(x, 3, 2')1S3(%', ¥', 2) 8

Plw', Pi(x, y, 2)1+Ps(x', ', z)

[*]
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171 167 wy-+wztxy' 2 10
w z
' ¥ L 6 10
>4 v’ z'
Sa(w', p) S2lx, Pu(p)], p=52y, 2') ™7
Pyw', ¢)+Polw’, Sulq)], g=Pa(y, 2) 7
172 168 wx+wy+wzt+w £’y 2 14
w;mxs_T__y!__r_ z!
-'_‘ x y 8 12
w | | .
Sa(w, p)Salw’, Pip)]1, p=Ps(x, 3, 2) 8 8
Prw, q) +Pe[w', Silg)], ¢g=Ss(x/, ¥, 2') 8
173 208 wxy +wx’ y+w xy-+wxz-w' 2’y z 21
—
xl
W t—w' 10 16
x
y T
So(w', p) S22, q) PAlPa(w', p) Sa(y, 2)], 14% 14
p=Pi(q) S2(%, ¥), g=Pa(%, y)
Po(w', 7)-+Pa(2, $)+S1lSe(w’, 7)+Paly, 2)], 14
7=S81(8)+Pax, ¥), s=S2(%, )
174 201 wz+w' 22’ +w' yz'+xyz’ 15
w v
] . yl 2 1 7 13
w' z! I x
Sa(w', z) Pi[Pi(z) Sa(w’, x)S2(w’, y)S2(x, y)]1 10% 10
Py, 2')+S1LS1(2" )+ Po(w', %)+ Pa(w’, 3)+Pa( %, )] 10
175 220 wxy' +wx' y-+w' xy-+wxz'+~w' 'y z 21
( ¥ T y'
W
x a— x’ 10 15
L w' !
y'—z —.J—.._...L_.___y_.__
Sa{w’, p)Sa(2', q) Pi[P:(w', p) Sa(x, 2')], 14% 14
p=Pi(q) S2(x, ¥), g=Pa(%, »)
Py(w!, 7)+Palz, $)+S1[Sa(w’, 7)+Palx, 2)], 14

r=51(8)+Pa(%, y), s=S2(x%, y)
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176

205

wxy+wxz' +wyz +xy2’ +wx'y 2w’ xy' 2w’ 2 yz

[ZAT)

S:(p, @) PAlP:(p, @)1, p=Pi(r)S2(y’, 2)
g=S:(w, x)Say, 2') Sa(y', v), r=Pa(w, %)
Pa(s, t)+Si1[Sa(s, )], s=Su(u)+Pu(y’, 2’)
t=Pa(w, x)+Pi(y, 2)+P(y', u), u=S2(w, x)

31

12 18*%

16* 16

16

177

202

wy+w'y z-+xy' 2’

yw+y (zw'+2' x)

Sa(w’, y) Pi[Pi(y) S2(w', 2) Sa(x, 2')]
Pow’, y')+S1LS1(y" ) +Polw', 2')+Pa(%, 2)]

178

210

wyz' +wy' z+w' yz+xy' 2
b4 y'——z'
J
w i

L 7

w! e —
Sa(w, p) So(x', q) PilPs(w, P, @)1,
P=P2(y'y Z')! q-_—PZ(J’, z)

Py(w, 7)+Pu(x', s)+S1[Ss(w, 7, s)],
r=82(y, z), s=Sy’, 2')

16

12 12

12

179

203

wx-+w' 'y +w' 1’ 2wy’ 2

X

xl

Sa(w', p) Selw. Pi(p)], p=Pi(x)S:(y’, 2")
Py(w', q)+Palw, S1(¢)], g=S1(«")+Pa(y, 2)

15

180

228

wxy' +wx'y-+w xy-+wx' 2 +w' %'y z

—-—y'

z Z:‘

w!

w

o

y y!
Sa(w, p) Salw’, Pi(p)], p=S2(x, y') S2(¥', y) Sa(y', 2')
Sa(w', @) S:lw, Pi(g)], ¢=S:(%, y) Ss(x, ¥, 2)
Py(w', v) +Palw, Si(r)], r=Pu(x', y')+Pi(x, y, 2)

21

10 15

11
10
10
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181 215 wx’' Y +wx’' 2wy 2 wryzw gy +w' xy 2w’ 2 yz 32
z'
12 18
L__
Sa(w, p)S2[w’, Pi(p)], 14 14
p=S82x, q) S:[¥', Pi(q)]1 Sy, 2°), g=Pa(y’, 2')
Pow, 7)+P:w’, Si(7)], 14
r=Py(x', s)+Palx, S1(8)]+ Py, 2), 5=S:(y, 2)
182 169 wx+wy-+xy 9
w X
, [
- x! - 5 9
r—l
Sa(w’, x7) Sa(w', ¥') S2(’, ') 6 6
P Py(w', &) +Pa(w', y')+Po(x', ¥') 6
183 174 wy'-+xy 6 4 7
Sa(w’, 3') Sa(«, ) 4 4
(w', )+ P2, ') 4
184 180 wx-+wyz' +wy' z-+xy2’ +xy' 2 19
w T " X
J ¥y
- 1] - 8 13
z' zZ
w! i 1 w
Se(w’, %) Pi[S2(w, x) Sa(y, 2')Sa(y’, 2)] 9% 9
P/, &) +S1lPi(w, x)+Poly, z)+Pely’, 2/)] 9
185 184 wyz+wy' 2 +xy2’ 4%y z 16
4 T z?t
y!
w ; x 8 13
J
z! L z
Sa(w', ) Sel', Pilp)l, p=Suly, 2') Sy, 2) 9 9
PZ(w" q)Pz[x’, 51(4)], q=P2(y1 Z")‘l"P?-(y', z) 9
186 179 wx+wy-+w' x'y’ 10
w I Yy
x - 6 9
w'-————x‘—-!————y‘
Sa(w, p) Solw’, Pi(p)], p=Pa(x, ) 77
Pi(w, ¢)+Palw’, Si(q)], g=Su(#, ¥) 7
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187 189 wx+x'yz+x'y' 2" 11
xw+x' (yz+y' 2') 7 11
Su(w', %) Sil«, Si(, 2) Sy, 2)] 8 8
Py(w!', 2')+Pilx, Py, 2)+P(y, 2)] 8
188 219 wyz'+wy' z+-xyz+x'y' 2 16
y—7T—2z —X
Z'
i w ] 9 14
y'_._l_..._zt xl___l
Sa(x, p)Se(x', q) PilPs(w, p, 9)1, 12 12
p=Puly, 2), g=Paly', ') '
Py(x, r)+Po(x, s)+S1lSs(w, 7, s)], 12
r=82(y", 2'), s=S:(y, z)
189 190 wx+wyz' +wy' z++w' 2 yz+w' 2y’ 2’ 21
b' "7“"2
10 15
——x z‘
Sa(w, p)Saw’, Pi(p)], p=Pi(x)Saly, 2') S2(y', 2) 10 10
Po(w, g)+Pelw', Si{q)], q=S1(x")+Pa(y, 2')+ Py, 2) 10
190 226 wxy'+wx’ z+wyz' +w' xyz+w' £’y 2 22
r—p— %'
y z' _—}
S . 117
y! ;Y———-J
Sa(w, p)Salw', Pi(p)], p=S2%, y') Sa(x', 2) Sa(y, 2') 1 n
Po(w, q)+Palw', SU @)1, g=Pul( &', y)+Pa(x, 2' )+ Pa(y', 2) 1
191 233 waztw 2 twy+w'y'z 16
w-—-———§—-x-—7——z
8 14
z’
Fy[Sa(w, x') Sa(w', ) Saly', 2'), Pa(x, 2) Sz(w, 3')] 12 12
B[ Pa(w, x)+Pa(w', y')+Paly, 2'), Se(«', 2)+Pa(w, y)] 12
192 225 wxy+w' £’y +wrztw' &' 2’ wyz+w'y' 2 24
*""T—Y ﬁ—z
10 15
_w__f_y_l__.z
Sa(w, p) Sa[w', Pu(p)], p=S(x, y) Sa(x, 2) So(y, 2) 111
Po(w, q)+Palw', Si(q)], g=Po(x', 5" )+ Pa(', 2" )+ Paly’, 2') 11
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N H Switching Circuit R C S G T
193 234 wxz' +w' x'2 +wyz+w'y' z 16
y! y
3
w } w! 8 12
z!
x* 1 X
Sa{w, p)S:lw’, Pi(p)], p=S2(x, 2)Su(y, 2z) 9 9
P(w, ¢)+Pi[w', S1{(q)], g=Pa(x', 2)+Paly’, 2) 9
194 235 wxy' +w' %'y +wxz'+w' x 2 wx yz+w' xyz 26
w X z'
—_—
xl
<{ \ :"' y]’ 10 15
w! x y—-l—z
S?(p, CJ) PI[Pz(P> q)]) 11* 11
p=Sw, x)So(w’, %), g=S2(y, 2)
Po(r, s)+S1[Sa7, s)], 11
r=Py(w, ')+ Py(w', x), s=Pily’, 2')
195 170 wx+wy-+az 9
W i J
= y' b 5 9
z ] X
Saw’, &) Se(w', 2') Sa(', ¥") 6 6
Pyw’, 2')+Po(w’, y')+Pa(x, 2') 6
196 171 wx-+wy-+xyz-+xy’ 2’ 14
y"-‘T'—Z——!———x
w z' 7 12
l:y:_l_m._i._yj
F[Pi(w') Sa(x', 9°), Pi(x") Sa(y, 2') Saly’, 2)] 10 10
BoLSi(x")+Po(w', ), Sulw')+Paly, 2)+Pa(y’, 2')] 10
197a 175 wx-+wy+xy' z-+x"yz 14%
[w+z(x"+5") 1 (x+y) 6 10
Se(w’, 2') Sa(a', 3') Pr[Ps(w, %', y')] 8
Sa(w’, 2') Sa (&, ') Sa(w', %, y) 7
SilPa(w, 2)4Pu(%, 3)+Ps(w, &', )] 8
197 b 181 wz+xy+wx'y’ 10
w(z+x"y" )+ xy 6 10
Pi[Sx(w, 2) Sa(, y) Pi[Ps(w', %, )11 9
PiLS2(w, 2) Sa(x, y) Se(w, &, y')] 8

Py(w', 2')+Pu(x, y')+Paw', %, 5) 7
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198a 172 wx+wy+xyz+w's'y z 15
W'
x I——T——-—w
x! 8 13
Sa(w, p) Sa(w’, 2') PiLPa(w, p)Sa(%, 3)1, p="Pa(%, ») nn
Py, ) +S1[Sa(w', 2) +Pilg, Polx', 311, g=Pa(x, y) 11
198Db 186 wzt+wxy' +wx' y-+w' xy 15
.—.y'
8 13
Sa(w', ) PILPw’, 2)S2[p, Sa(«', )11, p=S2(%, y) 11% 11
Paw, q)+Pa(w', 2')+S1[S2(w, q)+Pa(x, 3)], g=S2(x, y) 11
199 177 wx-+wz-+w' yz' 10
w(x+2z)-+w y2' 6 10
Sa(w', 3") Sa(w', 2) Pi[P3(w', %, 2)] 8
Sa((w', ¥') Saw!, 2) Ss(w, ', 2') 7
Pa(w!, &) +Po(w’, 2')+Ps(w, ¥, 2) 4
200a 176 wx+wy-+xy 25" yz' 14%
(x+y)(w-x'2' -y 2) 7 11
Sa(x, ¥') PiLPi(w) Sa( %', 2') Saly's 2)] 8 8
B:[Sa(', ¥'), Si(w')+Palx, 2)+Paly, 2)]
200b 194 xy+wx' z+wy'z' 11
W'
N 7 11*
B[P, '), Pi(w')Se(x, 2)Sa(y, 2)] 9% 9
Pu(x’, ') Si[S1(w)+Pa(x’, 2")+Pa(y’, 2)]1 8
20la 173 wx+wy+xyzt+w' x'y' 2 15
9 14
wl
Py[Pi{w) Sa(x, 2) S2(y', 2'), Pily) Se(w, x) Sa(w', x7)] 12
Seolw’, Ss(x, v, 2)Ss(«', ¥, 2)1Ss(w, %', ¥ 11
Py(w!, p)+Si[Sa(w’, 2', PY1+Ps(x', 5", 2'), p=Pa(x, 3) i1
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201b 217

wx'y+w' xy-+wxz'+wy' z

Ez x!
' i j
yl
w'-—-—-y——l——-—x

F[Pi(w') So(x, 2') Saly, 2), Pi(y") Sz(w, x) Sz2(w', 7)1
Su(w’, p) PilPy(w’, 2, p)1Ss(x', ¥', 2), p=S2(x, ¥)
P[w’, Pi(x, y, 2)+Ps(x, ¥, 2')-+Pslw, &, 5')

16%

12
11
11

202 185

wx+wy z-+xyz’ +x' yz

Lty o]

Sa(w’, ¥') S2(2', p) PilPa(2', p) Se(w, x)1, p=Pa(x, y')
Po(w', 2" )+ Po 2, q) +51L5:( 2, @)+ Pelw,y) ], g=Sa(x', )

15

1% 11

203 182

wx-+wyzt+wy' 2+ xyz-+w' x' yz’

W ) e !

Sa(w’, ¥') Se(w, p) PilP:(w, p) Sax, 2)],
p=Pi(x)Saly, 2)Saly’, 2°)

Pow’, 2)+Po(w, ¢)+S1[S2(w, ¢)+Paly, 2)1,
g=S1(y)+Px, 2')+Pi(x', 2)

14% 14

14

204a 178

wx-+wy—+xy'z+w' x'y' 2’

y! T ¥
|z
- ' 1
x v]ﬂ—z
i

v ;

Sa(p, @) PiLPa(p, )1, p=S2(%", y"), g=Pr{w) S2(y’, 2)
Py(7, s)+S1[S2(7, $)1, r=52(x",3"), s=S1(w") -+ Pa(y, 2')

15

10* 10
10

204b 188

wy' +w' xy-t+wx z-+xyz’

fszTx'
w‘-——y—j————l———x

S:p, Y PP D, @)1, p=Pa(x', 5"), g=P1(w’) Saly, 2')
Pa(r, $)+S1[S27, )1, r=Po(x, y'), s=S1(w) +Pa(y', 2)

15

10* 10
10
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205a

183

wx+wyz+xyz+x'y' 2

i X =
W
x | ¥ z
EFs[Po(w', x7), Sa(w', x') Po(y’, 2'), Pslx, 3, 2)]

Pi[Sa(w, x) Pi[S2(w', x') Paly’, 2')]1Ss(x', ', 2')]
P(w', x")+S1lP(w, x)-+S2(y, 2)1+Pa(x, 3, 2)

15

12

11
10

205b 218

wx'y+wxz' +wy' z-+xy2'-Lxy' z

[wﬁ——,—cilj—x—-
b z
el |

1

X

Sa(w’, x') Po[Sz(w, x) Pa(y, z), Ps(x', y', 2')]
Sa(w', x") Pi[S2(w, x) Pa(y, 2)1S3(%, y, 2)

S1lPi(w, £)+Si[P(w’, x')+S2(y’, 2)1+Ps(x', 3", 2')1

20%

11

10
11

206 a

187

wx+wyz' +wy' z-+-xy' 2 +w' £’ yz

w T X
[

¥

z'—-—{,—.— e K Nt

y

w!

w

Sa(w, p) S, @) PilPs(w, p, ¢)],
p=Ps(x, ¥, 2'), g=Pa(y, 2)

Polw, 7)+Pa(x', s)+Si1[Ss(w, 7, s)],
r=S83(x', v, z), s=Sa(y’, 2')

20

13*

13

13

206 b 207

wx'y' wxz-twyz' +xyz+w' sy’ 2

w x X

l [:zjl
[ ‘
w' z

...._.L ‘__.t___.w

Sa(w, p)Sax’, q) Pi[Ps(w, p, q)],
p=Pi(x', 3, 2), q=Pa(y’, 2')

P(w, r)+Pu(x', g)+Si1[Ss(w, 7, 5)1,
r=S3(x, ¥', 2'), s=S2y, 2)

21%

13%

13

13

207

195

wx+tw' ¥’ y+wy z+w'yz

w X
l
- Z

yl
vl

Ey[Py(w, y') Sa(x, 2), Pi(w') Sa(=', y) Se(x', 2')]
Sa(w', ¥') Pi[P:(w', %) Sa(y’, 2)]1Ss(w', %, 27)
Pyw', &) +S1[Se(w’, 3)-+Pa(x', 2)1+Pa(w', 9, 2')

15

1%

10
10
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208a 191

wx-+yz-+w' &'y’ z
wx-(y+w' 2’ )(z+y' x")

Pi[Sa(w, x) Sy, 2) PiALPi(w, x, 3, 2)1]
Pi[S:(w, x) Sy, 2)Si(w’, 2, ¥, 2')]
Pr(w', 2" )+Pu(y’, 2')+Py(w, %, 9, 2)

1
8§ 12
10

208b 231

w' xy+wx’ zH+wyz’ +xy' z

(w-+x) (W' -+x"+y' +2 ) (y+2)

Sa(w', ') Sa(y’, 2') Pi[Py(w', %', ¥, 2')]
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